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ABSTRACT

In this paper, we propose a method of human activity recimgnit
with high throughput from raw accelerometer data applyinigep
recurrent neural network (DRNN), and investigate variorghia
tectures and its combination to find the best parameter sallige
“high throughput” refers to short time at a time of recogmiti We
investigated various parameters and architectures of Ri¥NDby
using the training dataset of 432 trials with 6 activity sles from

7 people. The maximum recognition rate was 95.42% and 83.43%
against the test data of 108 segmented trials each of whish ha
single activity class and 18 multiple sequential trialspestively.
Here, the maximum recognition rates by traditional methodse
71.65% and 54.97% for each. In addition, the efficiency of the
found parameters was evaluated by using additional dat&set
ther, as for throughput of the recognition per unit time, toa-
structed DRNN was requiring only 1.347 [ms], while the beat t
ditional method required 11.031 [ms] which includes 11.02%]

for feature calculation. These advantages are caused lgothe
pact and small architecture of the constructed real timented
DRNN.

Keywords

Human activity recognition; deep recurrent neural netwadcel-
eration sensors

1. INTRODUCTION

The recognition of human activity is a task that is applieatol
various domains, such as health care, preventive mediaihteel-
derly care. In addition, with the rapid spread of devicedwitilt-
in sensors such as smartphones recently, the cost of sefesiings
has fallen significantly. As a result, researches on moluitivity
recognition have been actively conducted [2].

In traditional activity recognition schemes, researclmnerge fre-
quently used a machine learning method, such as decisienktre
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ACM ISBN .
DOL:

nearest neighborhood, naive Bayes, support vector machirk
random forest, to recognize activities from a feature veeto
tracted from signals in a time window by using statistic eslwr
Fourier transformation.

Recurrent neural networks (RNN) is the name of neural néd¢svor
that include a directed closed cycle. The RNN is suitablenfor-
dling time-series data, such as audio and video signalspand
ral language. In recent years, the hierarchical multitlegtecon-
volutional neural network (CNN) has achieved noteworthsutes
in areas such as image processing, and is drawing attemotite t
method called deep learning. In this trend, because the RBIN a
has a deep layer for temporal direction, it has come to bauoeght
as a deep learning method.

Compared to traditional activity recognition methods whare
input feature vectors, in deep learning, the original data e di-
rectly input. This allows the calculation of feature vestdo be
skipped at the time of training and recognition, so that &dpg
can be expected, especially in the recognition. At the same tve
can also expect the recognition result to the to be highlyiate
by virtue of the deep learning.

In this paper, we propose a method of human activity recogni-
tion from raw accelerometer data applying a RNN, and inges#
various architectures and its combination to find the bestrpater
values.

By using a human activity sensing consortium (HASC) open
dataset, the recognition ability of the constructed RNN Az -
uated. We used the training dataset of 432 segmented trigd 6w
activity classes from 7 people, and it was confirmed that thg-m
imum recognition rate was 95.42% against the test data of 108
segmented trials each of which has single activity class.iléVh
the recognition rate of traditional method was 71.65%. Mueg,
the maximum recognition rate was 83.43% against the test dat
of 18 multiple sequential trials, and while the recognitiaie of
the traditional method was 54.97%. Where “a trial” means one
sequential data sample such as a segmented data or a sequence
data. Moreover, a network reconstructed with the pararsetees-
tigated by using HASC dataset by using the human activitpgec
nition (HAR) open dataset, 95.03% recognition rate waseaed.
Further, for the throughput of the recognition per unit tite pro-
posed method was fast requiring only 1.347 [ms], while thstieg
method required 11.031 [ms] which includes 11.027 [ms] &a-f
ture extraction. Notice that this calculation time achteby only
using CPU. The fast response advantage is caused by the numbe
of weights less than 10 % of the traditional methiod [23].

The contribution of this study includes the following thpemnts:

1. In order to construction of a fast response classifientei
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real time execution, we adopted a RNN architecture and eval-
uated its advantages compared with traditional methods.

. To improve the accuracy of the RNN, various parameters
were explored to investigate the factors that affect theiacc
racy. We used the two types of dataset.

. The throughput for recognition with the RNN was evaluated
and it was shown to be faster than the existing method which
includes feature calculation.

BACKGROUND AND RELATED WORK

Recently, many studies on the mobile activity recognitioa a
carried out[[5[20]. For activity recognition technologgchniques
for various applications, such as spofts|[27, 18], skilleasment
[19], detection and evaluation of walking[22], medical lysas
and nursing activity analysi§ [13] were proposed. In thesh-t
niques, a machine learning method to recognize the agtatitgh

2.

as decision tregs-nearest neighborhood, naive Bayes, support vec-

tor machine, and random forest, is often employed as a batie t
nique, after the feature vector have been extracted fromigmals
by statistics or Fourier transformation by taking a timeddw [3].

