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Abstract

Handwritten Text Recognition (HTR) in free-layout pages is a challenging image understanding
task that can provide a relevant boost to the digitization of handwritten documents and reuse of
their content. The task becomes even more challenging when dealing with historical documents due
to the variability of the writing style and degradation of the page quality. State-of-the-art HTR
approaches typically couple recurrent structures for sequence modeling with Convolutional Neural
Networks for visual feature extraction. Since convolutional kernels are defined on fixed grids and
focus on all input pixels independently while moving over the input image, this strategy disregards
the fact that handwritten characters can vary in shape, scale, and orientation even within the same
document and that the ink pixels are more relevant than the background ones. To cope with these
specific HTR difficulties, we propose to adopt deformable convolutions, which can deform depend-
ing on the input at hand and better adapt to the geometric variations of the text. We design
two deformable architectures and conduct extensive experiments on both modern and historical
datasets. Experimental results confirm the suitability of deformable convolutions for the HTR task.
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1 Introduction

Handwritten Text Recognition (HTR) aims at
automatically understanding the content of a
handwritten document by providing a natural lan-
guage transcription of its textual content. Because
of the key role it can play in the automati-
zation of the digitization of documents, it can
be applied in automated services and any mod-
ern document processing pipeline. On the other
hand, HTR is also applied in the field of Digital
Humanities [20] for the transcription of histori-
cal documents and to enable search and retrieval

applications in ancient corpora, which would not
be easily accessible otherwise [42].

Despite the advancements in Optical Charac-
ter Recognition (OCR), HTR remains a challeng-
ing task. The task, originally tackled via Hidden
Markov Models built upon heuristic visual fea-
tures [26, 31], is currently performed with Deep
Neural Network-based approaches [38, 39, 43].
The most common strategy entails employing a
Convolutional Neural Network (ConvNet) and a
Recurrent Neural Network(RNN) to represent the
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input manuscript image and a Connectionist Tem-
poral Classifier (CTC) to generate the output text
sequence [38]. The visual feature extraction phase
of these approaches relies on standard convolu-
tional layers in which features from the input
image are extracted by sliding kernels with a fixed
regular grid and constant parameters. As a conse-
quence of the constancy of convolutional weights,
pixels in an image neighborhood are encoded
according to their relative positions rather than
the content of the neighborhood itself. This can
be sub-optimal if considering the characteristics of
HTR images, which contain handwritten charac-
ters and words. In fact, in these images, only the
ink pixels are relevant for recognition, while the
background ones can potentially contain mislead-
ing nuisances, especially in ancient documents.
Moreover, handwritten documents typically fea-
ture highly varying characters, which cannot be
effectively modeled with standard fixed-shape con-
volution kernels without performing ad hoc pre-
processing and data augmentation.

Motivated by the above considerations, in this
paper, we propose to employ deformable convo-
lution operators [18] in HTR architectures. In
deformable convolutions, the regular kernel grid
is altered by adding a translation vector to the
location of each kernel element. Translations vec-
tors are computed in a content-dependent manner
so that the kernel grid can be deformed depend-
ing on the input of the convolutional layer itself.
As a consequence, deformable convolutions can
adapt to the input geometric variations and part
deformations, making them potentially more suit-
able for dealing with HTR images compared to
standard convolutions. This kind of convolution
has been originally proposed to tackle the object
recognition task and, to the best of our knowledge,
its usage in HTR has been explored only in our
preliminary work [16], where we claim that its ker-
nel adaptability (see Figure 1) can help to improve
the efficiency and the performance in the task. In
this work, we deepen our analysis and extend it to
HTR on historical manuscripts. To demonstrate
the effectiveness of using deformable kernels, we
design two different deformable architectures and
conduct extensive experiments on both modern
and historical datasets for handwritten text recog-
nition. Experimental results will demonstrate that
deformable convolutions are a suitable operator
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Fig. 1: Sampling grid of a standard convolutional
kernel (in blue) and a deformable convolutional
kernel (in red) when applied over a handwritten
character. Deformable convolutions apply transla-
tion vectors to the kernel grid and adapt better to
handwritten strokes (best seen in color).

for HTR networks and provide consistent improve-
ments over standard convolutions.

The rest of this paper is organized as follows. In
Section 2, we provide a brief overview of the HTR
literature. Then, in Section 3, we describe the pro-
posed approach and how deformable convolutions
are applied to existing HTR networks. Finally, in
Section 4, we outline our experimental setup and
present qualitative and quantitative results.

