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Abstract Detecting and extracting information from

the Machine-Readable Zone (MRZ) on passports and

visas is becoming increasingly important for verifying

document authenticity. However, computer vision meth-

ods for performing similar tasks, such as optical char-

acter recognition (OCR), fail to extract the MRZ from

digital images of passports with reasonable accuracy.

We present a specially designed model based on convo-

lutional neural networks that is able to successfully ex-

tract MRZ information from digital images of passports

of arbitrary orientation and size. Our model achieves

100% MRZ detection rate and 99.25% character recog-

nition macro-f1 score on a passport and visa dataset.

Keywords First keyword · Second keyword · More

1 Introduction

In domains such as finance, immigration and adminis-

tration, digital copies of passports are playing an in-

creasingly important role in identity and information

verification and fraud detection. However, automatic

information retrieval from passports and visas can be

difficult due to non-uniform passport and visa layouts.

Information such as name, birth date, expiration date,

and issue date appear in a variety of formats and lo-

cations on passports and visas from different issuing

authorities. Additionally, unlike physical passports and

visas which can be examined for authenticity, digital

copies of these documents present a lower barrier to
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forgery and manipulation. Simple image editing soft-

ware can be used to alter key details on the passport

or visa for purposes of fraud.

The Machine-Readable Zone (MRZ) on passports

and visas is critical for combating both of these chal-

lenges. For purposes of information verification, the MRZ

presents key information in a pre-specified format and

location. As a fraud example, some of our customers up-

loaded the passport image they found on the internet

instead of their own documents. Being able to read the

MRZ and compare it with the information entered by

our customers thus serves as an important step in fraud

detection. Similarly, the format of the MRZ makes it

more difficult to manipulate than the rest of the pass-

port, requiring domain knowledge and greater attention

to detail. Locating and extracting passport and visa

MRZ thus presents an important and unique applica-

tion for computer vision.

We propose a novel neural network model designed

specifically for handling MRZ text, with characteristics

designed to overcome the challenges unique to MRZ

extraction. Specifically, we design an end-to-end train-

able MRZ detector and extractor using MobileNetV2 as

the backbone and added atrous spatial pyramid pooling

layers to enhance receptive fields. For better handling

of passport images of various sizes, we propose a novel

system in which the first ”coarse” model extracts the

MRZ bounding box and the second ”fine” model refines

bounding box prediction and extracts the MRZ text.

This system design offers the additional benefit of de-

creasing the memory and time required for detection.

Our proposed system results in 100% MRZ detection

rate and 99.25% character recognition macro-f1 score

on digital images of passports and visas.
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2 Background

2.1 Machine-Readable Zone (MRZ)

The Machine-Readable Zone (MRZ) appears on pass-

ports and visas of most countries to facilitate robust

data extraction and processing. Because passports from

different states vary in script, style, and format, the

MRZ provides a simple way to extract key details from

the passport, including the name, passport number, na-

tionality, date of birth, sex, and passport expiration

date. Generally appearing near the beginning of the

passport on the identity page, the MRZ text typically

appears as two 44-character lines on the bottom of the

page. While alternative MRZ formats are employed in

documents such as ID card and visa issued by some

countries, we limit this work to consider only this MRZ

format most commonly found in passport and US visa

images as typically uploaded by our customers. The

MRZ consists only of the Arabic numerals (digits 0-9),

the capital letters of the Latin alphabet (’A’,’B’,’C’,...),

and the filler character ’<’. While historically used for

quickly extracting the important information from a

variety of passports, the MRZ is becoming useful for

document verification and manipulation detection. For

example, businesses and states can verify that the in-

formation encoded in the MRZ matches the informa-

tion in the visual zone (VZ) of the passport. While

highly-motivated and skilled forgers can additionally

alter the MRZ, validation of the MRZ information is

a simple, low-cost method for detecting basic manipu-

lations, such as name, expiration, or birth date changes.

As photographs of passports gain popularity as a method

for verifying identity, accurately and quickly extract-

ing the passport MRZ becomes an essential part of the

identity verification pipeline.

3 Related Work

Models leveraging advances in deep learning, such as

convolutional neural networks (CNNs), have been suc-

cessfully employed in similar tasks, such as determin-

ing the region of interest (ROI) of a photograph [34]

and optical character recognition (OCR) [52]. Among

these, MRZ extraction from digital passport images is

most related to work in detecting and extracting text

in natural scenes.

