
Vol.:(0123456789)1 3

International Journal on Document Analysis and Recognition (IJDAR) (2020) 23:53–72
https://doi.org/10.1007/s10032-019-00343-y

ORIGINAL PAPER

A unified method for augmented incremental recognition of online
handwritten Japanese and English text

Cuong Tuan Nguyen1  · Bipin Indurkhya2 · Masaki Nakagawa1

Received: 20 January 2018 / Revised: 9 July 2019 / Accepted: 28 August 2019 / Published online: 5 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We present a unified method to augmented incremental recognition for online handwritten Japanese and English text, which
is used for busy or on-the-fly recognition while writing, and lazy or delayed recognition after writing, without incurring long
waiting times. It extends the local context for segmentation and recognition to a range of recent strokes called “segmentation
scope” and “recognition scope,” respectively. The recognition scope is inside of the segmentation scope. The augmented
incremental recognition triggers recognition at every several recent strokes, updates the segmentation and recognition candi-
date lattice, and searches over the lattice for the best result incrementally. It also incorporates three techniques. The first is to
reuse the segmentation and recognition candidate lattice in the previous recognition scope for the current recognition scope.
The second is to fix undecided segmentation points if they are stable between character/word patterns. The third is to skip
recognition of partial candidate character/word patterns. The augmented incremental method includes the case of triggering
recognition at every new stroke with the above-mentioned techniques. Experiments conducted on TUAT-Kondate and IAM
online database show its superiority to batch recognition (recognizing text at one time) and pure incremental recognition
(recognizing text at every input stroke) in processing time, waiting time, and recognition accuracy.

Keywords  Online recognition · Handwriting recognition · Batch recognition · Incremental recognition

1  Introduction

Due to the development of pen-based and touch-based
devices, such as tablets, smart-phones and digital pens, there
has been a renewed interest in online handwriting recogni-
tion, which provides a practical input method for devices
without a keyboard [7, 22]. Since hand-held devices have
relatively smaller CPU performance for less power con-
sumption compared with desktop PCs, and they are interac-
tive devices, handwriting recognition on these devices must

respond to the user input with a high recognition rate but
without incurring much CPU time.

Compared to isolated character or word recognition,
online handwritten text recognition faces the problem of
word segmentation or character segmentation. There are
two approaches to segmentation. One is implicit segmenta-
tion, which has been extensively studied in recent years, and
the other is explicit segmentation. High performance with
implicit segmentation is reported for English [2, 9] but not
yet for Japanese or Chinese online handwriting text recogni-
tion. Owing to the progress in deep neural network technol-
ogy, one can consider deploying it for practical systems, but
there are some obstacles such as speed and memory space
for the large category size to be used in stand-alone sys-
tems, especially for hand-held mobile phones and tablets.
On the other hand, the explicit segmentation technique also
provides reliable performance in recognition of online hand-
written Japanese text [31], and online handwritten Chinese
text [27]. This approach is also applied for online handwrit-
ten English text recognition [19, 23]. It first applies seg-
mentation to separate the whole text line into characters or
words, then recognizes each separated patterns, and finally

 *	 Cuong Tuan Nguyen
	 ntcuong2103@gmail.com

	 Bipin Indurkhya
	 bipin.indurkhya@uj.edu.pl

	 Masaki Nakagawa
	 nakagawa@cc.tuat.ac.jp

1	 Department of Computer and Information Sciences,
Tokyo University of Agriculture and Technology, 2‑24‑16
Naka‑cho, Koganei‑shi, Tokyo 184‑8588, Japan

2	 Institute of Philosophy, Jagiellonian University, Kraków,
Poland

http://orcid.org/0000-0003-2556-9191
http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-019-00343-y&domain=pdf

54	 C. T. Nguyen et al.

1 3

concatenates the results to get the text line recognition result.
Segmentation is based on geometric layout features (e.g.,
gap between strokes, stroke histogram and inter-relationship,
where a stroke is a sequence of finger-tip or pen-tip coor-
dinates from finger/pen-down to finger/pen-up). In order
to solve ambiguity in segmentation, soft decision is often
employed for segmentation and recognition, and all the
candidates of segmentation and recognition are represented
in the segmentation and recognition candidate lattice. This
approach is also called “segmentation by recognition,” or
“over-segmentation,” since it nominates true segmentation
points exhaustively, thereby excessively over segmenting a
character or a word pattern. Each segment in the lattice is
recognized, and then text recognition result is produced by
searching the lattice for the highest score path, taking into
account the geometric context, the linguistic context and
the recognition scores. Excessively segmented patterns are
combined in the above best-path search in the lattice.

The context of the input sequence (global context) is
important for handwritten text recognition. Zhu et al. [31]
showed the effectiveness of the geometric features extracted
from all the preceding or succeeding strokes for segmen-
tation of handwritten Japanese text. Nakagawa et al. [16]
improved segmentation and recognition by applying geomet-
ric and linguistic contexts. Graves et al. [2] used bi-direc-
tional recurrent neural networks to integrate the context from
both forward and backward directions of an input sequence
for recognizing English handwritten text.

There are basically two methods to trigger recognition.
The batch recognition method, which recognizes handwrit-
ten text after the user has finished writing, can easily use the
full context to achieve a high recognition rate. For Japanese,
Zhu et al. [31] reported on a batch recognition method that
integrates segmentation and recognition, resulting in a high
recognition rate. However, if all the processes for segmen-
tation and recognition are executed after the entire text is
written, a long waiting time is incurred: the more the written
text, the longer the waiting time. The other method is the
incremental recognition method [24, 25], which recognizes
the handwritten characters incrementally as the user is writ-
ing. Tanaka et al. [24] proposed an incremental recognition
method for online Japanese handwriting recognition. Wang
et al. [25] presented a method for real-time (incremental)
recognition of Chinese handwritten text. With these meth-
ods, the candidate characters are generated and recognized to
assign candidate classes whenever a new stroke is produced.
The problem of waiting time is solved by the incremental
recognition method, which, however, may degrade the rec-
ognition rate due to a lack of global context in its local pro-
cessing of input sequence. Tanaka et al. [24] reported that
incremental recognition method degrades 0.3 points of the
recognition rate as compared with batch recognition method.
Due to repeated processing after receiving every stroke, it

also increases the total CPU time required for recognition, as
reported by Wang et al. [25]. Not only the recognition pro-
cesses are triggered repeatedly, but also attempts are made to
recognize incomplete patterns after every stroke. Therefore,
it takes a substantial amount of CPU time for recognizing
a long input stroke sequence. Moreover, these two methods
apply the best-path search from the beginning to the end of
the input sequence, whenever the user requests the recogni-
tion result. This extends the waiting time when there are
many strokes in the input sequence.

There are also two alternatives for the user interface of
handwritten text recognition: busy or on-the-fly recognition
and lazy or delayed recognition [14]. A busy recognition
interface shows the recognition result while the user is writ-
ing. It gives immediate feedback to the user, but the user
might be bothered by having to confirm or correct the rec-
ognition. A predictive input interface [11], which predicts
a character or word from a few beginning strokes, may be
categorized as a busy recognition interface. On the other
hand, a lazy recognition interface delays the output of the
recognition result until needed. It is suitable for a user who
is writing while thinking. The user does not need a recogni-
tion result when writing and only needs the recognized text
after he/she stops writing.

A lazy recognition interface can be implemented straight-
forwardly with the batch recognition method. Due to the
problem of waiting time, however, the incremental recogni-
tion method should be run in the background when a user
is writing even for a lazy recognition interface when the
problem of waiting time is serious.

As stated above, it is effective to use the full context, both
in the forward and the backward directions, for text recogni-
tion. This can be easily achieved with the batch recognition
method but not with the incremental recognition method,
since succeeding strokes are not available. The method by
Zhu et al. [31] involves bi-directional geometric context for
segmentation, where each off-stroke (a vector from finger/
pen-up to finger/pen-down) is classified using the features
extracted from both its preceding and succeeding strokes.
On the other hand, the incremental recognition methods by
Tanaka [24] for Japanese text and by Wang et al. [25] for
Chinese text use only the features extracted from the current
off-stroke and its preceding strokes for segmentation. This
limits recognition performance since the backward context
is not used. To use backward context, we should provide a
way in which succeeding strokes affect the recognition of
previous strokes.

In this work, we aim to overcome these drawbacks and
combine the advantages of both the batch and the incremen-
tal recognition methods. We focus on maintaining global
context in incremental recognition and triggering recogni-
tion after every several strokes. We refer to this solution
as the semi-incremental recognition method, while calling

55A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

the method of triggering recognition at every stroke a pure
incremental method. So far, all current incremental recogni-
tion systems are classified as pure.

Since we proposed a semi-incremental recognition
method for online handwritten Japanese text recognition
[18] and for English text [19], we revised and introduced
three techniques to improve the performance: reusing the
segmentation and recognition candidate lattice in the previ-
ous incremental stage for the current stage; fixing undecided
segmentation points if they are stable between character pat-
terns; and skipping recognition of partial candidate character
patterns for Japanese [20]. These three techniques are also
effective for pure incremental recognition.

