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Abstract
Users and operators of swarms will, in the future, need to monitor the operations of swarms in a distributed way, without 
explicitly tracking every agent, and without the need for significant infrastructure or set up. Here we present a method for 
swarm self-monitoring that enables the aggregate display of information about swarm location by making use of physical 
transport of information and local communication. This method uses movement already exhibited by many swarms to col-
lect self-reflective information in a fully distributed manner. We find that added swarm mobility can compensate for limited 
communication and that our self-monitoring swarm system scales well, with performance increasing with the size of the 
swarm in some cases. When developing systems such as this for real-world applications, individual agent memory will need 
to be taken into consideration, finding an effective means to spread swarm knowledge among robots while keeping informa-
tion accessible to users.
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1  Introduction

Robot swarms create opportunities within intralogistics and 
could possibly provide storage and organisation solutions 
to small businesses, such as museums, small retail, or char-
ity stores; businesses that do not have dedicated, organised, 
warehouse environments [11]. These swarm solutions could 
be ready out of the box, with minimal infrastructure and 
setup [6]. Requiring as little as creating a space for charg-
ing and marking out a space to store objects. This would 
allow for easy adoption for these small businesses and move 

swarm technology from existing research-focused use cases 
to more practical uses.

A recent survey conducted by Carrillo-Zapata et al. [1] 
has shown that there are many consumers within the bracket 
of small/medium enterprises that are interested in adopting 
swarm robotic technologies. However, one of the crucial 
caveats of swarm robotic adoption stems from a need for a 
business to understand the behaviour swarms exhibit. As a 
result, creating a distributed method for extracting data to 
allow a swarm to self monitor may help resolve issues in 
trust and accountability; allowing a user to monitor current 
or historic swarm behaviour to provide reassurance.

A distributed user interface such as this would see 
swarms share and collate self-monitoring information 
amongst agents, building up a picture of the overall swarm 
status. This information collection could take the form of 
human individuals using tablets or mobile devices to inter-
act locally with a swarm, or a central computer node col-
lecting and storing swarm knowledge to provide users with 
information at a later time. Having access to information on 
swarm state, location and performance can provide crucial 
insight to swarm activity. Helping to enable effective Human 
Swarm Interaction [8] or establish appropriate levels of trust 
in robotic systems [7].

At present there are many examples of information col-
lection within swarms. However, most of these examples 
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lack a distributed element and are typically performed within 
a laboratory setting, using cameras, tags or permanent long 
range networks [9]. Putting together infrastructure such as 
this is something that may not be viable to pursue when 
implementing a swarm as a simple, ‘out-of-the-box’, solu-
tion designed to meet consumer needs. Existing solutions 
for real world swarm monitoring rely upon either expansive 
communication networks or dedicate many agents within the 
swarm to creating network nodes [2, 10, 14]; methodologies 
which can be expensive to implement or potentially reduce 
swarm performance.

When deploying in realistic environments outside of the 
lab, inter-robotic connectivity cannot always be assumed. 
The requirement for anticipating and designing a swarm for 
low communications availability has been highlighted previ-
ously by Tarapore et al. [12]. In this paper we address this, 
presenting a new methodology for information extraction 
from robot swarms. Instead of a highly connected swarm, 
we look to have agents physically transport crucial swarm 
information when outside of communication range, shar-
ing the most up to date information available when locally 
encountering other agents. This method distributes informa-
tion throughout the swarm, ready to be collected at any given 
time by an observer, allowing them to gain insight on swarm 
state, performance, or diagnostics.

Our method of swarm communication takes inspiration 
from Ducatelle et al. [4] in which spatial information is 
shared throughout a swarm, allowing robots to physically 
transport information when not connected wirelessly. This 
system prioritised the most up to date information on robot-
to-robot distance to provide navigational assistance to swarm 
agents. Our system similarly removes focus on creating per-
manent and stable networks in which robots constantly trans-
mit information to one another. We build upon this existing 
technology using ad hoc information transmission to spread 
and update swarm data, ready for user collection at any time.

