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Abstract In this paper, we introduce a new Randomised
Hough Transform aimed at improving curve detection
accuracy and robustness, as well as computational
efficiency. Robustness and accuracy improvement is achi-
eved by analytically propagating the errors with image
pixels to the estimated curve parameters. The errors with
the curve parameters are then used to determine the contri-
bution of pixels to the accumulator array. The compu-
tational efficiency is achieved by mapping a set of points
near certain selected seed points to the parameter space
at a time. Statistically determined, the seed points are
points that are most likely located on the curves and that
produce the most accurate curve estimation. Further com-
putational advantage is achieved by performing progress-
ive detection. Examples of detection of lines using the
proposed technique are given in the paper. The concept
can be extended to non-linear curves such as circles and
ellipses.

Keywords Curve detection · Error propagation ·
Hough transform · Line fitting · Voting kernel

Introduction

Detecting geometric primitives in images is one of the
basic tasks of computer vision. The Hough Transform
(HT) [1–3] and its extensions constitute a popular and
robust method for extracting analytic curves. The princi-
pal concept of the HT is to define a mapping between an
image space and a parameter space. Each feature point
(or a set of feature points) in an image is mapped to the
parameter space to vote for the parameters whose associa-
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ted curves pass through the data point(s). The votes for
each curve are accumulated, and after all the points in an
image have been considered, local maxima in the accumu-
lator correspond to the parameters of the detected curves.
The curves detection in the image space therefore become
a peak detection problem in the parameter space. There
are two main limitations with the standard HT and its vari-
ants. First, the straightforward implementation of the HT
is often computationally expensive and memory consum-
ing. This is especially true for curves with several para-
meters, such as an ellipse. Secondly, the standard HT
adopts a top hat strategy to compute the contribution of
each point to a hypothesised line. Specifically, the scheme
assumes all feature points located within a close range of
the hypothesized curve contribute equally to the line. The
accumulator is therefore incremented by a unit for all fea-
ture points. This scheme is inadequate, in that data points
are not all equally reliable. By that, we mean the curve
parameters derived from each feature point or a set of
feature points may carry different uncertainties due to
errors with these feature points. Their contribution to the
accumulator array should vary accordingly.

In view of the two limitations with the HT, in this
paper, we introduce a new probabilistic HT that is aimed
at improving the accuracy and robustness of the HT by
explicitly accounting for the errors with the image pixels
and the errors with the estimated curves parameters. The
proposed method also further improves the computational
efficiency of the conventional probabilistic HT by statisti-
cally and geometrically determining a subset of seed
points most likely located on the curves. These seed points
are used with other randomly selected points in its neigh-
bourhood to determine curve parameters.

This paper is arranged as follows. Section 2 discusses
recent work on the HT that focuses on addressing the two
problems, i.e. accuracy and efficiency. Section 3 discusses
our error propagation techniques, which we use for esti-
mating errors with the estimated curve parameters. Sec-
tion 4 describes the proposed approach for curve detection
with effective error propagation. Experimental results that
have been performed to test this new approach for line
detection are covered in Section 5. Finally, in Section 6
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a discussion and summary of the proposed approach is
given.

Literature research

Recent research in curve detection using the HT focuses
on improving the HT’s computational efficiency and its
estimation accuracy. The methods for improving compu-
tational efficiency can be categorised as non-probabilistic
and probabilistic approaches. For the non-probabilistic
HT, every image pixel is used to calculate the parameters
of the curve. To reduce memory storage and computation
time, most approaches focus on using different tech-
niques, such as window technique or postprocessing of
the accumulator space, to reduce accumulator size. Gerig
and Klein [4,5] considered the problem of rapidly finding
correspondences between image points and parameter
curve points. They suggested a backmapping which links
the image space and the accumulator space. After the
accumulation, each pixel in an image can be linked to the
most evident location in the accumulator space to obtain
the parameters of the curve it is part of. This postpro-
cessing of the accumulator space makes it possible to
track different boundaries in the original picture effec-
tively. Since every image point is mapped to one para-
meter point, memory storage and computation time
reduces significantly. Princen et al. [6] introduced the
Hierarchical Hough Transform (HHT). In the HHT an
image is divided into small subimages (for instance,
16 � 16) and the HT is performed on these subimages.
The accumulation is carried out curve by curve, and when
found each curve is removed from the subimage. Because
of the small subimages, the size of the accumulator array
needed can be kept small, which will lead to an efficient
and robust process. Ben-Tzvi and Sandler [7] presented
the Combinatorial Hough Transform. The algorithm uses
two pixels of the image to calculate the line parameters.
Each pair of two image pixels determine one (�,�) cell in
the (�,�) accumulator array. To limit the number of pixel
pair combinations, the image is segmented (typically in
64 regions), and the voting process is performed segment
by segment.