This paper combines the incremental recognition meth-
ods for Japanese and English into a unified method for both
languages by incorporating the three techniques mentioned
above. We refer to this method as “augmented incremental
recognition” because it incorporates the three techniques and
it triggers recognition for every several recent strokes includ-
ing the case of pure incremental recognition, i.e., triggering
recognition at every new stroke. We present experimental
evidence here to show that augmented incremental recogni-
tion with an appropriate size of global context maintains
as high a recognition rate as batch recognition, incurs little
waiting time and decreases the total CPU time even for the
case of pure incremental recognition.

The rest of this paper is organized as follows. The base-
line batch recognition method is summarized in Sect. 2. The
augmented incremental recognition method is presented in
Sect. 3. Experiments on the augmented incremental recogni-
tion method are described in Sect. 4, and the conclusions are
presented in Sect. 5.

2 � Overview of batch recognition method

This section introduces the batch recognition method fol-
lowing the explicit segmentation approach for handwritten
text recognition. After all the strokes are input, the method
employs soft decision for segmentation to create and build
the segmentation and recognition candidate lattice and then
determines the correct segmentation and recognition using
the best-path search. This method has been applied for Japa-
nese text [31] and English text [19].

2.1 � Processing flow

Figure 1 shows the flow of the batch recognition method.
First, the segmentation process separates handwritten text
into text lines and then segments each text line into primi-
tive segments, which are characters or parts of a character
for Japanese text or words or parts of a word for English text.
Second, a lattice is built by recognizing primitive segments.

Finally, the lattice is searched for the best path to obtain the
recognition result.

2.2 � Segmentation

The segmentation process includes two stages: line seg-
mentation and character or word over-segmentation. In line
segmentation, the whole text is segmented into text lines
by the method of Zhou et al. [28] for Japanese or by linear
regression for English [19]. In the second stage, each seg-
mented line is over-segmented into characters or parts of a
character for Japanese [31], or words or parts of a word for
English [17].

For character or word over-segmentation, we use a clas-
sifier to classify each off-stroke into three classes: seg-
mentation point (SP), non-segmentation point (NSP) and
undecided point (UP) according to geometric features. The
features for segmentation include those extracted from the
current off-stroke and both of its preceding and succeeding
strokes, which are global features. Examples of the global
features for Japanese text and English text are shown in
Fig. 2. The supervised labels for training are determined
as follows: an SP separates two characters or two words at
the off-stroke, while an NSP indicates that the off-stroke is
within a character or within a word. An off-stroke between
two text lines is treated as an SP. The classifier is trained to
predict an off-stroke being SP or NSP. When classifying an
off-stroke, if the confidence level is low, it is treated as an
UP, indicating that it could be an SP or an NSP. The final
classification of UPs is determined in the later processes.
For the off-stroke classification, we apply a support vec-
tor machine (SVM) classifier for Japanese text [1] and a
bi-directional long short-term memory (BLSTM) [3] for

Fig. 1   Flow of batch recognition

56	 C. T. Nguyen et al.

1 3

English text [19]. While SVM classifies each off-stroke
based on the features at the off-stroke alone, BLSTM, as
a type of recurrent neural networks, integrates the features
from both the preceding and the succeeding off-strokes for
classification.

2.3 � Construction of segmentation and recognition
candidate lattice

We call a subsequence of strokes delimited by SP or UP
off-strokes a primitive segment, which could be a character/
word or a part of a character/word. Therefore, a primitive
segment and consecutive primitive segments beside a UP
form candidate character patterns or candidate word pat-
terns. All the candidate character/word patterns are repre-
sented in a segmentation candidate lattice.

Each candidate character/word pattern in a segmentation
candidate lattice is recognized, and a number of candidate
classes with confidence scores are associated with each can-
didate pattern in the lattice. Then, all the possible segmenta-
tions and recognition candidate classes are represented in
the lattice. We call this lattice segmentation and recogni-
tion candidate lattice or src-lattice in short. In src-lattice,
we define candidate character/word blocks, each of which
represents a sub-lattice of all the candidate character/word
patterns separated by two adjacent SP off-strokes. Figure 3a,
b shows, respectively, an example of src-lattice for Japanese

text and another for English text, where each node denotes a
candidate segmentation point and each arc denotes a charac-
ter class for Japanese text (a) or a word class for English text
(b) assigned to a candidate character/word pattern. Note that
a single candidate character/word block may result in two or
more characters/words.

2.4 � Best‑path search and recognition

From an src-lattice, paths are evaluated by combining the
scores of character/word recognition, geometric features and
linguistic context [26, 31]. We apply the Viterbi algorithm

Fig. 2   Segmentation features for a Japanese text and b English text.
Bp−, bounding box of all preceding strokes; Bs+, bounding box of all
succeeding strokes. OB, overlap of Bp− and Bs+, DBx, distance in x
axis, LPx, average stroke length over x axis

Fig. 3   Segmentation-recognition candidate lattices for a Japanese text
and for b English text

57A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

to search for the optimal path that has the highest evaluation
score and obtain the text recognition result.

For evaluating a path through a sequence S of m primi-
tive segments S = s1, s2,… , sm of an input sequence X ,
forming a sequence of n candidate character/word patterns
Z = z1, z2,… , zn which is assigned as C = c1, c2,… , cn , we
have the posterior probability as follows:

We omit the class-independent denominator to obtain the
following formula:

From the posterior probability, we obtain the evaluation
function as:

The term P(X, Z|C) is the probability of having the input
sequence X to form the n candidate character/word pattern
sequence Z when C is intended. It is approximated from geo-
metric features and recognition scores of single characters
or words [1, 19].

The linguistic context probability P(C) is estimated using
a trigram language model with back-off weight:

We assume that the segmentation probability P(S|X, Z,C)
does not depend on character/word classes C , and it is
approximated by the score from a segmentation classifier
at each candidate segmentation point dj (SP or UP) between
two primitive segments sj and sj+1:

Each candidate segmentation point dj could be an off-
stroke between character/word patterns or an off-stroke
within a character/word pattern.

(1)
P(C|X, S, Z) = P(X, S, Z|C)P(C)

P(X, S, Z)

=
P(S|X, Z,C)P(X, Z|C)P(C)

P(X, S, Z)

(2)P(C|X, S, Z) ∝ P(S|X, Z,C)P(X, Z|C)P(C)

(3)
f (X, S, Z,C) = logP(S|X, Z,C)

+ logP(X, Z|C) + logP(C)

(4)P(C) =

n∏
i=1

P(ci|ci−2ci−1)

(5)P(S|X, Z,C) =
m−1∏
j=1

P(dj|X, Z)

(6)

P(S|X, Z,C) = ∏
j=1,m−1;T(dj)=B

Psp(dj)

×
∏

j=1,m−1;T(dj)=W

Pnsp(dj)

where T denotes the labeling function outputting the off-
stroke type (B: between, W: within) for a candidate segmen-
tation point. Psp(dj) and Pnsp(dj) are the classification prob-
abilities of an off-stroke being classified as SP and NSP,
respectively.

The evaluation function is expressed as:

where Ph(h = 1,… , 6) denote the probabilities of language
model P

(
ci|ci−2ci−1

)
 , geometric P

(
bi|ci

)
 , P

(
qi|ci

)
 , P

(
pu
i
|ci

)
 ,

P
(
pb
i
|ci−1ci

)
 , and recognition Pr

(
ri|ci

)
 , respectively, ki

denotes the number of primitive segments contained in the
candidate character pattern zi . For Japanese text, the weight-
ing parameters �h1, �h2(h = 1, 7) and � are selected using
a genetic algorithm to optimize the text recognition per-
formance on a training dataset. For English text, we use a
simpler form of the formula by setting �h1 = 0 for h = 1, 6 ,
using the same parameter for �71 , �72 and setting � = 0.The
parameters are optimized by the minimum classification
error (MCE) algorithm [13] on a training dataset.

Let Node(i, j) represent recognition data of the charac-
ter/word candidate pattern spanning primitive segments
from si to sj, SubNode(i, j, k) represent the kth-recognized
candidate of Node(i, j). Each Node(i, j) has its own candi-
date character/word pattern z. Each SubNode(i, j, k) has its
own character/word recognition result c and holds records
of the best segmentation path Z and recognition path C.
Algorithm 1 shows the pseudocode for searching the best
path through the lattice by Viterbi algorithm. For each time
step j of the primitive segment sj, we build all the Node(i, j)
start from i = GetFirstSegment(j) as the first segment of the
character/word candidate block containing sj. The best path
to each SubNode(i, j, k) is collected at each time step j by
NodeCollect(j).

