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Abstract
In this study, we focused on robotic swarms, allowing multiple anonymous autonomous robots to gather and move mutu-
ally in tasks. We proposed a method to design a parameter of the control barrier function (CBF) in a robotic swarm so that 
the swarm can achieve collision-free deformation considering the environmental conditions. We analyzed the responses to 
perturbations of swarming robots, to which we applied the CBF. Although we can guarantee a safe distance between mobile 
robots, the CBF limits their actions and prevents swarm deformation. Through analysis of the frequency domain, we inves-
tigated the effects of a selected parameter in the CBF on the deformability of a swarm. We obtained an appropriate range of 
parameters that realize both distance maintenance and deformability retention.

Keywords Swarm · Deformation · Control barrier function

1 Introduction

Research on decentralized adaptive swarming systems is 
mainly based on findings in physics, such as Boids [1], 
motile elements [2], and fluid dynamics [3]. For applica-
tions in swarming robots, it is quite important to guaran-
tee collision-freeness. In other words, autonomous robots 
must maintain a certain distance from others even if they 
are swarming. Yet many researcher employed a local poten-
tial function that implies a local gradient around a robot 
so that it virtually receives repulsive forces from the other 
robots. This method cannot guarantee a safe distance due 
to conflicts with other requirements related to tasks and/or 
environmental conditions.

In real situations, swarming robots must overcome obsta-
cles. In the case of narrow spaces, the tolerance for safe 

distance can be quite small, because a swarm must change 
its whole shape (layout of robots) according to the shape dic-
tated by the environment. In an environment with obstacles, 
to guarantee conflict avoidance, Sakai et al. proposed colli-
sion avoidance in inequality constraints form [4]. However, 
the constraint rule was heuristically structured. This requires 
the reconstruction of constraints and proof of ability to avoid 
collision when the model of robots or obstacles change.

The control barrier function (CBF) [5–7], expressed in 
inequality forms of constraints, can theoretically guarantee 
collision-freeness in a certain class of systems. Although 
we find many studies introducing CBF to swarm robots, 
most of them are not concerned about obstacle regions in 
which robots gather closely. When robots are densely packed 
together, the collision avoidance constraints can tightly limit 
their movements and prevent the deformation of the whole 
shape of the swarm.

In this study, we consider the implementation of CBF to 
a robotic swarm and investigate its effects on the deforma-
tion of the swarm based on an analysis in the frequency 
domain. After obtaining the appropriate parameter range, we 
designed a constraint that can realize keeping a safe distance 
between robots and retaining the deformability of the swarm. 
This contributes to the design of functional, collision-free 
swarms.

This work was presented in part at the joint symposiumwith the 
15th International Symposium on Distributed AutonomousRobotic 
Systems 2021 and the 4th International Symposium onSwarm 
Behavior and Bio-Inspired Robotics 2021(Online, June1-4,2021).
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2  Problem setting

2.1  Base model of swarm

Let N  be a set of robots. Suppose a swarm consists of |N| 
robots that move in a two-dimensional plane; the position of 
a robot xi ∈ ℝ

2(i ∈ N) follows:

where m and � are positive constant values, and ui ∈ ℝ
2 is 

the control input for robot i. We employ the model in [11] 
to calculate ui.

where xio denotes the relative position of the nearest object, 
and dij ∶=

xij

rc
, xij ∶= xj − xi . Ni ∶= {j ∈ N ∣ ‖xij‖ ≤ rv} is a 

set of neighbors of robots i. fO
i
, fF

i
 are terms corresponding 

to collision avoidance from obstacles and distance main-
tained between robots, respectively. do represents the maxi-
mum distance that takes obstacles into account, and rc rep-
resents a nominal distance between robots given by a user.

To achieve a certain swarm task, fP
i
 guides each robot 

based on c(x) , which is an attractant field that contains 
information on the direction of a swarm. For each task, c(x) 
should be determined; for example, the odor concentra-
tion information can be included in the odor source search 
problem.

2.2  CBF constraints for swarm

While the base model is simple in structure, it can not guar-
antee a safe distance to prevent collisions. In (2), fF

i
 may 

conflict with fO
i
 and fP

i
 . Although fF

i
 attempts to maintain 

an appropriate distance between robots, it cannot theo-
retically guarantee the distance. If we determine a set of 
parameters kF, kO and kP experimentally, the actual distances 
will vary depending on the environment and the number of 
robots.