The probabilistic HT uses random sampling for sel-
ecting only a small subset of the data. Since this method
only uses a small part of image data, it significantly
reduces the computation time and memory storage. In the
Randomized Hough Transform, Xu et al. [8] proposed a
method for extracting curves from binarised edge images.
For a curve expressed by an n parameter equation, they
selected n pixels at random and mapped them into one
point of the parameter space, instead of transforming one
pixel into an n � 1 dimensional hypersurface in the para-
meter space as the standard HT and some of its variants
do. The Probabilistic Hough Transform (PHT) by Kiryati
et al. [9] only uses a small, randomly selected subset of
the edge points in the image. This limited poll is used as
input for the HT. Since the size of the subset providing
a good performance is usually small, the execution time

can be reduced considerably. The Dynamic Combinatorial
Hough Transform (DCHT) presented by Ben et al. [10]
used the (�,�) line parameterisation. All two-point combi-
nations with the seed point, selected randomly from
among feature points, are accumulated into a single value
in a �-histogram. This process is repeated until a redefined
threshold is reached with some seed point in the 1 � D
histogram of � values. In the next stage, when the thres-
hold is obtained, a detected line is removed, and this sam-
pling procedure is continued until all points have been
removed, i.e. lines are detected one by one. If the thres-
hold is not reached, only the seed point is removed from
the feature points, and the sampling procedure is con-
tinued. Because the detected line is removed when a pre-
defined threshold is reached, only part of image points are
considered as seed points. This greatly reduces compu-
tation time.

Leavers [11] generalised the DCHT to the Dynamic
Generalised Hough Transform (DGHT). In the DGHT, a
single connective point is selected and a segment relative
to the connective point is determined. A suitable number
of points in the segment to calculate the curve parameters
are chosen at random, and the solved curve parameters
are accumulated. This random sampling is continued until
a stopping criterion is satisfied. Finally, once a curve (e.g.
a circle or ellipse) has been successfully detected, it is
removed from the image, and curve detection is con-
tinued. Yuen et al. [12] reported the Connective Hough
Transform (ConHT). The algorithm is similar to the
Dynamic Combinatorial Hough Transform, for instance,
in having a seed point, in this case selected at random, to
calculate a one-dimensional � -valued accumulator. The
accumulation, however, is different. In ConHT the
accumulation is performed row by row, to have connectiv-
ity between the accumulated points. Since vertical and
horizontal lines are considered separately there are, in
fact, two accumulators.

Compared to the Standard Hough Transform (SHT),
approaches discussed above improved the computational
performance of HT to various degrees. Unfortunately,
these approaches did not take into account the localisation
and discretisation errors, which are present in the image
edge pixels and affect the accuracy and robustness of
curve detection. Researchers have proposed different
schemes to improve the detection performance of the HT
in relation to localisation error in the image and discretis-
ation error in both the image and the parameter space.

Stephens [13] formulated a variant of the Hough trans-
form in terms of maximum likelihood estimation. The
PHT is defined as the log of the Probability Density Func-
tion (PDF) of the output parameters. A PDF for the fea-
tures is used, which has a uniform component modelling
the correspondence errors and a component that falls off
as a Gaussian with the distance from the curve to model
the measurement errors. For high dimensional Hough
space, the proposed method does have some definite
advantages comparing to the conventional HT, because
the PHT is independent of the size, shape and arrangement
of accumulator cells. While this method yields correct
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propagation of localisation error in terms of a Gaussian
error distribution, usually it is computationally expensive.

