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Abstract
We present a unified method to augmented incremental recognition for online handwritten Japanese and English text, which 
is used for busy or on-the-fly recognition while writing, and lazy or delayed recognition after writing, without incurring long 
waiting times. It extends the local context for segmentation and recognition to a range of recent strokes called “segmentation 
scope” and “recognition scope,” respectively. The recognition scope is inside of the segmentation scope. The augmented 
incremental recognition triggers recognition at every several recent strokes, updates the segmentation and recognition candi-
date lattice, and searches over the lattice for the best result incrementally. It also incorporates three techniques. The first is to 
reuse the segmentation and recognition candidate lattice in the previous recognition scope for the current recognition scope. 
The second is to fix undecided segmentation points if they are stable between character/word patterns. The third is to skip 
recognition of partial candidate character/word patterns. The augmented incremental method includes the case of triggering 
recognition at every new stroke with the above-mentioned techniques. Experiments conducted on TUAT-Kondate and IAM 
online database show its superiority to batch recognition (recognizing text at one time) and pure incremental recognition 
(recognizing text at every input stroke) in processing time, waiting time, and recognition accuracy.

Keywords  Online recognition · Handwriting recognition · Batch recognition · Incremental recognition

1  Introduction

Due to the development of pen-based and touch-based 
devices, such as tablets, smart-phones and digital pens, there 
has been a renewed interest in online handwriting recogni-
tion, which provides a practical input method for devices 
without a keyboard [7, 22]. Since hand-held devices have 
relatively smaller CPU performance for less power con-
sumption compared with desktop PCs, and they are interac-
tive devices, handwriting recognition on these devices must 

respond to the user input with a high recognition rate but 
without incurring much CPU time.

Compared to isolated character or word recognition, 
online handwritten text recognition faces the problem of 
word segmentation or character segmentation. There are 
two approaches to segmentation. One is implicit segmenta-
tion, which has been extensively studied in recent years, and 
the other is explicit segmentation. High performance with 
implicit segmentation is reported for English [2, 9] but not 
yet for Japanese or Chinese online handwriting text recogni-
tion. Owing to the progress in deep neural network technol-
ogy, one can consider deploying it for practical systems, but 
there are some obstacles such as speed and memory space 
for the large category size to be used in stand-alone sys-
tems, especially for hand-held mobile phones and tablets. 
On the other hand, the explicit segmentation technique also 
provides reliable performance in recognition of online hand-
written Japanese text [31], and online handwritten Chinese 
text [27]. This approach is also applied for online handwrit-
ten English text recognition [19, 23]. It first applies seg-
mentation to separate the whole text line into characters or 
words, then recognizes each separated patterns, and finally 
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concatenates the results to get the text line recognition result. 
Segmentation is based on geometric layout features (e.g., 
gap between strokes, stroke histogram and inter-relationship, 
where a stroke is a sequence of finger-tip or pen-tip coor-
dinates from finger/pen-down to finger/pen-up). In order 
to solve ambiguity in segmentation, soft decision is often 
employed for segmentation and recognition, and all the 
candidates of segmentation and recognition are represented 
in the segmentation and recognition candidate lattice. This 
approach is also called “segmentation by recognition,” or 
“over-segmentation,” since it nominates true segmentation 
points exhaustively, thereby excessively over segmenting a 
character or a word pattern. Each segment in the lattice is 
recognized, and then text recognition result is produced by 
searching the lattice for the highest score path, taking into 
account the geometric context, the linguistic context and 
the recognition scores. Excessively segmented patterns are 
combined in the above best-path search in the lattice.

The context of the input sequence (global context) is 
important for handwritten text recognition. Zhu et al. [31] 
showed the effectiveness of the geometric features extracted 
from all the preceding or succeeding strokes for segmen-
tation of handwritten Japanese text. Nakagawa et al. [16] 
improved segmentation and recognition by applying geomet-
ric and linguistic contexts. Graves et al. [2] used bi-direc-
tional recurrent neural networks to integrate the context from 
both forward and backward directions of an input sequence 
for recognizing English handwritten text.

There are basically two methods to trigger recognition. 
The batch recognition method, which recognizes handwrit-
ten text after the user has finished writing, can easily use the 
full context to achieve a high recognition rate. For Japanese, 
Zhu et al. [31] reported on a batch recognition method that 
integrates segmentation and recognition, resulting in a high 
recognition rate. However, if all the processes for segmen-
tation and recognition are executed after the entire text is 
written, a long waiting time is incurred: the more the written 
text, the longer the waiting time. The other method is the 
incremental recognition method [24, 25], which recognizes 
the handwritten characters incrementally as the user is writ-
ing. Tanaka et al. [24] proposed an incremental recognition 
method for online Japanese handwriting recognition. Wang 
et al. [25] presented a method for real-time (incremental) 
recognition of Chinese handwritten text. With these meth-
ods, the candidate characters are generated and recognized to 
assign candidate classes whenever a new stroke is produced. 
The problem of waiting time is solved by the incremental 
recognition method, which, however, may degrade the rec-
ognition rate due to a lack of global context in its local pro-
cessing of input sequence. Tanaka et al. [24] reported that 
incremental recognition method degrades 0.3 points of the 
recognition rate as compared with batch recognition method. 
Due to repeated processing after receiving every stroke, it 

also increases the total CPU time required for recognition, as 
reported by Wang et al. [25]. Not only the recognition pro-
cesses are triggered repeatedly, but also attempts are made to 
recognize incomplete patterns after every stroke. Therefore, 
it takes a substantial amount of CPU time for recognizing 
a long input stroke sequence. Moreover, these two methods 
apply the best-path search from the beginning to the end of 
the input sequence, whenever the user requests the recogni-
tion result. This extends the waiting time when there are 
many strokes in the input sequence.

There are also two alternatives for the user interface of 
handwritten text recognition: busy or on-the-fly recognition 
and lazy or delayed recognition [14]. A busy recognition 
interface shows the recognition result while the user is writ-
ing. It gives immediate feedback to the user, but the user 
might be bothered by having to confirm or correct the rec-
ognition. A predictive input interface [11], which predicts 
a character or word from a few beginning strokes, may be 
categorized as a busy recognition interface. On the other 
hand, a lazy recognition interface delays the output of the 
recognition result until needed. It is suitable for a user who 
is writing while thinking. The user does not need a recogni-
tion result when writing and only needs the recognized text 
after he/she stops writing.

A lazy recognition interface can be implemented straight-
forwardly with the batch recognition method. Due to the 
problem of waiting time, however, the incremental recogni-
tion method should be run in the background when a user 
is writing even for a lazy recognition interface when the 
problem of waiting time is serious.

As stated above, it is effective to use the full context, both 
in the forward and the backward directions, for text recogni-
tion. This can be easily achieved with the batch recognition 
method but not with the incremental recognition method, 
since succeeding strokes are not available. The method by 
Zhu et al. [31] involves bi-directional geometric context for 
segmentation, where each off-stroke (a vector from finger/
pen-up to finger/pen-down) is classified using the features 
extracted from both its preceding and succeeding strokes. 
On the other hand, the incremental recognition methods by 
Tanaka [24] for Japanese text and by Wang et al. [25] for 
Chinese text use only the features extracted from the current 
off-stroke and its preceding strokes for segmentation. This 
limits recognition performance since the backward context 
is not used. To use backward context, we should provide a 
way in which succeeding strokes affect the recognition of 
previous strokes.

