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ABSTRACT
In this paper, we propose a method of human activity recognition
with high throughput from raw accelerometer data applying adeep
recurrent neural network (DRNN), and investigate various archi-
tectures and its combination to find the best parameter values. The
“high throughput” refers to short time at a time of recognition. We
investigated various parameters and architectures of the DRNN by
using the training dataset of 432 trials with 6 activity classes from
7 people. The maximum recognition rate was 95.42% and 83.43%
against the test data of 108 segmented trials each of which has
single activity class and 18 multiple sequential trials, respectively.
Here, the maximum recognition rates by traditional methodswere
71.65% and 54.97% for each. In addition, the efficiency of the
found parameters was evaluated by using additional dataset. Fur-
ther, as for throughput of the recognition per unit time, thecon-
structed DRNN was requiring only 1.347 [ms], while the best tra-
ditional method required 11.031 [ms] which includes 11.027[ms]
for feature calculation. These advantages are caused by thecom-
pact and small architecture of the constructed real time oriented
DRNN.

Keywords
Human activity recognition; deep recurrent neural network; accel-
eration sensors

1. INTRODUCTION
The recognition of human activity is a task that is applicable to

various domains, such as health care, preventive medicine,and el-
derly care. In addition, with the rapid spread of devices with built-
in sensors such as smartphones recently, the cost of sensingdevices
has fallen significantly. As a result, researches on mobile activity
recognition have been actively conducted [2].

In traditional activity recognition schemes, researchershave fre-
quently used a machine learning method, such as decision tree,k-
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nearest neighborhood, naive Bayes, support vector machine, and
random forest, to recognize activities from a feature vector ex-
tracted from signals in a time window by using statistic values or
Fourier transformation.

Recurrent neural networks (RNN) is the name of neural networks
that include a directed closed cycle. The RNN is suitable forhan-
dling time-series data, such as audio and video signals, andnatu-
ral language. In recent years, the hierarchical multi-layered con-
volutional neural network (CNN) has achieved noteworthy results
in areas such as image processing, and is drawing attention to the
method called deep learning. In this trend, because the RNN also
has a deep layer for temporal direction, it has come to be captured
as a deep learning method.

Compared to traditional activity recognition methods which are
input feature vectors, in deep learning, the original data can be di-
rectly input. This allows the calculation of feature vectors to be
skipped at the time of training and recognition, so that a speed-up
can be expected, especially in the recognition. At the same time, we
can also expect the recognition result to the to be highly accurate
by virtue of the deep learning.

In this paper, we propose a method of human activity recogni-
tion from raw accelerometer data applying a RNN, and investigate
various architectures and its combination to find the best parameter
values.

By using a human activity sensing consortium (HASC) open
dataset, the recognition ability of the constructed RNN waseval-
uated. We used the training dataset of 432 segmented trials with 6
activity classes from 7 people, and it was confirmed that the max-
imum recognition rate was 95.42% against the test data of 108
segmented trials each of which has single activity class. While
the recognition rate of traditional method was 71.65%. Moreover,
the maximum recognition rate was 83.43% against the test data
of 18 multiple sequential trials, and while the recognitionrate of
the traditional method was 54.97%. Where “a trial” means one
sequential data sample such as a segmented data or a sequence
data. Moreover, a network reconstructed with the parameters inves-
tigated by using HASC dataset by using the human activity recog-
nition (HAR) open dataset, 95.03% recognition rate was achieved.
Further, for the throughput of the recognition per unit time, the pro-
posed method was fast requiring only 1.347 [ms], while the existing
method required 11.031 [ms] which includes 11.027 [ms] for fea-
ture extraction. Notice that this calculation time achieved by only
using CPU. The fast response advantage is caused by the number
of weights less than 10 % of the traditional method [23].

The contribution of this study includes the following threepoints:

1. In order to construction of a fast response classifier oriented
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real time execution, we adopted a RNN architecture and eval-
uated its advantages compared with traditional methods.

2. To improve the accuracy of the RNN, various parameters
were explored to investigate the factors that affect the accu-
racy. We used the two types of dataset.

3. The throughput for recognition with the RNN was evaluated,
and it was shown to be faster than the existing method which
includes feature calculation.

2. BACKGROUND AND RELATED WORK
Recently, many studies on the mobile activity recognition are

carried out [5, 20]. For activity recognition technology, techniques
for various applications, such as sports [27, 18], skills assessment
[19], detection and evaluation of walking [22], medical analyses
and nursing activity analysis [13] were proposed. In these tech-
niques, a machine learning method to recognize the activity, such
as decision tree,k-nearest neighborhood, naive Bayes, support vec-
tor machine, and random forest, is often employed as a basic tech-
nique, after the feature vector have been extracted from thesignals
by statistics or Fourier transformation by taking a time window [3].

Since activity recognition handles sequential data, techniques for
sequential data, such as the hidden Markov model (HMM) [15] and
conditional random fields [32], which are used in speech recogni-
tion and natural language processing, were proposed. In addition,
while studies on completing the required activity recognition in real
time have been conducted in a few work [17], these studies focused
mainly on how to reduce the feature calculation by shifting the fea-
ture vectors. Similarly, many studies have been focused on reduc-
ing the resources required for executing the feature processing, e.g.
[26, 4] .