(7)

f (X, S,G,C) =

n∑
i=1

{
6∑

h=1

[
�h1 + �h2

(
ki − 1

)]
logPh

}

+ �71

∑
j=1,m−1;T(dj)=B

logPsp(dj)

+ �72

∑
j=1,m−1;T(dj)=W

logPnsp(dj) + n�

58	 C. T. Nguyen et al.

1 3

Input:
 Input sequence X
 Primitive segments S
Initialization:
for k=1 to Node(1,1).candidates do

SubNode(1, 1, k).C = SubNode(1, 1, k).c
SubNode(1, 1, k).Z = Node(1, 1).z
add SubNode(1, 1, k) to NodeCollect(1)

Algorithm:
for j = 2 to m do

for i = GetFirstSegment(j) to j
for k = 1 to Node(i, j).candidates

best_score = 0
foreach PrevSubNode in NodeCollect(i) do

Z = Concatenate(PrevSubNode.Z , Node(i, j).z)
C = Concatenate(PrevSubNode.C , SubNode(i, j, k).c)
score = f(X, S, Z, C)
if score > best_score then

best_score = score
SubNode(i, j, k).Z = Z
SubNode(i, j, k).C = C
SubNode(i, j, k).score = score

 add SubNode(i, j, k) to NodeCollect(j)

Termination:
BestSubNode = max SubNode.score for all SubNode in NodeCollect(m)
Output BestSubNode.C

Algorithm 1. Lattice best path search by Viterbi algorithm.

2.5 � Hybrid recognizer

There are two main approaches for recognizing an isolated
character or word pattern. Online methods treat each pattern
as a temporal sequence of pen movements, while off-line
methods process each pattern as a two-dimensional image.
Online methods are robust against stroke connection and
deformation but sensitive to stroke order variations or stroke
duplications, while off-line methods are insensitive to the
latter but weak with respect to the former. A combination
of the online and off-line recognition methods improves the

recognition accuracy because they mutually compensate
each other’s disadvantages [10, 29].

These two approaches are also combined at the level of
features. Online recognition methods incorporating off-line
features, and off-line methods including online features solve
the problem of using online or off-line features alone, as
shown in previous studies [4, 21].

Although a combination of recognition methods or fea-
tures improves the recognition rate, it requires more compu-
tation and incurs a longer waiting time when used for batch
recognition, especially for Japanese and Chinese, which have
a large set of character categories.

59A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

In this study, we use a combination of online and offline
recognition methods rather than features because this
approach allows more freedom for selecting recognition
methods. We employ a Japanese character recognizer that
combines online and offline recognition methods [31] for
online recognition of Japanese text, and an English word
recognizer that also combines online and offline recogni-
tion methods [30] for online recognition of English text.
We omit a description of the recognizers because our aug-
mented incremental recognition method does not depend on
the specifics of a particular recognizer, but is applicable to
different recognizers.

3 � Augmented incremental recognition
method

The main idea behind our augmented incremental recogni-
tion method is to perform as much computation as possible
while the user is writing. It should also keep the recognition
rate as high as possible compared with the batch recognition
method (in which most of the computing time is spent for the
recognition of candidate character/word patterns). If candi-
date patterns can be processed while the user is writing, the
text recognition result will be displayed without any notice-
able waiting time. With the pure incremental recognition,
the recognition of last character/word is made in the local
or a very limited global context. If more global context can
be utilized, the recognition rate will be improved. Moreover,
by avoiding repeated processing after every stroke, the total
CPU time can be reduced. Augmented incremental recogni-
tion incorporates all these ideas by introducing segmentation
scope and recognition scope as well as three recognition
techniques.

Although line segmentation, character/word segmenta-
tion, character/word recognition are different for English
and Japanese, we present a unified framework that applies
augmented incremental recognition and incorporates the
three techniques mentioned above. This section describes
our framework and the three techniques in detail.

3.1 � Resuming strategy for segmentation
and recognition scopes

The augmented incremental recognition method performs
the recognition process after receiving newly written strokes.
As new strokes change the global context of their preceding
strokes, the method should provide a way to maintain and
update this global context. However, it may not be neces-
sary to keep the entire text in the global context, but only a
certain window of text may suffice for effective recognition.
It is desirable that this window of strokes be adjustable.

Global context can be decomposed into forward context
and backward context. In this work, we consider the forward
and backward contexts in terms of temporal order relation.
The forward context reflects the past to evaluate the present,
while the backward context reflects the future to evaluate the
present. More specifically, the forward context is the context
provided by the preceding strokes and the backward context
is the context supplied by the succeeding strokes.

In conventional incremental recognition, because future
strokes are unavailable, the backward context for the newly
written strokes is missing. Therefore, the segmentation and
recognition results of newly written strokes are not reliable.
In augmented incremental recognition, however, because a
number of strokes are accumulated before applying segmen-
tation and recognition, later strokes can provide the context
for the previously entered strokes. Thus, not only the forward
context but also the backward context can be exploited to
increase the recognition rate.

To determine the resuming range for each incremental
recognition, Tanaka et al. [24] use a threshold calculated
from average character height. This causes the problem of
estimating average character height from a few strokes when
the user starts writing. Wang et al. [25] use the whole text
line for the range of segmentation and then determine the
range of recognition based on the changed segmentation.
Finally, the best-path search is made from the beginning
when the user requests the recognition result. For each incre-
mental recognition, however, it is unnecessary to apply the
segmentation on the whole text line.

For augmented incremental recognition, we consider a
range of strokes for resuming segmentation as “segmentation
scope (S-scope)” and another range inside this for resuming
recognition as “recognition scope (R-scope).”

S-scope should be determined so that the newly writ-
ten strokes do not affect the segmentation before it. As
the backward context by the newly written strokes affects

Fig. 4   Flow of augmented recognition method

60	 C. T. Nguyen et al.

1 3

a range of recent strokes, S-scope must cover this range.
Moreover, it should provide a consistent forward context
for segmentation.

As the segmentation before S-scope is considered sta-
ble, R-scope should be set within S-scope, but it should be
designed so that the newly written strokes may only affect
the recognition within the R-scope.

By appropriately setting these scopes, augmented incre-
mental recognition incorporates the forward and backward
contexts to recognize online handwritten text. Moreover,
limiting the segmentation and recognition within these
scopes incurs little processing cost for each incremental
recognition. The best-path search can also be done incre-
mentally inside the R-scope to reduce waiting time.

3.2 � Triggering incremental recognition

Augmented incremental recognition triggers the recogni-
tion process whenever the number of newly written strokes
reaches the window size Ns. In the specific case of Ns = 1,
the method triggers the recognition in the same way as the
pure incremental recognition method.

Since the context to recognize recent strokes changes
in each incremental recognition, segmentation and recog-
nition of previous incremental recognition also need to be
reevaluated and updated. Triggering recognition with a large
window (large number of strokes) reduces the change of
the context. Therefore, it reduces the processing required to
update the segmentation and recognition in each incremen-
tal recognition. This leads to reduction in total CPU time.
Increasing the window size, however, incurs more waiting
time for processing. We determine the window size through
experiments and discuss its effectiveness.

3.3 � Processing flow

Figure 4 shows the processing flow of our augmented incre-
mental recognition method.

Augmented incremental recognition proceeds as follows.
When some newly written strokes are added to the previous
strokes, character/word segmentation is resumed for the cur-
rent S-scope. Then, character/word recognition is resumed

and the src-lattice is updated for the current R-scope. Finally,
the best-path search is resumed in the R-scope, while writ-
ing continues. The process is repeated for processing new
strokes in the next incremental recognition. The segmen-
tation and recognition results obtained from the best-path
search are used for the next processing cycle.

As writing proceeds, i.e., new strokes are added, the
S-scope and the R-scope are updated. We call the scope
before the last update the previous scope and the scope
after the update the current scope, regardless of whether it
is S-scope or R-scope.

3.4 � Determination of S‑scope

Following the above resuming strategy, we consider a cer-
tain range of global context to resume segmentation and
eventually recognition. Here, we introduce a pointer called
the segmentation-resumption pointer (Seg_rp) as a starting
point for the S-scope. Thus, S-scope is from Seg_rp to the
latest stroke. We determine Seg_rp based on the segmenta-
tion and recognition result of the previous cycle of incre-
mental recognition, which is obtained from the best-path
search in the src-lattice and is highly reliable. Off-strokes
between two recognized characters/words in the previous
R-scope are candidates for Seg_rp (Seg_rp candidates). We
simply employ the number Nseg of characters/words from
the end of the previous scope to the off-strokes in the text
recognition result. In other words, we select a candidate as
Seg_rp such that the distance from the end of the previous
scope to the candidate equals to Nseg as illustrated in Fig. 5.
The larger Nseg is, the wider the S-scope is. The ideas behind
this are as follows:

(1)	 Seg_rp can be determined so that segmentation before
Seg_rp is stable but that after Seg_rp is unstable and
need to be reconsidered with the succeeding strokes.

(2)	 Seg_rp candidates are more stable as they are far away
back from the end of the previous scope.