In this work, we aim to overcome these drawbacks and 
combine the advantages of both the batch and the incremen-
tal recognition methods. We focus on maintaining global 
context in incremental recognition and triggering recogni-
tion after every several strokes. We refer to this solution 
as the semi-incremental recognition method, while calling 
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the method of triggering recognition at every stroke a pure 
incremental method. So far, all current incremental recogni-
tion systems are classified as pure.

Since we proposed a semi-incremental recognition 
method for online handwritten Japanese text recognition 
[18] and for English text [19], we revised and introduced 
three techniques to improve the performance: reusing the 
segmentation and recognition candidate lattice in the previ-
ous incremental stage for the current stage; fixing undecided 
segmentation points if they are stable between character pat-
terns; and skipping recognition of partial candidate character 
patterns for Japanese [20]. These three techniques are also 
effective for pure incremental recognition.

This paper combines the incremental recognition meth-
ods for Japanese and English into a unified method for both 
languages by incorporating the three techniques mentioned 
above. We refer to this method as “augmented incremental 
recognition” because it incorporates the three techniques and 
it triggers recognition for every several recent strokes includ-
ing the case of pure incremental recognition, i.e., triggering 
recognition at every new stroke. We present experimental 
evidence here to show that augmented incremental recogni-
tion with an appropriate size of global context maintains 
as high a recognition rate as batch recognition, incurs little 
waiting time and decreases the total CPU time even for the 
case of pure incremental recognition.

The rest of this paper is organized as follows. The base-
line batch recognition method is summarized in Sect. 2. The 
augmented incremental recognition method is presented in 
Sect. 3. Experiments on the augmented incremental recogni-
tion method are described in Sect. 4, and the conclusions are 
presented in Sect. 5.

2 � Overview of batch recognition method

This section introduces the batch recognition method fol-
lowing the explicit segmentation approach for handwritten 
text recognition. After all the strokes are input, the method 
employs soft decision for segmentation to create and build 
the segmentation and recognition candidate lattice and then 
determines the correct segmentation and recognition using 
the best-path search. This method has been applied for Japa-
nese text [31] and English text [19].

2.1 � Processing flow

Figure 1 shows the flow of the batch recognition method. 
First, the segmentation process separates handwritten text 
into text lines and then segments each text line into primi-
tive segments, which are characters or parts of a character 
for Japanese text or words or parts of a word for English text. 
Second, a lattice is built by recognizing primitive segments. 

Finally, the lattice is searched for the best path to obtain the 
recognition result.

2.2 � Segmentation

The segmentation process includes two stages: line seg-
mentation and character or word over-segmentation. In line 
segmentation, the whole text is segmented into text lines 
by the method of Zhou et al. [28] for Japanese or by linear 
regression for English [19]. In the second stage, each seg-
mented line is over-segmented into characters or parts of a 
character for Japanese [31], or words or parts of a word for 
English [17].

For character or word over-segmentation, we use a clas-
sifier to classify each off-stroke into three classes: seg-
mentation point (SP), non-segmentation point (NSP) and 
undecided point (UP) according to geometric features. The 
features for segmentation include those extracted from the 
current off-stroke and both of its preceding and succeeding 
strokes, which are global features. Examples of the global 
features for Japanese text and English text are shown in 
Fig. 2. The supervised labels for training are determined 
as follows: an SP separates two characters or two words at 
the off-stroke, while an NSP indicates that the off-stroke is 
within a character or within a word. An off-stroke between 
two text lines is treated as an SP. The classifier is trained to 
predict an off-stroke being SP or NSP. When classifying an 
off-stroke, if the confidence level is low, it is treated as an 
UP, indicating that it could be an SP or an NSP. The final 
classification of UPs is determined in the later processes. 
For the off-stroke classification, we apply a support vec-
tor machine (SVM) classifier for Japanese text [1] and a 
bi-directional long short-term memory (BLSTM) [3] for 

Fig. 1   Flow of batch recognition
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English text [19]. While SVM classifies each off-stroke 
based on the features at the off-stroke alone, BLSTM, as 
a type of recurrent neural networks, integrates the features 
from both the preceding and the succeeding off-strokes for 
classification.

2.3 � Construction of segmentation and recognition 
candidate lattice

We call a subsequence of strokes delimited by SP or UP 
off-strokes a primitive segment, which could be a character/
word or a part of a character/word. Therefore, a primitive 
segment and consecutive primitive segments beside a UP 
form candidate character patterns or candidate word pat-
terns. All the candidate character/word patterns are repre-
sented in a segmentation candidate lattice.

Each candidate character/word pattern in a segmentation 
candidate lattice is recognized, and a number of candidate 
classes with confidence scores are associated with each can-
didate pattern in the lattice. Then, all the possible segmenta-
tions and recognition candidate classes are represented in 
the lattice. We call this lattice segmentation and recogni-
tion candidate lattice or src-lattice in short. In src-lattice, 
we define candidate character/word blocks, each of which 
represents a sub-lattice of all the candidate character/word 
patterns separated by two adjacent SP off-strokes. Figure 3a, 
b shows, respectively, an example of src-lattice for Japanese 

text and another for English text, where each node denotes a 
candidate segmentation point and each arc denotes a charac-
ter class for Japanese text (a) or a word class for English text 
(b) assigned to a candidate character/word pattern. Note that 
a single candidate character/word block may result in two or 
more characters/words.

2.4 � Best‑path search and recognition

From an src-lattice, paths are evaluated by combining the 
scores of character/word recognition, geometric features and 
linguistic context [26, 31]. We apply the Viterbi algorithm 

Fig. 2   Segmentation features for a Japanese text and b English text. 
Bp−, bounding box of all preceding strokes; Bs+, bounding box of all 
succeeding strokes. OB, overlap of Bp− and Bs+, DBx, distance in x 
axis, LPx, average stroke length over x axis

Fig. 3   Segmentation-recognition candidate lattices for a Japanese text 
and for b English text
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to search for the optimal path that has the highest evaluation 
score and obtain the text recognition result.

For evaluating a path through a sequence S of m primi-
tive segments S = s1, s2,… , sm of an input sequence X , 
forming a sequence of n candidate character/word patterns 
Z = z1, z2,… , zn which is assigned as C = c1, c2,… , cn , we 
have the posterior probability as follows:

We omit the class-independent denominator to obtain the 
following formula:

From the posterior probability, we obtain the evaluation 
function as:

The term P(X, Z|C) is the probability of having the input 
sequence X to form the n candidate character/word pattern 
sequence Z when C is intended. It is approximated from geo-
metric features and recognition scores of single characters 
or words [1, 19].

The linguistic context probability P(C) is estimated using 
a trigram language model with back-off weight:

We assume that the segmentation probability P(S|X, Z,C) 
does not depend on character/word classes C , and it is 
approximated by the score from a segmentation classifier 
at each candidate segmentation point dj (SP or UP) between 
two primitive segments sj and sj+1:

Each candidate segmentation point dj could be an off-
stroke between character/word patterns or an off-stroke 
within a character/word pattern.

(1)
P(C|X, S, Z) = P(X, S, Z|C)P(C)

P(X, S, Z)

=
P(S|X, Z,C)P(X, Z|C)P(C)

P(X, S, Z)

(2)P(C|X, S, Z) ∝ P(S|X, Z,C)P(X, Z|C)P(C)

(3)
f (X, S, Z,C) = logP(S|X, Z,C)

+ logP(X, Z|C) + logP(C)

(4)P(C) =

n∏
i=1

P(ci|ci−2ci−1)

(5)P(S|X, Z,C) =
m−1∏
j=1

P(dj|X, Z)

(6)

P(S|X, Z,C) = ∏
j=1,m−1;T(dj)=B

Psp(dj)

×
∏

j=1,m−1;T(dj)=W

Pnsp(dj)

where T denotes the labeling function outputting the off-
stroke type (B: between, W: within) for a candidate segmen-
tation point. Psp(dj) and Pnsp(dj) are the classification prob-
abilities of an off-stroke being classified as SP and NSP, 
respectively.