Since activity recognition handles sequential data, tieghas for
sequential data, such as the hidden Markov model (HNIM) [h8] a
conditional random field$ [32], which are used in speechgeico
tion and natural language processing, were proposed. liti@dd
while studies on completing the required activity recoigniin real
time have been conducted in a few wdrk|[17], these studiassfat
mainly on how to reduce the feature calculation by shiftimgfea-
ture vectors. Similarly, many studies have been focusesdac-
ing the resources required for executing the feature psingse.g.
[26,[4] .

Moreover, in recent years, several activity recognitiorthuds

which use deep CNN have been proposed, and they have been con-

firmed that they can achieve high accuracy recognition tharra-
ditional methods[31]. However these method require the tivim-
dow to generate certain length segmentation of time seigess
Moreover, in general, CNNs have huge number of connectien be
tween inner layers. These features of CNNs are not suitabledl
time execution of mobile devices.

An RNN can be used as a learning method and an estimator, and

is suitable for handling time-series data, such as audiovateb
signals, and natural language. Early RNNs included the fait
current network developed in 1980, an interconnected tgpsark
such as the Hopfield network announced by John J. Hopfield in
1982, and so on. Then, hierarchical RNNs, such as the Elntan ne
work and the Jordan network were developed in the early 1f#0s
The Elman network has a state feedback, and the Jordan tketwor
has a recurrent connection for the output feedback. Thidbimek
contributes in order to extract features of dynamics of irgignal.

The RNN executes calculation processing of large netwakléd

to the time direction at the training phase, and executéséagien-

tial calculation processing at the recognition phase.

Recently, many of the methods using CNNs and RNNs aims to
recognize by using raw signal directly without extractidntioe
feature vectors in advance.

In the method using a combination of CNN and RNIN|[23], the
network achieves further high accuracy recognition by dre
extraction ability of dynamics in the RNN. On the other hattne
adoption of the CNN architecture causes the increasingoofyra-
tion rate, the increasing of the computational cost, andithiea-
tion of the time window.

The RNN is a high throughput network architecture that cai de
with raw sensor data without feature extraction and cangeize

by thorough fast sequential processing. In this paper, wpqse a
method to execute training and recognition of the RNN (i.eep
RNN) which has multi internal layer by using raw accelenatiata
without feature extraction aiming at a high-precisionattirecog-

nition with high throughput.

3. RECURRENT NEURAL NETWORK

In the following, the basic processing methods for executib
training and recognition of a RNN are explained.

3.1 Deep recurrent neural model

Let us assume a deep RNN (DRNN) withlayers, as shown in
Fig.[. This network is an Elman-type network in which intgrn
layers are completely connected at the same hierarchy itirttee
direction. Herep % = [u{""* u{* ..o F T is the
input vector of thé-th layer at timek andz(V-F = [ z{1F 2 (-
D z(]l)k ™ is the output vector of theth layer at time
k. A pair of each elements of the input and output vectors is
called a unit. j is an arbitrary unit number of theth layer and
J is the total number of units. We assumé = z(1* in the
input layer, andv® = w"* andy® = z()* in the output
layer. In addition, in the following, the arbitrary unit niers
(and the total numbers of units) of tlie— 1)-th layer are repre-
sented by (andI, respectively). Atthis time, the input propagation
weight from the(l — 1)-th layer to thel-th layer is represented by
w® (e Ry and RV (€ R7*7) is the recurrent weight in the
I-th layer(l = 2,--- , L — 1), wherej’ is an arbitrary unit number
of thel-th layer before one time unit. At this time, the components
of u""* are given by

I J
Wk _ W, (1-1)k W) (1)k—1
uf "t =Y w2 + D T @
i I

Herew!! andr") represent the element 8% ") and R, re-
spectively. The elements of the output vector of #ik layer are
expressed as

1),k 1 1),k
20 = fO @),

where f(")(.) is called theactivation functionand functions such
as the sigmoid functiorfi(u) = tanh(u), logistic sigmoid function
f(u) = 1/(1 + ™), and rectified linear unit (ReLU) function
f(u) = max(u, 0) are frequently used.

Here, for simplicity, by introducing the 0-th weigh%) and the

0-th unitz{~""* = 1, biases can be collectively described as
)

20k — O (g0 0-Dk | RO Wk-1y

Rz

tw®
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Figure 1: Schematic representation of the DRNN

[-th layer



where f(a) = [ f(a1) f(a2)--- f(an) ]*. From this equation,

it is possible to obtain the output of an arbitrary time byftsin

k. However, since elements of° has no recurrent connection, it
is the same as the first term of Formuld (1). Therefore, thé fina
output vectory is derived by

F= PN = w0, ®
3.2 Learning method
3.2.1 Error function
When performing multi-class classification into class - - - , C},,

,Cu, by using the softmax function, let the output of theh
unit of the output layer be the following equation. Furthbg out-
puty,, of the individual unit means a probability belonging to slas
Ch.

exp(un)
Saly exp(ug)

When an inpute is given, this probabilityy,, is classified into the
largest class, and

o= =) =

= p(Chlz). (4)

N H
=Y dunlogyn(@n; w) ®)

n=1h=1

is defined as the error function, and updating the variabttovey

to minimize this becomes the learning policy. Tdlg represents
n-th supervised vector and thi;, represent&-th elements of dn.
The value of element is set as 1 if theh element corresponds to
the class ofd,,, and otherwise it is set as 0. Eql (5) is called the
cross entropy function.