Kittler and Palmer [14] described a statistical hypoth-
esis testing approach for HT. The proposed technique
replaces the commonly used top-hat kernel with a smooth
kernel. For each feature point, its contribution to the
accumulator array at a hypothesised cell (�,�) is computed
from the smooth kernel function, which is a function of
the differences between the estimated model parameters
and the hypothesised model parameters. This technique
allows localisation error to be propagated into the para-
meter space.

Breuel [15] described a line detection technique related
to the HT that searches hierarchical subdivisions of the
parameter space using a bounded error model, and thus
avoids some of the problems of the accumulator method.
In this technique, the parameter space is divided into cells
that are tested to determine whether they can contain a
line that passes within the bounded localisation error of a
specified number of pixels. If the cell cannot be ruled out,
the cell is divided and the procedure is repeated recur-
sively. This continues until the cells become sufficiently
small, at which point they are considered to be lines
satisfying the output criterion.

Olson [16,18] modified a formal definition of the HT
that allows the localisation error to be analysed appropri-
ately. Under this definition, it was shown that the mapping
of pixel sets (rather than individual pixels) into the para-
meter space did not, by itself, improve the accuracy or
efficiency of curve detection. He then considered a new
method where the HT is decomposed into several con-
strained subproblems, each of which examines a subset of
the parameter space by considering only those pixel sets
that include some distinguished set of pixels. The examin-
ation of these subproblems allows, first, to propagate the
localisation error efficiently and accurately into the para-
meter space, and secondly, to use randomisation tech-
niques to reduce the complexity of curve detection, while
maintaining a low probability of failure. However, the
error propagation applied in his work is (a) heuristic, (b)
not systematic, and (c) the voting kernel is a top-hat func-
tion instead of continuous function.

Ji and Haralick [17] introduced a Bayesian updating
scheme that systematically ties the uncertainties computed
for each point to its contribution. The contribution of each
point to a (�,�) is proportional to its likelihood. The pro-
posed scheme is based on an analytical propagation of
input error. Their results showed that the uncertainty of a
feature point depends upon (a) the input perturbation, (b)
its relative spatial location to the Hough coordinate sys-
tem, (c) the edge detector scheme, and (d) the line rep-
resentation scheme. Their work, however, is compu-
tationally intense, since it needs to consider each feature
point.

Error propagation for curve-fitting

Error propagation for a computer vision algorithm is con-
cerned with quantitatively characterising the output per-

turbation as a function of input perturbation and the algor-
ithm. Error propagation can be performed analytically or
numerically or even geometrically [18]. We introduce an
analytic approach here.

For a computer vision algorithm, the relationships
between its input (either the ideal input vector X or the
observed vector X̂) and the output quantity it computes
(either the ideal parameter vector � or the observed para-
meter vector �̂) can be grouped into three categories:
explicit relationship, implicit relationship, and neither
explicitly nor implicitly related through an analytic form.
In many cases, the relationship is implicit. �̂ and X̂ are
not related through an explicit function but through a non-
linear optimisation function F, i.e. �̂ is determined by
minimising F(X̂, �̂).

For most vision algorithms, image pixels that partici-
pate in the computation are usually edge points or corner
points. Most feature points are detected via a curve-fitting
process (e.g. line fitting for corners and ellipse fitting for
ellipse points). Least-squares curve fitting refers to
determining the free parameters � of an analytical curve
F(x, y, �) = 0, such that the curve is the best fit to a set
of points (x̂n, ŷn), where n = 1, %, N, in the least-squares
sense. A best fit is defined as a fit that minimises the sum
of squares of the geometric distances as defined by

�2 = �N
n=1

F2(x̂n, ŷn, �)

�∂F(x̂n, ŷn, �)
∂xn

�2

+ �∂F(x̂n, ŷn, �)
∂yn

�2
(1)