The evaluation function is expressed as:

where Ph(h = 1,… , 6) denote the probabilities of language 
model P

(
ci|ci−2ci−1

)
 , geometric P

(
bi|ci

)
 , P

(
qi|ci

)
 , P

(
pu
i
|ci

)
 , 

P
(
pb
i
|ci−1ci

)
 , and recognition Pr

(
ri|ci

)
 , respectively, ki 

denotes the number of primitive segments contained in the 
candidate character pattern zi . For Japanese text, the weight-
ing parameters �h1, �h2(h = 1, 7) and � are selected using 
a genetic algorithm to optimize the text recognition per-
formance on a training dataset. For English text, we use a 
simpler form of the formula by setting �h1 = 0 for h = 1, 6 , 
using the same parameter for �71 , �72 and setting � = 0.The 
parameters are optimized by the minimum classification 
error (MCE) algorithm [13] on a training dataset.

Let Node(i, j) represent recognition data of the charac-
ter/word candidate pattern spanning primitive segments 
from si to sj, SubNode(i, j, k) represent the kth-recognized 
candidate of Node(i, j). Each Node(i, j) has its own candi-
date character/word pattern z. Each SubNode(i, j, k) has its 
own character/word recognition result c and holds records 
of the best segmentation path Z and recognition path C. 
Algorithm 1 shows the pseudocode for searching the best 
path through the lattice by Viterbi algorithm. For each time 
step j of the primitive segment sj, we build all the Node(i, j) 
start from i = GetFirstSegment(j) as the first segment of the 
character/word candidate block containing sj. The best path 
to each SubNode(i, j, k) is collected at each time step j by 
NodeCollect(j).

(7)

f (X, S,G,C) =

n∑
i=1

{
6∑

h=1

[
�h1 + �h2

(
ki − 1

)]
logPh

}

+ �71

∑
j=1,m−1;T(dj)=B

logPsp(dj)

+ �72

∑
j=1,m−1;T(dj)=W

logPnsp(dj) + n�
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Input:  
 Input sequence X
 Primitive segments S
Initialization: 
for k=1 to Node(1,1).candidates do

SubNode(1, 1, k).C = SubNode(1, 1, k).c
SubNode(1, 1, k).Z = Node(1, 1).z
add SubNode(1, 1, k) to NodeCollect(1)

Algorithm: 
for j = 2 to m do

for i = GetFirstSegment(j) to j
for k = 1 to Node(i, j).candidates 

best_score = 0 
foreach PrevSubNode in NodeCollect(i) do

Z = Concatenate(PrevSubNode.Z , Node(i, j).z) 
C = Concatenate(PrevSubNode.C , SubNode(i, j, k).c) 
score = f(X, S, Z, C) 
if score > best_score then

best_score = score 
SubNode(i, j, k).Z = Z
SubNode(i, j, k).C = C 
SubNode(i, j, k).score = score

   add SubNode(i, j, k) to NodeCollect(j) 

Termination: 
BestSubNode = max SubNode.score for all SubNode in NodeCollect(m) 
Output BestSubNode.C

Algorithm 1. Lattice best path search by Viterbi algorithm. 

2.5 � Hybrid recognizer

There are two main approaches for recognizing an isolated 
character or word pattern. Online methods treat each pattern 
as a temporal sequence of pen movements, while off-line 
methods process each pattern as a two-dimensional image. 
Online methods are robust against stroke connection and 
deformation but sensitive to stroke order variations or stroke 
duplications, while off-line methods are insensitive to the 
latter but weak with respect to the former. A combination 
of the online and off-line recognition methods improves the 

recognition accuracy because they mutually compensate 
each other’s disadvantages [10, 29].

These two approaches are also combined at the level of 
features. Online recognition methods incorporating off-line 
features, and off-line methods including online features solve 
the problem of using online or off-line features alone, as 
shown in previous studies [4, 21].

Although a combination of recognition methods or fea-
tures improves the recognition rate, it requires more compu-
tation and incurs a longer waiting time when used for batch 
recognition, especially for Japanese and Chinese, which have 
a large set of character categories.
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In this study, we use a combination of online and offline 
recognition methods rather than features because this 
approach allows more freedom for selecting recognition 
methods. We employ a Japanese character recognizer that 
combines online and offline recognition methods [31] for 
online recognition of Japanese text, and an English word 
recognizer that also combines online and offline recogni-
tion methods [30] for online recognition of English text. 
We omit a description of the recognizers because our aug-
mented incremental recognition method does not depend on 
the specifics of a particular recognizer, but is applicable to 
different recognizers.

3 � Augmented incremental recognition 
method

The main idea behind our augmented incremental recogni-
tion method is to perform as much computation as possible 
while the user is writing. It should also keep the recognition 
rate as high as possible compared with the batch recognition 
method (in which most of the computing time is spent for the 
recognition of candidate character/word patterns). If candi-
date patterns can be processed while the user is writing, the 
text recognition result will be displayed without any notice-
able waiting time. With the pure incremental recognition, 
the recognition of last character/word is made in the local 
or a very limited global context. If more global context can 
be utilized, the recognition rate will be improved. Moreover, 
by avoiding repeated processing after every stroke, the total 
CPU time can be reduced. Augmented incremental recogni-
tion incorporates all these ideas by introducing segmentation 
scope and recognition scope as well as three recognition 
techniques.

Although line segmentation, character/word segmenta-
tion, character/word recognition are different for English 
and Japanese, we present a unified framework that applies 
augmented incremental recognition and incorporates the 
three techniques mentioned above. This section describes 
our framework and the three techniques in detail.

3.1 � Resuming strategy for segmentation 
and recognition scopes

The augmented incremental recognition method performs 
the recognition process after receiving newly written strokes. 
As new strokes change the global context of their preceding 
strokes, the method should provide a way to maintain and 
update this global context. However, it may not be neces-
sary to keep the entire text in the global context, but only a 
certain window of text may suffice for effective recognition. 
It is desirable that this window of strokes be adjustable.

Global context can be decomposed into forward context 
and backward context. In this work, we consider the forward 
and backward contexts in terms of temporal order relation. 
The forward context reflects the past to evaluate the present, 
while the backward context reflects the future to evaluate the 
present. More specifically, the forward context is the context 
provided by the preceding strokes and the backward context 
is the context supplied by the succeeding strokes.

In conventional incremental recognition, because future 
strokes are unavailable, the backward context for the newly 
written strokes is missing. Therefore, the segmentation and 
recognition results of newly written strokes are not reliable. 
In augmented incremental recognition, however, because a 
number of strokes are accumulated before applying segmen-
tation and recognition, later strokes can provide the context 
for the previously entered strokes. Thus, not only the forward 
context but also the backward context can be exploited to 
increase the recognition rate.

To determine the resuming range for each incremental 
recognition, Tanaka et al. [24] use a threshold calculated 
from average character height. This causes the problem of 
estimating average character height from a few strokes when 
the user starts writing. Wang et al. [25] use the whole text 
line for the range of segmentation and then determine the 
range of recognition based on the changed segmentation. 
Finally, the best-path search is made from the beginning 
when the user requests the recognition result. For each incre-
mental recognition, however, it is unnecessary to apply the 
segmentation on the whole text line.

For augmented incremental recognition, we consider a 
range of strokes for resuming segmentation as “segmentation 
scope (S-scope)” and another range inside this for resuming 
recognition as “recognition scope (R-scope).”