Here, we consider guaranteeing a safe distance by apply-
ing CBF constraints. However, in the case of obstacle space 

(1)mẍi + 𝜂ẋi = ui,

(2)ui =f
O
i
+ fF

i
+ fP

i
,

(3)fO
i
=

{
−ko

d2
o
−||xio||2

d2
o

xio

||xio||
(||xio|| < do)

0 (||xio|| ≥ do)
,

(4)fF
i
= − kF

∑

j∈Ni

(
1

||dij||3
−

1

||dij||2

)
e−||dij||dij,

(5)fP
i
=kP

∇c(x)

‖∇c(x)‖
,

and high density of robots, CBF may conflict with the input 
to exhibit desired behaviours by which a whole shape of a 
swarm can be deformed.

As CBF has a parameter that denotes the naivety of 
the constraint, we must adjust it to introduce appropri-
ate constraints. Naive constraints can significantly restrict 
the movements of robots, and consequently, prevent them 
from deforming. If we set an aggressive parameter, extreme 
changes in input occur, which can destabilize the system. 
Therefore, it is necessary to find a suitable range for the 
parameter. For this purpose, we need to investigate the effect 
of the parameter on the deformability of a swarm.

Problem statement We set the following two goals for 
this study:

– To implement CBF to guarantee safe distance between 
robots.

– To investigate the effect of the CBF parameter on the 
deformability of a swarm.

The goals allow us to obtain a suitable range for the CBF 
parameter that enables the smooth deformation of a swarm 
while maintaining a safe distance between the robots.

In this study, deformability is regarded as the ability to 
change the aspect ratio of the entire shape of a swarm in 
response to periodic external forces. We regard deformabil-
ity as an indicator of the ability to accomplish tasks, such as 
passing through narrow spaces. The periodic external force 
is a normalized force caused by environmental conditions. 
For example, if there are many small obstacles, a swarm 
undergoes high-frequency external perturbations. If a swarm 
is squeezed for a long time in a narrow space, the swarm is 
affected by a low-frequency force.

3  Control barrier function and swarm 
deformability

3.1  Control barrier function

Here, we review the zeroing control barrier function (ZCBF) 
published by Ames et al. [6]. Let state x ∈ ℝ

n follow the 
input-affine system shown below, using the input u ∈ ℝ

m;

where f and g are locally Lipschitz. Consider h(x) ∶ ℝ
n → ℝ 

to be a continuously differentiable function, and 
C = {x ∈ ℝ

n ∣ h(x) ≥ 0} . Then, h(x) is said to be a ZCBF 
for the set C if there exists an extended class K function 
� ∶ ℝ → ℝ such that

(6)ẋ = f (x) + g(x)u,
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Let h be a ZCBF of C . If a Lipschitz continuous controller 
u satisfies the inequality (8) any time, then set C becomes 
forward invariant.

where Lf  and Lg are the Lie derivatives along f and g. There 
exists an example of the input satisfying constraint (8) with 
an equal sign.

If we describe the safety condition as h(x) ≥ 0 and 
select the control input u to satisfy constraint (8), then 
x(t0) ∈ C ⇒ x(t) ∈ C∀t ≥ 0 is guaranteed (the relative 
degree of u and h is required to be 1). In the remainder of 
the paper, we simply refer to the input constraint method by 
ZCBF as the CBF method.

3.2  Implementation of control barrier function 
to the base model

We introduce CBF constraints for our swarm system. We 
apply the CBF to robots in decentralized manner. Let us 
discuss the implementation of CBF from the perspective of 
agent i. We consider the constraint for collision avoidance 
with agent j, included in the set of neighbors of robot i, Ni . 
L e t  Tc  b e  t h e  c o n t r o l  p e r i o d  a n d 
q = [q�

1
, q�

2
]� = [x�

ij
, ẋ�

ij
]� ∈ ℝ

4 . We define the safety func-
tion h(q) between agents i and j as follows,

where rs is the minimum, safe distance, h(q) is the safety 
condition between the two agents. If h(q) ≥ 0 , the distance 
between robot i and j is larger than rs considering the move-
ment of q2 during the control period Tc . From each agent’s 
system (1), q follows (10),

where

We derive the condition for u ∈ ℝ
2 to maintain h(q) ≥ 0 

using the CBF method. From (9) and (10), the input con-
straints between agents corresponding to (8) can be written 
as follows:

(7)sup
u∈ℝm

[ḣ(x) + 𝛼(h(x))] ≥ 0.