A recent study has called to attention that explicit rep-
resentation of swarms can in some cases be detrimental to 
human-swarm interaction due to the high cognitive com-
plexity required to monitor large volumes of agents [3]. Our 
method looks to provide a simple and effective means for 
human-swarm interaction by providing easy to consume 
summary information of the swarm present in areas the user 
has identified as key. A visualisation of this, and how it may 
be expanded to additional information types, can be seen 
in Fig. 1.

Our distributed approach capitalises upon the repetitive 
movement many swarms already exhibit when performing 
logistical or monitoring tasks. These repetitive movements 
create areas in which robots frequently meet one another, 
providing them with the opportunity to share information 
without large communication ranges or networks. By tak-
ing advantage of the movement already exhibited in the 

swarm’s standard behaviour, information can be propagated 
throughout the swarm over time without the need to explic-
itly coordinate with one another. Thus, the swarm does not 
have to sacrifice performance in its underlying task through 
the need to prioritise communication related movement over 
task behaviours.

In the following sections we present our swarm monitor-
ing methodology and explore the effects of modifying com-
munication range, number of robots in the swarm, maximum 
robot speed and robot memory on the accuracy of informa-
tion extracted from the swarm. We then discuss the consid-
erations that should be made when producing a distributed 
self-monitoring swarm and the potential difficulties that may 
be encountered in physical implementation.

2 � Distributed swarm information extraction

In the experiments presented in this paper we use a task 
inspired from logistics as a swarm case study. The chosen 
task represents an easy to deploy swarm use, aligning with 
our goal of an out-of-the-box swarm solution. The materi-
als we represent in simulation for this task, in reality, would 
only require a user held tablet device and paper tags such as 
QR codes or ArUco tags in addition to the swarm of robots. 
This simple set up should still provide good insight to the 
whereabouts and status of the swarm.

We propose a methodology for monitoring a swarm, 
allowing a user to quickly request swarm information in an 
ad hoc, distributed manner. In our experiments we mimic 
a swarm warehouse scenario, introducing a data collection 
point representing a person with a tablet device entering a 
swarm-organised storage area. Swarm agents are not aware 
of the location of the data collection point and only share 
information with this point when they happen to pass within 
communications range, travelling with the information 
indefinitely unless overwritten by newer data.

The task we have selected for the swarms to execute in 
our experiments mimics the movement that might be seen in 

Fig. 1   Illustration showing how collected information could be con-
sumed by a user



634	 Artificial Life and Robotics (2022) 27:632–639

1 3

a swarm performing duties they are often designed for, i.e., 
exploration, area monitoring or multi-object transport. In the 
chosen task, swarm agents move between a designated cen-
tral point and one of four additional points of interest. The 
central point represents a location robots would frequently 
visit such as a charging station or a warehouse drop off point. 
Once arriving at any of these four points of interest, the 
swarm agents spend a random amount of time remaining 
within a short distance of the point. The agent will then 
return to the central point or, if already there, randomly 
select a new point of interest to travel to.

While executing this task, swarm agents will use local 
interactions with other agents to update a record of swarm 
information. For the purposes of these experiments, the 
swarm will be recording which point of interest agents are 
nearest too at any given time. These points of interest can 
be thought of as physical, user placed tags positioned in 
doorways, corridors, or other areas the user has decided are 
important for gauging swarm distribution. The accuracy of 
the swarm monitoring information arriving at the collection 
point will form the performance metric for our system.

3 � Methods

The following section details the methodology we have 
developed to allow a swarm to collect and share self-mon-
itoring information. As well as the methods through which 
we have scored and simulated the swarm.