S-scope should be determined so that the newly writ-
ten strokes do not affect the segmentation before it. As 
the backward context by the newly written strokes affects 

Fig. 4   Flow of augmented recognition method
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a range of recent strokes, S-scope must cover this range. 
Moreover, it should provide a consistent forward context 
for segmentation.

As the segmentation before S-scope is considered sta-
ble, R-scope should be set within S-scope, but it should be 
designed so that the newly written strokes may only affect 
the recognition within the R-scope.

By appropriately setting these scopes, augmented incre-
mental recognition incorporates the forward and backward 
contexts to recognize online handwritten text. Moreover, 
limiting the segmentation and recognition within these 
scopes incurs little processing cost for each incremental 
recognition. The best-path search can also be done incre-
mentally inside the R-scope to reduce waiting time.

3.2 � Triggering incremental recognition

Augmented incremental recognition triggers the recogni-
tion process whenever the number of newly written strokes 
reaches the window size Ns. In the specific case of Ns = 1, 
the method triggers the recognition in the same way as the 
pure incremental recognition method.

Since the context to recognize recent strokes changes 
in each incremental recognition, segmentation and recog-
nition of previous incremental recognition also need to be 
reevaluated and updated. Triggering recognition with a large 
window (large number of strokes) reduces the change of 
the context. Therefore, it reduces the processing required to 
update the segmentation and recognition in each incremen-
tal recognition. This leads to reduction in total CPU time. 
Increasing the window size, however, incurs more waiting 
time for processing. We determine the window size through 
experiments and discuss its effectiveness.

3.3 � Processing flow

Figure 4 shows the processing flow of our augmented incre-
mental recognition method.

Augmented incremental recognition proceeds as follows. 
When some newly written strokes are added to the previous 
strokes, character/word segmentation is resumed for the cur-
rent S-scope. Then, character/word recognition is resumed 

and the src-lattice is updated for the current R-scope. Finally, 
the best-path search is resumed in the R-scope, while writ-
ing continues. The process is repeated for processing new 
strokes in the next incremental recognition. The segmen-
tation and recognition results obtained from the best-path 
search are used for the next processing cycle.

As writing proceeds, i.e., new strokes are added, the 
S-scope and the R-scope are updated. We call the scope 
before the last update the previous scope and the scope 
after the update the current scope, regardless of whether it 
is S-scope or R-scope.

3.4 � Determination of S‑scope

Following the above resuming strategy, we consider a cer-
tain range of global context to resume segmentation and 
eventually recognition. Here, we introduce a pointer called 
the segmentation-resumption pointer (Seg_rp) as a starting 
point for the S-scope. Thus, S-scope is from Seg_rp to the 
latest stroke. We determine Seg_rp based on the segmenta-
tion and recognition result of the previous cycle of incre-
mental recognition, which is obtained from the best-path 
search in the src-lattice and is highly reliable. Off-strokes 
between two recognized characters/words in the previous 
R-scope are candidates for Seg_rp (Seg_rp candidates). We 
simply employ the number Nseg of characters/words from 
the end of the previous scope to the off-strokes in the text 
recognition result. In other words, we select a candidate as 
Seg_rp such that the distance from the end of the previous 
scope to the candidate equals to Nseg as illustrated in Fig. 5. 
The larger Nseg is, the wider the S-scope is. The ideas behind 
this are as follows:

(1)	 Seg_rp can be determined so that segmentation before 
Seg_rp is stable but that after Seg_rp is unstable and 
need to be reconsidered with the succeeding strokes.

(2)	 Seg_rp candidates are more stable as they are far away 
back from the end of the previous scope.

Fig. 5   Determination of S-scope Fig. 6   Determination of recognition scope
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3.5 � Determination of R‑scope

To determine the R-scope, we use the result from the seg-
mentation process. The segmentations of the strokes before 
and after receiving new strokes are compared. If classifica-
tions of some off-strokes are changed, we consider that the 
candidate character/word blocks before the earliest classifi-
cation-changed off-stroke (denoted EccOs) are stably clas-
sified, while the candidate character/word blocks after that 
are not stably classified. Otherwise, the off-stroke before 
the newly added strokes is considered as EccOs. EccOs 
may occur within some candidate character/word blocks or 
between two candidate character/word blocks. We define the 
R-scope as the sequence of strokes starting from the first 
stroke of the candidate character/word block containing or 
just preceding EccOs to the latest stroke. Figure 6 illustrates 
this method.

3.6 � Update of src‑lattice and resuming best path 
search

After determining the R-scope, we update the src-lattice 
inside the R-scope. Newly added strokes may change the 
segmentation and recognition of previous strokes in the 
R-scope but may leave some parts unchanged. Therefore, 

we can reuse them to reduce the processing time. To maxi-
mize the reuse of the src-lattice in the previous R-scope, we 
use the following method for updating the src-lattice in the 
current R-scope. It takes advantage of previously built lattice 
candidates in the previous R-scope. From the beginning of 
the current R-scope, our augmented incremental recognition 
method finds SP off-strokes and splits candidate character/
word blocks by these off-strokes. Each SP off-stroke divides 
a candidate character/word block into two parts: preceding 
and succeeding this SP off-stroke. The src-lattice in these 
lattice blocks will be checked if a candidate character/word 
pattern already exists in the previous R-scope. When a can-
didate exists, we obtain it from the previous R-scope; oth-
erwise, we rebuild it.

Figure 7a, b show an example, for Japanese and Eng-
lish text, respectively, for updating the src-lattice when Ns 
is set to two. When new Ns strokes are added, shown in 
red, we update the src-lattice from the beginning of the cur-
rent R-scope, which triggers the building of nine candidate 
character patterns (Fig. 7a) and seven candidate word pat-
terns (Fig. 7b). Among them, only two candidate charac-
ter patterns and three candidate word patterns, bounded by 
red solid rectangles, have to be newly built. The remaining 
candidate character patterns and candidate word patterns 
bounded by blue solid rectangles are reused from the previ-
ous R-scope.

When the src-lattice is updated, we resume the search by 
the Viterbi algorithm from the first character/word lattice 
block in the current R-scope instead of searching from the 
beginning as in [24, 25]. This method limits the processing 
time for the best-path search regardless the length of input 
sequence.

Let ir be the index of the character/word lattice block to be 
resumed. The evaluation function in Eq. (7) is decomposed 
into two parts consisting of the evaluation up to ir − 1 and 
the evaluation from ir to the last character/word lattice block 
as in Eq. (8).

Since the recognition candidates do not change before the 
R-scope, the incremental best path search by Viterbi remains 
unchanged up to ir − 1. Therefore, by calculating the second 
term of the right side in Eq. (8), we can maintain the context 
to be the same as the batch recognition method.

3.7 � Fixation of SPs from UPs

When all the candidate segmentation points are classified as 
UP, each UP doubles the number of possible paths passing 
through it. The method by Wang et al. [25] does not consider 
SP off-strokes, where all the candidate segmentation points 
are classified as UP. For recognizing an input sequence with 

(8)
f (X, S, Z,C) = f (X, S, Z,C)

[
1, ir − 1

]
+ f (X, S, Z,C)

[
ir,m

]

Fig. 7   Reuse of candidate word patterns for a Japanese text and b 
English text
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ns UPs, 2^ ns recognition paths must be evaluated. There-
fore, recognition time grows exponentially as the length of 
input sequence increases. To reduce recognition time for 
handwritten Chinese and Japanese text, candidate character 
patterns formed by multiple primitive segments have been 
restricted in length [27, 31]. The length restriction, however, 
is not applicable for handwritten English text due to a large 
variance in the lengths of candidate word patterns.