Error propagation for curve fitting here relates the per-
turbations of points (x̂n, ŷn) to the perturbation of �̂,
resulted from a least-squares fitting procedure. Let �	X

and �	� be the covariance matrices of the observed points
and the estimated curve parameters. Based on Haralick’s
covariance propagation theory [19], we have

�	� = ��∂g
∂��t��1 �∂g

∂X�t

�	X �∂g
∂X� �∂g

∂���1

(2)

where g(X, �) is defined as

g =
∂�2

∂�
(3)

From Eq. (3) and using F(xn, yn, �) = 0, we have

∂g
∂�

= 2 �N
n=1

�∂Fn

∂�� �∂Fn

∂��t

�∂Fn

∂xn
�2

+ �∂Fn

∂yn
�2

Plugging
∂g
∂�

into Eq. (2) yields

�	� = 2
2 ��∂g
∂��t��1

(4)

where 
2 represents the image error. Detailed derivations
may be found elsewhere [20,21].
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Error propagation for least-squares line fitting

Given a line expressed as

F(xn, yn, �) = xn cos� + yn sin� � � (5)

a least-squares line fitting amounts to finding the line para-
meter � = (�, �) that best fits a set of points (x̂n, ŷn), n =
1, 2, %, N. Error propagation is concerned with estimat-
ing the perturbation of �̂, a least-square estimate of �
given the perturbation with X̂. From Eq. (1), �̂ is obtained
by minimising

�2 = �N
n=1

(x̂n cos�̂ + ŷn sin�̂ � �̂)2 (6)

Hence,
∂g
∂�

can be computed from Eqs (4) and (5) as fol-

lows:

∂g
∂�

= 2 �N
n=1

� k2
n

�kn

�kn

1 �
where kn = xnsin� � yn cos�. Let

uk =
�N

n=1 kn

N
(7)

and

S2
k = �N

n=1

(kn � uk)2 (8)

We have 1

�	� = 
2

� N
�kn

�kn

�k2
n
�

N�k2
n � �kn �kn

= 
2�
1
S2

k

�k

S2
k

�k

S2
k

1
N

+
�2

k

S2
k

� (9)

Equation (9) offers insight into the factors that affect
the quality of line fitting. Specifically, kn can be inter-
preted as the signed distance between a point (xn, yn) and
the point on the line closest to the origin. Hence, S2

k rep-
resents the spread of points along the line. From Eq. (9),
it is clear that with a large S2

k (i.e. points with large spread
along the line) we can obtain better fit as indicated with
smaller trace of the covariance matrix. In addition, �k is
the mean position of the points along the line. It acts like
a moment arm. A large �k (i.e. a longer moment arm) can
induce more variance to the estimated �̂. We can conclude
that the error with the estimated line parameters not only
depends upon input pixel noise 
2, the number of points
that participate in the fitting, but also depends upon the

1 Note k2
n � kn�k = (kn � �k)2 and �k2

n = S2
k + N�2

k.

spread of points (S2
k) and their centroid �k. Of particular

interest is the centroid of the points. The closer the points
centroid to the origin, the smaller the error is. This implies
that we can translate the coordinate system tominimise
�2

k. In other words, coordinate system matters for the error
of �. Figure 1 shows result of the error of the fitted line
parameters as a function of the number points used and
the average distance between points. For the same average
distance between two sample pixels on the line, the
greater is the number of sample points, the less is the
error. For the same number of sample points, the greater
is the average distance between two sample pixels on the
line, the less is the error.

Error propagation for circle fitting

A circle can be represented by F(x, y, �) = (x �
a)2 + (y � b)2 � R2 = 0, where (a, b) is the centre of the

circle and R is the radius of the circle. Given point scatter
X̂ = (x̂n, ŷn), n = 1, %, N, the least squares fitting amounts
to estimating the parameter �̂ = (â, b̂, R̂) by minimising
the sum of squares of geometric distances as shown in
Eq. (1).