Moreover, in recent years, several activity recognition methods
which use deep CNN have been proposed, and they have been con-
firmed that they can achieve high accuracy recognition than the tra-
ditional methods [31]. However these method require the time win-
dow to generate certain length segmentation of time series signal.
Moreover, in general, CNNs have huge number of connection be-
tween inner layers. These features of CNNs are not suitable for real
time execution of mobile devices.

An RNN can be used as a learning method and an estimator, and
is suitable for handling time-series data, such as audio andvideo
signals, and natural language. Early RNNs included the fully re-
current network developed in 1980, an interconnected type network
such as the Hopfield network announced by John J. Hopfield in
1982, and so on. Then, hierarchical RNNs, such as the Elman net-
work and the Jordan network were developed in the early 1990s[9].
The Elman network has a state feedback, and the Jordan network
has a recurrent connection for the output feedback. This feedback
contributes in order to extract features of dynamics of input signal.
The RNN executes calculation processing of large network that led
to the time direction at the training phase, and executes fast sequen-
tial calculation processing at the recognition phase.

Recently, many of the methods using CNNs and RNNs aims to
recognize by using raw signal directly without extraction of the
feature vectors in advance.

In the method using a combination of CNN and RNN [23], the
network achieves further high accuracy recognition by the feature
extraction ability of dynamics in the RNN. On the other hand,the
adoption of the CNN architecture causes the increasing of recogni-
tion rate, the increasing of the computational cost, and theutiliza-
tion of the time window.

The RNN is a high throughput network architecture that can deal
with raw sensor data without feature extraction and can recognize

by thorough fast sequential processing. In this paper, we propose a
method to execute training and recognition of the RNN (i.e. deep
RNN) which has multi internal layer by using raw acceleration data
without feature extraction aiming at a high-precision activity recog-
nition with high throughput.

3. RECURRENT NEURAL NETWORK
In the following, the basic processing methods for execution of

training and recognition of a RNN are explained.

3.1 Deep recurrent neural model
Let us assume a deep RNN (DRNN) withL layers, as shown in

Fig. 1. This network is an Elman-type network in which internal
layers are completely connected at the same hierarchy in thetime
direction. Here,u(l),k = [ u

(l),k
1 u

(l),k
2 · · ·u

(l),k
j · · · u

(l),k
J ]T is the

input vector of thel-th layer at timek andz(l),k = [ z
(l),k
1 z

(l),k
2

· · · z
(l),k
j · · · z

(l),k
J ]T is the output vector of thel-th layer at time

k. A pair of each elements of the input and output vectors is
called a unit. j is an arbitrary unit number of thel-th layer and
J is the total number of units. We assumexk = z(1),k in the
input layer, andvk = u(L),k and yk = z(L),k in the output
layer. In addition, in the following, the arbitrary unit numbers
(and the total numbers of units) of the(l − 1)-th layer are repre-
sented byi (andI , respectively). At this time, the input propagation
weight from the(l − 1)-th layer to thel-th layer is represented by
W (l)(∈ R

J×I) andR(l)(∈ R
J×J ) is the recurrent weight in the

l-th layer(l = 2, · · · , L− 1), wherej′ is an arbitrary unit number
of thel-th layer before one time unit. At this time, the components
of u(l),k are given by

u
(l),k
j =

I
∑

i

w
(l)
ji z

(l−1),k
i +

J
∑

j′

r
(l)
jj′

z
(l),k−1
j′

. (1)

Herew
(l)
ji and r

(l)
jj′

represent the element ofW (l) andR(l), re-
spectively. The elements of the output vector of thel-th layer are
expressed as

z
(l),k
j = f (l)(u

(l),k
j ),

wheref (l)(·) is called theactivation function, and functions such
as the sigmoid functionf(u) = tanh(u), logistic sigmoid function
f(u) = 1/(1 + e−u), and rectified linear unit (ReLU) function
f(u) = max(u, 0) are frequently used.

Here, for simplicity, by introducing the 0-th weightw(l)
j0 and the

0-th unitz(l−1),k
0 = 1, biases can be collectively described as

z
(l),k = f

(l)(W (l)
z
(l−1),k +R

(l)
z
(l),k−1), (2)

st layer

-th layer
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Figure 1: Schematic representation of the DRNN



wheref(a) = [ f(a1) f(a2) · · · f(aN ) ]T . From this equation,
it is possible to obtain the output of an arbitrary time by shifting
k. However, since elements ofvk has no recurrent connection, it
is the same as the first term of Formula (1). Therefore, the final
output vectory is derived by

y
k = f

(L)(vk) = f
(L)(W (L)

z
(L−1),k). (3)

3.2 Learning method

3.2.1 Error function
When performing multi-class classification into classC1, · · · , Ch,
· · · , CH , by using the softmax function, let the output of theh-th
unit of the output layer be the following equation. Further,the out-
putyh of the individual unit means a probability belonging to class
Ch.

yh ≡ z
(L)
h =

exp(uh)
∑H

q=1 exp(uq)
= p(Ch|x). (4)

When an inputx is given, this probabilityyh is classified into the
largest class, and

E(w) = −

N
∑

n=1

H
∑

h=1

dnh log yh(xn;w) (5)

is defined as the error function, and updating the variable vectorw
to minimize this becomes the learning policy. Thedn represents
n-th supervised vector and thednh representsh-th elements of dn.
The value of element is set as 1 if theh-th element corresponds to
the class ofdn, and otherwise it is set as 0. Eqn. (5) is called the
cross entropy function.