3.1 Text Detection in Natural Scenes

Several techniques in computer vision have been de-

veloped or leveraged for improved performance in text

scene detection. [33] and [58] used image binarization to

segment text regions. [39] [10] and [14] used Maximally

Stable Extremal Region (MSER) to improve detection.

[12] and [40] used morphological operations to segment

text regions. [41] and [43] used Histogram of Oriented

Gradients (HOG) for improved performance.[23] and

[42] used color properties to both detect and extract

text regions.

More recently, the ICDAR 2015 Robust Reading

Competition dataset has provided a valuable bench-

mark for scene text detection and extraction [22]. Many

recent works demonstrated impressive performance on

this dataset. [56] use Fully Convolutional Network (FCN)

models, trained separately to predict the saliency map

of the text regions and the centroid of each character.

[48] similarly trained a FCN, but on the segments and

links of the text which are combined for final detection.

[18] proposed a single shot attention-based mechanism

that attempts a coarse to fine approach to text detec-

tion. [21] leveraged a weakly supervised framework that

uses word annotations to train the character detector.

[57] proposed EAST (An Efficient and Accurate Scene

Text Detector), which skips intermediate steps like can-

didate aggregation and word partitioning to directly

predict words and text lines. [35] attempted to consider

more free-form text examples such as curved text us-

ing a FCN to estimate geometric attributes of the scene

regions.[27] iterated on the object detector method pro-

posed in [29]. [7] proposed a novel method for scene

text detection using instance segmentation. [38] and [9]

leveraged the corner points of the text bounding boxes

for better segmentation and detection. [53] generated

different kernel scales for each text instance in order

to split close text instances. [6] combined multi-level

features during feature extraction for improved perfor-

mance. [36] improved performance with an architecture

inspired by Mask R-CNN [16]. [28] proposed a mod-

ule to perform binarization in a segmentation network.

[30] trained a network for simultaneous detection and

recognition by sharing convolutional features between

the two processes. [55] leveraged multiple branches to

achieve geometry normalization. [32] built on previous

work and incorporate a method to discretize the poten-

tial quadrilaterals into various horizontal and vertical

positions. So far, [54] achieved the most impressive per-

formance by training on synthetic data, using charac-

ters as the basic element, and eliminating ROI pooling.

3.2 Passport MRZ Detection and Extraction

While Optical Character Recognition (OCR) based-methods

may extract text with reasonably good accuracy, state

of the art methods struggle to accurately extract MRZ
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Fig. 1: Example passport images. (a) a typical page of the passport contains the 2-line MRZ zone (bottom). The

passport page can either occupy only a small part of the image (b) or span the whole image (c).

Fig. 2: Overall structure of MRZNet. MRZSpotter (coarse) roughly locates the MRZ region from a down-sampled

image whereas MRZSpotter (fine) refines the localization on the original high resolution image and recognizes the

MRZ text.

text. This is evidenced by the relatively poor MRZ

detection rate of PassportEye [51] which is based on

Tesseract OCR [50]. Similarly, models designed for scene

text extraction are not naturally well-suited for MRZ

extraction. For example, end-to-end scene text recog-

nition models such as FOTS [31] and Mask Textspot-
ter [37] may be able to detect and recognize the MRZ.

However, these models are designed to handle text lines

with arbitrary number of characters and employed tech-

niques such as LSTM [20] to recognize text. Since com-

mon MRZ text found in passport and visa is always

2 lines, 44 characters per line, a specifically designed

neural network architecture will likely improve perfor-

mance. Additionally, typical passport images used for

identity verification purposes are taken with a smart-

phone, resulting in a high resolution images in which

the passport appears in various places and at various

sizes (see Figure 1), presenting an additional challenge.

In 2011, [3] presented a hardware-based method for

portable passport readers for detecting and reading the

MRZ of physical passports. [26] proposed a method for

extracting the passport MRZ using template matching,

but only for images in which the passport is surrounded

by a black border. [5] explored optical font recogni-

tion for forgery detection in passport MRZs. [44] dis-

cussed methods for correcting or post-processing pass-

port MRZ recognition results. [15] presented an algo-

rithm for reading MRZ images on mobile devices, achiev-

ing an MRZ detection rate of 88.18% with 5 frames and

56.1% with single frame, along with a character reading

rate of 98.58%. In comparison our model boasts a 100%

single frame MRZ detection rate and 99.25% character

recognition macro-f1 score on passport and visa images.