Given F(x, y, �) as defined above, we have

∂Fn

∂�
= �

∂Fn

∂a

∂Fn

∂b

∂Fn

∂R

� = �2 �
xn � a

yn � b

R �
Hence,

∂g
∂�

=
2
R2 �N

n=1 �
w2

n wnzn Rwn

wnzn z2
n Rzn

Rwn Rzn R2 � (10)

Fig. 1 Errors of the fitted line parameters as a function of the number of
pixels (N) and the average distance between them
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where wn = xn � a and zn = yn � b. In the polar coordi-
nate system, a circle is represented as

xn = a + Rcos�n

yn = b + Rsin�n

where �n is the direction from circle centre to point

(xn, yn).
∂g
∂�

can therefore be re-expressed as

∂g
∂�

= 2 ��cos2�n �sin�n cos�n �cos�n

�sin �n cos�n �sin2 �n �sin �n

�cos �n �sin �n N � (11)

Substituting Eq. (11) into (4) yields the covariance matrix
of the circle parameters:

�	� = 
2 ��cos2�n �sin�n cos�n �cos�n

�sin �n cos�n �sin2 �n �sin �n

�cos �n �sin �n N �
�1

(12)

We can conclude from the above equation that (1) the
variances of the estimated circle parameters do not depend
upon the circle radius, and (2) the variance of the esti-
mated circle radius depends only upon the number of
points used and their spatial distribution (the orientation
of each point (�n) and the spread of points) via the first
2 � 2 submatrix as illustrated in Fig. 2.

For circle fitting, the error is expressed by the trace of
the covariance matrix of Eq. (12). Figure 2 shows the error
of the fitted circle parameters with different arc ranges
and different pixel numbers. From this figure we find that
error decreases with the increase of the number of sample
points used for circle fitting. This figure also shows that
given the same number of pixels, if sample pixels are

Fig. 2 Errors of the fitted circle parameters as a function of the number
of pixels (N) and the range of arc segment occupied by the fitting points

selected over a larger arc segment of a circle less error
will be obtained. This means that if pixels have a large
spread on the circle, we can obtain better fit.

In summary, in this section we introduce an analytical
method for propagating input errors to output parameters,
estimated via a least-square fitting procedure. We present
results from applying the error propagation method to
various curve fitting problems. Compared with the exist-
ing error propagation methods such as that of Olson [18],
ours has the following advantages:

� It is systematic.
� It handles simple and complex curves.
� It provides insights.
� It automatically adapts to image noise characteristics.

In the sections to follow, we will show how the error
propagation procedure can be applied to the HT.

Overview of proposed methods

In this section we describe the improvements we made
for curve detection. The proposed error propagation tech-
niques are used both to estimate the uncertainty of the
curve parameters and to determine a subset of seed points
that are most likely located on the curves.

Seed point selection

The seeds points are the pixels that are most likely located
on the curve and that produce the most accurate curve
parameter estimation. By choosing the seed points, only
a small part of image pixels near the selected seed points
will be examined to determine their contribution to the
accumulator array. In the paragraphs that follows, we con-
sider for both line and circles.

Line detection

The idea of selecting seed points to reduce computation
is not new. Several methods [10–12,18] have been pro-
posed in this regard. The seed points in these methods are
either chosen randomly or chosen for every pixel. For the
image with many pixels, this is time consuming. If we
can find the best seed pixel on the line before we calculate
the parameters for this line, we do not need to calculate
line parameters for every pixel. Instead, we can simply
use the most likely seed pixels to calculate the parameters
for this curve. This will reduce the computation time gre-
atly. For line detection, a seed point is the one that is most
likely located on a line and that yields the most accurate
detection. Our study shows that the end points of a line
segment should be chosen as the seed points. This is
because end points maximise the total range between
points on the line segment and the seed points, which
leads to smaller errors with the estimated line parameters



60

Fig. 3 Line 1 and line 2 amid 2% of noise

as shown in Eq. (9) and Fig. 1. This is further demon-
strated empirically as shown in Fig. 3. Figure 3 shows an
example image with two line segments amid 2% random
noise. A and C are two end points of Line 1 and B is the
midpoint of the line. Figure 4 plots the 1D accumulator
for � for line 1 in Fig. 3 for different seed points along
the line. All peaks correspond to the line segment Line 1
in Fig. 3. For seed pixels located at the ends of the line
segment (points A & C), the peaks are much sharper than
in the middle part of the segment. In fact, the further a
point is from the midpoint of the line, the sharper is the
peak in the accumulator. This means that choosing the
end points of the line-segment as the seed points will pro-
duce more accurate detection. We can determine the end
points of a line by checking the connectivity around a