(8)Lf h(x) + Lgh(x)u + �(h(x)) ≥ 0,

u = −
Lf h(x) + �(h(x))

‖Lgh(x)‖2
Lgh(x)

�

(9)h(q) = ‖q1‖ + q�
2

q1

‖q1‖
Tc − rs,

(10)q̇ = f (q) + g(q)(uj − ui),

f (q) =
(
q�
2
,−

�

m
q�
2

)�

, g(q) =

(
0 0

1

m
0

0 0 0
1

m

)�

.

𝛾 > 0 is a parameter that denotes the naivety of the con-
straint. If � is small, robots are required to slow down earlier, 
and a large � implies sudden stopping. Since in our decen-
tralized assumption, agent i does not know the input uj , we 
divide constraint (11) to attribute to each agent as follows:

Decentralized constraints (12) and (13) for robots i and j are 
sufficient conditions for constraint (11).

Because we consider the perspective of i, the signs of the 
second terms of (12) and (13) are different. When we con-
sider the perspective of robot j ( q = [x�

ji
, ẋ�

ji
]�) , (13) attains 

the same form as (12). Agent i has the same constraints as 
in (12) with all agents included in Ni.

We construct raw control input ûi as

When we compare (14) with (2), fO
i
 is replaced by the CBF 

constraints because this force only denotes the collision 
avoidance constraint. fF

i
 is also a constraint term but this 

term is needed to gather the robots as a swarm. Finally, we 
determine the control input of the robot using the quad pro-
gram as

3.3  Analysis of swarm system with CBF constraint

In this section, we discuss the behavior of the swarm system 
with CBF. To simplify the discussion, we assume that the 
constraints between a pair of robots can be addressed using 
a one-dimensional line in the relative direction. Under this 
assumption, the constraint function h(q) can be rewritten as 
follows:

Note that we assume that rs = 0 . If the control inputs u of 
the robots satisfy constraint (12), then xij satisfies the fol-
lowing inequality:

(11)Lf h(q) + Lgh(q)(uj − ui) + �h(q) ≥ 0.

(12)Lf h(q) − 2Lgh(q)ui + �h(q) ≥ 0,

(13)Lf h(q) − 2(−Lgh)(q)uj + �h(q) ≥ 0.

(14)ûi = fP
i
+ fF

i
.

(15)
ui = arg min

ui∈ℝ
2

1

2
||||ui − ûi

||||
2

s.t. Lf h(q) − 2Lgh(q)ui + 𝛾h(q) ≥ 0 ∀j ∈ Ni.

(16)h(q) = q1 + Tcq2.

(17)ẍij +

(
1

Tc
+ 𝛾

)
ẋij +

𝛾

Tc
xij ≥ 0.
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Suppose that an equal sign holds, that is, when the input 
reflects the constraints of CBF, the frequency domain of 
(17) is as follows:

This is a simple second-order low-passage system with poles 
−

1

Tc
 and −� . The control period Tc is a parameter of a system. 

Therefore, we can design the frequency property of CBF by 
tuning � considering Tc . For example, a small � cancels out 
the characteristics of the original system in the low-fre-
quency region, while a larger � is expected to preserve it to 
the possible extent. It should be noted that if we set an 
exceedingly large � , the system can become unstable owing 
to the discretization by the control period.

As the CBF system (17) represents a local system 
between a pair of robots, we need to discuss the behavior 
of the entire system.

Consider a swarm composed of eight robots as indicated 
in Fig. 1. Suppose the left 4 and right 4 robots are subgroups 
in the swarm. Let xi be an x position of a robot i, then � 
represents the distance between the center positions of the 
subgroups.