4 Methodology

MRZNet is a framework that detects and recognizes

the MRZ text in images of passports and visas given

arbitrary orientation and sizes. This section describes

the details of the architecture of MRZNet.

4.1 Overall architecture

The overall architecture of MRZNet is illustrated in

Figure 2. It includes two sub neural networks, MRZSpot-

ter (coarse) and MRZSpotter (fine), which share simi-

lar architectures. The high resolution original image is

first padded to be a square and then down-sampled to

768 x 768 as input to MRZSpotter (coarse). MRZSpot-

ter (coarse) localizes the MRZ region and outputs the
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bounding box location and orientation. We then rotate

the original image to make it upright, crop the image

centered at the bounding box center and pad/resize

the image accordingly to obtain a 768 x 768 image in

which the MRZ region is roughly placed in the cen-

ter and spans the whole image. This image is then fed

into MRZSpotter (fine) for finer localization and MRZ

code recognition. We adopt this architecture for hand-

ing passport/visa images of arbitrary orientation and

sizes. A real world passport/visa image, whether it is

scanned or taken from a smart phone, is usually of high

resolution. Depending on how the user captures the im-

age, the MRZ region can either occupy only a small

region of the image (Figure 1(b)) or it may span the

whole image (Figure 1 (c)). Feeding the high resolu-

tion image directly into a neural network is not only

time and memory consuming but may result in poor

MRZ code recognition results for images like Figure

1 (c). Specifically, localizing these high resolution im-

ages would demand a very large receptive field within

the neural network, increasing time and memory re-

quirements On the other hand, feeding a down-sampled

image to a neural network would result in poor MRZ

recognition results for images like Figure 1 (b) because

the text will be unrecognizable in low resolution. To

solve this dilemma, we propose an architecture that

first roughly localizes the MRZ region using a down-

sampled image, standardizes the images (see Figure 1

(c)) and finally performs MRZ text recognition.

4.2 MRZSpotter

The architecture of MRZSpotter is shown in Figure 3.

Because we use CPU to run models in production, we

adopt MobileNetV2 [46] as the backbone to reduce com-

putational cost. Similar to EAST, we concatenate up-

sampled high-level semantic feature maps with low-level

feature maps and merge them gradually in a U-shaped

architecture. This way the neural network utilizes the

features from different levels and will be able to detect

MRZ regions of different sizes. In some examples, the

line of text will span the whole image (see Figure 1 (c)).

For better handling of these images, a larger receptive

field is required to look at the ”big picture” of the im-

age in order to accurately detect the large text bound-

ing box. We applied atrous spatial pyramid pooling

(ASPP) at the end of the MobileNetV2 feature extrac-

tor to accommodate these larger receptive fields. ASPP

have been previously adopted by [47], [13], [49] and

[4] for field-of-view enlargement. To further increase

the field-of-view, we stacked multiple layers of ASPP

as demonstrated in ResNet [17]. After feature-merging,

1x1 convolutional layers are applied to the output to

determine the likelihood that an MRZ region is present

in the pixel (the score map), the location of MRZ text

boxes (4 channels, distance of the pixel locations to the

top, right, bottom and left boundaries of the rectan-

gle, respectively) and the MRZ box rotation angle. The

non-maximum suppression algorithm is applied to se-

lect the most probable MRZ bounding box. Finally, a

recognition branch is applied to the MRZ bounding box

and the output map of the feature-merging branch to

extract the MRZ text.

4.3 MRZSpotter pipeline

We first extract feature maps from a passport/visa im-

age using a MobileNetV2 backbone. At the end of the

stage 4 convolutional layers, MobileNetV2 produces 320

feature maps of size 24 × 24. We then add four con-

volutional layers that run in parallel to form a ASPP

layer. These four convolutional layers have a dilation

rate [4] of 1, 2, 4 and 8. We concatenate the feature

maps produced by these four layers (the concatenation

layer) and then applied a 1 × 1 convolutional layer to

reduce the number of feature maps to 320 before feed-

ing the resulting feature maps to the next ASPP layer.