2 Related Work

HTR can be tackled by considering different tex-
tual elements, i.e. characters [14, 15, 22], words [5,
21, 43, 45], lines [7, 8, 13, 34, 36, 38, 50|, para-
graphs [6, 7, 53], or pages [15, 34]. Line-level HTR
is among the most popular variants, which can be
performed on pre-segmented text [8, 13, 36, 38,
50], or used in combination with layout analysis
and line-level segmentation to obtain a paragraph-
level or page-level HTR system [7, 34, 54]. In this
paper, we focus on pre-segmented line-level HTR.

Originally, HTR was tackled by applying Hid-
den Markov Models for image representation, and
n-gram based language models for textual output
predictiont [47, 48]. The first deep learning-based
solution to HTR was proposed in [21], where
multi-dimensional Long Short-Term Memory net-
works (MDLSTM-RNNs) are used to build a 2D
representation of the textual image, which is then
collapsed in a sequence of vectors used for CTC
decoding. This strategy was the standard one [6,
19, 35] until simpler alternatives to MDLSTM-
RNNs were proposed [38, 43]. These consist of a
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ConvNet to extract a sequence of feature vectors
from the text image and 1D-LSTMs to output
character probabilities for the CTC decoding and
became commonly used as a backbone for HTR
systems [8, 13, 16, 36, 50] due to its performance
and faster training compared to MDLSTMs.

A recent trend entails treating HTR as a
sequence-to-sequence problem, from a sequence
of text image slices encoded via convolutional
and recurrent blocks to a sequence of transcribed
text generated by a separate recurrent block [1,
33, 46, 56]. Networks implementing this approach
can be trained either by optimizing the cross-
entropy loss alone or combined with the CTC loss.
A variant of this approach entails using Trans-
formers [49] in place of RNNs [17, 54], often
requiring pre-training on either real or synthetic
data [25, 27, 51] to obtain performance compa-
rable to RNN-based solutions. Finally, it is worth
mentioning approaches that avoid using RNNs
and are instead fully-convolutional [17, 54]. In
these approaches, convolutional layers are com-
bined with GateBlocks layers [55] that operate a
selection mechanism to model dependency simi-
larly to LSTM cells.

In the above-mentioned variants, recognition
performance can be increased by integrating a
language model, either a word-level or a character-
level one. However, this strategy is effective only
for those languages for which sufficient textual
data are available. Thus, it is not always feasible
for historical documents that are usually written
in underrepresented languages. These can either
be ancient versions of a modern language that has
evolved over time or a language which is no longer
spoken at all. In this work, we do not use any lan-
guage model, both to assess the performance of
the proposed HTR models in historical documents
and to better enhance the benefits of deformable
convolutions over standard convolutions.

Compared to OCR, HTR features the chal-
lenge related to the high variability of characters
in shape and size. A common strategy is perform-
ing specific data augmentation and preprocess-
ing [4, 9, 23, 28, 37, 38, 50, 52], while few works
have faced this issue at the architectural design
level. For example, in [57] a Spatial Transformer
Network [22] is employed for character-level HTR,
while in [5] an adversarial deformation module
is used to warp intermediate convolutional fea-
tures in a word-level HTR model. In this paper,
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Fig. 2: The regular sampling grid of a standard
convolutional kernel (a) is deformed by applying a
set of offsets (b), obtaining the deformed sampling
grid of the deformable convolution (c).

we propose to apply deformable convolutional ker-
nels in the convolutional part of HTR models
with the aim to tackle characters non-idealities
without relying on data augmentation or specific
preprocessing.

3 Proposed Method

In this section, we introduce our proposed
approach. We first review deformable convo-
lutions, and then introduce the convolutional-
recurrent architectures we employ.

3.1 Deformable Convolutions

ConvNets owe their success to their representa-
tional power and capacity to extract position-
independent local features from images. Their key
element is the convolutional operator *, which per-
forms a learned weighted sum of elements sampled
over a regular grid A. Formally, for a pixel p of an
input feature map I, given a kernel k of learnable
weights, the convolutional operator can be defined
as follows:

(I+k)(p) =Y k(d)-I(p+d), (1)

deN

where - is the inner product between channel-wise
feature vectors and d is a displacement vector. The
size and structure of the sampling grid A/ depend
on the kernel size and dilation.