3.2.2 Mini-batch stochastic gradient descent

Itis possible to use the gradient descent method to minithize
error function. LetD be the number of elements af; the gradient
of the error function is expressed by

OE(w) [0E(w)
ow w1

The gradient descent method searches the local minimure walu
the neighborhood by repeating many times to changde the neg-
ative gradient direction by a very small amount. Let the \ltig
thet-th time of repeat bev’; then, it becomes

w't = w' — eVE,

OE(w)]”

FE =
v owp

(6)

wheree is a parameter called the learning rate.

The mini-batch stochastic gradient descent method cellact
small number of sample sel¥ (called amini-batch in each repeat
to calculate the gradient using the average
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E'(w) 7
of error for each sample among them. It is known that the lo-
cal solution avoidance performance is high because thelatifon
converges quickly with this method.

As the learning rate is high, learning becomes faster; however,
if it is too high, since it vibrates near the local minimumu@lof
the error function, an adjustment method of the learning, iclled
Adaptive moment estimation (Adam), is employed|[16].

3.2.3 Back Propagation Through Time (BPTT)

The back propagation through time (BPTT) method can be ap-
plied the error back-propagation method to the developetli®R

regarded as a large NN expanded in the time direction. The tec
nique is described below. First, we introduce here a quacsied
deltafor the unitj of layerl

1),k
9; PO

®)

This value can also be derived from the values of ¢he- 1)-th
layer of the same time and the tirker 1 of the same layer. Let the
derivative of the functiory (u) be f’(u); then

M 50, k+1> ( W, k) ©)
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holds. The gradient can be calculated based on these egmatio
O] (l)

The weightsw,;’, r 0 10 be updated become
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Using these relations, the gradlents can be calculate tpagading
the deltas inversely from output to input, as shown in Hig. 2.

Here, the calculation amount becomes too enormous foripaact
use in the normal BPTT to calculate the gradient by datingx ladic
the times. Therefore, the truncated BPTT method [28], whkigts
the time to date back to an appropriate constant to performTBP
for each the time, is used.

3.3 Long short-term memory (LSTM)

Long short-term memory (LSTM) is a type of NN model for
time series data. It is utilized mainly to replace some uoitthe
RNN to solve the problems of an input/output weight conf[ick][
which is the conflicts between the input from the previougtand
the recurrent value, and vanishing/exploding gradienblgr [25]
where a delta vanishes or explodes by the deep backward-propa
gation. In this section, we describe the structure of LSTMcivh
solves input/output weight conflicts and vanishing gratiieand
gradient clipping method to avoid exploding gradients.

3.3.1 Structure of LSTM

A structural diagram of the LSTM is shown in F[d. 3. A struetur
for storing the internal state, called a memory cell, is pied in
the LSTM, allowing it to perform the controls, such as whettoe

§L) k=1 (L) k §(L).K
)
is
5(l+1) k—1 6(l+1) k 5(z.+1) K

(l) k- u(l) k (l) k41
6(1) k—1 (l) k 1) K
J

Figure 2: Back propagation in DRNN



write the information to the cell, read the information freme cell,
or delete the information of the cell.

The structure horizontally propagating straight in the pap-
tion of Fig.[3 is for solving the vanishing gradient problentdds
called the Constant Error Carousel (CEC). Itis possibl@beesthe
vanishing gradient problem by introducing the CEC when back
propagating the error in the recurrent directibnl [11]. Inli&idn,
with this structure, the statg inside the internal layer unit is trans-
mitted at the next time. Although a memory cell is also clearl
shown in Fig.[B, in fact the state is preserved through theeent
structure of the CEC.

The input gate and output gate are for eliminating input autd o
put weight conflicts[[11]. Let us consider the input gate agxan
ample. First, the output vectar® ' (c R’*!) before 1 time and
the input vectoee* (€ R"*") of the present time multiplied by the
transmission weight ¢ (€ R'*”),w ¢ (e R'*") are summed to
pass through the logistic function. This is expressed bydhew-
ing equation, where the logistic function is expressed tand the
input gate bias by*:

d)k = U(w§gmk + r;gzk71 + big).
Because the logistic function returns a value in the rangetofl,
when multiplied by the original transmission input at thetrieput
gate, it controls AlJhow much of the input to pasé& Wheng* is
0, it does not pass the input completely, and it passes aihthes
when itis 1. The same operation is performed in the outpug.gat
By providing a gate that performs such an operation, it isibdes
to determine whether to memorize a state or to read the meetbri
state in accordance with the input value or the output valube
internal layer unit.