Fig. 4 One dimensional HT accumulator of line 1 in Fig. 3 for different
seed points. Using end points (A and C) as the seed points leads to better
line detection (sharper peak). Here, lines detection is performed with the
standard HT

pixel. If a pixel connects to only one other pixel or it is
an arc point where two line segments meet and form a
vertex, we think this pixel probably is an end point of
a line.

Circle detection

For circle detection, the best-seed pixels are are found to
be such two pixels that their distance equals to the hypoth-
esised diameter of the circle. The rational remains the
same as for seed selection for line detection since the two
points that are diametrically point maximise their total
range to other points on the circles, which lead to more
accuracy with the estimated circle parameters as demon-
strated by Eq. (12) and Fig. 2. If a pair of pixels we choose
are far enough and have close tangent value, we assume
these two pixels are the pixels at the end of the diameter
line of the circle and then we use these two pixels as the
seed pixels. We can easily determine three parameters of
the circle by using these two seed pixels. Then we only
need to check if there are enough pixels in a certain range,
which depends upon the length and orientation of the line
segment connecting the two seed pixels, to support this
circle. Statistically, the choice of the two pixels will also
lead to better estimation accuracy of the circle parameters
as indicated in Eq. (12) and Fig. 2, since the two seed
points are maximally separated, and thus increase the
average arc segment length.

Error propagation

The noise in the images may result from a variety of
sources. The accumulated effect of this noise induces a
locational error to each pixel in the image. In the sub-
sequent vision algorithm, the locational error will be car-
ried over through each vision step up to the final result,
so that the output of a vision algorithm is often uncertain.
Development of the best curve detection algorithm
requires an understanding of how the uncertainty due to
perturbation affecting the input images propagates through
different algorithmic steps, and results in a perturbation
on the output measurements. This means that we must
propagate image error through each intermediate vision
step up to the final output to characterise the performance
of the vision algorithm. The following subsections
describe how to use the error propagation technique
described in Section 3 to calculate the errors for line fitting
and circle fitting.

Line detection

After we select the seed pixel we only need to pick
another pixel to calculate the parameters of the line that
passes through the pair. Conventionally, the parameters of
the line receive the same vote for any two points. Here,
we want to tie the weight to the uncertainty of the para-
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meters of the line. Assuming (x0, y0) is the seed pixel and
(x1, y1) the other pixel, the errors with (x0, y0) and
(x1, y1) will propagate to the line parameters they deter-
mine. From Eqs (7)–(9) we have

�k = (k0 + k1)/2

S2
k = (k0 � �k)2 + (k1 � �k)2 = (k0 � k1)2/2

�	� = 
2 �
2

(k0 � k1)2

k0 + k1

(k0 � k1)2

k0 + k1

(k0 � k1)2

1
2

+
(k0 + k1)2

2(k0 � k1)2� (13)

where k0 = x0 sin� � y0 cos� and k1 = x1 sin� � y1 cos�.
k0, k1, �k and S2

k are defined in Section 3.1. Substituting
those parameters into Eq. (9) yields the covariance matrix
�	� of the line parameters. Figure 5 shows a 1D accumu-
lator array for � for the lines in Fig. 3 with the error propa-
gation. Figure 5(a) shows a case where a noise pixel was
used as the seed pixel, Fig. 5(b) shows a case where a
pixel on Line 1 was used as the seed pixel, and Fig. 5(c)
shows a case where a pixel on Line 2 was used as the
seed pixel. Note that peaks are present where appropriate,
but that no peak is present when a noise pixel was used
as the seed pixel. Comparing Fig. 5(b) with Fig. 4(a) (the
same seed pixel), it can be seen that the peak is sharper
when error propagation applied. This demonstrates
improvement brought out by error propagation procedure.