We assume that we can observe the deformation level of 
the swarm along the x-axis by � . The constrained inputs of 
each robot are only the internal forces in both left and right 
subgroups that cancel out. Behaviors (17) between robots 
belonging to different subgroups (marked as the red edge in 
Fig.1) directly affect the behavior of � . Thus, the deforma-
tion property � follows a simple summation of (17). The 
deformation along y-axis can be explained in the same man-
ner. Since we believe that analysis can be generalized, we 
assume that system (17) works over the entire swarm.

(18)Gcbf (s) =
1(

s +
1

Tc

)
(s + �)

.

� =
1

n
[1,… , 1,−1,… ,−1](x1, x2,… , x8)

�.

3.4  Investigating deformability by extra periodic 
forces

We apply a periodic external force and examine the aspect 
ratio to investigate the deformability of the system. Suppose 
an attractant field c(x) is given as follows,

where A is constant and Tf  denotes the period of external 
force.

Using the maximum distance lx(t), ly(t) . Then, we define 
an aspect ratio of a swarm as �(t) ∶= ly(t)∕lx(t).

Let �Tf  be a response of the aspect ratio against an exter-
nal force with period Tf .

where observation range T = [To −
Tf

2
, To +

Tf

2
] and �Tf is the 

oscillation gain in response to external periodic forces.
We obtain a frequency response curve by observing �Tf 

with varying Tf  . By comparing the response curves for vari-
ous � , it is possible to compare the change in the frequency 
response of the aspect ratio with the changes in the CBF 
parameter.

4  Simulation of collision avoidance 
and deformability

We performed computer simulations in three different cases 
to verify the generalizability of our method in terms of the 
number of robots, the initial shape of a swarm, and the 
parameters of the base model.

– Case 1 : 20 robots, square shape (Fig.2(a)) and � = 20.
– Case 2 : 36 robots, rectangular shape (Fig.2(b)) and 

� = 20.
– Case 3 : 20 robots, square shape (Fig.2(a)) and � = 5.

(19)c(x) = A cos
(
2�

�
x
)
sin

(
2�

Tf
t

)
.

(20)�Tf ∶= max
t∈T

[�(t)] −min
t∈T

[�(t)],

Fig. 1  Deformation property of swarm.(n = 8)

(a) 20 robots, Square shape (b) 36 robots, Rectangular
shape

Fig. 2  Types of swarm shape in simulation
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The control period was set as Tc = 0.02 s. We applied 
� = 0.1, 0.5, 1.0, 5.0, 10, 20 and 100 for each case. Table 1 
shows the other parameters we used. The simulations were 
performed by MATLAB R2020a. We used the quadprog 
function in the optimization toolbox to solve the quad pro-
gram (15) of CBF. We carried out 20 trials for each condi-
tion, where we applied random perturbations ( ±0.1 m) to the 
initial positions of the robots. The plots in Figs.5,6, and 7 
show the average of the results.

Results of Case 1
First, we verified whether the safety distance was guar-

anteed by CBF. Fig.3 shows the minimum distance among 
robots when we imposed the external periodic force ( Tf = 8 
s). The horizontal green line indicates the safe distance we 
set. The dashed curve colored with sky blue, which indicates 
the result without CBF, violated the safe distance. In the 
contrast, the other curves showing results with CBF almost 
maintain longer distances than the safe distance.

However, as mentioned in 3.3, when � is quite large 
( � = 100 , the deep blue curve), the minimum distance fluc-
tuated near the boundary and invaded the safe distance.

Next, we observed the frequency response, as the meas-
ure of the deformability to external periodic forces. Fig.4 
shows the changes of the aspect ratio of the whole shape of 
the swarm. We applied two frequencies, Tf = 0.5 s and 2.0s, 
respectively. The black curve shows the original responses 
without CBF. When we applied CBF with 𝛾 < 1 , the curves 
show different results from the original ones, where the ini-
tial aspect ratios were not maintained. On the other hand, 
when we set � ≥ 1 , the responses with CBF were almost the 
same as the original responses, where the initial aspect ratios 
were kept under the external forces.

We also observed the frequency responses of the aspect 
ratio. Fig.5 clearly shows that the results of the cases with 
𝛾 < 1 had significantly different shapes of the curves from 
those of other cases. However, the original system had a 
peak at approximately 1 rad/s; 𝛾 < 1 cases did not.