3.1 � Scenario

Swarm agents move between points of interest gathering 
and sharing information on robots within proximity of point 
of interest tags via swarm tables. We have programmed the 
agents to drive directly to their assigned tag, this movement 
is illustrated in Fig. 2. For the sake of our experiments, 
tag name and time of recording are the only data agents 
currently record. Each agent has their own internal table 
indexed by numerical IDs. Each of these IDs is uniquely 
associated with a specific swarm agent, allowing agents 
to overwrite information relating to a specific robot when 
newer robot-specific information is received. In real world 
implementations these IDs could be randomly generated to 
allow for scalability.

To test the proposed methodology, a custom 2D simula-
tion was designed using python. In these experiments, robots 
represented by black dots in the simulation visualiser oper-
ate within a 20 × 20 meter arena. Agents, measuring 30cm 
in diameter, had the capacity to sense range and bearing, 
execute behaviour to avoid robot to robot and robot to object 
collisions and send information to one another when in 
communication range. Movement in these experiments was 

simulated through agents moving on a bearing to the point 
of interest they next needed to visit with some random noise 
applied to velocity at each time step ( ±0.5 cm∕s ). Agents 
were unable to pass through one another or obstacles in the 
environment and travelled in the opposite direction of the 
boundary/objects when within 30cm range.

In our first experiment, we investigate the trade off 
between the speed of the robots and their communication 
range, observing accuracy of the collected knowledge from 
the swarm as these parameters were modified. In this initial 
parameter exploration, the positions of the five tag sites and 
monitoring site were randomly generated. The locations of 
each of these sites were generated randomly every trial, were 
constrained to the arena boundaries, and could not be placed 
within 4 meters of one another. An example visualisation of 
an environment layout can be seen in Fig. 3.

3.2 � Algorithm

The swarm agents append to and update their swarm tables 
in the following steps: 

(1)	 The swarm agent starts by checking if there is a tag 
associated with a point of interest within communica-
tion range. The agents then update their personal entry 
in the swarm table. Alongside this entry, the agent adds 
a timestamp to indicate the age of the recorded data.

(2)	 If there are other robots within the communications 
range of the swarm agent, the agent iterates through the 
information stored in the tables of every currently con-

Fig. 2   Final frame from a simulated experimental trial depicting the 
various paths of 5 agents take across the experiment length
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nected robot, adding new entries to it’s personal table 
for data relating to unrecognised robots and updating 
entries that indicate having older information than 
available.

(3)	 If the swarm agent is within perception range (5m) of 
an information collection point, all the information cur-
rently gathered is sent to the collecting dataframe and 
stored at the collection point. Data is then updated and 
appended as though the collection point is an agent 
itself. However, upon passing information to the col-
lecting dataframe, the robot clears the swarm table it 
is currently storing to conserve memory and reduce 
the computational load of updating other robots with 
information the collection point already has a record of.

3.3 � Performance metric

Throughout these experiments we will be monitoring the 
ongoing distribution of the swarm, identifying how many 
agents are within visible proximity of points of interest.

The score used in these experiments will be the total pro-
portion of robot tag associations recorded correctly in the 
collecting dataframe at the reported time. Scores will range 
between 0 and 1, with 1 being a perfect categorisation of 
swarm distribution and 0 being a completely incorrect data-
frame. For these experiments, specific IDs are not important 
due to the homogeneous nature of the swarm in question. 
Instead, we focus on the system’s ability to accurately rep-
resent the swarm’s distribution at each tag.

Each of our experiments simulated 2000 real-world sec-
onds. This represents approximately 30 min, which was seen 
as a reasonable monitoring window for an operator. Experi-
ments were repeated 20 times for each parameter subset.

The scores shown in our results are the averaged accu-
racy in distribution prediction from 1000 to 2000 s across 

all repetitions, sampling accuracy once every 10 s. Scores 
begin from 1000 simulated seconds into the experiment to 
allow robots to disperse and share information among one 
another, as they would in the physical implementations pre-
viously discussed.