Circle detection

Given a pair of seed pixels (x0, y0) and (x1, y1) and ran-
domly select another one (x2, y2), we can use the follow-
ing formula to calculate the errors with the parameters of
the circle determined by the three pixels:

cos(�n) =
xn � a

R

Fig. 5 One dimensional HT accumulator for line 1 in Fig. 3 for different
seed points. Here, lines detection is performed with the new HT that
incorporates error propagation

sin(�n) =
yn � b

R
(14)

�	� = 
2 �
�cos2�n �sin�n cos�n �cos�n

�sin�n cos�n �sin2�n �sin�n

�cos�n �sin�n 3
�

�1

where n = 0, 1, 2.

Voting kernel

Like many other researchers, Olson [18] used a top-hat
voting kernel in his research work on curve detection.
Specifically, the top-hat scheme assumes all feature points
located within a close range of the hypothesised line con-
tribute equally to the line. The accumulator is therefore
incremented by a unit for all feature points. This scheme
is inadequate in that data points are not all equally
reliable. In this paper, we used a voting kernel that is a
smooth function of differences in parameter values for
updating accumulator. Kittler and Palmer [14] have shown
that the Hough algorithm works better if the voting kernel
is a smooth function of differences in parameter values.
However, unlike their scheme, which is rather complex
and computationally intense, our scheme is much simpler
and still robust. Assume �̂, a curve parameter vector esti-
mated from a set of feature points, is distributed as �̂�
N(�, �	�), where � is a quantised parameter vector.

Given �̂ and the covariance matrix of the estimated curve
parameters �	�, which can be calculated from Eqs (9) or
(12) for line and circle, respectively, we use the following
function to calculate voting kernel P(�̂��), where � is a
quantised parameter vector. With this definition, the con-
tributions of the pixels that give rise to �̂ to � can be
determined from its likelihood, i.e.

P(�̂��) = exp�0.5(�̂��)t��1
	�(�̂��) (15)

It is clear from Eq. (15) that, given each �̂ (estimated
from a set of points) and its covariance matrix �	� esti-
mated via our error propagation, the bin for a � is updated
based on P(�̂��), i.e. its likelihood. The further away
� from �̂, the smaller the likelihood is and the less contri-
bution � receives from the point as shown in Fig. 6.

Fig. 6 Illustration of the voting kernel function
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Deterministic algorithms

Based on the discussion above, the algorithms of curve
detection technique for a line and circle can be described
as follows. The input image in this research is edge image,
in which black pixels represent background and white pix-
els are image pixels.

Line detection

1. Detect a seed pixel from the input edge pixels.
2. Randomly find another edge pixel and pair it with the

seed pixel.
3. Calculate the line parameters �̂ (determined by the pair

of pixels) and determine the contribution of the pair of
pixels to other quantised line parameters � using Eq.
(3), with the covariance matrix determined by Eq. (1),
and update the accumulator accordingly.

4. Repeat until all edge pixels have been used.
5. Search the accumulator array to identify the parameters

with the maximum vote. If the maximum vote exceeds
a predefined threshold, a line primitive has been
detected.

6. Remove the pixels associated with the detected line
segment from input image.

7. Start over again, with the remaining image.

Circle detection

1. Detect two seed pixels from the input edge pixels, that
have close tangent values.

2. Randomly select another edge pixel whose distance to
the centre of the two seed points is approximately half
the distance between the two seed points.

3. Calculate the circle parameters (a, b, R) determined by
the three pixels.

4. Determine the contribution of the three pixels to the
circle parameters using Eqs (14) and (15), and update
the accumulator accordingly.

5. Repeat until all edge pixels have been used.
6. Search the accumulator array to identify the circle

parameters with the maximum vote. If the maximum
vote exceeds a threshold, a circle has been detected.
Add it to the output list.