The purpose of the forget gate is to determine whether or not
to forget the memorized statel [6]. However, the memory ferge
ting mentioned here does not refer to inheriting the valu¢hef
memory cell before one time. The mechanism of the forgetigate
the same as that of the input and output gates, as describgd.ab
The forget gate operates, for example, to perform efficieatrl-
ing even in cases, such as that where the pattern of the gness
data is changed suddenly to a pattern having no correlatithrtie
previous context.

By introducing the LSTM, the weights to be updated will in-
crease. More specifically, the bias weight in addition-t6, w®
for the transmission to the input gaté&? , w?? for the transmission
to the output gate, and’?, w’9 for the transmission to the forget

k
ij

(12)

r
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Figure 3: Structural drawing of LSTM

gate will increase by each gate weight. These weights canbals
updated by transmitting the delta inside the LSTM block gshe
back-propagation method.

3.3.2 Gradient clipping

The exploding gradient problem is solved with a techniquieda
gradient clipping.

Gradient clipping is a method of correcting the norm of the
gradient so that it does not exceed the threshold value &dcif-
ically, when letting the threshold value bg

IVE| > c (13)
is met, and a new value is assigned to the gradient as
VE + —S _VE (14)

IVEl

3.4 Avoiding overfitting

Learning, as in NNs, by adopting the error function as an op-
timization function may cause overfitting, in which a moduhtt
captures too much peculiarities of the training data ands chum
fit to the new test data is generated. As methods to avoid bverfi
ting, regularization and dropout are available, as desdrib the
following.

3.4.1 Regularization

Overfitting is liable to occur when the degree of freedom ef th
network is too high for the training data. However, in mangesa
the training data cannot be easily increased, and the deffese-
dom of the network should not be easily reduced, because
deeply involved in the expressive power of recognition. réfare,
a regularization method to mitigate overfitting by proviglisome
type of constraint on the learning parameter is requirece Jita-
dient clipping described in Sectién 3.8.2 is an explodinadgnt
problem-solving technique as well as a regularizationrnagre.

3.4.2 Dropout

Dropout, which was developed recently, is a widely used-over
fitting avoidance technique. At the time of training, thetsiaif the
internal and output layers are disabled by selecting theancain-
stant ratep. That is, learning is performed as if they did not exist
from the beginning. On this occasion, selection of the umibe
disabled is performed at every time to update the weight. hat t
recognition, all the units are used to perform the forwamppga-
tion calculation. However, the outputs of the units beloggio the
target of disabled layers are uniformly multiplied pyat the time
of training [10].

it is

As mentioned previously, there are many parameters in tH¢;RN
even if we just use the RNN, trial and error for setting theapar
eters depending on the problem will be required. Therefarthe
task of activity recognition, an examination of the paramgtsuch
as the numbers of layers and units, truncated time, and dtoate,
should contribute to the study of the activity recogniti@ing the
RNN.

4. ACTIVITY RECOGNITION USING RNN

We applied the DRNN described in Sect[dn 3 to human activity
recognition to verify its accuracy and performance.
The items to be verified were are as follows:

1. Does the recognition accuracy increase as comparedtto tha
of other algorithms?



2. Is any influence exerted on the accuracy when some parame-as sequential data. For cross validation, we used the finse th

ters are changed?

3. How long is the throughput time of the recognition as com-
pared with other algorithms?

4.1 Dataset

The HASC corpus is a dataset for machine learning gatherd an
distributed by HASCI[14], distributed at a state with a dethlabel
attached to the data measured by sensors mounted on a mebile d
vice. In this study, we used a part of the acceleration sggofihe
HASC corpus as a dataset. The dataset are divided into “sggthe
data” and “sequence data”, the former includes single iactin
one trial and the latter includes multiple consecutivevétatis. The
details of these two types of data are shown in Thble 1. The seg
mented data are suitable for use as training data becausarte
able to label easily. On the other hand, since the sequenaeada
constructed by seamless measurement of human activitiese t
are resemble actual human activities.

4.1.1 Cross validation

In the evaluation, we divided the segmented data into tliaing
data of 432 trials and the test data of 108 trials so that timeben
of samples in each activity class balances each other.

Based on the data, we evaluated three types of accuracy:

Training accuracy Perform training with the training data, and
recognize with the training data.

Test accuracy Perform training with the training data, and recog-
nize with the segmented test data.

Sequence accuracyPerform training with the training data, and
recognize with the sequence data.

Note that, because of the design of HASC dataset, for both se-
guence data and test data, the same person could be included.

As a measure of accuracy, the proportion of samples suctlyssf
recognized in the evaluation samples was used.