Conversely, the deformable convolution oper-
ator ® [18] relies on an irregular sampling grid.
The shape and geometry of the grid is learned as
a function of the processed input context, which
allows a content-dependent, non-regular feature
extraction. To obtain the deformed grid, a regular
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sampling grid, such as that of a standard convolu-
tional operator, is deformed by adding a learned
2D offset to each of its elements (as depicted in
Figure 2).

In practice, a deformable convolution layer is
obtained by applying two standard convolutional
layers: one is in charge of computing the off-
sets, the other of computing the kernel weights.
Both are applied over the input feature map to
ensure content-dependent deformation. Formally,
for deformable convolutions Eq. 1 becomes

(IT®k)(p)=_ k(d) -I(p+d+5(d). (2)
deN

Thus, the points included in the deformed ker-
nel are those in the set {d + d(d)}4en- Note that,
in general, the computed offsets can be fractional
numbers — and simply quantizing them would
harm the training phase. To overcome this limi-
tation, Eq. 2 is implemented by including a 2D
bilinear interpolation kernel B(,-), i.e.

(I®k)(p) = k(d)-)_ Bls,p+d+6(d)-I(s),

deN SES
(3)

where S is the set of points in I that are in the
neighborhood of the sampling locations {p + d +
5(d)}aen-

To appreciate the effects of the deformable con-
volution on handwriting images, in Figure 1 we
represent some deformed sampling grids obtained
from a 3 x 3 deformable kernel applied to the
image of a character, in comparison with those of
a standard covolutional kernel. It can be noticed
that when the kernel is applied to stroke edges
it is considerably deformed to adapt to its input.
On the other hand, on uniform regions such as
background and solid ink, the deformation is less
evident. The same behavior can be observed from
Figure 3, which represents the cumulative magni-
tudes of the offsets of a 3 x 3 deformable kernel
applied to all the pixels of a short text line. When
processing pixels from uniform areas, the learned
offsets are small, thus the kernel does not deform
much, while are larger when processing pixels on
the edges.

Given a deformable convolutional layer with
square kernels, kernel size k, ¢;, input channels,
and cyy¢ output channels, the number of weights

Fig. 3: Cumulative magnitude of the offsets
applied to a 3 x 3 kernel grid on points of
an image of a word (first convolutional layer of
CRNN). Grids sampling in uniform regions are
less deformed than those sampling on edges.

needed for computing the deformable convolu-
tion is k2 - Cin - Cout', which is comparable to
those needed by a standard convolutional layer.
If the convolutional layer computing the offsets
is also created with the same kernel size, it will
add k% - ¢;, - (2k%) parameters, for a total of
k% - cin - (2K + cout) weights. From the point of
view of the memory footprint, therefore, replacing
a standard convolutional layer with a deformable
one implies the same cost of adding 2k% output
feature maps.

3.2 Deformable
Convolutional-Recurrent
Network

Given the capability of deformable convolutions to
adapt to geometric transformations, we propose
to employ them instead of regular convolutions in
HTR architectures. To this end, we build upon
two commonly used backbone models for HTR:
the sequence recognition network proposed in [43]
and the model presented in [38]. In the following,
we refer to these models as CRNN and 1D-LSTM,
respectively.

Both models take as input an image represent-
ing a row of handwritten text and consist of three
main components: a ConvNet to extract visual
features from the input image, an RNN which
treats the visual feature map as a sequence and
outputs character probabilities, and a decoding
block to output the final transcription. For train-
ing the models, we maximize the CTC probability
of the output sequence. Thus, additional to textual

'For the sake of simplicity, we do not include biases in this
analysis.
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Fig. 4: General scheme of a convolutional-recurrent HTR system featuring deformable convolutions.

characters, the RNN scores a special blank charac-
ter that means “no other character”. An overview
of the main components of these HTR systems is
shown in Figure 4.

The convolutional part of CRNN has the same
architecture as of VGG-11 [44] up to the sixth
convolutional block, to which we add another con-
volutional block with a 2 x 2 kernel. Additionally,
the receptive field of the 3¢ and 4** max-pooling
layers are changed from squared 2 x 2 into rect-
angular 2 x 1 in order to obtain wider feature
maps reflecting the common height-width ratio of
images of text lines. Note that in this architecture,
all the convolutional layers are deformable.