Shortcuts were added between the concatenation layer

of two ASPP layers similar to ResNet. After N ASPP

layers, we bilinearly up-sample (un-pool) the feature

maps to size 48 × 48 before concatenate them with

the feature map outputs from the end of stage 3 con-

volutional layer of MobileNetV2. A 1 × 1 followed by

a 3 × 3 convolutional layer is used to fuse these fea-

ture maps. We then bilinearly up-sample the resulting

feature maps to 96 × 96 sizes and concatenate them

with output of the stage 2 convolutional layers of Mo-

bileNetv2. After fusing the feature maps with 2 convolu-

tional layers, we bilinearly upsampled them to 192×192

sizes and concatenate them with the output of stage 1

convolutional layers of MobileNet V2. Three convolu-

tional layers are then applied to fuse and extract fea-

tures from these feature maps to produce the output of

feature-merging branch, which is composed of 64 fea-

ture maps of size 192 × 192. Similar to EAST[57], for

each pixel in the output of feature-merging branch, we

apply 1 × 1 convolutional layers at the output branch

to produce a 0-1 probability score which indicates the

presence of MRZ (the score map) at the pixel, the dis-

tance from the top, bottom, left and right of the mrz

bounding box to the pixel (MRZ text box map) and

the rotation angle of the bounding box (mrz rotation

angle map). Because we have 192 × 192 pixels, a total

of 192 × 192 = 36864 bounding boxes are produced as

a result. We reject those bounding boxes that have a
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Fig. 3: MRZSpotter with N atrous spatial pyramid pooling (ASPP) layers. Both MRZSpotter (coarse) and

MRZSpotter (fine) used the same architecture and loss as shown in this figure, though with different parame-

ter N. We stacked N ASPP layers on top of the last convolutional stage of MobileNetV2 to increase the receptive

field and add a text recognition branch in addition to text localization branch.

probability score lower than 0.5 and use non-max sup-

pression (NMS) to fuse the rest of the bounding boxes.

The bound box that has the highest score is then se-

lected as input to the recognition branch.

4.4 Recognition branch

Both the MRZSpotter (coarse) and MRZSpotter (fine)

include a recognition branch for recognizing MRZ text.

Our recognition branch is inspired from [19]. Figure 4

shows the architecture. Given the quadrilateral MRZ

region from NMS, we sample a 16 by 352 grid from

the convolutional map at the output of feature-merging

branch. Similarly to [19], we used bilinear sampling.

More specifically, the feature vector vp of a sampling

point p at spatial location (px, py), is calculated as fol-

lows:

vp =

3∑
i=0

vpig(px, pix)g(py, piy) (1)

where vpi refer to the surrounding four points of point

p and g(p1, p2) refers to the bilinear interpolation func-

tion.

After extracting the sampling grid, three layers of

3x3 convolution and 2x2 max-pooling are applied to

down sample the extracted feature map from 16x352

(points) to 2x44 (lines by characters per line). We dou-
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bled the number of channels with each down-sampling.

Finally, a 1x1 convolutional layer is applied to reduce

the number of channels to 37 (the number of valid char-

acters in MRZ code) and softmax is applied to obtain

the probability of occurrence for each of the 88 charac-

ters.

Fig. 4: Architecture of the recognition branch. Instead

of adopting LSTM for recognizing arbitrary length text

as in typical scene text recognition networks, we bilin-

early sample a 16 by 352 grid from the output convo-

lutional layer of EAST and pass it through several full

convolutional layers and max pooling layers to reduce

the feature map size to 2 by 44 for recognizing the 2

lines, 44 characters per line MRZ text.