3.2.2 Mini-batch stochastic gradient descent
It is possible to use the gradient descent method to minimizethe

error function. LetD be the number of elements ofw; the gradient
of the error function is expressed by

∇E ≡
∂E(w)

∂w
=

[

∂E(w)

∂w1
· · ·

∂E(w)

∂wD

]T

.

The gradient descent method searches the local minimum value in
the neighborhood by repeating many times to changew in the neg-
ative gradient direction by a very small amount. Let the weight in
thet-th time of repeat bewt; then, it becomes

w
t+1 = w

t − ǫ∇E, (6)

whereǫ is a parameter called the learning rate.
The mini-batch stochastic gradient descent method collects a

small number of sample setsBt (called amini-batch) in each repeat
to calculate the gradient using the average

Et(w) =
1

||Bt||

∑

n∈Bt

En(w) (7)

of error for each samplen among them. It is known that the lo-
cal solution avoidance performance is high because the calculation
converges quickly with this method.

As the learning rateǫ is high, learning becomes faster; however,
if it is too high, since it vibrates near the local minimum value of
the error function, an adjustment method of the learning rate, called
Adaptive moment estimation (Adam), is employed [16].

3.2.3 Back Propagation Through Time (BPTT)
The back propagation through time (BPTT) method can be ap-

plied the error back-propagation method to the developed DRNN

regarded as a large NN expanded in the time direction. The tech-
nique is described below. First, we introduce here a quantity called
deltafor the unitj of layerl

δ
(l),k
j ≡

∂En(w)

∂u
(l),k
j

, (8)

This value can also be derived from the values of the(l + 1)-th
layer of the same time and the timek+1 of the same layer. Let the
derivative of the functionf(u) bef ′(u); then

δ
(l),k
j =

(

∑

h

w
(l+1)
hj δ

(l+1),k
h +

∑

j′

r
(l)
j′j

δ
(l),k+1
j′

)

f ′(u
(l),k
j ) (9)

holds. The gradient can be calculated based on these equations.
The weightsw(l)

ji , r
(l)

jj′
to be updated become

∂E(w)

∂w
(l)
ji

=
K
∑

k=1

∂E(w)

∂u
(l),k
j

∂u
(l),k
j

∂w
(l)
ji

=
K
∑

k=1

δ
(l),k
j z

(l−1),k
i , (10)

∂E(w)

∂r
(l)

jj′

=

K
∑

k=1

∂E(w)

∂u
(l),k
j

∂u
(l),k
j

∂r
(l)

jj′

=

K
∑

k=1

δ
(l),k
j z

(l),k−1
j . (11)

Using these relations, the gradients can be calculate by propagating
the deltas inversely from output to input, as shown in Fig. 2.

Here, the calculation amount becomes too enormous for practical
use in the normal BPTT to calculate the gradient by dating back all
the times. Therefore, the truncated BPTT method [28], whichsets
the time to date back to an appropriate constant to perform BPTT
for each the time, is used.

3.3 Long short-term memory (LSTM)
Long short-term memory (LSTM) is a type of NN model for

time series data. It is utilized mainly to replace some unitsof the
RNN to solve the problems of an input/output weight conflict [11]
which is the conflicts between the input from the previous layer and
the recurrent value, and vanishing/exploding gradient problem [25]
where a delta vanishes or explodes by the deep backward propa-
gation. In this section, we describe the structure of LSTM which
solves input/output weight conflicts and vanishing gradients, and
gradient clipping method to avoid exploding gradients.

3.3.1 Structure of LSTM
A structural diagram of the LSTM is shown in Fig. 3. A structure

for storing the internal state, called a memory cell, is provided in
the LSTM, allowing it to perform the controls, such as whether to

Figure 2: Back propagation in DRNN



write the information to the cell, read the information fromthe cell,
or delete the information of the cell.

The structure horizontally propagating straight in the toppor-
tion of Fig. 3 is for solving the vanishing gradient problem and is
called the Constant Error Carousel (CEC). It is possible to solve the
vanishing gradient problem by introducing the CEC when back-
propagating the error in the recurrent direction [11]. In addition,
with this structure, the stateC inside the internal layer unit is trans-
mitted at the next time. Although a memory cell is also clearly
shown in Fig. 3, in fact the state is preserved through the entire
structure of the CEC.