For the convolutional part of 1D-LSTM, we
stack five blocks containing a deformable convolu-
tion layer with 3 x 3 kernels, a Batch Normaliza-
tion layer, and a LeakyReLU activation function.
The deformable convolution layer of the first block
has 16 filters, and for the others, we increase the
number of filters by 16 at each block. We apply
2 x 2 max-pooling to the output of the first three
blocks and leave the output of the last two blocks
as it is.

In both the proposed variants, the H x W x C'
feature map of the last convolutional layer is used
to obtain a sequence of W (H -C')-elements feature
vectors that serve as input for the recurrent part.
These feature vectors are obtained by concatenat-
ing the C-dimensional vectors on the H rows of the
map and represent regions of the original image,
i.e. the receptive field. Due to the deformable ker-
nels, such receptive fields have irregular shape and
can possibly be non-connected, which allows them
to cover a wider portion of the input and better

adapt to its patterns (see some examples reported
in Figure 5).

For the recurrent part of both the CRNN and
1D-LSTM variants we use Bidirectional LSTMs
(BLSTMs). We stack two BLSTMs layers in the
CRNN variant and five in the 1D-LSTM. At each
timestep, the recurrent part takes as input a fea-
ture vector in the sequence obtained from the last
convolutional feature map, from left to right, and
outputs the probabilities of each character to be
in the corresponding image region.

Finally, in the decoding block, the transcrip-
tion is obtained via greedy decoding, i.e. by con-
catenating the labels with highest probability at
each timestep. Then, all the duplicate labels that
are not separated by the blank token are collapsed
in a single character and all the blank tokens are
removed. The detailed architectures of the pre-
sented CRNN and 1D-LSTM models are reported
in the Appendix.

4 Experimental Evaluation

In this section, we evaluate the suitability of the
proposed method for the HTR task based on
deformable convolutions (DefConvs) when com-
pared to baselines that feature standard convolu-
tions (StdConvs). For clarity, in this section, we
refer to our proposed models as DefConv CRNN
and DefConv 1D-LSTM, and we refer to their
counterparts containing only standard convolu-
tions as StdConv CRNN and StdConv 1D-LSTM,
respectively.
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Fig. 5: Some receptive fields of the HTR network using standard convolutions (in transparent blue) and
deformable convolutions (in transparent red) on modern (top) and historical (bottom) text line images.
Deformable convolutions lead to areas of irregular shape that better adapt to handwritten strokes and
cover a wider portion of the image thanks to the limited amount of additional offsets parameters (best

seen in color).

4.1 Datasets

In our experiments, we first consider the IAM [32]
and the RIMES [3] datasets, which are com-
monly used as benchmark for line-level HTR.
Both datasets feature different handwriting styles
due to the presence of multiple writers and
contain samples with curved text lines. More-
over, to validate the ability to deal with uneven
background and other nuisances typical of aged
manuscripts, we also use two benchmark line-
level historical datasets, namely the ICFHR14 [40]
and ICFHR16 [41] datasets. Finally, to test
the benefits of DefConvs in a pre-training plus
fine-tuning setting for HTR on small historical
manuscripts [2], we consider the recently proposed
Leopardi dataset [10].

IAM. The IAM Handwriting dataset contains
free-layout modern English text lines from the
Lancaster-Oslo/Bergen (LOB) corpus [24], hand-
written by multiple users. Following the commonly
adopted Aachen University splitting?, the dataset
consists of 6 482 training lines, 976 validation lines,

2www.tbluche.com/resources.html

and 2915 test lines. Non-blank characters are 95,
and the line images are 1698 £ 292 pixels wide and
124 + 34 pixels high.

RIMES. The RIMES dataset contains uncon-
strained modern French letters handwritten by
multiple users. In our experiments, we consider
the official train/test splitting consisting of 11 333
training lines and 778 test lines and obtain the val-
idation set by retaining the lines contained in the
10% of the training documents. The total number
of non-blank characters in this dataset is 79, and
the line images width and height are 1637 £ 555
pixels and 130 + 36 pixels, respectively.

ICFHR14. The ICFHR14 dataset features legal
forms and drafts from the Bentham Papers collec-
tion [11], handwritten by the English philosopher
and renovator Jeremy Bentham and his collabo-
rators from mid-18*" century to mid-19*" century.
The dataset was used in a competition for the
ICFHR conference in 2014, from which we use
the indicated splitting® consisting of 9198 lines
for training, 1415 for validation, and 860 for test.