Fig. 5   Determination of S-scope Fig. 6   Determination of recognition scope

61A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

3.5 � Determination of R‑scope

To determine the R-scope, we use the result from the seg-
mentation process. The segmentations of the strokes before
and after receiving new strokes are compared. If classifica-
tions of some off-strokes are changed, we consider that the
candidate character/word blocks before the earliest classifi-
cation-changed off-stroke (denoted EccOs) are stably clas-
sified, while the candidate character/word blocks after that
are not stably classified. Otherwise, the off-stroke before
the newly added strokes is considered as EccOs. EccOs
may occur within some candidate character/word blocks or
between two candidate character/word blocks. We define the
R-scope as the sequence of strokes starting from the first
stroke of the candidate character/word block containing or
just preceding EccOs to the latest stroke. Figure 6 illustrates
this method.

3.6 � Update of src‑lattice and resuming best path
search

After determining the R-scope, we update the src-lattice
inside the R-scope. Newly added strokes may change the
segmentation and recognition of previous strokes in the
R-scope but may leave some parts unchanged. Therefore,

we can reuse them to reduce the processing time. To maxi-
mize the reuse of the src-lattice in the previous R-scope, we
use the following method for updating the src-lattice in the
current R-scope. It takes advantage of previously built lattice
candidates in the previous R-scope. From the beginning of
the current R-scope, our augmented incremental recognition
method finds SP off-strokes and splits candidate character/
word blocks by these off-strokes. Each SP off-stroke divides
a candidate character/word block into two parts: preceding
and succeeding this SP off-stroke. The src-lattice in these
lattice blocks will be checked if a candidate character/word
pattern already exists in the previous R-scope. When a can-
didate exists, we obtain it from the previous R-scope; oth-
erwise, we rebuild it.

Figure 7a, b show an example, for Japanese and Eng-
lish text, respectively, for updating the src-lattice when Ns
is set to two. When new Ns strokes are added, shown in
red, we update the src-lattice from the beginning of the cur-
rent R-scope, which triggers the building of nine candidate
character patterns (Fig. 7a) and seven candidate word pat-
terns (Fig. 7b). Among them, only two candidate charac-
ter patterns and three candidate word patterns, bounded by
red solid rectangles, have to be newly built. The remaining
candidate character patterns and candidate word patterns
bounded by blue solid rectangles are reused from the previ-
ous R-scope.

When the src-lattice is updated, we resume the search by
the Viterbi algorithm from the first character/word lattice
block in the current R-scope instead of searching from the
beginning as in [24, 25]. This method limits the processing
time for the best-path search regardless the length of input
sequence.

Let ir be the index of the character/word lattice block to be
resumed. The evaluation function in Eq. (7) is decomposed
into two parts consisting of the evaluation up to ir − 1 and
the evaluation from ir to the last character/word lattice block
as in Eq. (8).

Since the recognition candidates do not change before the
R-scope, the incremental best path search by Viterbi remains
unchanged up to ir − 1. Therefore, by calculating the second
term of the right side in Eq. (8), we can maintain the context
to be the same as the batch recognition method.

3.7 � Fixation of SPs from UPs

When all the candidate segmentation points are classified as
UP, each UP doubles the number of possible paths passing
through it. The method by Wang et al. [25] does not consider
SP off-strokes, where all the candidate segmentation points
are classified as UP. For recognizing an input sequence with

(8)
f (X, S, Z,C) = f (X, S, Z,C)

[
1, ir − 1

]
+ f (X, S, Z,C)

[
ir,m

]

Fig. 7   Reuse of candidate word patterns for a Japanese text and b
English text

62	 C. T. Nguyen et al.

1 3

ns UPs, 2^ ns recognition paths must be evaluated. There-
fore, recognition time grows exponentially as the length of
input sequence increases. To reduce recognition time for
handwritten Chinese and Japanese text, candidate character
patterns formed by multiple primitive segments have been
restricted in length [27, 31]. The length restriction, however,
is not applicable for handwritten English text due to a large
variance in the lengths of candidate word patterns.

Our method sets SP for the strokes that are highly likely
to be separated. As more SPs are determined, the recognition
time becomes shorter. On the other hand, the recognition
rate may degrade due to misclassifications of off-strokes to
SPs. We refer to methods without SPs and NSPs as full soft
decision, those with SPs or NSPs as partial soft decision,
and those with both SPs and NSPs as minimum soft deci-
sion. We employ the minimum soft decision in our approach

Determination of SP off-strokes greatly affects the rec-
ognition rate and the performance of our augmented incre-
mental recognition method. Although SP off-strokes can be
detected based on the result of the segmentation process,
the performance of segmentation using an SVM for detect-
ing SP off-strokes is still limited. Due to the uncertainty of
segmentation, a large number of outputs from the SVM are
marked as UPs. To overcome this problem, we also use the
result of text recognition up to the latest R-scope to fix more
UPs to SP off-strokes in the S-scope. We call this process
UP fixation. The UP off-strokes between recognized charac-
ters/words, before the latest Nseg_det characters/words in the
recognition result, are fixed as SP off-strokes. Here, Nseg_det
denotes a predefined constant for the minimum number of
characters/words that follow an UP off-stroke to make it a
stable SP off-stroke. Generally, Nseg_det is set smaller than
or equal to Nseg. Figure 8 shows an example of UP fixa-
tion removing two candidate character patterns (red double
strike-through lined box). Although the candidate character
patterns are already built at the current UP fixation, so that
the cost for recognizing these candidate character patterns
has already occurred, and we expect a reduction in cost for

the future candidate character patterns that incorporate these
current candidates character patterns as future strokes are
inputted.

3.8 � Skipping partial patterns

For incremental recognition, incomplete character/word
patterns occur at the end of the text while writing. Unless
predictive input is used, the recognition of these incomplete
character/word patterns has no meaning. If we can skip rec-
ognizing them, it would save processing time. Recognition
of partial character patterns for Japanese or partial word
patterns for English can be postponed until the complete
character/word patterns are received. Therefore, we skip rec-
ognizing them to reduce CPU time. We treat candidate char-
acter/word patterns containing the last primitive segment as
partial candidate character/word patterns (PPs) until a new
primitive segment is detected or the recognition is requested.
We call this process PP skip.

3.9 � Handling delayed strokes

To correctly segment a text line that includes delayed
strokes, we first detect the delayed strokes and ignore them
in the segmentation process. We then determine a seg-
mented block for each delayed stroke into which that stroke
is merged. Finally, we rebuild the src-lattice.

Delayed strokes are detected using the previous recogni-
tion result. First, we retrieve the bounding box for each rec-
ognized character/word from the segmentation-recognition
result up to the previous R-scope. We then deem each newly
added stroke as a delayed stroke if it is close to the previous
bounding boxes rather than the latest bounding box.

When delayed strokes occur, we rebuild the src-lattice
in two steps: first, we build the src-lattice without delayed
strokes; second, we put delayed strokes into appropriate
primitive segments and rebuild the candidate character/
word patterns containing the delayed strokes. We extend the
R-scope back to the point where the delayed stroke occurs.
Then, we resume the best-path search from the R-scope.
By extending the R-scope, isolated character/word recog-
nition results (candidates) inside the R-scope may change.
When the best-path search is resumed from the beginning of
the R-scope, different paths may be chosen due to different
candidates in the R-scope. This may change the previously
selected recognition results (although candidates outside the
R-scope are not changed).

It is possible to provide real-time feedback even if a
delayed stroke occurs, as it does not take long to rebuild the
candidate lattice containing the delayed stroke and search
for the best path from the R-scope. Algorithm 2 shows the
pseudocode of augmented incremental recognition with han-
dling delayed strokes.

Fig. 8   Path reduction by UP fixation

63A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

Input: Ns new strokes NewStrokes
LastBestLatticePath

1. Algorithm
2. Strokes = Strokes.add(NewStrokes)
3. Segmentations, EccOs= incrementalSegmentation(Strokes, LastBestLatticePath)
4. DelayedStrokes = checkDelayedStrokes(Strokes, LastBestLatticePath)
5. Strokes = Strokes.remove(DelayedStrokes)
6. Lattice, RScope = buildLatice(Strokes, Segmentations, EccOs)
7. Lattice, RScope = addStrokeToLattice(Lattice, DelayedStrokes)
8. LatticeCandidates = recognize(Lattice, RScope)
9. BestPath = bestPathSearch(LatticeCandidates, RScope)
Output: BestPath

Algorithm 2: Augmented incremental recognition with handling delayed strokes.

as analyzed in Sect. 3.4. Therefore, we evaluate the detection
rate (d) of over-segmentation as its ability to determine more
SPs instead of UPs by the following formula:

As final segmentation is determined from the result of
the best-path search, we get SPs as off-strokes between two
recognized characters, and the remaining ones are NSPs. Let
#SPf, #SPfc and #SPft be the number of returned SPs in final
segmentation, the number of correctly classified SPs among
those returned SPs, and the number of true SPs in the ground
truth, respectively.