4.1.2 Additional dataset

As an additional dataset to examine the generality of ouhotkt
we adopted the Human Activity Recognition using Smartpsone
dataset IAR dataséfd] in the UCI Machine Learning Reposi-
tory, and applied the best parameters found in the HASC eatas
The sensor data were collected using smartphones equigfied w
three-axis accelerometer and a gyroscope. The smartphares
attached on the waists of the 30 persons. They have six tyfpes o
activity classes, which are “Standing", “Sitting", “Lagt “Walk-
ing", “Walking downstairs", and “Walking upstairs", andrapiled

Table 1: Details of HASC dataset
Segmented data Sequence data
Signal in one time [s], X axis [G], time [s], X axis [G],
measurement Y axis [G], Z axis [G] | Y axis [G], Z axis [G]
Frequency 100 [Hz] 100 [Hz]
Targeted activity “stay", “walk", “jog" “stay",“walk",“jog"
“skip" “stair up", “skip" “stair up",
“stair down" “stair down"
Measurement time 20 [s] 120 [s]
Type of Activity 1 6
in one measurement
Number of person 7 7
Number of trials 540 18
Type Single activity Multiple activity

fourth samples as training data, and last one fourth as &st d

4.2 DRNN-based activity recognition

In order to perform high throughput activity recognitiom &ach
time by using the three-axis acceleration of a smartphorthes
direct input, we constructed a DRNN such that the three-agis
celeration data of each time corresponded to the threerdiioeal
input layer, and six activity classes to the six-dimensianaput
layer. Each unit of each intrnal layer was an LSTM unit. The ac
tivation function of the output layer and the error functimere
defined by a softmax function and a cross entropy functispee-
tively. The truncated BPTT under the mini-batch stochagtadi-
ent descent method was used to update the weights at the ftime o
training. The number of internal layers, the number of uinside
the internal layer, the number of times dating back was peréad
by truncated BPTT (called truncated time), the maximum igrad
¢, and also the dropout probabilipwere set to be variable in order
to search the most appropriate value experimentally. Theldef
this DRNN are summarized in Talilé 2.

This network outputs an activity class, which correspomdart
element having the largest value among the elements of tipeitou
vector obtained when an input vector is input, as the reaaghi
result.

A flow of the process of training and evaluation will be delsed
below. The outline is also shown in F[g. 4.

(0) Shuffle all the trials of training data and divide them intaini
batch sets of 20 trials.

(1) For the first mini-batch,

1. Take the timé: at random.

2. Let the truncated time BE, and divide the time range
for truncated BPTT intdk, k + T — 1], [k + T,k +
2T —1],--- [k + K' — T,k + K'], where the final
value of the range was set &5 = 1200.

3. For each range, obtain an error function from the in-
put and output to update the weights by performing the
error back-propagation.

(2) Perform the same processing as (1) for the subsequent mini-
batch.

(3) Call a period until the processing for all mini-batches isneo
pletel epoch

(4) Obtain the accuracy for the test data to valuate the gemarali
tion performance.

Table 2: Details of DRNN

Setting items Detall
Activation function of output layer Softmax
Error function Cross entropy
Type of internal layer unit LSTM
Mini-batch size 20
No. of time stamps in a mini-batcly K'=1200
Initial Weights random[—0.1,0.1)3AA
Initial bias None
Learning rate adjustment Adam
Input dimension 3
Output dimension 6
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Repeat (1) to (4), and stop the training after repeatingficgarit
number of epochs. training phase ends in up here. Afteraliang
phase, the activity recognition of the sequence data amitee by
using only the forward propagation of the learned model. drRic
the accuracies of training data, test data, and sequenaéndasach
epoch to plot the changes.

Chainer|[[29], provided by Preferred Networks, Inc., wasiuse
implement the DRNN. Chainer is a framework (FW) for NN. In
Chainer, various NN models can be flexibly written in the Byth

language. The experiment was conducted in an environment as

shown in Tabl€R3.

Here, the training time was reduced by parallel processgiggu

the GPU, and the CPU was used for evaluating of the throughput
of the constructed DRNN. This strategy is based on a follgwin
policy; the RNNs is trained by a large-scale computer agchiire,

and its execution is done by a standard type mobile terminal.

4.3 Comparative methods

As comparative methods, decision tree, support vector imach
(SVM), and random forest were used.

The comparative methods, rather than the raw sensor data, an
require time windows to calculate the feature vectors. &luee,
we extracted feature vectors from the three-axis accelet@mata.
For the sensor data, time windows of 5 s were extracted,irgift
every 2.5 [s], as in Bao et al.][3].