3http://doi.org/10.5281/zenodo.44519
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The total number of non-blank characters in this
dataset is 88, and the line images width and
height are 1401 4 573 pixels and 121 £ 38 pixels,
respectively.

ICFHR16. The ICFHR16 dataset features min-
utes of council meetings from the Ratsprotokolle
collection, handwritten by multiple writers from
1470 to 1805 in old German [41]. The dataset was
used in a competition for the ICFHR conference
in 2016%. In this dataset, there are 8367 lines for
training, 1043 for validation, and 1140 for test.
Non-blank characters in this dataset are 93, and
the images contained are 963 £ 318 pixels wide,
and 123 £ 39 pixels high.

Leopardi. The Leopardi dataset consists of a
small collection of early 19*" Century letters writ-
ten in Italian by Giacomo Leopardi [10]. It con-
tains 1303 training lines, 587 validation lines, and
569 test lines. The total number of non-blank
characters in this dataset is 77, and the images
contained are 1597 +593 pixels wide, and 124 £+ 30
pixels high. This dataset comes with synthetic
data that can be used for pre-training plus fine-
tuning. The synthetic data are divided in two sets:
in one the handwriting resembles that of the origi-
nal author on historical manuscripts, in the other,
the handwriting is modern. The text is obtained
from some Leopardi’s proses, so that the lan-
guage is contemporary to that used in the letters
contained in the original Leopardi dataset. Both
synthetic sets consists of 89068 training lines and
22397 validation lines, and non-blank characters
are 114.

4.2 Implementation Details

As the sole pre-processing steps, we normalize the
text line images between —1 and 1 and rescale
them in height, keeping the original aspect ratio.
In particular, we rescale them to become 60 pixels
high for the CRNN model, 128 for the 1D-LSTM
model. The output of the convolutional compo-
nent is the feature map of its last layer, which is
a 2 x W x 512 tensor in the CRNN model and a
16 x W x 80 tensor in the 1D-LSTM model. These
are collapsed in a sequence of W vectors of 1024
and 1280 elements, respectively. The BLSTMs
that constitute the recurrent part of the models
have 512 hidden units each in the CRNN variant

4http://doi.org/10.5281/zenodo.1164045

Table 1: Results on the IAM dataset and the
RIMES dataset. Note that T and ¥ indicate results
of re-implemented method as from [35] and [38],
respectively, without language model.

IAM RIMES
Method CER WER CER WER
de Buy Wenniger et al. [19] 12.9 40.8 - -
Chen et al. [12] 11.2 34.6 8.3 30.5
Pham et al. [36] 10.8 35.1 6.8 28.5
Bluche and Messina [8]" 10.2 32.9 5.8 19.7
Moysset and Messina [35] 8.9 29.3 4.8 16.4
Zhang et al. [56] 8.5 22.2 - -
Voigtlaender et al. [50]* 83 275 4.0 177
Chowdhury and Vig [13] 8.1 16.7 3.5 9.6
Coquenet et al. [17] 8.0 28.6 4.4 18.0
Bluche [6] 79 246 29 126
Markou et al. [30] 79 239 39 134
Kang et al. [25] 7.6 24.5 - -
Ly et al. [29] 72 229
StdConv 1D-LSTM 7.7 26.3 5.8 25.5
DefConv 1D-LSTM 7.5 26.9 5.2 23.7
StdConv CRNN 7.8 27.8 4.4 16.0
DefConv CRNN 6.8 24.7 4.0 13.7

and 256 in the 1D-LSTM variant. In both cases,
the recurrent layers are separated by a dropout
layer with dropout probability equal to 0.5. The
proposed models have been trained with batch size
equal to 8 for the CRNN variant and 2 for the
1D-LSTM variant using Adam as optimizer with
B1 = 0.9 and By = 0.999, and learning rate equal
to 0.0001 for the CRNN variant and to 0.003 for
the 1D-LSTM variant. We train the models until
the Character Error Rate (CER) on the validation
set stops improving for 20 epochs. Further details
on the models architecture can be found in the
Appendix.