Our method sets SP for the strokes that are highly likely 
to be separated. As more SPs are determined, the recognition 
time becomes shorter. On the other hand, the recognition 
rate may degrade due to misclassifications of off-strokes to 
SPs. We refer to methods without SPs and NSPs as full soft 
decision, those with SPs or NSPs as partial soft decision, 
and those with both SPs and NSPs as minimum soft deci-
sion. We employ the minimum soft decision in our approach

Determination of SP off-strokes greatly affects the rec-
ognition rate and the performance of our augmented incre-
mental recognition method. Although SP off-strokes can be 
detected based on the result of the segmentation process, 
the performance of segmentation using an SVM for detect-
ing SP off-strokes is still limited. Due to the uncertainty of 
segmentation, a large number of outputs from the SVM are 
marked as UPs. To overcome this problem, we also use the 
result of text recognition up to the latest R-scope to fix more 
UPs to SP off-strokes in the S-scope. We call this process 
UP fixation. The UP off-strokes between recognized charac-
ters/words, before the latest Nseg_det characters/words in the 
recognition result, are fixed as SP off-strokes. Here, Nseg_det 
denotes a predefined constant for the minimum number of 
characters/words that follow an UP off-stroke to make it a 
stable SP off-stroke. Generally, Nseg_det is set smaller than 
or equal to Nseg. Figure 8 shows an example of UP fixa-
tion removing two candidate character patterns (red double 
strike-through lined box). Although the candidate character 
patterns are already built at the current UP fixation, so that 
the cost for recognizing these candidate character patterns 
has already occurred, and we expect a reduction in cost for 

the future candidate character patterns that incorporate these 
current candidates character patterns as future strokes are 
inputted.

3.8 � Skipping partial patterns

For incremental recognition, incomplete character/word 
patterns occur at the end of the text while writing. Unless 
predictive input is used, the recognition of these incomplete 
character/word patterns has no meaning. If we can skip rec-
ognizing them, it would save processing time. Recognition 
of partial character patterns for Japanese or partial word 
patterns for English can be postponed until the complete 
character/word patterns are received. Therefore, we skip rec-
ognizing them to reduce CPU time. We treat candidate char-
acter/word patterns containing the last primitive segment as 
partial candidate character/word patterns (PPs) until a new 
primitive segment is detected or the recognition is requested. 
We call this process PP skip.

3.9 � Handling delayed strokes

To correctly segment a text line that includes delayed 
strokes, we first detect the delayed strokes and ignore them 
in the segmentation process. We then determine a seg-
mented block for each delayed stroke into which that stroke 
is merged. Finally, we rebuild the src-lattice.

Delayed strokes are detected using the previous recogni-
tion result. First, we retrieve the bounding box for each rec-
ognized character/word from the segmentation-recognition 
result up to the previous R-scope. We then deem each newly 
added stroke as a delayed stroke if it is close to the previous 
bounding boxes rather than the latest bounding box.

When delayed strokes occur, we rebuild the src-lattice 
in two steps: first, we build the src-lattice without delayed 
strokes; second, we put delayed strokes into appropriate 
primitive segments and rebuild the candidate character/
word patterns containing the delayed strokes. We extend the 
R-scope back to the point where the delayed stroke occurs. 
Then, we resume the best-path search from the R-scope. 
By extending the R-scope, isolated character/word recog-
nition results (candidates) inside the R-scope may change. 
When the best-path search is resumed from the beginning of 
the R-scope, different paths may be chosen due to different 
candidates in the R-scope. This may change the previously 
selected recognition results (although candidates outside the 
R-scope are not changed).

It is possible to provide real-time feedback even if a 
delayed stroke occurs, as it does not take long to rebuild the 
candidate lattice containing the delayed stroke and search 
for the best path from the R-scope. Algorithm 2 shows the 
pseudocode of augmented incremental recognition with han-
dling delayed strokes.

Fig. 8   Path reduction by UP fixation
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Input: Ns new strokes NewStrokes
LastBestLatticePath 

1. Algorithm 
2. Strokes = Strokes.add(NewStrokes) 
3. Segmentations, EccOs= incrementalSegmentation(Strokes, LastBestLatticePath) 
4. DelayedStrokes = checkDelayedStrokes(Strokes, LastBestLatticePath) 
5. Strokes = Strokes.remove(DelayedStrokes) 
6. Lattice, RScope = buildLatice(Strokes, Segmentations, EccOs) 
7. Lattice, RScope = addStrokeToLattice(Lattice, DelayedStrokes) 
8. LatticeCandidates = recognize(Lattice, RScope) 
9. BestPath = bestPathSearch(LatticeCandidates, RScope) 
Output: BestPath

Algorithm 2: Augmented incremental recognition with handling delayed strokes. 

as analyzed in Sect. 3.4. Therefore, we evaluate the detection 
rate (d) of over-segmentation as its ability to determine more 
SPs instead of UPs by the following formula:

As final segmentation is determined from the result of 
the best-path search, we get SPs as off-strokes between two 
recognized characters, and the remaining ones are NSPs. Let 
#SPf, #SPfc and #SPft be the number of returned SPs in final 
segmentation, the number of correctly classified SPs among 
those returned SPs, and the number of true SPs in the ground 
truth, respectively.

The F-measure of final segmentation denoted as the seg-
mentation measure is evaluated as follows:

where P and R are the precision and recall, respectively, of 
final segmentation, defined as follows:

4.2 � Average waiting time in recognition interfaces

For busy recognition interface, waiting occurs at each incre-
mental recognition step. The waiting time is the processing 
time of the incremental recognition step. Therefore, the aver-
age waiting time tbusy is calculated as follows:

(12)d =
#SP

(#SP + #UP)

(13)F =
2 × P × R

(P + R)

(14)P =
#SPfc

#SPf

(15)R =
#SPfc

#SPft

4 � Evaluation experiments and discussion

4.1 � Metrics of segmentation evaluation

First, over-segmentation is applied and then segmentation is 
determined along with character recognition and best-path 
search. The over-segmentation process classifies each off-
stroke as an SP, NSP, or UP off-stroke. An UP off-stroke 
can then be further classified as an SP or NSP in the text 
recognition process.

Let #SP, #NSP, #UP be the numbers of returned SPs, 
NSPs and UPs, respectively. #SPc is the number of correctly 
classified SPs among the returned SPs. #SPt is the number 
of true SPs defined in the ground truth. #UPt is the number 
of UPs being true SPs.

The performance of over-segmentation is evaluated with 
the following measures.

Precision (p):

Recall (r):

Inclusion of #UPt in the dividend is typical for over-seg-
mentation since UPs maintain the possibility that they will 
be classified correctly.

F-measure (f) is calculated as follows:

Although UPs maintain the possibility that they will be 
classified correctly, thus improving recall; leaving many UPs 
instead of SPs or NSPs, however, incurs more waiting time 

(9)p =
#SPc

#SP

(10)r =
#SPc + #UPt

#SPt

(11)f =
2 × p × r

(p + r)
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where ti
incre

 is the processing time for incremental recognition 
step i, and n is the number of incremental recognition steps.