The input gate and output gate are for eliminating input and out-
put weight conflicts [11]. Let us consider the input gate as anex-
ample. First, the output vectorzk−1(∈ R

J×1) before 1 time and
the input vectorxk(∈ R

I×1) of the present time multiplied by the
transmission weightrig

j (∈ R
1×J ),wig

j (∈ R
1×I) are summed to

pass through the logistic function. This is expressed by thefollow-
ing equation, where the logistic function is expressed byσ and the
input gate bias bybig:

φk = σ(wig
j x

k + r
ig
j z

k−1 + big). (12)

Because the logistic function returns a value in the range of0 to 1,
when multiplied by the original transmission input at the next input
gate, it controls â̆AIJhow much of the input to passâĂİ. Whenφk is
0, it does not pass the input completely, and it passes all theinputs
when it is 1. The same operation is performed in the output gate.
By providing a gate that performs such an operation, it is possible
to determine whether to memorize a state or to read the memorized
state in accordance with the input value or the output value to the
internal layer unit.

The purpose of the forget gate is to determine whether or not
to forget the memorized state [6]. However, the memory forget-
ting mentioned here does not refer to inheriting the value ofthe
memory cell before one time. The mechanism of the forget gateis
the same as that of the input and output gates, as described above.
The forget gate operates, for example, to perform efficient learn-
ing even in cases, such as that where the pattern of the time-series
data is changed suddenly to a pattern having no correlation with the
previous context.

By introducing the LSTM, the weights to be updated will in-
crease. More specifically, the bias weight in addition torig, wig

for the transmission to the input gate,rog, wog for the transmission
to the output gate, andrfg, wfg for the transmission to the forget

ForgetGate

InputGate

OutputGate

�summing point

�multiply point

�logistic sigmoid 

�sigmoid 

MemoryCell

Figure 3: Structural drawing of LSTM

gate will increase by each gate weight. These weights can also be
updated by transmitting the delta inside the LSTM block using the
back-propagation method.

3.3.2 Gradient clipping
The exploding gradient problem is solved with a technique called

gradient clipping.
Gradient clipping is a method of correcting theL2 norm of the

gradient so that it does not exceed the threshold value [25].Specif-
ically, when letting the threshold value bec,

‖∇E‖ ≥ c (13)

is met, and a new value is assigned to the gradient as

∇E ←
c

‖∇E‖
∇E. (14)

3.4 Avoiding overfitting
Learning, as in NNs, by adopting the error function as an op-

timization function may cause overfitting, in which a model that
captures too much peculiarities of the training data and does not
fit to the new test data is generated. As methods to avoid overfit-
ting, regularization and dropout are available, as described in the
following.

3.4.1 Regularization
Overfitting is liable to occur when the degree of freedom of the

network is too high for the training data. However, in many cases,
the training data cannot be easily increased, and the degreeof free-
dom of the network should not be easily reduced, because it is
deeply involved in the expressive power of recognition. Therefore,
a regularization method to mitigate overfitting by providing some
type of constraint on the learning parameter is required. The gra-
dient clipping described in Section 3.3.2 is an exploding gradient
problem-solving technique as well as a regularization technique.

3.4.2 Dropout
Dropout, which was developed recently, is a widely used over-

fitting avoidance technique. At the time of training, the units of the
internal and output layers are disabled by selecting them ata con-
stant ratep. That is, learning is performed as if they did not exist
from the beginning. On this occasion, selection of the unit to be
disabled is performed at every time to update the weight. At the
recognition, all the units are used to perform the forward propaga-
tion calculation. However, the outputs of the units belonging to the
target of disabled layers are uniformly multiplied byp at the time
of training [10].

As mentioned previously, there are many parameters in the RNN;
even if we just use the RNN, trial and error for setting the param-
eters depending on the problem will be required. Therefore,in the
task of activity recognition, an examination of the parameters, such
as the numbers of layers and units, truncated time, and dropout rate,
should contribute to the study of the activity recognition using the
RNN.

4. ACTIVITY RECOGNITION USING RNN
We applied the DRNN described in Section 3 to human activity

recognition to verify its accuracy and performance.
The items to be verified were are as follows:

1. Does the recognition accuracy increase as compared to that
of other algorithms?



2. Is any influence exerted on the accuracy when some parame-
ters are changed?

3. How long is the throughput time of the recognition as com-
pared with other algorithms?

4.1 Dataset
The HASC corpus is a dataset for machine learning gathered and

distributed by HASC [14], distributed at a state with a detailed label
attached to the data measured by sensors mounted on a mobile de-
vice. In this study, we used a part of the acceleration signals of the
HASC corpus as a dataset. The dataset are divided into “segmented
data” and “sequence data”, the former includes single activity in
one trial and the latter includes multiple consecutive activities. The
details of these two types of data are shown in Table 1. The seg-
mented data are suitable for use as training data because they are
able to label easily. On the other hand, since the sequence data are
constructed by seamless measurement of human activities, these
are resemble actual human activities.

4.1.1 Cross validation
In the evaluation, we divided the segmented data into the training

data of 432 trials and the test data of 108 trials so that the number
of samples in each activity class balances each other.