4 � Results

4.1 � Experiment 1: mobility vs communication 
distance

For this experiment, parameters ranged between 0 and 1400 
cm for communication range and 0–100 cm/s for maximum 
robot speed. Parameter combinations were also tested across 
4 different swarm sizes 5, 10, 20 and 40, to observe the scal-
ability of this system. The results are shown in Fig. 3.

The results show that greater communication range 
improves the swarm’s ability to correctly report on current 
distribution. With larger values resulting in highly connected 
networks, the largest of which being able to write to the col-
lecting dataframe almost continuously.

However, as robot speed increases, we can see that across 
all swarm sizes scores begin to improve at lower communi-
cation ranges. In some cases in the 20 and 40 robot example 
we see very large increases in performance scores between 
speeds of 10 and 100 cm/s, in one example rising from a 
score of 0.19–0.79 at a communication range of 400 cm. 
This provides evidence to the argument that increased swarm 
mobility can compensate for limited communications by 
physically transporting information. This is possible even 
though faster moving robots will be encountering different 
tags more frequently, increasing the chances that information 
making its way to the central collection point will be invalid 
by the time it gets there, thus posing a more challenging task 
to keep track of. The physical transport of swarm informa-
tion also appears to improve as swarm size increases, even 
though there are more robots to keep track of. An aspect 
of interest seen in these heat-maps is the sudden increase 
in score as robots drop in speed from 10 to 0 cm/s. This is 
likely taking place at speeds of 0 cm/s as robots that happen 
to be placed near the information collection point at the start 
of the experiment can broadcast their unchanging location 
along with the location of neighbouring robots.

4.2 � Experiment 2—tag distance vs accuracy

In the second experiment we look to see how accuracy 
changes with the distance between tag sites and collection 
point. In this test we once again perform the same parameter 
sweep, but in this experiment we keep the tag sites in fixed 
positions. Figure 4. shows representative examples of these 
experiments, displaying the scores for a swarm of 20 robots 

Fig. 3   Randomly generated virtual experiment environment. Display-
ing multiple tags and robots
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(this swarm size was chosen as it reflects the number of 
physical robots we have available for this task for real-world 
trials) for the closest (5.66 m) and furthest (25.46 m) tag 
sites. The scores in this figure are now broken down by tag, 
showing the ratio of correctly recorded robots at a tag in the 
collecting dataframe vs the actual number of robots at said 
tag. We can see a similar pattern to those seen in experiment 
1 forming across the spread of parameters.

This again shows that limited communications range can 
be some-what compensated for through increased mobility. 
We also see that distance between the information collec-
tion site and the tag has some effect on the accuracy of the 
data. Intuitively, information takes longer to arrive from dis-
tant tags and thus scores decrease as distance increases. In 
addition to this, robots will encounter new information from 
nearer tags more frequently, possibly displacing information 
on further tags as agents move. Despite this, most of the 
score change takes place in the extremes of the parameters 
explored here. This suggests that some parameter combi-
nations could still form reasonably robust parameter sets 
for communication limited swarm monitoring, e.g., swarms 
of 20 and 40 robots, with max speeds over 60 cm/s, can 

consistently achieve accuracy over 70% with a communica-
tion range of only 6 m.

4.3 � Experiment 3—reduced memory

The results so far have pointed towards a scalable system. 
However, we currently assume that each swarm agent will 
have the capability to store a swarm-worth of information. 
This may not always be the case in situations with very large 
swarms or high volumes of robot data.

To test the resilience of our information extraction meth-
odology we repeated Experiment 2, this time reducing the 
number of individual robot information each robot can store 
from 20 (the whole swarm size) to 5. In this experiment we 
still separate results by tag distance due to the large differ-
ence in success as tags move away from the collection point, 
an effect that cannot be clearly seen across the averaged tags 
data. These results are shown in Fig. 5.