For lazy recognition interface, assuming that the user 
requests the result of the entire text recognition immedi-
ately after the last stroke, the waiting time is measured from 
receiving the final stroke until the time when the recognition 
result is returned. This waiting time is incurred by the pro-
cessing time for the last incremental recognition step and the 
processing time for previous incremental recognition steps 
if it is longer than the user’s writing duration. Therefore, we 
use the following formula to calculate the waiting time tlazy 
for lazy recognition interface:

where tn
incre

 and tprevious are the processing time of the last 
incremental recognition and the waiting time caused by the 
previous incremental recognition steps, respectively. The 
second term tprevious is calculated as follows:

where 
∑n−1

i=1
ti
incre

 and twriting are the total processing times of 
the previous incremental recognition steps and the user’s 
writing duration, respectively.

(16)tbusy =
1

n

n∑
i=1

ti
incre

(17)tlazy = tn
incre

+ tprevious

(18)tprevious =

⎧⎪⎨⎪⎩

n−1∑
i=1

ti
incre

− twriting, f
n−1∑
i=1

ti
incre

> twriting

0 else

4.3 � Experimental setup

To evaluate our augmented incremental recognition method, 
we conducted experiments on both online handwritten Japa-
nese text and English text.

For Japanese text, we trained the character recognizer and 
geometric scoring functions using Japanese online hand-
writing database Nakayosi [15]. We used a trigram table 
extracted from the year 1993 volume of the Asahi newspa-
per and the year 2002 volume of the Nikkei newspaper to 
model linguistic context. From the TUAT-Kondate database 
collected from 100 people [12], we separated the text lines 
into 4 sets by writers and then used 3 sets (10,174 text lines 
written by 75 people) for training the weighting parameters 
and 1 set (3511 text lines written by 25 people) for testing 
as in [27, 31]. We changed the role four times and took the 
average. We used this separation to assure writer independ-
ence and conducted cross-validation to evaluate the unbiased 
effect with respect to data sets.

For English text, we used the IAM online database (IAM-
OnDB) [8], which consists of pen trajectories collected from 
221 different writers using an electronic whiteboard. We fol-
lowed the handwritten text recognition task IAM-OnDB-
t2, in which the database was divided into a training set, 
two validation sets, and a test set containing 5364, 1438, 
1518 and 3859 written lines, respectively. We used a trigram 
table extracted from the LOB text corpus [5] for language 
modeling.

To evaluate the average waiting time of the system, espe-
cially while dealing with long input sequences, we selected 
20 longest stroke sequences in each database. Since the aver-
age number of strokes per text line in both Kondate and 
IAM-OnDB is small, as shown in Table 1, we only evalu-
ated the average waiting time for the selected sequences. 
We chose the top 20 longest sequences: from 154 to 214 
strokes per text line (avg. 165.9 strokes) from Kondate, and 
from 50 to 62 strokes per text line (avg. 54.55 strokes) from 
IAM-OnDB, respectively.

The parameters of the evaluation function in Eq. (7) have 
been trained with each training set, but Ns and Nseg are not 

Table 1   Statistics of online handwritten text databases

Kondate IAM-OnDB

Number of strokes/text line 38.52 25.09
Max number of strokes/text line 213 62
Number of strokes/character 3.77 –
Number of strokes/word – 4.14

Table 2   Overall performance 
of augmented incremental 
recognition

Aug. incr., augmented incremental recognition mode; B, batch recognition mode; P. Incr., pure incremental 
recognition mode
Ns, Nseg and Nseg_det were set to 5, 8 and 5 for Japanese text, and to 1, 8 and 3 for English text, respectively. 
Waiting time shown in brackets is the maximum waiting time

Japanese text English text

Aug. incr. B P. Incr. Aug. incr. B P. incr.

Recognition rate (%) 93.19 ± 1.16 93.28 ± 1.2 92.50 ± 1.3 74.64 74.79 71.50
tbusy (s) 0.0223 (0.085) – 0.0175 0.258 (4.37) – 0.365
tlazy (s) 0.0299 (0.124) 0.118 (1.523) – 1.04 (5.71) 3.85 (20.5) –
CPU time (ms) 4.20 3.04 7.03 29.5 18.2 57.2
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trained since Ns and Nseg are control variables rather than 
parameters.

We implemented augmented incremental recognition 
systems for online handwritten Japanese text and English 
text. We ran all the systems on an Intel(R) Xeon(R) CPU 
E5-2630v2 2.6 Ghz with 32-GB memory.

It is not easy to compare our method with previous incre-
mental or batch methods since the implementations and the 
datasets are different. Therefore, we implemented a unified 
approach so that the previous methods are realized by set-
ting parameters, and then we show that the proposed method 
achieves a better performance in the waiting time and CPU 
time without degrading the recognition rate even compared 
with the batch recognition. In this sense, the extremal base-
lines are the pure incremental and the batch recognition 
methods. Augmented incremental recognition with Ns = 1 
is almost pure incremental recognition but enhanced from 
the employment of the two scopes and the three techniques 
mentioned in this paper. Shrinking the S-scope and R-scope 
to the minimum (1) and disabling the three techniques con-
vert this approach to the pure incremental recognition.

4.4 � Overall performance

We conducted an experiment to measure the overall perfor-
mance of the augmented incremental recognition method. 
We employed all the three techniques with Nseg and Nseg_det 
which produced the best recognition rates for training pat-
terns, i.e., Ns, Nseg and Nseg_det set as 5, 8 and 5 for Japanese 
text, and as 1, 8 and 3 for English text, respectively. Table 2 
shows the recognition rate (i.e., character/word recognition 
accuracy), waiting time and CPU time in comparison with 
the batch recognition method when online handwritten text 
is recognized line by line. For Japanese text, averages and 
standard deviations are shown from fourfold of the cross-
validation. For English text, just average is shown for the 
test set.

The recognition rate is maintained almost as high as the 
batch recognition method. The augmented incremental rec-
ognition method produces a recognition rate of 93.19% as 

compared with 93.25% of the batch recognition method for 
handwritten Japanese text and 74.64% as compared with 
74.79% of the batch recognition method for handwritten 
English text. The augmented incremental method also adds 
little CPU time in comparison with the batch recognition 
method.

On the other hand, we aimed to improve the recognition 
accuracy in comparison with the pure incremental method 
while keeping the waiting time small and decreasing CPU 
time. As a result, the proposed method improved the recog-
nition accuracy from 92.5 to 93.2% for Japanese and from 
71.5 to 74.46% for English in comparison with the pure 

Fig. 9   Waiting time for Japanese text as the number of strokes 
increases

Table 3   Comparison with the state-of-the-art methods

Aug. incr., augmented incremental recognition
a Trained by a private dataset

Target Accuracies for data set

Data set Accuracies (%) 
by the state of 
the art

Accuracies 
(%) by Aug. 
Incr.

Online 
handwritten 
Japanese text

Kondate 93.98 [27]
93.24 [31] (batch 

recognition 
method)

93.19

Online 
handwritten 
English text

IAMonDB 89.6 [6]a

81.1 [10]
74.64

Fig. 10   Effect of changing Nseg for a Japanese text and b English text
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incremental method. The improvements are significant, and 
they are validated by the paired t test with p < 0.0005 and 
p < 0.0005 for Japanese text and English text, respectively. 
We claim that the improvements are due to a more effective 
use of the context.

The most notable effect is in the waiting time. The aug-
mented incremental method reduces the waiting time from 
0.118 to 0.0299 s for Japanese (74.6% reduction) and from 
3.85 to 1.04 s for English (72.8% reduction). The waiting 
time for recognizing English text is much larger than that for 
Japanese text because the English word recognizer requires 
more processing time compared with the Japanese character 
recognizer. For both the busy and lazy recognition interfaces 
by augmented incremental recognition, the waiting times 
tbusy and tlazy are small enough for practical use.