The F-measure of final segmentation denoted as the seg-
mentation measure is evaluated as follows:

where P and R are the precision and recall, respectively, of
final segmentation, defined as follows:

4.2 � Average waiting time in recognition interfaces

For busy recognition interface, waiting occurs at each incre-
mental recognition step. The waiting time is the processing
time of the incremental recognition step. Therefore, the aver-
age waiting time tbusy is calculated as follows:

(12)d =
#SP

(#SP + #UP)

(13)F =
2 × P × R

(P + R)

(14)P =
#SPfc

#SPf

(15)R =
#SPfc

#SPft

4 � Evaluation experiments and discussion

4.1 � Metrics of segmentation evaluation

First, over-segmentation is applied and then segmentation is
determined along with character recognition and best-path
search. The over-segmentation process classifies each off-
stroke as an SP, NSP, or UP off-stroke. An UP off-stroke
can then be further classified as an SP or NSP in the text
recognition process.

Let #SP, #NSP, #UP be the numbers of returned SPs,
NSPs and UPs, respectively. #SPc is the number of correctly
classified SPs among the returned SPs. #SPt is the number
of true SPs defined in the ground truth. #UPt is the number
of UPs being true SPs.

The performance of over-segmentation is evaluated with
the following measures.

Precision (p):

Recall (r):

Inclusion of #UPt in the dividend is typical for over-seg-
mentation since UPs maintain the possibility that they will
be classified correctly.

F-measure (f) is calculated as follows:

Although UPs maintain the possibility that they will be
classified correctly, thus improving recall; leaving many UPs
instead of SPs or NSPs, however, incurs more waiting time

(9)p =
#SPc

#SP

(10)r =
#SPc + #UPt

#SPt

(11)f =
2 × p × r

(p + r)

64	 C. T. Nguyen et al.

1 3

where ti
incre

 is the processing time for incremental recognition
step i, and n is the number of incremental recognition steps.

For lazy recognition interface, assuming that the user
requests the result of the entire text recognition immedi-
ately after the last stroke, the waiting time is measured from
receiving the final stroke until the time when the recognition
result is returned. This waiting time is incurred by the pro-
cessing time for the last incremental recognition step and the
processing time for previous incremental recognition steps
if it is longer than the user’s writing duration. Therefore, we
use the following formula to calculate the waiting time tlazy
for lazy recognition interface:

where tn
incre

 and tprevious are the processing time of the last
incremental recognition and the waiting time caused by the
previous incremental recognition steps, respectively. The
second term tprevious is calculated as follows:

where
∑n−1

i=1
ti
incre

 and twriting are the total processing times of
the previous incremental recognition steps and the user’s
writing duration, respectively.

(16)tbusy =
1

n

n∑
i=1

ti
incre

(17)tlazy = tn
incre

+ tprevious

(18)tprevious =

⎧⎪⎨⎪⎩

n−1∑
i=1

ti
incre

− twriting, f
n−1∑
i=1

ti
incre

> twriting

0 else

4.3 � Experimental setup

To evaluate our augmented incremental recognition method,
we conducted experiments on both online handwritten Japa-
nese text and English text.

For Japanese text, we trained the character recognizer and
geometric scoring functions using Japanese online hand-
writing database Nakayosi [15]. We used a trigram table
extracted from the year 1993 volume of the Asahi newspa-
per and the year 2002 volume of the Nikkei newspaper to
model linguistic context. From the TUAT-Kondate database
collected from 100 people [12], we separated the text lines
into 4 sets by writers and then used 3 sets (10,174 text lines
written by 75 people) for training the weighting parameters
and 1 set (3511 text lines written by 25 people) for testing
as in [27, 31]. We changed the role four times and took the
average. We used this separation to assure writer independ-
ence and conducted cross-validation to evaluate the unbiased
effect with respect to data sets.

For English text, we used the IAM online database (IAM-
OnDB) [8], which consists of pen trajectories collected from
221 different writers using an electronic whiteboard. We fol-
lowed the handwritten text recognition task IAM-OnDB-
t2, in which the database was divided into a training set,
two validation sets, and a test set containing 5364, 1438,
1518 and 3859 written lines, respectively. We used a trigram
table extracted from the LOB text corpus [5] for language
modeling.

To evaluate the average waiting time of the system, espe-
cially while dealing with long input sequences, we selected
20 longest stroke sequences in each database. Since the aver-
age number of strokes per text line in both Kondate and
IAM-OnDB is small, as shown in Table 1, we only evalu-
ated the average waiting time for the selected sequences.
We chose the top 20 longest sequences: from 154 to 214
strokes per text line (avg. 165.9 strokes) from Kondate, and
from 50 to 62 strokes per text line (avg. 54.55 strokes) from
IAM-OnDB, respectively.

The parameters of the evaluation function in Eq. (7) have
been trained with each training set, but Ns and Nseg are not

Table 1   Statistics of online handwritten text databases

Kondate IAM-OnDB

Number of strokes/text line 38.52 25.09
Max number of strokes/text line 213 62
Number of strokes/character 3.77 –
Number of strokes/word – 4.14

Table 2   Overall performance
of augmented incremental
recognition

Aug. incr., augmented incremental recognition mode; B, batch recognition mode; P. Incr., pure incremental
recognition mode
Ns, Nseg and Nseg_det were set to 5, 8 and 5 for Japanese text, and to 1, 8 and 3 for English text, respectively.
Waiting time shown in brackets is the maximum waiting time

Japanese text English text

Aug. incr. B P. Incr. Aug. incr. B P. incr.

Recognition rate (%) 93.19 ± 1.16 93.28 ± 1.2 92.50 ± 1.3 74.64 74.79 71.50
tbusy (s) 0.0223 (0.085) – 0.0175 0.258 (4.37) – 0.365
tlazy (s) 0.0299 (0.124) 0.118 (1.523) – 1.04 (5.71) 3.85 (20.5) –
CPU time (ms) 4.20 3.04 7.03 29.5 18.2 57.2

65A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

trained since Ns and Nseg are control variables rather than
parameters.

We implemented augmented incremental recognition
systems for online handwritten Japanese text and English
text. We ran all the systems on an Intel(R) Xeon(R) CPU
E5-2630v2 2.6 Ghz with 32-GB memory.

It is not easy to compare our method with previous incre-
mental or batch methods since the implementations and the
datasets are different. Therefore, we implemented a unified
approach so that the previous methods are realized by set-
ting parameters, and then we show that the proposed method
achieves a better performance in the waiting time and CPU
time without degrading the recognition rate even compared
with the batch recognition. In this sense, the extremal base-
lines are the pure incremental and the batch recognition
methods. Augmented incremental recognition with Ns = 1
is almost pure incremental recognition but enhanced from
the employment of the two scopes and the three techniques
mentioned in this paper. Shrinking the S-scope and R-scope
to the minimum (1) and disabling the three techniques con-
vert this approach to the pure incremental recognition.

4.4 � Overall performance

We conducted an experiment to measure the overall perfor-
mance of the augmented incremental recognition method.
We employed all the three techniques with Nseg and Nseg_det
which produced the best recognition rates for training pat-
terns, i.e., Ns, Nseg and Nseg_det set as 5, 8 and 5 for Japanese
text, and as 1, 8 and 3 for English text, respectively. Table 2
shows the recognition rate (i.e., character/word recognition
accuracy), waiting time and CPU time in comparison with
the batch recognition method when online handwritten text
is recognized line by line. For Japanese text, averages and
standard deviations are shown from fourfold of the cross-
validation. For English text, just average is shown for the
test set.

The recognition rate is maintained almost as high as the
batch recognition method. The augmented incremental rec-
ognition method produces a recognition rate of 93.19% as

compared with 93.25% of the batch recognition method for
handwritten Japanese text and 74.64% as compared with
74.79% of the batch recognition method for handwritten
English text. The augmented incremental method also adds
little CPU time in comparison with the batch recognition
method.

On the other hand, we aimed to improve the recognition
accuracy in comparison with the pure incremental method
while keeping the waiting time small and decreasing CPU
time. As a result, the proposed method improved the recog-
nition accuracy from 92.5 to 93.2% for Japanese and from
71.5 to 74.46% for English in comparison with the pure

Fig. 9   Waiting time for Japanese text as the number of strokes
increases

Table 3   Comparison with the state-of-the-art methods

Aug. incr., augmented incremental recognition
a Trained by a private dataset

Target Accuracies for data set

Data set Accuracies (%)
by the state of
the art

Accuracies
(%) by Aug.
Incr.

Online
handwritten
Japanese text

Kondate 93.98 [27]
93.24 [31] (batch

recognition
method)

93.19

Online
handwritten
English text

IAMonDB 89.6 [6]a

81.1 [10]
74.64

Fig. 10   Effect of changing Nseg for a Japanese text and b English text

66	 C. T. Nguyen et al.

1 3

incremental method. The improvements are significant, and
they are validated by the paired t test with p < 0.0005 and
p < 0.0005 for Japanese text and English text, respectively.
We claim that the improvements are due to a more effective
use of the context.