4.5 Loss functions

MRZSpotter (coarse) and MRZSPotter (fine) are trained

separately with the same loss function:

L = Ls + λgLg + λcLc (2)

where Ls is the loss for score map, Lg is the loss for

geometry, Lc is the loss for character classification. In

our experiment, we set λg and λc to be 1. For the loss

of score map, we used dice loss instead of the balanced

cross-entropy loss as adopted by EAST [57] due to its

higher performance as reported in [45]:

Ls = 1−
2
∑
x sxs

∗
x∑

x sx +
∑
x s
∗
x

(3)

where sx and s∗x are predicted score and ground truth

score, respectively. For the geometry loss, we adopt the

intersection over union (IoU) loss and rotation angle

loss as in EAST [57]:

Lg = Liou + λaLa (4)

Liou =
1

Ω

∑
x∈Ω

IoU(Rx, R
∗
x) (5)

La = (1− cos(θx, θ∗x)) (6)

where Rx, R∗x, θx and θ∗x are predicted bounding box,

ground truth bounding box, predicted orientation and

ground truth orientation, respectively. IoU is calculated

as follows:

IoU(Rx, R
∗
x) =

Rx ∩R∗x
Rx ∪R∗x

(7)

In our experiment, the weight λa is set to 10. For the

character classification loss, we used the cross-entropy

loss:

Lc =

c∑
i=0

yilog(fi(x)) (8)

where c is the number of possible different characters,

fi(x) is the network output of class i for image sample

x, yi is the one hot ground truth label.

4.6 Implementation details

For the MobileNetV2 backbone, we loaded weights pre-

trained on the ImageNet dataset [8] before fine-tuning

on our MRZ dataset. For training MRZSpotter (coarse),

we augmented the dataset by randomly rotating the im-

ages in the range of [-180◦, 180◦] and randomly padding

with black borders so that the new image height is

in the range of 1-2 times the height of the original

image. We additionally applied random cropping im-

age with the constraint of keeping the MRZ region in-

tact. For training MRZSpotter (fine), we augmented the

dataset by randomly rotating the image in the range

of [-20◦, 20◦] with respect to the upright position. We
found that it is important to make sure that the ro-

tation angle is small for MRZSpotter (fine). We then

cropped the images so that the cropped region is a

square and the MRZ region is roughly centered within

image with the left and right borders randomly selected

to be 0.05-0.25 times the width of the MRZ region. For

both MRZSpotter (coarse) and MRZSpotter (fine), we

trained the model for 120 epochs with Adam optimizer

[24] and a initial learning rate of 0.0001, β1 = 0.9 and

β2 = 0.999. The learning rate was decreased by a factor

of 10 at 60 epochs. The batch size was selected to be

6. The models were trained with a single GeForce RTX

2070 graphic card. The time to train both MRZSpot-

ter (coarse) and MRZSpotter (fine) are approximately 1

day, making it a total of 2 days to train the entire model.

Taken together MRZSpotter (fine) and MRZSpotter

(coarse), MRZNet has 28.9M parameters. As a com-

parision, similar deep learning approaches CharNet [54]

and FOTS [31] has 89.2M and 35.0M parameters, re-

spectively.
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5 Experimental evaluation

In this section, we evaluate the performance of MRZNet.

We also report results from ablation studies to explore

the impact of our design choices.

5.1 Dataset

We evaluated our algorithm on a dataset consisting of

4820 passport/visa images. The dataset includes 2687

passport images and 2133 visa images from 85 issuing

countries. The visa images are all US issued visa the

MRZ of which is 2 lines, 44 characters per line. Table

1 summarizes the data distribution over different coun-

tries. The dataset contain real world images that were

either scanned by a scanner or taken using a smart-

phone camera and uploaded to our database by our

customers. It may contain perspective distortions, scal-

ing, illumination and resolution variation, even motion

blur. It reflects the real world images we encounter on

a daily basis. Each of these images contains a single

passport or visa. We manually annotated the ground

truth bounding box and MRZ text for all images using

VGG image annotator [11]. It is common that text doc-

uments other than passport and visa appears in an im-

age so training with this dataset allow our model to ig-

nore none MRZ text regions. We used 3482 for training,

723 for validation and 615 for testing. We also tested

our approach on the publicly available MRZ dataset

MIDV-500 [2] and syntheticMRZ [15]. For MIDV-500,

we used the passport images that contain a MRZ zone.

We removed images in which MRZ zone is not entirely

intact. This resulted in 3335 test images. For synthet-

icMRZ, we randomly selected 17113 images. For both

MIDV-500 and syntheticMRZ, we only include images

whose MRZ zone is in the most common format, con-

taining two lines of text, 44 characters each. The file

paths to the images for the MIDV-500 and synthet-

icMRZ dataset is available upon request.