This effect is further enhanced as the number of strokes 
increases. Although the average number and the largest num-
ber of strokes per text line are 38.5 and 213 for Kondate 
and 25.1 and 62 for IAM-OnDB, respectively, the waiting 
time by the batch recognition method becomes longer as the 
number of strokes per text line increases and multiple text 
lines are recognized. However, the waiting time by the aug-
mented recognition method stays constant. Figure 9 shows 
our experimental results as the number of strokes increases 
for both the methods.

Last but not the least, before going into details is the 
comparison of recognition rates with the state-of the-art 

recognizers. Table 3 shows the comparison using the same 
test set and evaluation method. Our augmented incremental 
recognition is comparable with the system by Zhou et al. 
[27] for Japanese. For English, our method is somewhat 
inferior to the Google’s system by Keysers et al. [6], but 
they employ a different training set. The performance of 
our system is slightly poorer compared to the best academic 
system by Liwicki et al. [10], which uses the same training 
and testing sets as well as the same corpus for the language 
model. The BLSTM recognizers [6, 10], which recognize 
character sequences without segmentation perform better 
than the combined recognizer for recognizing words as our 
segmentation-based method. However, we employ a seg-
mentation-based method so that incremental recognition 
can be employed, while Liwicki et al. apply BLSTM which 
makes it hard to incorporate incremental recognition.

4.5 � Effect of resuming segmentation 
and recognition

To evaluate the effect of resuming segmentation and rec-
ognition, we conducted experiments with varying Nseg and 
measured the segmentation rate, the recognition rate and the 
waiting time. Nseg was varied from 3 to 25 for Japanese and 
English. Ns is set to 1 in both the experiments to show the 
effect of changing Nseg clearly. Figure 10 shows the three 
measures for Japanese text (a) and English text (b). As Nseg 
is expanded up to 8, the segmentation rate and especially 
the recognition rate are generally improved, which confirms 

Fig. 11   Recognition rate and waiting time with Ns for a Japanese text 
and b English text Fig. 12   Effect of UP fixation for a Japanese text and b English text



67A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

the effect of resuming segmentation and recognition using 
the scopes. For Nseg larger than 8, the improvement tends to 
be milder or even saturated. On the other hand, the average 
waiting time increases gradually.

As the scope is expanded, more unstable segmentation 
points are covered and determined correctly, thereby yield-
ing better segmentation and recognition rates, although 
the average waiting time is extended due to an increase in 
changes in segmentation and recognition.

Note that augmented incremental recognition with Ns = 1 
is enhanced from the pure incremental recognition by the 
employment of the two scopes and the three techniques. In 
fact, the pure incremental recognition produced a recogni-
tion rate of 92.50% and 71.50% while augmented incremen-
tal recognition with Ns = 1 produced better results with the 
best 93.10% and 74.64% for Japanese text and English text, 
respectively.

4.6 � Effect of the recognition trigger

We conducted experiments to evaluate the effect of win-
dow size Ns to trigger recognition for both Japanese and 
English. To make the effect clear, we fixed Nseg at 3 while 
increasing Ns from 1 to 10. Figure 11 shows the result. As 
Ns is expanded, the CPU time is gradually reduced and 
approaches the batch recognition method due to a reduc-
tion in the number of partial patterns. As Ns is expanded, 
the recognition rate is also improved due to a longer local 

context available for recognition. Triggering recognition 
with a higher number Ns, however, takes longer waiting 
time due to a larger amount of processing needed for each 
incremental recognition.

4.7 � Effect of UP fixation

We evaluated the effect of applying UP fixation on the per-
formance of augmented incremental recognition method. In 
this experiment, we fixed Nseg = 8 and executed the method 
by varying Nseg_det from 2 to 8 (since Nseg_det is smaller 
than or equal to Nseg). When Nseg_det is 8, UP fixation is not 
applied as explained in Sect. 3.7. Figure 12 shows the result. 
Applying UP fixation improves the detection rate to 37.95% 
when Nseg_det = 2 as compared with the method without UP 
fixation of 3.28%. Larger Nseg_det yields a more stable fixa-
tion and brings about a higher recognition rate but lowers the 
detection rate. The method with UP fixation slightly reduces 
the recognition rate: from 93.11 to 93.08%.

On the other hand, UP fixation reduces the number of 
search paths and candidate lattice patterns as expected in 
Sect. 3.7 with the total effect of reducing the CPU time as 
shown in Fig. 13.

For Japanese, the effect is largest when Ns = 1 with 
51.42% reduction in the CPU time and it decreases slightly 
as Ns is set larger. For smaller Ns, incremental recognitions 
are triggered more often, and thus each fixed UP remains 

Fig. 13   CPU time with applying UP fixation for a Japanese text and 
b English text

Fig. 14   CPU time with applying PP skip for a Japanese text and b 
English text
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effective for succeeding incremental recognitions. For Eng-
lish, however, the effect of UP fixation is rather small and 
there is no clear difference with changing Ns. This is due to 
the high detection rate of English text segmentation using 
BLSTM [17].

4.8 � Effect of PP skip

We conducted experiments to evaluate the effect of PP skip 
on reducing CPU time. In the experiments, Ns was varied 
from 1 to 10. Figure 14 shows the CPU time with and with-
out applying PP skip. PP skip reduces the CPU time up to 
27.51% for Japanese text and up to 48.69% for English text. 
The highest reduction rate is when Ns = 1, since the number 
of partial patterns is largest in this case. The effect is larger 
for English than for Japanese, since English word recogni-
tion takes longer than Japanese character recognition, and 

the number of strokes per English word is larger than that 
per Japanese character as shown in Table 4.

4.9 � Effect of reuse

We evaluated the CPU time performance of the system with 
and without applying reuse. Figure 15 shows the CPU time 
performance for both Japanese text and English text with 
varying Ns from 1 to 10. Applying reuse reduces the CPU 
time up to 89.72% for Japanese text and 41.44% for English 
text by the recognition system. The effect of reuse is largest 
for Ns = 1, and it decreases for larger Ns. For smaller Ns, due 
to the larger number of triggered incremental recognitions, 
a candidate character/word pattern could be reused more 
often, thereby increasing its effectiveness.

Table 4   Orders of using 
systems and modes

Group System and mode

English Japanese

B Aug. incr. Q B Aug. incr. Q

G1.1 1 2 3 5 4 6
G1.2 2 1 3 4 5 6
G2.1 5 4 6 1 2 3
G2.2 4 5 6 2 1 3

Fig. 15   CPU time with applying reuse for a Japanese text and b Eng-
lish text

Fig. 16   CPU time with applying all the techniques for a Japanese text 
and b English text



69A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

4.10 � Effect of all three techniques

We evaluated the effect of applying all the three techniques 
to the recognition methods. In this experiment, we set the 
best parameters as in Sect. 4.4 and ran the experiments with 
Ns from 1 to 10. Figure 16 shows the results. Applying all 
of the techniques for the augmented incremental recognition 
method reduces the CPU time up to 91.11% for Japanese text 
and 71.00% for English. The effect of the three techniques 
is largest when Ns = 1, which is pure incremental recogni-
tion. This shows that the three techniques are also effective 
for pure incremental recognition, though their effectiveness 
gradually decreases for larger Ns. Without the three tech-
niques, semi-incremental recognition reduces up to 86.88% 
of the CPU time for Japanese and up to 75.66% for Eng-
lish when Ns = 10 from the pure incremental recognition of 

Ns = 1. The red line in the figure shows the reduction rate 
of semi-incremental recognition from pure incremental 
recognition. With all the techniques, semi-incremental rec-
ognition, called total augmented incremental recognition, 
reduces up to 57.02% of the CPU time for Japanese and up to 
44.87% for English when Ns = 10 from the pure incremental 
recognition of Ns = 1 as shown in the purple line. Whether 
the three techniques are combined or not, the augmented 
incremental recognition incurs less CPU time than the pure 
incremental recognition method. This shows the speed up 
is not only by the three techniques but also by the semi-
incremental processing.