The most notable effect is in the waiting time. The aug-
mented incremental method reduces the waiting time from
0.118 to 0.0299 s for Japanese (74.6% reduction) and from
3.85 to 1.04 s for English (72.8% reduction). The waiting
time for recognizing English text is much larger than that for
Japanese text because the English word recognizer requires
more processing time compared with the Japanese character
recognizer. For both the busy and lazy recognition interfaces
by augmented incremental recognition, the waiting times
tbusy and tlazy are small enough for practical use.

This effect is further enhanced as the number of strokes
increases. Although the average number and the largest num-
ber of strokes per text line are 38.5 and 213 for Kondate
and 25.1 and 62 for IAM-OnDB, respectively, the waiting
time by the batch recognition method becomes longer as the
number of strokes per text line increases and multiple text
lines are recognized. However, the waiting time by the aug-
mented recognition method stays constant. Figure 9 shows
our experimental results as the number of strokes increases
for both the methods.

Last but not the least, before going into details is the
comparison of recognition rates with the state-of the-art

recognizers. Table 3 shows the comparison using the same
test set and evaluation method. Our augmented incremental
recognition is comparable with the system by Zhou et al.
[27] for Japanese. For English, our method is somewhat
inferior to the Google’s system by Keysers et al. [6], but
they employ a different training set. The performance of
our system is slightly poorer compared to the best academic
system by Liwicki et al. [10], which uses the same training
and testing sets as well as the same corpus for the language
model. The BLSTM recognizers [6, 10], which recognize
character sequences without segmentation perform better
than the combined recognizer for recognizing words as our
segmentation-based method. However, we employ a seg-
mentation-based method so that incremental recognition
can be employed, while Liwicki et al. apply BLSTM which
makes it hard to incorporate incremental recognition.

4.5 � Effect of resuming segmentation
and recognition

To evaluate the effect of resuming segmentation and rec-
ognition, we conducted experiments with varying Nseg and
measured the segmentation rate, the recognition rate and the
waiting time. Nseg was varied from 3 to 25 for Japanese and
English. Ns is set to 1 in both the experiments to show the
effect of changing Nseg clearly. Figure 10 shows the three
measures for Japanese text (a) and English text (b). As Nseg
is expanded up to 8, the segmentation rate and especially
the recognition rate are generally improved, which confirms

Fig. 11   Recognition rate and waiting time with Ns for a Japanese text
and b English text Fig. 12   Effect of UP fixation for a Japanese text and b English text

67A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

the effect of resuming segmentation and recognition using
the scopes. For Nseg larger than 8, the improvement tends to
be milder or even saturated. On the other hand, the average
waiting time increases gradually.

As the scope is expanded, more unstable segmentation
points are covered and determined correctly, thereby yield-
ing better segmentation and recognition rates, although
the average waiting time is extended due to an increase in
changes in segmentation and recognition.

Note that augmented incremental recognition with Ns = 1
is enhanced from the pure incremental recognition by the
employment of the two scopes and the three techniques. In
fact, the pure incremental recognition produced a recogni-
tion rate of 92.50% and 71.50% while augmented incremen-
tal recognition with Ns = 1 produced better results with the
best 93.10% and 74.64% for Japanese text and English text,
respectively.

4.6 � Effect of the recognition trigger

We conducted experiments to evaluate the effect of win-
dow size Ns to trigger recognition for both Japanese and
English. To make the effect clear, we fixed Nseg at 3 while
increasing Ns from 1 to 10. Figure 11 shows the result. As
Ns is expanded, the CPU time is gradually reduced and
approaches the batch recognition method due to a reduc-
tion in the number of partial patterns. As Ns is expanded,
the recognition rate is also improved due to a longer local

context available for recognition. Triggering recognition
with a higher number Ns, however, takes longer waiting
time due to a larger amount of processing needed for each
incremental recognition.

4.7 � Effect of UP fixation

We evaluated the effect of applying UP fixation on the per-
formance of augmented incremental recognition method. In
this experiment, we fixed Nseg = 8 and executed the method
by varying Nseg_det from 2 to 8 (since Nseg_det is smaller
than or equal to Nseg). When Nseg_det is 8, UP fixation is not
applied as explained in Sect. 3.7. Figure 12 shows the result.
Applying UP fixation improves the detection rate to 37.95%
when Nseg_det = 2 as compared with the method without UP
fixation of 3.28%. Larger Nseg_det yields a more stable fixa-
tion and brings about a higher recognition rate but lowers the
detection rate. The method with UP fixation slightly reduces
the recognition rate: from 93.11 to 93.08%.

On the other hand, UP fixation reduces the number of
search paths and candidate lattice patterns as expected in
Sect. 3.7 with the total effect of reducing the CPU time as
shown in Fig. 13.

For Japanese, the effect is largest when Ns = 1 with
51.42% reduction in the CPU time and it decreases slightly
as Ns is set larger. For smaller Ns, incremental recognitions
are triggered more often, and thus each fixed UP remains

Fig. 13   CPU time with applying UP fixation for a Japanese text and
b English text

Fig. 14   CPU time with applying PP skip for a Japanese text and b
English text

68	 C. T. Nguyen et al.

1 3

effective for succeeding incremental recognitions. For Eng-
lish, however, the effect of UP fixation is rather small and
there is no clear difference with changing Ns. This is due to
the high detection rate of English text segmentation using
BLSTM [17].

4.8 � Effect of PP skip

We conducted experiments to evaluate the effect of PP skip
on reducing CPU time. In the experiments, Ns was varied
from 1 to 10. Figure 14 shows the CPU time with and with-
out applying PP skip. PP skip reduces the CPU time up to
27.51% for Japanese text and up to 48.69% for English text.
The highest reduction rate is when Ns = 1, since the number
of partial patterns is largest in this case. The effect is larger
for English than for Japanese, since English word recogni-
tion takes longer than Japanese character recognition, and

the number of strokes per English word is larger than that
per Japanese character as shown in Table 4.

4.9 � Effect of reuse

We evaluated the CPU time performance of the system with
and without applying reuse. Figure 15 shows the CPU time
performance for both Japanese text and English text with
varying Ns from 1 to 10. Applying reuse reduces the CPU
time up to 89.72% for Japanese text and 41.44% for English
text by the recognition system. The effect of reuse is largest
for Ns = 1, and it decreases for larger Ns. For smaller Ns, due
to the larger number of triggered incremental recognitions,
a candidate character/word pattern could be reused more
often, thereby increasing its effectiveness.

Table 4   Orders of using
systems and modes

Group System and mode

English Japanese

B Aug. incr. Q B Aug. incr. Q

G1.1 1 2 3 5 4 6
G1.2 2 1 3 4 5 6
G2.1 5 4 6 1 2 3
G2.2 4 5 6 2 1 3

Fig. 15   CPU time with applying reuse for a Japanese text and b Eng-
lish text

Fig. 16   CPU time with applying all the techniques for a Japanese text
and b English text

69A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

4.10 � Effect of all three techniques

We evaluated the effect of applying all the three techniques
to the recognition methods. In this experiment, we set the
best parameters as in Sect. 4.4 and ran the experiments with
Ns from 1 to 10. Figure 16 shows the results. Applying all
of the techniques for the augmented incremental recognition
method reduces the CPU time up to 91.11% for Japanese text
and 71.00% for English. The effect of the three techniques
is largest when Ns = 1, which is pure incremental recogni-
tion. This shows that the three techniques are also effective
for pure incremental recognition, though their effectiveness
gradually decreases for larger Ns. Without the three tech-
niques, semi-incremental recognition reduces up to 86.88%
of the CPU time for Japanese and up to 75.66% for Eng-
lish when Ns = 10 from the pure incremental recognition of

Ns = 1. The red line in the figure shows the reduction rate
of semi-incremental recognition from pure incremental
recognition. With all the techniques, semi-incremental rec-
ognition, called total augmented incremental recognition,
reduces up to 57.02% of the CPU time for Japanese and up to
44.87% for English when Ns = 10 from the pure incremental
recognition of Ns = 1 as shown in the purple line. Whether
the three techniques are combined or not, the augmented
incremental recognition incurs less CPU time than the pure
incremental recognition method. This shows the speed up
is not only by the three techniques but also by the semi-
incremental processing.