Based on the data, we evaluated three types of accuracy:

Training accuracy Perform training with the training data, and
recognize with the training data.

Test accuracy Perform training with the training data, and recog-
nize with the segmented test data.

Sequence accuracyPerform training with the training data, and
recognize with the sequence data.

Note that, because of the design of HASC dataset, for both se-
quence data and test data, the same person could be included.

As a measure of accuracy, the proportion of samples successfully
recognized in the evaluation samples was used.

4.1.2 Additional dataset
As an additional dataset to examine the generality of our method,

we adopted the Human Activity Recognition using Smartphones
dataset (HAR dataset)[1] in the UCI Machine Learning Reposi-
tory, and applied the best parameters found in the HASC dataset.
The sensor data were collected using smartphones equipped with a
three-axis accelerometer and a gyroscope. The smartphoneswere
attached on the waists of the 30 persons. They have six types of
activity classes, which are “Standing", “Sitting", “Laying", “Walk-
ing", “Walking downstairs", and “Walking upstairs", and compiled

Table 1: Details of HASC dataset
Segmented data Sequence data

Signal in one
measurement

time [s], X axis [G],
Y axis [G], Z axis [G]

time [s], X axis [G],
Y axis [G], Z axis [G]

Frequency 100 [Hz] 100 [Hz]
Targeted activity “stay", “walk", “jog"

“skip" “stair up",
“stair down"

“stay",“walk",“jog"
“skip" “stair up",
“stair down"

Measurement time 20 [s] 120 [s]
Type of Activity
in one measurement

1 6

Number of person 7 7
Number of trials 540 18

Type Single activity Multiple activity

as sequential data. For cross validation, we used the first three
fourth samples as training data, and last one fourth as test data.

4.2 DRNN-based activity recognition
In order to perform high throughput activity recognition for each

time by using the three-axis acceleration of a smartphone asthe
direct input, we constructed a DRNN such that the three-axisac-
celeration data of each time corresponded to the three-dimensional
input layer, and six activity classes to the six-dimensional output
layer. Each unit of each intrnal layer was an LSTM unit. The ac-
tivation function of the output layer and the error functionwere
defined by a softmax function and a cross entropy function, respec-
tively. The truncated BPTT under the mini-batch stochasticgradi-
ent descent method was used to update the weights at the time of
training. The number of internal layers, the number of unitsinside
the internal layer, the number of times dating back was performed
by truncated BPTT (called truncated time), the maximum gradient
c, and also the dropout probabilityp were set to be variable in order
to search the most appropriate value experimentally. The details of
this DRNN are summarized in Table 2.

This network outputs an activity class, which corresponds to an
element having the largest value among the elements of the output
vector obtained when an input vector is input, as the recognized
result.

A flow of the process of training and evaluation will be described
below. The outline is also shown in Fig. 4.

(0) Shuffle all the trials of training data and divide them into mini-
batch sets of 20 trials.

(1) For the first mini-batch,

1. Take the timek at random.

2. Let the truncated time beT , and divide the time range
for truncated BPTT into[k, k + T − 1], [k + T, k +
2T − 1], · · · , [k + K′ − T, k + K′], where the final
value of the range was set asK′ = 1200.

3. For each range, obtain an error function from the in-
put and output to update the weights by performing the
error back-propagation.

(2) Perform the same processing as (1) for the subsequent mini-
batch.

(3) Call a period until the processing for all mini-batches is com-
plete1 epoch.

(4) Obtain the accuracy for the test data to valuate the generaliza-
tion performance.

Table 2: Details of DRNN
Setting items Detail

Activation function of output layer Softmax
Error function Cross entropy

Type of internal layer unit LSTM
Mini-batch size 20

No. of time stamps in a mini-batch K ′=1200
Initial Weights random[−0.1, 0.1)ãĂĂ

Initial bias None
Learning rate adjustment Adam

Input dimension 3
Output dimension 6
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Figure 4: Flow of an epoch

Repeat (1) to (4), and stop the training after repeating a sufficient
number of epochs. training phase ends in up here. After the training
phase, the activity recognition of the sequence data are executed by
using only the forward propagation of the learned model. Record
the accuracies of training data, test data, and sequence data in each
epoch to plot the changes.

Chainer [29], provided by Preferred Networks, Inc., was used to
implement the DRNN. Chainer is a framework (FW) for NN. In
Chainer, various NN models can be flexibly written in the Python
language. The experiment was conducted in an environment as
shown in Table 3.
Here, the training time was reduced by parallel processing using
the GPU, and the CPU was used for evaluating of the throughput
of the constructed DRNN. This strategy is based on a following
policy; the RNNs is trained by a large-scale computer architecture,
and its execution is done by a standard type mobile terminal.

4.3 Comparative methods
As comparative methods, decision tree, support vector machine

(SVM), and random forest were used.
The comparative methods, rather than the raw sensor data, and

require time windows to calculate the feature vectors. Therefore,
we extracted feature vectors from the three-axis accelerometer data.
For the sensor data, time windows of 5 s were extracted, shifting
every 2.5 [s], as in Bao et al. [3].