Table 5   Questionnaire on the waiting time and intermediate feedback using five-level Likert scale

B, batch recognition mode; Aug. incr., augmented incremental recognition mode; Q, answering questionnaire

# Question

Q1 How do you feel about the waiting time of the augmented incremental recognition mode? (1: late, 2: rather late, 3: even, 4: rather quick, 5: 
quick)

Q2 How do you feel about the waiting time of the batch recognition mode? (1: late, 2: rather late, 3: even, 4: rather quick, 5: quick)
Q3 Which of the two modes do you think gives a smaller waiting time; the augmented incremental mode or the batch mode? (1: clearly batch, 

2: batch, 3: even, 4: augmented, 5: clearly augmented)
Q4 Is the intermediate feedback helpful while writing? (1: unhelpful, 2: rather unhelpful, 3: even, 4: rather helpful, 5: helpful)
Q5 Give your opinion on the intermediate feedback

Table 6   Average user evaluation scores for waiting time

B, batch recognition mode; Aug. incr., augmented incremental recognition mode

Group System and mode

Japanese English

Scores of Q1 and 
Q2

Score of Q3 Real waiting time (s) Scores of Q1 and 
Q2

Score of Q3 Real waiting time (s)

B Aug. incr. B Aug. incr. B Aug. incr. B Aug. incr.

G1 G 1.1 3.80 4.60 3.80 0.27 ± 0.08 0.03 ± 0.02 2.60 4.40 4.80 2.26 ± 0.43 0.60 ± 0.13
G 1.2 3.80 5.00 4.80 0.33 ± 0.03 0.04 ± 0.02 2.40 3.40 4.20 1.84 ± 0.45 0.98 ± 0.88

G2 G 2.1 3.40 4.00 4.00 0.26 ± 0.04 0.04 ± 0.02 1.60 2.80 4.80 2.31 ± 0.48 0.78 ± 0.36
G 2.2 4.20 4.20 3.60 0.28 ± 0.04 0.03 ± 0.01 2.40 4.00 4.80 1.96 ± 0.45 0.56 ± 0.11
Ave. 3.80 4.45 4.05 0.28 ± 0.05 0.04 ± 0.02 2.25 3.65 4.65 2.09 ± 0.45 0.73 ± 0.37

Table 7   User evaluation of 
intermediate feedback

Score # People Typical comments # Com-
ments/# 
total

4 or 5 (agree) 18 “I can perceive misrecognitions to fix them”
“It would be better if there was”

12/18

2 (disagree) 1 No comment 0/1
3 (neutral) 1 “Since I concentrate on writing, I rarely confirm 

intermediate feedback”
1/1
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5 � User experience evaluation

5.1 � Setup for experiment

We prepared one online recognition system for Japanese 
and one for English. In each system, we provided modes 
for augmented incremental recognition and batch recogni-
tion. We asked 20 participants to use both the modes in both 
the systems. The participants were divided into four groups 
G1.1, G1.2, G2.1 and G2.2, and they were asked to use the 
two modes in each system according to the order as shown 
in Table 4. The grouping and ordering in the experiment 
were designed to cancel the effect of different people and the 
order to use the two modes. Each participant was asked to 
write 10 English sentences (4–7 words each) for the English 
recognizer with each of the two modes, and 10 Japanese sen-
tences (16–18 characters each) for the Japanese recognizer 
again with each mode. After they wrote 10 sentences in both 
the modes for each system, we asked them to answer a ques-
tionnaire about the waiting time in the two modes. We also 
asked them to evaluate whether the intermediate feedback 
was helpful. All questions used a 5-level Likert scale. The 
questionnaire is shown in Table 5.

5.2 � Result of experiment

Table 6 shows the average scores for each question from Q1 
to Q3. For Japanese text input, both the batch and augmented 
incremental recognition modes received a positive feedback 
(score > 3) as they incurred little waiting time, because the 
Japanese recognizer is faster than the English recognizer. 
The augmented incremental recognition mode received a 
higher average evaluation score than the batch recognition 
mode because it incurs less waiting time. The answers to 
Q3 show the participants’ preference for the augmented 
incremental recognition. For English text input, the batch 
recognition mode received a negative feedback (score < 3) 
as they incur a larger waiting time (about 2 s.) on average. 
On the other hand, the augmented incremental recognition 
mode received a positive feedback. The answers to Q3 show 
the participants’ clear preference for the augmented incre-
mental recognition.

We validated the hypothesis that the users accept batch 
recognition and augmented incremental recognition equally 
by a paired t test, and it was rejected for Japanese text input 
and also for English text input with p < 0.001 and p < 0.0005, 
respectively.

In the experiment, we also provided the participants with 
two conditions: (1) automatic intermediate feedback by aug-
mented incremental recognition, and (2) no feedback until 
requested. For the evaluation, we asked their opinions in 
Q4 and free comments in Q5 on the intermediate feedback. 

Table 7 shows the result. Most participants prefer intermedi-
ate feedback during writing with average score of 4.4 ± 0.3. 
Among them, the most common opinion was that the user 
can perceive misrecognitions to fix them. The intermediate 
result, however, may not be correct until the last few strokes, 
and so a few participants did not find intermediate recogni-
tion so useful.

6 � Conclusion

We presented a unified approach to augmented incremen-
tal recognition for both online handwritten Japanese and 
English text. Augmented incremental recognition is para-
metrized to cover pure incremental recognition, which trig-
gers recognition at every input stroke, and semi-incremental 
recognition triggering recognition after several input strokes. 
Resuming the segmentation and recognition in local scopes 
reduces the waiting time to be very small for users. Aug-
mented incremental recognition incorporates three tech-
niques: reusing the segmentation and recognition candidate 
lattice in the previous R-scope, fixing undecided segmen-
tation points and skipping recognition of partial candidate 
character/word patterns.

Effectiveness of the overall method and all the three tech-
niques were evaluated on the common large databases of 
online handwritten Japanese and English text patterns with 
notable effects. The proposed method reduces 74.6% of the 
waiting time for Japanese and 72.8% of the waiting time 
for English as compared with the batch recognition method 
without scarifying the recognition rate.

The three techniques show their effectiveness. Reusing 
the segmentation and recognition candidate lattice reduces 
the CPU time up to 87.92%. Fixing undecided segmentation 
points shortens the block size and reduces the CPU time up 
to 51.42%. Skipping recognition of partial candidate char-
acter/word patterns reduces it up to 48.69% independently. 
Overall, the three techniques reduce the CPU time up to 
91.11% by the recognition system without degrading the 
recognition rate.

The augmented incremental recognition method is clearly 
superior to the batch recognition method in the waiting time 
without degrading the recognition rate. It also excels pure 
incremental recognition in the character recognition rate and 
the total CPU time. Our user experience study also confirms 
the superiority of augmented incremental recognition. We 
demonstrated augmented incremental recognition for Japa-
nese and English; it can be applied for other languages as 
well. Still, there remain some research issues. Although 
our user study showed that intermediate feedback owing to 
augmented incremental recognition is appreciated, this may 
change after using the system several times or after a while. 
To understand this effect, a long-term user study with the 
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system needs to be conducted. Another research issue for the 
future is to realize augmented incremental recognition for 
segmentation-free recognition methods and apply techniques 
based on deep neural networks.
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