For each time window, we calculated 27 feature values,iello
ing the studies i [33.34,12]. The number of feature vaeahised
in each time window was 27, including: (1-3) mean value ofheac
axis, (4-6) variance of each axis, (7) mean sum of the absohlt
ues of each axis, (8-9) first and second eigenvalue of theiaoea
matrix between the axes, (10) sum of the vertical comporaits
for the intensity, (11-13) covariance ratio in theandy-direction
for the z-component variance of each axis, (14-16) variance ratio
of the back and forth difference in the and y-direction for the

Table 3: Computing environment

0s Ubuntul4.04LTS (64-bit)
CPU Intel Corei5-4590 3.3 GHz
RAM DDR3-1600 24 GB
GPU NVIDIA Quadro K2200
FW Chainer 1.5.1
Python Ver. 2.7.6
CUDA Ver. 7.0

variance of the back and forth difference in thelirection of each
axis, (17-19) mean FFT-domain energy of each axis, (20) mean
FFT-domain energy of the intensity, (21-23) FFT-domairrem

of each axis, (24) FFT-domain entropy of the intensity, (@&)n-

ber of mean crosses of the mean intensity, (26) number ofesos
of the zone of the mean intensiti0.1[G], and (27) number of
samples outside the zone of the mean intensiyl[G].

We reduced these 27 feature variables to 13 by applying stepw
feature selectiori [8] using logistic regression. As a itedid fea-
ture variables, 1, 2, 6, 7, 9, 11, 12, 13, 15, 20, 21, 24, anav@fe
adopted.

For these selected feature vectors, machine learning ietho
decision tree, SVM, and random forest was applied, and ih ehc
these a grid search were conducted over the training dateotmse
the best model.

4.4 Throughput evaluation

For evaluating the throughput of the recognition, the tirae r
quired for the recognition of the entire sequence data wadeti
by the number of samples of the sequence data to derive the mea
value of the recognition throughput per time unit. For theneo
parative methods, we calculated the computation time o&tufe
vector in one time window, the time taken to recognize thvigt
from the feature vector in one time window, and the sums cfghe
values.

5. RESULTS

In the following, we compare the results of evaluating theuac
racy of the activity recognition with the DRNN by searchirarv
ious parameters with those of the accuracy of the existing-te
nique. First, after showing the best model that yielded igbést
accuracy, we show the accuracy when the parameters arel.varie
Furthermore, for the throughput of the recognition, we carap
the time required for feature calculation and recognitiothie ex-
isting technique and the time required until the result ipotiafter
inputting one sample in the DRNN.

5.1 Best model

The best model is the model that showed the best recognition
result for the sequence data during the experiment. Therzdeas
selected in the best model are shown in Table 4.

Fig.[  shows the transition of the correct recognition ratedch
epoch. The AlJrecognition ratedl is derived by the ratio of the
correct recognition time against total time for each traald it is
also referred to simply as accuracy. In the best model, thie te
recognition rate wa95.42% at maximum. The recognition rate
for the sequence data w&3.43% at maximum.

In Fig.[8, it can be seen that the recognition rate increaséisea
epochs proceed. According to the results in this figure, wiggd
that it is reasonable to stop the training at about epoch 8D far
the subsequent evaluations, we extracted the averagenigong
rate from epoch 71 to epoch 80 for comparison.

Table 4: Best model parameters

Parameters [| Best value
Number of internal layers 3
Number of units in one laye 60
Truncated time =30
Gradient clipping paramete c=5
Dropout rate p=0.5
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5.2 Comparison with existing methods

Fig. [@ shows a graph comparing the accuracy of the existing
method with that of the proposed method. The Bar represhats t
mean recognition rate from epoch 71 to epoch 80. In the teat da
the DRNN shows results that are 35.18%, 27.76% and 22.35%
better than those of decision tree, SVM, and random forest, r
spectively. In the sequence data, it shows results that&f3%,
26.04% and 26.74% better than those of decision tree, SV, an
random forest, respectively.
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5.3 Varying parameters

The results obtained by changing the number of internalrfaye
are shown in Fig[]7. The thin line at the top of bar represems t
standard deviation. We changed only the number of inteayarb
among the parameters of the best model. As can be seen in the
figure, the recognition rate is highest in the case of thrgerafor
any of the training, test, and sequence data. In particidathe
sequence data, the recognition rate is about 8.2% highertliza
of the worst four-layer model.

The results obtained by changing the number of internalrlaye
units are shown in Fidg.]8. We changed only the number of iafern
layer units, using 20, 40, 60, and 80 units, among the pammet
of the best model. In the figure, it can be seen that the retiogni
rate is highest in the case of 60 units in test and sequenae lat
particular, in the sequence data the recognition rate istehd@%
higher than that of the lowest, 20-unit, model.