Here we can see that there is a considerable drop in scores 
when looking at the average performance. Investigating fur-
ther we can see that the accuracies of the tag at the closest 
point go almost unchanged; however, there is a considerable 

Fig. 4   Heat maps showing scores for distribution-reporting accuracy across swarms of size 5, 10, 20 and 40. These heat maps show the scores of 
20 averaged trials for each subset of communications range and robot speed
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decrease in score at the furthest point. This suggests that 
there will be issues with memory use when it comes to par-
ticularly large swarms or when surplus data is required from 
the swarm. With this being so, the total memory available to 
the swarm will increase with swarm size. If knowledge can 
be effectively distributed across the swarm while keeping 
information accessible, it may be possible to capitalise on a 
swarm’s collective memory, making this method of swarm 
information extraction truly scalable.

5 � Discussion

This methodology for swarm monitoring has shown that 
information accuracy can be increased in systems with 
limited communication by increasing the mobility of the 
swarm. One of the overarching decisions to be made when 
designing these systems will be around the acceptable level 

of information loss. Depending on context and how critical 
a scenario might be, an accuracy as low as 0.6 could be 
reasonable to get an approximate image of swarm behav-
iour creating an interface resembling that shown in Fig. 1. 
However, in more critical scenarios with an emphasis on 
accuracy and up to date information, much higher scores 
may be required. Levels of acceptable accuracy within the 
system we have proposed should be further investigated in 
the future.

A user could use this information to travel closer to areas 
of interest, utilizing the increased accuracy that comes with 
reduced distance to gain additional insight on the swarm 
activities. The transparency a system like this would provide 
addresses the importance of understanding between user and 
swarm; one of the fundamental requirements needed for the 
practical adoption of swarm technology. The experiments 
conducted in this paper open up the opportunity for new 
research in how users can quickly monitor and control dis-
tributed systems, contributing towards the need to monitor 
swarms for safety purposes [5] and increasing user trust in 
swarm systems through better explained behaviour (Fig. 6).

This system could also be used to accompany a swarm 
focused Ethical Black Box. Winfield and Jirotka [13] have 
pointed towards a requirement for the robotic equivalent 
of a Flight Data Recorder when creating robotic systems 
for consumer adoption. A suggestion which is viable when 
implementing on individual robots but, with swarm robot 
solutions focusing on distributed, inexpensive, and mass-
produced hardware, implementing a black box on every 
individual swarm member may have its difficulties. Having 
an additional method that records swarm level information 
could provide context to individual robot’s data and could 
prove to be a valuable tool.

6 � Conclusions and further work

We have demonstrated a method for monitoring swarm 
information in a decentralised manner by capitalising upon 
existing movement in the swarm. This method allows for 
breaks in communications networks, having agents physi-
cally transport information when they are unable to broad-
cast to neighbours.

We have shown that, when attempting to collect swarm 
data, increasing mobility of the swarm can compensate for 
limited communication. We also found that performance 
improved as swarm size increased. However, when con-
sidering that agents may be memory limited in certain cir-
cumstances, the scalability of this system will depend upon 
effective use of swarm memory. Thus, our future work may 
include attempting to distribute information storage amongst 
the swarm, using the swarm’s collective memory to create 
a truly scalable solution. We may also explore methods in 

Fig. 5   Heat maps for scores recorded for the closest and furthest tags 
in the virtual environment
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predicting the accuracy of received information to allow 
users to more effectively gauge trust in swarm data and act 
accordingly. This system could improve human-swarm inter-
action by suggesting the most effective areas for a human to 
monitor a swarm.

The end goal of these developments will be to use the 
information gained from our proposed monitoring method-
ology to create an interface allowing workers within small/
medium businesses to easily understand, interact with, and 
trust a swarm. Opening up new opportunities for real world 
swarm applications and creating a swarm tool that can pro-
vide a competitive means for the intralogistic management 
of goods for businesses. Businesses that would not tradition-
ally have access to automated solutions.
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