For the pretraining plus fine-tuning experi-
ment on the Leopardi dataset, we use the two
available synthetic sets separately for pre-training
the StdConv and DefConv-based variants. In this
phase, we apply random distortions to alter the
lines appearance and shape, as done in [10]. The
batch size is set to 16 and the learning rate to
0.0001. Also in this case, we stop the training
when the validation CER, does not improve for 20
epochs. After pre-training, we fine-tune on sub-
sets of decreasing number of training lines from
the original Leopardi dataset.


http://doi.org/10.5281/zenodo.1164045

Springer Nature 2021 ETEX template

IAM dataset

S wry 2 Y e ,;\/////»74/2 Y %//’/

Ground Truth he was a little more systematic. To drift

Ground Truth

s e Jte iy Ao fronir tow fo ob
mine seems to know how to do

StdConv 1D-LSTM  he was o litlle more syshmolica. To chif
DefConv 1D-LSTM  he was a little more syslumalics. To diff
StdConv CRNN hI wos o titll morl syslmalics. To chift

DefConv CRNN he war o little more systmatie. To drift

StdConv 1D-LSTM  iave teems to krmour hour to do
DefConv 1D-LSTM  uiove seems to kmow how to do
StdConv CRNN
DefConv CRNN

miare Jeemns tro kwow howr to do
miare seemns tro knwow how to do

RIMES dataset

S
So® cerm SCE TE SIS SAIGTE
Ground Truth POUR CELA QUE JE VOUS SOLICITE

Ground Truth

Ou nom de oRY Po.pcale((eéfaknm Mank:ExoxU54)-
n .

au nom de ORY Pascale (Réfc’rcncc client : EXOXU51).

StdConv 1D-LSTM  Pair CLA IUE JE VUS SOUETE

DefConv 1D-LSTM  POULR CELD SUE JE VOUS SOLIETE
StdConv CRNN
DefConv CRNN

PoliR CELA IVE JE VOUS SOUICITE
POUR CFLA IUE JE VOUS SOLITE

StdConv 1D-LSTM  au nom de OPy Pascale (référence clientiGrOnSN).

DefConv 1D-LSTM  au nom de ORy Pascale (référence clientEXONUS1).
StdConv CRNN
DefConv CRNN

au nom de ORy Poscale (référence clientiFXoXUS1).
au nom de Ory Pascale (référence client : EXOXUS51).

Fig. 6: Qualitative results on the benchmark modern datasets considered.

Table 2: Results on the ICFHR14, ICFHR16, and
Leopardi datasets.

ICFHR14 ICFHR16 Leopardi

Method CER WER CER WER CER WER

StdConv 1D-LSTM 48 153 58 25.5 3.8 138
DefConv 1D-LSTM 3.6 14.3 5.2 23.7 3.4 12.6

StdConv CRNN 3.9 153 55 259 34 134
DefConv CRNN 3.6 139 4.5 21.7 2.8 10.8

4.3 Compared Approaches

We perform a direct comparison of our models
and the corresponding baselines not featuring Def-
Convs on all the considered datasets. For the
baselines, we apply the same design choices and
training strategies as for our proposed DefConv-
based models. Moreover, for the IAM and RIMES
datasets, we report the results of other approaches
in literature that exploit standard convolution
and not perform any data augmentation or lan-
guage model correction. This way, we can analyse
more clearly the effects of the deformable con-
volution with respect to the standard one. In
particular, we consider the approaches proposed
by Pham et al. [36], Voigtlaender et al. [50],
Chen et al. [12], de Buy Wenniger et al. [19],
Moysset and Messina [35], and Bluche [6], which
are based on the MDLSTM-RNN network pro-
posed in [21]. Moreover, we include in the anal-
ysis approaches employing 1D-LSTMs, such as
those presented by Ly et al. [29], which also
exploits self-attention in the convolutional block,
and Markou et al. [30], which features a fully-
connected layer after the recurrent block. We also
consider the fully-convolutional architectured by
Bluche and Messina (8], and Coquenet et al. [17].

Finally, we compare against approaches following
the sequence-to-sequence paradigm, such as those
proposed by Zhang et al. [56], Chowdhury and
Vig [13], and Kang et al. [25], this latter based on
Transformers.

4.4 Results

The obtained results are summarized in Table 1
for the modern datasets and Table 2 for the his-
torical datasets. The performance is expressed in
terms of the commonly used metrics, CER and the
Word Error Rate (WER).