For each time window, we calculated 27 feature values, follow-
ing the studies in [33, 34, 12]. The number of feature variables used
in each time window was 27, including: (1-3) mean value of each
axis, (4-6) variance of each axis, (7) mean sum of the absolute val-
ues of each axis, (8-9) first and second eigenvalue of the covariance
matrix between the axes, (10) sum of the vertical component ratios
for the intensity, (11-13) covariance ratio in thex andy-direction
for the z-component variance of each axis, (14-16) variance ratio
of the back and forth difference in thex and y-direction for the

Table 3: Computing environment
OS Ubuntu14.04LTS (64-bit)

CPU Intel Corei5-4590 3.3 GHz
RAM DDR3-1600 24 GB
GPU NVIDIA Quadro K2200
FW Chainer 1.5.1

Python Ver. 2.7.6
CUDA Ver. 7.0

variance of the back and forth difference in thez-direction of each
axis, (17-19) mean FFT-domain energy of each axis, (20) mean
FFT-domain energy of the intensity, (21-23) FFT-domain entropy
of each axis, (24) FFT-domain entropy of the intensity, (25)num-
ber of mean crosses of the mean intensity, (26) number of crosses
of the zone of the mean intensity±0.1[G], and (27) number of
samples outside the zone of the mean intensity±0.1[G].

We reduced these 27 feature variables to 13 by applying stepwise-
feature selection [8] using logistic regression. As a result, 13 fea-
ture variables, 1, 2, 6, 7, 9, 11, 12, 13, 15, 20, 21, 24, and 26,were
adopted.

For these selected feature vectors, machine learning methods by
decision tree, SVM, and random forest was applied, and in each of
these a grid search were conducted over the training data to choose
the best model.

4.4 Throughput evaluation
For evaluating the throughput of the recognition, the time re-

quired for the recognition of the entire sequence data was divided
by the number of samples of the sequence data to derive the mean
value of the recognition throughput per time unit. For the com-
parative methods, we calculated the computation time of a feature
vector in one time window, the time taken to recognize the activity
from the feature vector in one time window, and the sums of these
values.

5. RESULTS
In the following, we compare the results of evaluating the accu-

racy of the activity recognition with the DRNN by searching var-
ious parameters with those of the accuracy of the existing tech-
nique. First, after showing the best model that yielded the highest
accuracy, we show the accuracy when the parameters are varied.
Furthermore, for the throughput of the recognition, we compare
the time required for feature calculation and recognition in the ex-
isting technique and the time required until the result is output after
inputting one sample in the DRNN.

5.1 Best model
The best model is the model that showed the best recognition

result for the sequence data during the experiment. The parameters
selected in the best model are shown in Table 4.

Fig. 5 shows the transition of the correct recognition rate in each
epoch. The â̆AIJrecognition rateâ̆Aİ is derived by the ratio of the
correct recognition time against total time for each trial,and it is
also referred to simply as accuracy. In the best model, the test
recognition rate was95.42% at maximum. The recognition rate
for the sequence data was83.43% at maximum.

In Fig. 5, it can be seen that the recognition rate increases as the
epochs proceed. According to the results in this figure, we judged
that it is reasonable to stop the training at about epoch 80, and for
the subsequent evaluations, we extracted the average recognition
rate from epoch 71 to epoch 80 for comparison.

Table 4: Best model parameters
Parameters Best value

Number of internal layers 3
Number of units in one layer 60

Truncated time T = 30

Gradient clipping parameter c = 5

Dropout rate p = 0.5
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Figure 5: Accuracy transition of the best model

5.2 Comparison with existing methods
Fig. 6 shows a graph comparing the accuracy of the existing

method with that of the proposed method. The Bar represents the
mean recognition rate from epoch 71 to epoch 80. In the test data,
the DRNN shows results that are 35.18%, 27.76% and 22.35%
better than those of decision tree, SVM, and random forest, re-
spectively. In the sequence data, it shows results that are 28.03%,
26.04% and 26.74% better than those of decision tree, SVM, and
random forest, respectively.

5.3 Varying parameters
The results obtained by changing the number of internal layers

are shown in Fig. 7. The thin line at the top of bar represents the
standard deviation. We changed only the number of internal layers
among the parameters of the best model. As can be seen in the
figure, the recognition rate is highest in the case of three layers for
any of the training, test, and sequence data. In particular,for the
sequence data, the recognition rate is about 8.2% higher than that
of the worst four-layer model.

The results obtained by changing the number of internal layer
units are shown in Fig. 8. We changed only the number of internal
layer units, using 20, 40, 60, and 80 units, among the parameters
of the best model. In the figure, it can be seen that the recognition
rate is highest in the case of 60 units in test and sequence data. In
particular, in the sequence data the recognition rate is about 3.7%
higher than that of the lowest, 20-unit, model.