Table 5   Questionnaire on the waiting time and intermediate feedback using five-level Likert scale

B, batch recognition mode; Aug. incr., augmented incremental recognition mode; Q, answering questionnaire

Question

Q1 How do you feel about the waiting time of the augmented incremental recognition mode? (1: late, 2: rather late, 3: even, 4: rather quick, 5:
quick)

Q2 How do you feel about the waiting time of the batch recognition mode? (1: late, 2: rather late, 3: even, 4: rather quick, 5: quick)
Q3 Which of the two modes do you think gives a smaller waiting time; the augmented incremental mode or the batch mode? (1: clearly batch,

2: batch, 3: even, 4: augmented, 5: clearly augmented)
Q4 Is the intermediate feedback helpful while writing? (1: unhelpful, 2: rather unhelpful, 3: even, 4: rather helpful, 5: helpful)
Q5 Give your opinion on the intermediate feedback

Table 6   Average user evaluation scores for waiting time

B, batch recognition mode; Aug. incr., augmented incremental recognition mode

Group System and mode

Japanese English

Scores of Q1 and
Q2

Score of Q3 Real waiting time (s) Scores of Q1 and
Q2

Score of Q3 Real waiting time (s)

B Aug. incr. B Aug. incr. B Aug. incr. B Aug. incr.

G1 G 1.1 3.80 4.60 3.80 0.27 ± 0.08 0.03 ± 0.02 2.60 4.40 4.80 2.26 ± 0.43 0.60 ± 0.13
G 1.2 3.80 5.00 4.80 0.33 ± 0.03 0.04 ± 0.02 2.40 3.40 4.20 1.84 ± 0.45 0.98 ± 0.88

G2 G 2.1 3.40 4.00 4.00 0.26 ± 0.04 0.04 ± 0.02 1.60 2.80 4.80 2.31 ± 0.48 0.78 ± 0.36
G 2.2 4.20 4.20 3.60 0.28 ± 0.04 0.03 ± 0.01 2.40 4.00 4.80 1.96 ± 0.45 0.56 ± 0.11
Ave. 3.80 4.45 4.05 0.28 ± 0.05 0.04 ± 0.02 2.25 3.65 4.65 2.09 ± 0.45 0.73 ± 0.37

Table 7   User evaluation of
intermediate feedback

Score # People Typical comments # Com-
ments/#
total

4 or 5 (agree) 18 “I can perceive misrecognitions to fix them”
“It would be better if there was”

12/18

2 (disagree) 1 No comment 0/1
3 (neutral) 1 “Since I concentrate on writing, I rarely confirm

intermediate feedback”
1/1

70	 C. T. Nguyen et al.

1 3

5 � User experience evaluation

5.1 � Setup for experiment

We prepared one online recognition system for Japanese
and one for English. In each system, we provided modes
for augmented incremental recognition and batch recogni-
tion. We asked 20 participants to use both the modes in both
the systems. The participants were divided into four groups
G1.1, G1.2, G2.1 and G2.2, and they were asked to use the
two modes in each system according to the order as shown
in Table 4. The grouping and ordering in the experiment
were designed to cancel the effect of different people and the
order to use the two modes. Each participant was asked to
write 10 English sentences (4–7 words each) for the English
recognizer with each of the two modes, and 10 Japanese sen-
tences (16–18 characters each) for the Japanese recognizer
again with each mode. After they wrote 10 sentences in both
the modes for each system, we asked them to answer a ques-
tionnaire about the waiting time in the two modes. We also
asked them to evaluate whether the intermediate feedback
was helpful. All questions used a 5-level Likert scale. The
questionnaire is shown in Table 5.

5.2 � Result of experiment

Table 6 shows the average scores for each question from Q1
to Q3. For Japanese text input, both the batch and augmented
incremental recognition modes received a positive feedback
(score > 3) as they incurred little waiting time, because the
Japanese recognizer is faster than the English recognizer.
The augmented incremental recognition mode received a
higher average evaluation score than the batch recognition
mode because it incurs less waiting time. The answers to
Q3 show the participants’ preference for the augmented
incremental recognition. For English text input, the batch
recognition mode received a negative feedback (score < 3)
as they incur a larger waiting time (about 2 s.) on average.
On the other hand, the augmented incremental recognition
mode received a positive feedback. The answers to Q3 show
the participants’ clear preference for the augmented incre-
mental recognition.

We validated the hypothesis that the users accept batch
recognition and augmented incremental recognition equally
by a paired t test, and it was rejected for Japanese text input
and also for English text input with p < 0.001 and p < 0.0005,
respectively.

In the experiment, we also provided the participants with
two conditions: (1) automatic intermediate feedback by aug-
mented incremental recognition, and (2) no feedback until
requested. For the evaluation, we asked their opinions in
Q4 and free comments in Q5 on the intermediate feedback.

Table 7 shows the result. Most participants prefer intermedi-
ate feedback during writing with average score of 4.4 ± 0.3.
Among them, the most common opinion was that the user
can perceive misrecognitions to fix them. The intermediate
result, however, may not be correct until the last few strokes,
and so a few participants did not find intermediate recogni-
tion so useful.

6 � Conclusion

We presented a unified approach to augmented incremen-
tal recognition for both online handwritten Japanese and
English text. Augmented incremental recognition is para-
metrized to cover pure incremental recognition, which trig-
gers recognition at every input stroke, and semi-incremental
recognition triggering recognition after several input strokes.
Resuming the segmentation and recognition in local scopes
reduces the waiting time to be very small for users. Aug-
mented incremental recognition incorporates three tech-
niques: reusing the segmentation and recognition candidate
lattice in the previous R-scope, fixing undecided segmen-
tation points and skipping recognition of partial candidate
character/word patterns.

Effectiveness of the overall method and all the three tech-
niques were evaluated on the common large databases of
online handwritten Japanese and English text patterns with
notable effects. The proposed method reduces 74.6% of the
waiting time for Japanese and 72.8% of the waiting time
for English as compared with the batch recognition method
without scarifying the recognition rate.

The three techniques show their effectiveness. Reusing
the segmentation and recognition candidate lattice reduces
the CPU time up to 87.92%. Fixing undecided segmentation
points shortens the block size and reduces the CPU time up
to 51.42%. Skipping recognition of partial candidate char-
acter/word patterns reduces it up to 48.69% independently.
Overall, the three techniques reduce the CPU time up to
91.11% by the recognition system without degrading the
recognition rate.

The augmented incremental recognition method is clearly
superior to the batch recognition method in the waiting time
without degrading the recognition rate. It also excels pure
incremental recognition in the character recognition rate and
the total CPU time. Our user experience study also confirms
the superiority of augmented incremental recognition. We
demonstrated augmented incremental recognition for Japa-
nese and English; it can be applied for other languages as
well. Still, there remain some research issues. Although
our user study showed that intermediate feedback owing to
augmented incremental recognition is appreciated, this may
change after using the system several times or after a while.
To understand this effect, a long-term user study with the

71A unified method for augmented incremental recognition of online handwritten Japanese and…

1 3

system needs to be conducted. Another research issue for the
future is to realize augmented incremental recognition for
segmentation-free recognition methods and apply techniques
based on deep neural networks.

Acknowledgements  This research has been partially supported by
NEDO under the contract number 27J1103, JSPS KAKENHI Grant
Number JP 18K18068.

References

	 1.	 Gao, J., Zhu, B., Nakagawa, M.: Building compact recognizer with
recognition rate maintained for on-line handwritten Japanese text
recognition. Pattern Recognit. Lett. 35, 169–177 (2014). https​://
doi.org/10.1016/j.patre​c.2013.08.014

	 2.	 Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H.,
Schmidhuber, J.: A novel connectionist system for unconstrained
handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell.
31, 855–868 (2009). https​://doi.org/10.1109/TPAMI​.2008.137

	 3.	 Graves, A., Schmidhuber, J.: Framewise phoneme classification
with bidirectional LSTM and other neural network architectures.
Neural Netw. 18, 602–610 (2005). https​://doi.org/10.1016/j.neune​
t.2005.06.042

	 4.	 Jaeger, S., Manke, S., Reichert, J., Waibel, A.: Online handwriting
recognition: the NPen++ recognizer. Int. J. Doc. Anal. Recognit.
3, 169–180 (2001). https​://doi.org/10.1007/PL000​13559​

	 5.	 Johansson, S., Leech, G.N., Goodluck, H.: Manual of Informa-
tion to accompany the Lancaster-Oslo/Bergen Corpus of British
English, for use with digital Computers (1978)

	 6.	 Keysers, D., Deselaers, T., Rowley, H.A., Wang, L.-L., Carbune,
V.: Multi-language online handwriting recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 39, 1180–1194 (2017). https​://doi.
org/10.1109/TPAMI​.2016.25726​93

	 7.	 Liu, C.-L., Jaeger, S., Nakagawa, M.: Online recognition of Chi-
nese characters: the state-of-the-art. IEEE Trans. Pattern Anal.
Mach. Intell. 26, 198–213 (2004). https​://doi.org/10.1109/TPAMI​
.2004.12621​82

	 8.	 Liwicki, M., Bunke, H.: IAM-OnDB: an on-line English sentence
database acquired from handwritten text on a whiteboard. In: 8th
International Conference on Document Analysis and Recognition,
vol. 2, pp. 956–961. IEEE (2005)