5.2 Comparison with existing solution

We compared our MRZNet against existing MRZ recog-

nition solutions: 1) PassportEye [51] which is based

on Tesseract OCR [50], 2) MRZ-Detection [25] and 3)

UltimateMRZ [1], a deep learning based commercial

solution that is based on LSTM [20]. We also com-

pared it with end-to-end neural network based text

spotting approaches MaskTextSpotter [37], the EAST

based TextSpotter [19] and CharNet [54]. For these

approaches, we downloaded code and weights trained

on ICDAR2015 from official implementations. It can

Table 1: Distribution of our MRZ dataset across issuing

countries

Country Num. of samples

United States 2194
Brazil 1114
China 931
India 48
Guatemala 45
Venezuela 42
Colombia 33
El Salvador 31
Mexico 31
United Kingdom 29
Ecuador 20
Australia 17
Italy 15
Other 270

be seen from Table 2, Table 3 and Table 4 that our

MRZNet outperforms each of the three comparison MRZ

detection models as well as other deep learning based

end-to-end text retrieval models by a large margin. In

Table 2, Table 3 and Table 4, for MRZNet, Passport-

Eye, MRZ-Detection, and UltimateMRZ, the detection

rate is defined as the ratio of images whose MRZ char-

acter recognition accuracy is higher than 50%, as the

ground truth bounding box of SyntheticMRZ dataset

is not available, and because PassportEye and MRZ-

detection do not output the predicted bounding box.

For the three deep learning based approaches, it is rare

that the MRZ character recognition accuracy is higher

than 50% for an image, so we consider the detection

is a success if a text box is found in the MRZ re-

gion based on the ground truth bounding box. Fig-

ure 5 shows examples of text detection results by the

various deep learning based approaches. In addition to

these approaches, Hartl et al. [15] achieved character

recognition rate of 98.6% on the SyntheticMRZ dataset.

Their MRZ detection rate, however, is only 56.1% (sin-

gle frame) and 88.2% rate (5 frames) whereas our single

frame MRZ detection rate is 88.66% on the Synthet-

icMRZ dataset. One possible explanation of this large

performance gap is that most existing algorithms rely

on traditional image processing techniques or the out-

put of a general OCR, while our method employs convo-

lutional neural network as feature extractor for end-to-

end detection and recognition. Additionally, MRZNet

is specifically designed to handle MRZ detection and

recognition which assumes a fixed target of two lines of

44 characters each whereas the end-to-end scene text

detectors proposed in the literature are designed for

text lines of arbitrary length. We also reported the run

time of all approaches in Table 5
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Fig. 5: MRZ recognition results by end-to-end deep learning approaches. From top to bottom rows: TextSpotter,

MaskTextSpotter, CharNet and MRZNet
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Table 2: MRZ detection and character recognition (in

macro-f1 score) results on our test set for MRZNet and

other solutions

Method MRZ Detection Character Recog.

PassportEye 26.50% 84.47%
MRZ-Detection 52.36% 95.01%
UltimateMRZ a 68.78% 83.04%
TextSpotter 21.79% 12.07%
MaskTextSpotter 69.43% 13.72%
CharNet 74.15% 35.53%
MRZNet 100.00% 99.25%

a Recognition rate are based on an average of 76 out of
88 characters available in the free version

Table 3: MRZ detection and character recognition (in

macro-f1 score) results on MIDV-500 MRZ dataset [2]

for MRZNet and other solutions

Method MRZ Detection Character Recog.

PassportEye 27.32% 64.93%
MRZ-Detection 46.30% 76.00%
UltimateMRZ a 77.15% 71.69%
TextSpotter 21.20% 13.37%
MaskTextSpotter 69.15% 19.42%
Charnet 74.18% 28.44%
MRZNet 73.94% 85.18%

a Recognition rate are based on an average of 76 out of
88 characters available in the free version

Table 4: MRZ detection and character recognition (in

macro-f1 score) results on SyntheticMRZ [15] dataset

for MRZNet and other solutions. For TextSpotter,

MaskTextSpotter and CharNet, results can not be gen-

erated due to lack of ground truth bounding box label

Method MRZ Detection Character Recog.