This results can be explained as follows. CBF affects the 
frequency responses of aspect ratio of a whole swarm as a 
low-pass filter (18). One breakpoint frequency is � rad/s. If 
we set 𝛾 < 1 , CBF changes frequency responses by canceling 
the original one with a peak frequency at 1 rad/s. On the 
other hand, if we set 𝛾 > 1 , CBF does not affect the peak fre-
quency. In this case, the frequency responses is maintained 
the same as the non-CBF case.

According to the results, we conclude that we should set 
1 < 𝛾 < 100 so that a swarm with CBF keeps its original 
property against external forces and avoids collision.

Results of Case 2
We increased the number of robots and changed the initial 

shape of the swarm. Fig. 6 shows the frequency responses. 
Almost the as with Case 1, the response curves of � ≥ 1 
were almost the same as the original one, yet those of 𝛾 < 1 
looked different. This result verifies that the effects of the 
CBF on the frequency responses are the same even if the 
number of robots and initial shape changes.

Table 1  Simulation parameters

Parameter Value

m 1 Mass of each robot
� 20 Damping constant
kF 40 Weight constant of f F

i

kP 4 Weight constant of f P
i

rc 1 Standard distance between robots
rs 0.8 Safety distance between robots
rv 1.5 Visible range
A 0.01 Amplitude of extra periodic forces
� 32 Wavelength of extra periodic forces

Fig. 3  Time change of mini-
mum distance ( Tf = 8 s). Green 
line denotes safety distance to 
keep. The figure on the right is 
an zoomed version of the left 
one
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Results of Case 3
We changed the viscosity of the robots from � = 20 to 

� = 5 . Fig. 7 shows the frequency responses. The character-
istic waveform of the original system (without CBF) moved 
to a higher frequency, approximately at 2 rad/s. In case 3, 
𝛾 < 2 resulted in different shapes of the response curves 
from the original one, yet 𝛾 < 1 did in Case 1 and 2.

In Case 3, as in Cases 1 and 2, we can design the CBF 
that maintains the frequency responses by choosing the � 
larger than the peak frequency of the original responses (2 
rad/s). Therefore, the design for the range of � applies even 
when parameters in the robot model, such as viscosity � , 
changes.

(a) Tf = 0.5 s

(b) Tf = 2 s

Fig. 4  Time change of aspect ratio �(t) . (a) and (b) are Tf = 0.5 s and 
Tf = 2 s

Fig. 5  Frequency response of aspect ratio change (20 robots, � = 20)

Fig. 6  Frequency response of aspect ratio change (36 robots, � = 5)

Fig. 7  Frequency response of aspect ratio change (20 robots, � = 5)
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According to the simulation results in Case 1, 2, and 3, 
we verified that the proposed method surely kept the safe 
distance and the original property of the frequency response 
to the external forces. However, it must be noted that the 
design of the parameter � is crucial. When the mass m or vis-
cosity � in the robot model gets smaller, the peak frequency 
of the original system is increase. It requires a larger lower 
limit of �.

When the control period Tc is larger, upper limit of the 
� decreases to avoid vibration and guarantee collision-free-
ness. The range of feasible � depends the parameters of the 
robot model. We need to pay attention to design � to achieve 
both collision-freeness and deformability.

5  Conclusions

In this study, we implemented the CBF to a robotic swarm 
that is composed of autonomous mobile robots. Although 
CBF theoretically guarantees collision-freeness, it can limit 
the motion of the robots. This reduces the deformability of 
the entire shape of the swarm. Deformability is quite impor-
tant for adaptive behaviors in obstacle regions. By analyzing 
the response of the original system and the CBF system, we 
can obtain a feasible range of a parameter that facilitate the 
retention of the original deformability while guaranteeing 
safe distance. Through verifications by the simulations, we 
believe that the results contribute to the designing of appro-
priate constraints in swarm models.

In future, we will investigate the influence of inequality 
constraints, such as CBF, on the swarm in the performance 
of actual tasks. When the robots are dense (distances among 
robots are small), the CBF constraints for collision avoid-
ance become more severe. In such a case, the decentralized 
constraints in this paper do not guarantee the existence of a 
quadratic programming solution. It is necessary to modify 
the method to decentralize the CBF constraints.
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