	 9.	 Liwicki, M., Bunke, H.: HMM-based on-line recognition of hand-
written whiteboard notes. In: 10th International Workshop on
Frontiers in Handwriting Recognition. La Baule (France) (2006)

	10.	 Liwicki, M., Bunke, H., Pittman, J.A., Knerr, S.: Combining
diverse systems for handwritten text line recognition. Mach.
Vis. Appl. 22, 39–51 (2011). https​://doi.org/10.1007/s0013​
8-009-0208-9

	11.	 Matic, N.P., Platt, J.C., Wang, T.: QuickStroke: an incremental on-
line Chinese handwriting recognition system, vol. 3, pp. 435–439
(2002)

	12.	 Matsushita, T., Nakagawa, M.: A database of on-line handwritten
mixed objects named Kondate. In: 14th International Conference
on Frontiers in Handwriting Recognition, pp. 369–374 (2014)

	13.	 McDermott, E., Katagiri, S.: Minimum classification error for
large scale speech recognition tasks using weighted finite state
transducers. In: IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 113–116. IEEE (2005)

	14.	 Nakagawa, M., Machii, K., Kato, N., Souya, T.: Lazy recognition
as a principle of pen interfaces. In: INTERACT’93 and CHI’93
Conference Companion on Human Factors in Computing Sys-
tems, pp. 89–90. ACM Press, New York (1993)

	15.	 Nakagawa, M., Matsumoto, K.: Collection of on-line handwrit-
ten Japanese character pattern databases and their analyses.
Doc. Anal. Recognit. (2004). https​://doi.org/10.1007/s1003​
2-004-0125-4

	16.	 Nakagawa, M., Zhu, B., Onuma, M.: A model of on-line handwrit-
ten Japanese text recognition free from line direction and writing
format constraints. IEICE Trans. Inf. Syst. 88, 1815–1822 (2005)

	17.	 Nguyen, C.T., Nakagawa, M.: An improved segmentation of
online English handwritten text using recurrent neural networks.
In: 3rd IAPR Asian Conference on Pattern Recognition (ACPR),
pp. 176–180. IEEE (2015)

	18.	 Nguyen, C.T., Zhu, B., Nakagawa, M.: A Semi-incremental rec-
ognition method for on-line handwritten Japanese text. In: 12th
International Conference on Document Analysis and Recognition,
pp. 84–88. IEEE (2013)

	19.	 Nguyen, C.T., Zhu, B., Nakagawa, M.: A Semi-incremental rec-
ognition method for on-line handwritten English text. In: 14th
International Conference on Frontiers in Handwriting Recogni-
tion, pp. 234–239 (2014)

	20.	 Nguyen, C.T., Zhu, B., Nakagawa, M.: Semi-incremental recogni-
tion of on-line handwritten Japanese text. IEICE Trans. Inf. Syst.
99, 2619–2628 (2016). https​://doi.org/10.1587/trans​inf.2016e​
dp705​1

	21.	 Okamoto, M., Yamamoto, K.: On-line handwriting character rec-
ognition using direction-change features that consider imaginary
strokes. Pattern Recognit. 32, 1115–1128 (1999). https​://doi.
org/10.1016/S0031​-3203(98)00153​-8

	22.	 Plamondon, R., Srihari, S.N.: On-line and off-line handwriting
recognition: a comprehensive survey. IEEE Trans. Pattern Anal.
Mach. Intell. 22, 63–84 (2000). https​://doi.org/10.1109/34.82482​
1

	23.	 Shivram, A., Zhu, B., Setlur, S., Nakagawa, M., Govindaraju,
V.: Segmentation based online word recognition: a conditional
random field driven beam search strategy. In: 12th International
Conference on Document Analysis and Recognition, pp. 852–856.
IEEE (2013)

	24.	 Tanaka, H., Akiyama, K., Ishigaki, K.: Realtime box-free on-line
handwriting string recognition using layer-delayed segmentation
method. IEICE Technical Report, vol. 101, pp. 155–162. Institute
of Electronics, Information and Communication Engineers (2002)

	25.	 Wang, D.H., Liu, C.L., Zhou, X.D.: An approach for real-time
recognition of online Chinese handwritten sentences. Pattern
Recognit. 45, 3661–3675 (2012). https​://doi.org/10.1016/j.patco​
g.2012.04.020

	26.	 Wang, Q., Yin, F., Liu, C.-L., Member, S.: Handwritten Chinese
text recognition by integrating multiple contexts. IEEE Trans.
Pattern Anal. Mach. Intell. 34, 1469–1481 (2012). https​://doi.
org/10.1109/TPAMI​.2011.264

	27.	 Zhou, Xiang-Dong, Wang, Da-Han, Tian, Feng, Liu, Cheng-Lin,
Nakagawa, M.: Handwritten Chinese/Japanese text recogni-
tion using semi-Markov conditional random fields. IEEE Trans.
Pattern Anal. Mach. Intell. 35, 2413–2426 (2013). https​://doi.
org/10.1109/TPAMI​.2013.49

	28.	 Zhou, X.-D., Wang, D.-H., Liu, C.-L.: Grouping text lines in
online handwritten Japanese documents by combining temporal
and spatial information. In: 8th IAPR International Workshop on
Document Analysis Systems, pp. 61–68. https​://doi.org/10.1109/
das.2008.15 (2008)

	29.	 Zhu, B., Gao, J., Nakagawa, M.: Objective function design for
MCE-based combination of on-line and off-line character recog-
nizers for on-line handwritten Japanese text recognition. In: 11th
International Conference on Document Analysis and Recognition,
pp. 594–598. IEEE

https://doi.org/10.1016/j.patrec.2013.08.014
https://doi.org/10.1016/j.patrec.2013.08.014
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1007/PL00013559
https://doi.org/10.1109/TPAMI.2016.2572693
https://doi.org/10.1109/TPAMI.2016.2572693
https://doi.org/10.1109/TPAMI.2004.1262182
https://doi.org/10.1109/TPAMI.2004.1262182
https://doi.org/10.1007/s00138-009-0208-9
https://doi.org/10.1007/s00138-009-0208-9
https://doi.org/10.1007/s10032-004-0125-4
https://doi.org/10.1007/s10032-004-0125-4
https://doi.org/10.1587/transinf.2016edp7051
https://doi.org/10.1587/transinf.2016edp7051
https://doi.org/10.1016/S0031-3203(98)00153-8
https://doi.org/10.1016/S0031-3203(98)00153-8
https://doi.org/10.1109/34.824821
https://doi.org/10.1109/34.824821
https://doi.org/10.1016/j.patcog.2012.04.020
https://doi.org/10.1016/j.patcog.2012.04.020
https://doi.org/10.1109/TPAMI.2011.264
https://doi.org/10.1109/TPAMI.2011.264
https://doi.org/10.1109/TPAMI.2013.49
https://doi.org/10.1109/TPAMI.2013.49
https://doi.org/10.1109/das.2008.15
https://doi.org/10.1109/das.2008.15

72	 C. T. Nguyen et al.

1 3

	30.	 Zhu, B., Shivram, A., Setlur, S., Govindaraju, V., Nakagawa, M.:
Online handwritten cursive word recognition using segmentation-
free MRF in combination with P2DBMN-MQDF. In: 12th Inter-
national Conference on Document Analysis and Recognition, pp.
349–353. IEEE (2013)

	31.	 Zhu, B., Zhou, X.-D., Liu, C.-L., Nakagawa, M.: A robust model
for on-line handwritten japanese text recognition. Int. J. Doc.

Anal. Recognit. 13, 121–131 (2010). https​://doi.org/10.1007/
s1003​2-009-0111-y

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10032-009-0111-y
https://doi.org/10.1007/s10032-009-0111-y

	A unified method for augmented incremental recognition of online handwritten Japanese and English text
	Abstract
	1 Introduction
	2 Overview of batch recognition method
	2.1 Processing flow
	2.2 Segmentation
	2.3 Construction of segmentation and recognition candidate lattice
	2.4 Best-path search and recognition
	2.5 Hybrid recognizer

	3 Augmented incremental recognition method
	3.1 Resuming strategy for segmentation and recognition scopes
	3.2 Triggering incremental recognition
	3.3 Processing flow
	3.4 Determination of S-scope
	3.5 Determination of R-scope
	3.6 Update of src-lattice and resuming best path search
	3.7 Fixation of SPs from UPs
	3.8 Skipping partial patterns
	3.9 Handling delayed strokes

	4 Evaluation experiments and discussion
	4.1 Metrics of segmentation evaluation
	4.2 Average waiting time in recognition interfaces
	4.3 Experimental setup
	4.4 Overall performance
	4.5 Effect of resuming segmentation and recognition
	4.6 Effect of the recognition trigger
	4.7 Effect of UP fixation
	4.8 Effect of PP skip
	4.9 Effect of reuse
	4.10 Effect of all three techniques

	5 User experience evaluation
	5.1 Setup for experiment
	5.2 Result of experiment

	6 Conclusion
	Acknowledgements
	References