The results of the experiments where the truncated time was
changed are shown in Figl 9. We changed only the truncates tim
using 10, 30, 50, 70, and 90, among the parameters of the bestFigure 10: Comparison of accuracy according to the gradient
model. The figure shows that the performance is relativebdgat clipping parameters
T = 30 orT = 70, and worst afl’ = 10. For the sequence data,
a difference of about0.7% occurred between the most accurate
T = 70 model and thd" = 10 model.
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timess

=

o
®

Recognition rate
o o
S (2]

o
o

o
=)

Train Test Sequence

o

IR Non dropout
. p-03
 p-05
= p=0.7

o
®

o
)

Recogpnition rate
o
S

o 1.0 02
© 08 —

S 064 M DecisionTree 0.0 Train Test Sequence

2 . HSVM

g 0.4+ RandomForest . . .

S 0.2 =RNN Figure 11: Comparison of accuracy according to dropout rate
9]

& i

Train fest  Sequence The results of experiments where the gradient clippingrpeter

_ _ was changed are shown in F[g.]10. We changed only the gradient
Figure 6: Accuracy of comparative methods and best model clipping parameter, using 3, 5, 7, and 9, among the paramefer



the best model. The figure shows that no significant recagniti
rate difference due to the variation in the gradient cligpdaram-
eter can be observed.

The results of experiments where the dropout probahilityas
changed are shown in Fig.J11. We changed only the dropoutiprob

it caused a delay in recognition near the tiz390, as seen in Fig.

[I3(b). This phenomenon is considered to have been causda by t

fact that unlearned signals that cannot be classified int@etivity
during the transition of activity were input.

bility p, using 0, 0.3, 0.5, and 0.7, among the parameters of the best6.2 ~What are the optimal parameters?

model. Thep = 0.3 model showed the highest recognition rate for
the test and sequence data. In particular, for the sequenagette
recognition rate of this model was abol6% higher than that of
the lowest recognition rate model without dropout.

The above results show that, in the task of activity recagmit
in this time, a large difference appeared in the recognitéda for
five parameters. In particular, for the parameter of truedditme,
there is a difference df0.7% between the maximum and minimum
recognition rate, revealing that the parameter adjustnseetffec-
tive.

5.4 Throughput of activity recognition

6.2.1 Number of layers and units

Because NNs can handle higher order feature vectors, as the
number of layers is increased, the goodness of fit to theitigiin
data is increased. It can be seen in Hiy. 7 that, in the present
periment, the training accuracy increased as the numbeyefs
was increased up to three in the internal layer. Howeveratice-
racy decreased in the four-layer model. This phenomenorbean
interpreted to have occurred as a result of increasing itetiraing
difficulty by the increase in the excessive number of layEtsther,
for the generalization performance, it is known that theusacy is
liable to decrease because of the overfitting when the fraeafo

We summarize the throughputs of the proposed method and thethe model becomes too high. This fact was also demonstrated i

existing method in TablE]5. When compared according to only
the calculation time at the time of recognition, the exigtinethod

is 1.342 [ms] faster, but if compared according to the substantial
time, the proposed method %671 [ms] faster, because the ex-
isting method requires that the feature vector extracted pee-
processing.

5.5 Result with additional dataset

As a result of applying our method and parameters for HAR
dataset, the recognition rate was 95.03% at 45th epoch. thgth
cross validation with first three fourth samples as trairdatp and
last one fourth as test data. Fifl.]12 shows the transitiomef t
correct recognition rate in each epoch.

6. DISCUSSION

We consider the proposed method in the light of the experimen
tal results obtained. In addition, in the following, we girere
importance to the accuracy for the test and sequence datdttba
accuracy for the training data as a basic evaluation aviteri

6.1 Activity recognition with the best model

Using the best model, it was possible to perform the recogni-
tion with a higher recognition rate and faster responsedsjiemn
those of the traditional methods. In particular, an recogmirate
of 95.42% at maximum was obtained for the segmented test data.

On the other hand, for the sequence data, the recognitien rat
dropped t083.43% at maximum. The recognized results for the
sequence data shown in Fif_]13 verify this. The horizonta ax
represents 10 [ms] per 1 time in time number and the vertidal a
represents acceleration in the gravitational acceleraiit [G].

A color chart displayed as “True" represents the correattiwi
label, and a color chart displayed thereunder as “Es" repteghe
estimation label. In Fig._13(a), it can be observed that iregal the
recognition performance was good, but it caused similavities
to be erroneously recognized at the tiG@®0 — 7000. In addition,

Table 5: Evaluation of throughput

Feature [ms]  Recognition [ms]  total [ms]
Decision Tree 11.027 0.004 11.031
SVM 11.027 0.123 11.150
Random Forest 11.027 0.056 11.083
RNN - 1.347 1.347

this experiment by the results for the test and sequencestiaten
in Fig. [A. According to the above, an unnecessary increatieein
layers in the model design should be avoided, because it ezaly |
to a reduction in the generalization performance.