PassportEye 46.87% 84.42%
MRZ-Detection 86.06% 87.59%
UltimateMRZ a 42.40% 78.40%
TextSpotter NA NA
MaskTextSpotter NA NA
CharNet NA NA
MRZNet 88.66% 90.09%

a Recognition rate are based on an average of 76 out of
88 characters available in the free version

5.3 Ablation Study

We performed ablation studies to evaluate the effective-

ness of the two stage model and the ASPP layers, with

the results are reported in Table 6 and Table 7. From

Table 6, it can be inferred that using only MRZSpotter

(coarse) will result in poor MRZ text recognition accu-

Table 5: Recognition speed comparison on our test set,

(mean± std). GPU: a single GeForce RTX 3090; CPU:

Intel(R) Xeon(R) Gold 5220R

Method CPU time (s) GPU time(s)

PassportEye 0.68 ± 0.45
MRZ-Detection 2.46 ± 1.01
UltimateMRZ 0.24 ± 0.16 0.14 ± 0.16
TextSpotter 23.12 ± 3.91 0.90 ± 0.49
MaskTextSpotter 6.74 ± 1.17 1.58 ± 0.77
CharNet 80.62 ± 9.53 9.25 ± 5.34
MRZNet 14.82 ± 0.97 0.51 ± 0.78

Table 6: Results on validation set from MRZSpotter

(coarse). We show the variation of bounding box de-

tection IOU and MRZ text recognition macro F1-score

with different numbers of ASPP layers

Num. of ASPP IoU Macro F1-score

0 0.8701 56.56%
1 0.8508 67.87%

racy (with 67.87% macro f1-score as the best result).

The primary reason is that the resolution of input im-

age is low. However, we also found that the narrowing

and box rotation angle range is an important factor

since increasing the data augmentation rotation angle

of MRZSpotter (fine) results in a worse accuracy. In-

cluding a single ASPP layer to MRZSpotter (coarse)

improved the MRZ text recognition performance from

56.56% to 67.87%. However, the bounding box local-

ization accuracy decreased from 0.8701 to 0.8508 IoU.

Considering the objective of MRZSpotter (coarse) is lo-

calization, we haven’t included any ASPP layers in the

final model for MRZSpotter (coarse). From Table 7, it

can be seen that the MRZ recognition accuracy is much

improved by using MRZSpotter (fine) after MRZSpot-

ter (coarse). Including one single layer of ASPP im-

proved the MRZ text recognition accuracy from 98.40%

to 98.91%. By stacking 3 ASPP layers, the accuracy fur-

ther improved to 99.21%. These results demonstrate the

impact of the proposed two stage model and the ASPP

layers. In Table 8, we compared the different loss func-

tion for score map. From the results, it can be seen that

the dice loss as adopted by our approach outperforms

the balanced cross-entropy loss as adopted by EAST

[57].

6 Conclusion

In this work, we presented MRZNet, a framework specif-

ically designed for localizing and recognizing the MRZ



MRZ code extraction from visa and passport documents using convolutional neural networks 11

Table 7: Results on validation set from MRZSpotter

(fine). We show the variation of bounding box detection

IOU and MRZ text recognition macro F1-score with

different numbers of ASPP layers

Num. of ASPP IoU Macro F1-score

0 0.9071 98.40%
1 0.9059 98.91%
3 0.9144 99.21%

Table 8: Results on validation set from MRZSpotter

(fine). We compare results for balanced cross-entropy

loss for score map as adopted by EAST [57] and dice

loss as adopted by our study

loss IoU Macro F1-score

balanced cross-entropy 0.8906 98.34%
dice 0.9144 99.21%

text in passport and visa images. A novel two stage

model process is adopted so that MRZNet can handle

passport/visa images of varies sizes from high resolution

images. We proposed MRZSpotter, an end-to-end net-

work for detecting and recognizing MRZ text. By stack-

ing multiple layers of ASPP, we increased the receptive

field of the model and improved the MRZ text recogni-

tion accuracy. Experiment evaluation demonstrated the

effectiveness of our approach compared with existing

state-of-the-art models. Possible future research direc-

tions could include: 1) adding a dewarp component to

the framework to make the pipeline robust to passport

images that are warped with curved text lines; 2) mod-

ifying the architecture for single character level bound-

ing box detection and recognition in order to further

improve the overall robustness of the pipeline; 3) eval-

uating the performance of our models on passport/visa

having MRZ region soiled by smoke, water/mud, ink or

other artifacts.
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