With respect to the considered state-of-the-
art approaches, on the IAM and RIMES datasets,
the DefConv-based models perform competitively.
Compared to the StandarConv-based baselines,
the proposed models allow decreasing both the
CER and the WER. Note that the improvement
in terms of WER is more evident. This sug-
gests that, by capturing more context, DefConv-
based models make character-level errors that are
more concentrated in fewer difficult words. The
improvement is even more evident on the histor-
ical datasets. This indicates that our approach is
more robust to background non-idealities, which
can be observed also from the qualitative results
reported in Figure 6 and Figure 7. This confirms
that DefConvs are more robust to the nuisances
present in the input image since their activations
are more concentrated on the writing.

The two proposed variants share the general
HTR paradigm of convolutional-recurrent text
image representation and CTC-based decoding of
the transcription. The main difference between
the two is in the number of convolutional and
recurrent layers. While 1D-LSTM has a deeper
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Table 3: Fine-tuning results at varying number of fine-tuning lines.

100% 50% 25% 10% 5% 2,5%
Method Pre-training CER WER CER WER CER WER CER WER CER WER CER WER
StdConv 1D-LSTM modern 29 109 44  16.1 7.6  25.5 13.6  40.0 18.1  49.6 90.8  99.4
DefConv 1D-LSTM modern 2.5 9.3 4.2 15.5 5.7 20.6 13.0 38.0 17.1 48.5 26.6 65.5
StdConv CRNN modern 3.1 123 49 190 7.6 274 11.8  38.0 14.8  45.1 20.0 56.4
DefConv CRNN modern 2.6 10.0 3.5 13.7 5.9 21.7 9.8 32.6 12.8 41.0 17.7 52.0
StdConv 1D-LSTM historical 2.5 9.2 4.3  16.1 6.4 224 9.9 307 12.1 375 16.8  47.4
DefConv 1D-LSTM historical 2.3 8.7 3.5 13.4 5.0 18.5 8.7 27.6 9.6 31.4 15.0 44.9
StdConv CRNN historical 2.7 10.8 42 162 6.2 226 9.3 318 11.7  38.0 144 449
DefConv CRNN historical 2.3 8.9 3.5 13.8 51 19.2 7.8 277 9.4 324 13.5 44.0
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Fig. 7: Qualitative results on the historical datasets considered.

recurrent component, CRNN has a deeper convo-
lutional component. The larger number of recur-
rent layers makes the 1D-LSTM comparable or
better than the CRNN variant when both their
convolutional components contain standard con-
volutions. On the other hand, due to the larger
number of convolutional layers in CRNN, this vari-
ant outperforms the other when both are equipped
with DefConvs. In general, the CRNN variant ben-
efits the most from the introduction of DefConvs.
In fact, on average, its CER decreases by 0.7 and
the WER by 2.5, while for the 1D-LSTM variant,
the CER decreases by 0.6 and the WER by 1.0.
This is more evident on the historical datasets,
where the background is noisier due to the aging
of the page support. From this observation, we can

conclude that a larger number of DefConv layers
improves the robustness to background noise.
The results of the pretraining plus fine-tuning
experiments on the Leopardi dataset are reported
in Table 3. It emerges that DefConvs allow bet-
ter exploiting this paradigm, as confirmed by the
comparable to smaller errors obtained with the
variants featuring DefConvs in all settings. More-
over, the performance gap between pre-training on
historical synthetic data and on modern synthetic
data is smaller when using DefConv-based mod-
els. This suggests that models based on DefConvs
can generalize better than their StdConv-based
counterparts and would be more effective for HTR
of small historical manuscript collections, even if
pretrained on general, modern-looking data.
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5 Conclusion

In this work, we investigated the suitability of
deformable convolutions for the HTR task. We
validated our approach on both modern and his-
torical datasets of various languages and historical
periods and demonstrated their superior perfor-
mance with respect to standard convolutions. Due
to the ability to adapt to highly distorted hand-
written strokes and focus on ink pixels while
still capturing more context, DefConv-based HTR
models are effective when dealing with free-layout
documents and allow better exploiting the pre-
training plus fine-tuning paradigm for HTR of
small collections of historical documents. Further
performance improvements could be achieved by
employing a language-specific language model, a
direction which we leave for future investigation.
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Appendix