The results of the experiments where the truncated time was
changed are shown in Fig. 9. We changed only the truncated time,
using 10, 30, 50, 70, and 90, among the parameters of the best
model. The figure shows that the performance is relatively good at
T = 30 or T = 70, and worst atT = 10. For the sequence data,
a difference of about10.7% occurred between the most accurate
T = 70 model and theT = 10 model.

Figure 6: Accuracy of comparative methods and best model
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Figure 7: Comparison of accuracy according to the number of
internal layers
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Figure 8: Comparison of accuracy according to the number of
units
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Figure 9: Comparison of accuracy according to the truncated
timess

Train Test Sequence
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
o
g
n
it
io

n
ra

te

c=3

c=5

c=7

c=9

Figure 10: Comparison of accuracy according to the gradient
clipping parameters
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Figure 11: Comparison of accuracy according to dropout rates

The results of experiments where the gradient clipping parameter
was changed are shown in Fig. 10. We changed only the gradient
clipping parameter, using 3, 5, 7, and 9, among the parameters of



the best model. The figure shows that no significant recognition
rate difference due to the variation in the gradient clipping param-
eter can be observed.

The results of experiments where the dropout probabilityp was
changed are shown in Fig. 11. We changed only the dropout proba-
bility p, using 0, 0.3, 0.5, and 0.7, among the parameters of the best
model. Thep = 0.3 model showed the highest recognition rate for
the test and sequence data. In particular, for the sequence data, the
recognition rate of this model was about4.6% higher than that of
the lowest recognition rate model without dropout.

The above results show that, in the task of activity recognition
in this time, a large difference appeared in the recognitionrate for
five parameters. In particular, for the parameter of truncated time,
there is a difference of10.7% between the maximum and minimum
recognition rate, revealing that the parameter adjustmentis effec-
tive.

5.4 Throughput of activity recognition
We summarize the throughputs of the proposed method and the

existing method in Table 5. When compared according to only
the calculation time at the time of recognition, the existing method
is 1.342 [ms] faster, but if compared according to the substantial
time, the proposed method is9.671 [ms] faster, because the ex-
isting method requires that the feature vector extracted asa pre-
processing.

5.5 Result with additional dataset
As a result of applying our method and parameters for HAR

dataset, the recognition rate was 95.03% at 45th epoch. withthe
cross validation with first three fourth samples as trainingdata and
last one fourth as test data. Fig. 12 shows the transition of the
correct recognition rate in each epoch.

6. DISCUSSION
We consider the proposed method in the light of the experimen-

tal results obtained. In addition, in the following, we givemore
importance to the accuracy for the test and sequence data than the
accuracy for the training data as a basic evaluation criterion.

6.1 Activity recognition with the best model
Using the best model, it was possible to perform the recogni-

tion with a higher recognition rate and faster response speed than
those of the traditional methods. In particular, an recognition rate
of 95.42% at maximum was obtained for the segmented test data.

On the other hand, for the sequence data, the recognition rate
dropped to83.43% at maximum. The recognized results for the
sequence data shown in Fig. 13 verify this. The horizontal axis
represents 10 [ms] per 1 time in time number and the vertical axis
represents acceleration in the gravitational acceleration unit [G].
A color chart displayed as “True" represents the correct solution
label, and a color chart displayed thereunder as “Es" represents the
estimation label. In Fig. 13(a), it can be observed that in general the
recognition performance was good, but it caused similar activities
to be erroneously recognized at the time6000− 7000. In addition,

Table 5: Evaluation of throughput
Feature [ms] Recognition [ms] total [ms]

Decision Tree 11.027 0.004 11.031
SVM 11.027 0.123 11.150

Random Forest 11.027 0.056 11.083
RNN - 1.347 1.347

it caused a delay in recognition near the time2300, as seen in Fig.
13(b). This phenomenon is considered to have been caused by the
fact that unlearned signals that cannot be classified into any activity
during the transition of activity were input.

6.2 What are the optimal parameters?

6.2.1 Number of layers and units
Because NNs can handle higher order feature vectors, as the

number of layers is increased, the goodness of fit to the training
data is increased. It can be seen in Fig. 7 that, in the presentex-
periment, the training accuracy increased as the number of layers
was increased up to three in the internal layer. However, theaccu-
racy decreased in the four-layer model. This phenomenon canbe
interpreted to have occurred as a result of increasing in thelearning
difficulty by the increase in the excessive number of layers.Further,
for the generalization performance, it is known that the accuracy is
liable to decrease because of the overfitting when the freedom of
the model becomes too high. This fact was also demonstrated in
this experiment by the results for the test and sequence datashown
in Fig. 7. According to the above, an unnecessary increase inthe
layers in the model design should be avoided, because it may lead
to a reduction in the generalization performance.

Furthermore, when the number of internal layers is increased,
the computation time and memory usage are increased. In thisex-
periment, the computation times taken per epoch were58.89 [s]
with the single layer,89.59 [s] with two layers,116.39 [s] with
three layers, and144.83 [s] with 4 layers of the internal layer, re-
spectively. In addition, the throughputs at the time of recognition
were 0.512 [ms] with single layer,0.909 [ms] with two layers,
1.347 [ms] with three layers, and1.720 [ms] with four layers of
the internal layer, respectively. This time, we chose the best model
based on the accuracy, but if we prefer to obtain a high throughput
at the expense of accuracy, simplifying the calculation by reducing
the layers should be considered.