7. Remove the pixels associated with the detected circle
from input image.

8. Start over again, with the remaining image.

Experimental results

The proposed scheme has been applied to synthetic and
real images for line detection to test its performance. All
experiments were carried out with the following settings.
A 900-bin accumulator was used for all images. We also

Fig. 7 Synthetic images of line segments contaminated with image noise

Fig. 8 Detected line segments from images in Fig.7

consider other quantisation levels. Considering both com-
putational time and accuracy, 900-bin accumulator is the
best choice. Pixels within a three-pixel-wide corridor were
assigned to a line. For each line that surpasses the detec-
tion threshold in each subproblem, only the parameters at
which the most votes occurred were kept. The detected
line segment had no gaps larger than three pixels long.
The minimum accepted line length was chosen to reduce
the false positives based on the noise level. The higher
the noise level is, the larger the minimum accepted line
length. Figure 7 shows two synthetic images that were
used to test the line detection algorithm. The resolution
of both images was 256, both horizontally and vertically.
In Fig. 7(a), two lines were amid 5% noise, while Fig.
7(b) contains many line segments of different orientations
and lengths amid 2% of noise. Figure 8 shows line seg-
ments that were detected. All of the lines were found in
the image. Figure 9 shows some real world images that
were used for line detection. Those images have different
size (640 � 480, 640 � 480, 320 � 240, 531 � 352, 250
� 250 and 531 � 354). All of the long lines in the images
were found. However, some short lines and/or curve lines
were not found. The reason for this is that we set the
minimum accepted line length to a proper value so that
we did not have too many false positives. Figure 10 show
results of applying our algorithm for circle detection.

For comparison, we also apply our technique and the
standard HT to some real images of different qualities.
The results are summarized in Figs 11 and 12. We can
conclude from these figures that when the quality of the
image is good as shown in Fig. 11, two techniques have
comparable detection performance, both detecting most of
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Fig. 9 Various real images with the detected line segments superimposed
on the original images

the major lines. However, ours appear to produce more
accurate detection. However, when the image quality is
poor as shown in Fig. 12, our technique outperforms the
basic HT in both detection accuracy and robustness. The
standard HT failed to detect some lines and the detected

Fig. 11 Results of our algorithm (a) versus that of the
standard HT (b) for a good quality image. Ours appears to
produce more accurate line detection than the basic HT

Fig. 12 Results of our algorithm (a) versus that of the
standard HT (b) for a low quality image. The standard
HT failed to detect some lines and the detected lines are
not as accurate

Fig. 10 A real image with the detected circles superimposed on the
original images

lines are not as accurate. This is because image errors are
explicitly modeled and accounted for by our technique.

Conclusions

In this paper, we present a new curve detection method
aimed at improving accuracy and robustness as well as
computational efficiency. The essence of our approach lies
in the proposed analytic error propagation technique. It
allows to quantitatively determine the contribution of fea-
ture points to the curve parameters, and to statistically
select seed pixels that most likely are located on the
curves and that produce the best curve estimation.
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Specifically, robustness and accuracy improvement is ach-
ieved by analytically propagating the errors with image
pixels to the estimated curve parameters. The errors with
the curve parameters are then used to determine the contri-
bution of pixels to the accumulator array. The compu-
tational efficiency is achieved by choosing seed pixels,
and by performing progressive detection. We have
presented detailed step-by-step implementation of our
method for line and circle detection. The performance of
our method is experimentally studied for the detection of
lines and circles. Despite the use of the seed points and
random sampling feature points, our technique is still
rather computationally involved, due to the need to per-
forming error propagation for each feature point. The
experimental results, on the other hand, show that our
technique is especially robust with image that has low sig-
nal to noise ratio. The concept also can be applied for
other curves, such as ellipse.
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Originality and contribution

This paper introduces a new HT technique for curve detection. The
originality of the research lies in the analytic method for error
propagation for curve-fitting and the use of the error propagation
technique to improve the HT accuracy, robustness, as well as com-
putational efficiency. Specifically, the positional errors with the fea-
ture points are explicitly accounted for by analytically propagating
the errors to the estimated curve parameters, which are used, in
turn, to determine the contribution of feature points to curve para-
meters. The errors with the curve parameters are also used to deter-
mine best seed points to select. Robust, accurate, and efficient curve
detection is important for many computer vision and photogram-
metry applications.