Models Architectures

We provide the detailed architecture of the pro-
posed DefConv-based HTR models: in Table 1 for
CRNN, in Table 2 for 1D-LSTM. The offsets of the
DefConvs layers are handled in a standard con-
volutional layer before the DefConv, which is in
charge of learning two parameters for each kernel
cell of the DefConv. Note that the output size of
the final Linear layer, ¢ depends on the charset
size of each dataset (including the blank charac-
ter). In particular: ¢ = 96 for the IAM dataset,
¢ = 80 for the RIMES, ¢ = 89 for the ICFHR14,
¢ = 94 for the ICFHR16, and ¢ = 77 for the
Leopardi. Note that, from a practical standpoint,
when the whole dataset is available, ¢ can be cal-
culated directly as the number of the characters
appearing in the dataset (i.e. the charset), plus the
blank character. For new or unknown datasets, the
charset, and thus, ¢, can be estimated e.g., from
large corpora in the same language as the dataset
of interest, but can potentially include as many
characters as the designer wants. In this latter
case, logits corresponding to characters included
in the charset but not appearing in the dataset
of interest will be assigned zero probability. In
the StandardConv-based baselines we used in the
experiments, each pair of offset Convolution layer
and the DefConv layer is replaced by a standard
convolution layer with the same characteristics as
the DefConv layer.

Layer Type Size Kernel Stride Padding
Convolution 18 3x3 (1,1) (1,1)
DefConv 64 3x3 (1,1) (1,1
Batch Normalization — — - -
ReLU — — - -
Max Pooling - 2x2 (2,2 (0, 0)
Dropout (p = 0.2) — - —
Convolution 18 3x3 (1,1) (1, 1)
DefConv 128 3x3 (1,1) (1,1)
Batch Normalization — — —
ReLU — — - —
Max Pooling - 2x2 (2,2 (0, 0)
Dropout (p = 0.2) - - - —
Convolution 18 3x3 (1,1) (1, 1)
DefConv 256 3 x3 (1,1) (1, 1)
Batch Normalization — — -
ReLU - — — —
Convolution 18 3x3 (1,1) (1,1)
DefConv 256 3 x3 (1,1) (1,1)
ReLU — — - —
Max Pooling — 2x2 (2,1) 0,1)
Dropout (p = 0.2) — - — —
Convolution 18 3x3 (1,1) (1,1)
DefConv 512 3x3 (1,1) (1,1)
Batch Normalization — - -
ReLU — — - -
Dropout (p = 0.2) - - - —
Convolution 18 3x3 (1,1 (1, 1)
DefConv 512 3 x3 (1,1) (1, 1)
ReLU — — — —
Max Pooling - 2x2 (2,1 (0, 1)
Dropout (p = 0.2) - - — -
Convolution 8 2x2 (1,1) (0, 0)
DefConv 512 2x2 (1,1)  (0,0)
Batch Normalization — - —
ReLU — — - —
BLSTM 512 - - —
Dropout (p = 0.5) - — - —
BLSTM 512 — — —
Linear c — - —

Table 1: Architecture details for the

variant.

CRNN
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Layer Type Size Kernel Stride Padding

Convolution 18 3x3 (1,1) (1, 1)
DefConv 16 3x3 (1,1) (1,1
Batch Normalization — — - -
LeakyReLU — - - —
Max Pooling - 2x2 (2,2 (0, 0)
Convolution 18 3x3 (1,1) (1,1)
DefConv 32 3x3 (1,1) (1,1
Batch Normalization — — — -
LeakyReLU - - - -
Max Pooling - 2x2 (2,2 (0, 0)
Dropout (p = 0.2) — — — —
Convolution 18 3x3 (1,1) (1,1)
DefConv 48 3x3 (1,1) (1, 1)
Batch Normalization — - - —
LeakyReLU - - - -
Max Pooling - 2x2 (2,2 (0, 0)
Dropout (p = 0.2) — — - —
Convolution 18 3x3 (1,1) (1, 1)
DefConv 64 3x3 (1,1) (1,1
Batch Normalization — — - -
LeakyReLU — - - —
Dropout (p = 0.2) — - - —
Convolution 18 3x3 (1,1) (1,1)
DefConv 80 3x3 (1,1) (1,1)
Batch Normalization — — - -
LeakyReLU - - - -
BLSTM 256 - - —

Dropout (p = 0.5) — — — —

BLSTM 256 - - -

Dropout (p = 0.5) - — - _

BLSTM 256 - - -

Dropout (p = 0.5) — — - -

BLSTM 256 — — -

Dropout (p = 0.5) - — — -

BLSTM 256 - - -

Dropout (p = 0.5) — — — —

Linear c — — —

Table 2: Architecture details for the 1D-LSTM

variant.
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