Almost the same consideration may be also possible for the num-
ber of units as the number of layers. As can be seen in Fig. 8, in
order to obtain a high generalization performance, the number of
units should not be excessively increased. Further, when increas-
ing the number of units, because the amount of computation time
and memory usage increases, an adjustment will be required when
a trade-off is implemented.

6.2.2 Truncated time
For the truncated time, it can be seen in Fig. 9 that the perfor-

mance decreased for the test and sequence data atT = 10, but
the optimum value cannot be obtained stably. Here, the recognition
rate, which was relatively high atT = 30 andT = 70, is about 200
and 470, respectively, if converted into beats per minutes (BPM). It
is considered that one cycle of human walking and activitiescap-
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Figure 12: Result for HAR dataset



(a) Recognition example 1 (b) Recognition example 2

Figure 13: Visualization of the recognized result

tured by the network may fall within a range of this degree. Thus,
in order to capture the features of input signals, it is considered ef-
fective to take the variation period of the signals being handled into
account when determining the truncated time.

6.2.3 Gradient clipping parameter
In Fig. 10, no significant performance difference generatedby

the gradient clipping parameters among the data used in thisexper-
iment is seen. It is possible that gradient explosion did notoccur to
a great extent for the data in this time. In addition, in the DRNN,
because the likelihood that gradient explosion will occur increases
as the truncated time and the number of layers increase, it isneces-
sary to suppress the gradient moderately by taking also the values
of other parameters into consideration.

6.2.4 Dropout rate
First, as can be seen in Fig. 11 in the cases where the dropout was

and was not applied, applying it leads to a tendency that the recog-
nition rate is liable to become higher for the test and sequence data.
For the dropout probability, approximately50%, as frequently used
in CNNs, is considered to be appropriate also in the RNN.

6.2.5 Validity of parameters
It is found from Fig.12 that when the parameters adjusted forthe

recognition of HASC dataset were utilized for the training of the
HAR dataset, a high recognition rate of 95.03% was obtained.

6.3 Throughput and training time
The throughput of the recognition was 1.347 [ms], an 8.19 times

faster speed than that of the existing method. Considering that the
data are currently acquired at 100 [Hz], this throughput is sufficient
to allow real time processing. In addition, because the RNN ba-
sically performs only the product-sum operation by the number of
times of the dimensions ofR andW at the time of recognition,
it is considered that implementation in low power devices such as
smartphones may also be possible in the future.

On the other hand, the training time was116.39 [s] per epoch on
average. This is a very large and non-negligible amount of time;
however, by calculating the training using a high-speed computer
in advance, high throughput processing may be possible at the time
of recognition. In addition, in principle, because the DRNNcan
perform the online learning on a mini-batch basis, by devising a
method of feeding the training data, a high throughput can beex-
pected also in the training.

The DRNN can achieve both high-speed response with high recog-
nition rate by using CPU. These advantages are caused by com-
pactly and small size of the DRNN. In concrete, the total sizeof
the inner variables and architecture from the input layer tothe out-
put layer of the DRNN is74166 pcs, and this is the size of less than
10 % of the conventional CNN+LSTM model [23]. Our approach

is shown that have a clear advantage for the miniaturizationof the
devices of recognition.

6.4 Future direction
In this experiment, the activity recognition results of theDRNN

were good in terms of recognition rate and throughput. However,
new techniques are constantly being developed also for RNNs. Many
techniques can be utilized for the activity recognition, such as an
approach [21] using the ReLU function instead of LSTM, a method
[24] to automatically organize the feature vectors by applying the
pre-training used in the CNN, and a method [30] to accuratelyes-
timate the behavior of things by using the physical laws of the real
world and its simulation. The verification of these techniques is
one of the challenges for future studies.

In addition, in this study the recognition rate of the sequence data
decreased. However, to resolve this issue, it would be possible to
apply the HMM as a post-processing, or to apply a method that
takes into account the context of the label in the RNN, calledcon-
nectionist temporal classification [7]. And, we develop a compact
DRNN circuit to equip into a mobile device.

7. CONCLUSION
In this paper, the DRNN was constructed for human activity

recognition using raw time series data of acceleration sensors moun-
ted on a mobile device with high recognition rate and high through-
put. The maximum recognition rate was 95.42% against the test
dataset and was 83.43% against multiple sequential test dataset.
Here, the maximum recognition rate by traditional methods was
71.65% and 54.97% respectively. Further, the efficiency of the
tuned parameters was confirmed by using the sequential dataset.
For the throughput of the recognition per unit time, the constructed
DRNN requires only 1.347 [ms], while the traditional methodre-
quires 11.031 [ms] which includes 11.027 [ms] for feature extrac-
tion. In the future, many techniques, such as a forget-mechanism
and pre-training, optimization methodology, and a method that takes
the series into consideration, should be studied.
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