Furthermore, when the number of internal layers is increbase
the computation time and memory usage are increased. Iathis
periment, the computation times taken per epoch vé&t&89 [s]
with the single layer89.59 [s] with two layers,116.39 [s] with
three layers, and44.83 [s] with 4 layers of the internal layer, re-
spectively. In addition, the throughputs at the time of gggtion
were 0.512 [ms] with single layer,0.909 [ms] with two layers,
1.347 [ms] with three layers, and.720 [ms] with four layers of
the internal layer, respectively. This time, we chose trst beodel
based on the accuracy, but if we prefer to obtain a high thrpug
at the expense of accuracy, simplifying the calculationdziucing
the layers should be considered.

Almost the same consideration may be also possible for the nu
ber of units as the number of layers. As can be seen in[Big. 8, in
order to obtain a high generalization performance, the raumob
units should not be excessively increased. Further, whereas-
ing the number of units, because the amount of computatioa ti
and memory usage increases, an adjustment will be requined w
a trade-off is implemented.

6.2.2 Truncated time

For the truncated time, it can be seen in Hi§. 9 that the perfor
mance decreased for the test and sequence d&fa-at10, but
the optimum value cannot be obtained stably. Here, the rétog
rate, which was relatively high & = 30 andT" = 70, is about 200
and 470, respectively, if converted into beats per minuB&s\V). It
is considered that one cycle of human walking and activitegs
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Figure 12: Result for HAR dataset
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Figure 13: Visualization of the recognized result

tured by the network may fall within a range of this degreeug,h
in order to capture the features of input signals, it is cdergd ef-
fective to take the variation period of the signals beingdhedh into

account when determining the truncated time.

6.2.3 Gradient clipping parameter

In Fig. [10, no significant performance difference generdtgd
the gradient clipping parameters among the data used iexpisr-
iment is seen. It is possible that gradient explosion didoeotr to
a great extent for the data in this time. In addition, in theNDR
because the likelihood that gradient explosion will occuréases
as the truncated time and the number of layers increasenétiss-
sary to suppress the gradient moderately by taking alsoahes
of other parameters into consideration.

6.2.4 Dropout rate

First, as can be seen in Fig.]11 in the cases where the dropsut w
and was not applied, applying it leads to a tendency thatebeg-
nition rate is liable to become higher for the test and secgi€iata.
For the dropout probability, approximatei9p%, as frequently used
in CNNSs, is considered to be appropriate also in the RNN.

6.2.5 Validity of parameters

Itis found from Fig.12 that when the parameters adjustethfer
recognition of HASC dataset were utilized for the trainirfgttee
HAR dataset, a high recognition rate of 95.03% was obtained.

6.3 Throughput and training time

The throughput of the recognition was 1.347 [ms], an 8.1@$§m
faster speed than that of the existing method. Considehiagthe
data are currently acquired at 100 [Hz], this throughputif@ent
to allow real time processing. In addition, because the RN b
sically performs only the product-sum operation by the nerndf
times of the dimensions akR and W at the time of recognition,
it is considered that implementation in low power deviceshsas
smartphones may also be possible in the future.

On the other hand, the training time wels.39 [s] per epoch on
average. This is a very large and non-negligible amountnoéti
however, by calculating the training using a high-speed mder
in advance, high throughput processing may be possible airte
of recognition. In addition, in principle, because the DRid&h
perform the online learning on a mini-batch basis, by degs
method of feeding the training data, a high throughput caexse
pected also in the training.

is shown that have a clear advantage for the miniaturizatfdhe
devices of recognition.

6.4 Future direction

In this experiment, the activity recognition results of DRNN
were good in terms of recognition rate and throughput. Harev
new techniques are constantly being developed also for RNIdsy
techniques can be utilized for the activity recognitiongtsas an
approach([211] using the ReLU function instead of LSTM, a rodth
[24] to automatically organize the feature vectors by aimglythe
pre-training used in the CNN, and a methbd|[30] to accurately
timate the behavior of things by using the physical laws efrésl
world and its simulation. The verification of these techeig|us
one of the challenges for future studies.

In addition, in this study the recognition rate of the seqeatiata
decreased. However, to resolve this issue, it would be plest
apply the HMM as a post-processing, or to apply a method that
takes into account the context of the label in the RNN, catledt
nectionist temporal classification|[7]. And, we develop apact
DRNN circuit to equip into a mobile device.

7. CONCLUSION

In this paper, the DRNN was constructed for human activity
recognition using raw time series data of acceleration@smoun-
ted on a mobile device with high recognition rate and higbuiyh-
put. The maximum recognition rate was 95.42% against the tes
dataset and was 83.43% against multiple sequential teasetat
Here, the maximum recognition rate by traditional methods w
71.65% and 54.97% respectively. Further, the efficiencyhef t
tuned parameters was confirmed by using the sequentialetlatas
For the throughput of the recognition per unit time, the tartsed
DRNN requires only 1.347 [ms], while the traditional methed
quires 11.031 [ms] which includes 11.027 [ms] for featurgrasx
tion. In the future, many techniques, such as a forget-nmésim
and pre-training, optimization methodology, and a metihaditakes
the series into consideration, should be studied.
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