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Abstract The problem considered in this paper is how to
select the feature points (in practice, small image patches
are used) in an image from an image sequence, such that
they can be tracked adequately further through the se-
quence. Usually, the tracking is performed by some sort
of local search method looking for a similar patch in the
next image in the sequence. Therefore, it would be useful
if we could estimate ‘‘the size of the convergence region’’
for each image patch. There is a smaller chance of error
when calculating the displacement for an image patch
with a large convergence region than for an image patch
with a small convergence region. Consequently, the size
of the convergence region can be used as a proper
goodness measure for a feature point. For the standard
Kanade-Lucas-Tomasi (KLT) tracking method, we
propose a simple and fast way to approximate the con-
vergence region for an image patch. In the experimental
part, we test our hypothesis on a large set of real data.

Keywords Feature (interest) point selection Æ Motion
estimation Æ Visual tracking Æ Optical flow Æ
Convergence region Æ Robustness

Introduction

The term ‘‘feature point’’ denotes a point in an image
that is sufficiently different from its neighbours (for

example, L-corner, T-junction, a white dot on black
background, etc.). A feature point has a well defined
position and this is useful in many applications [17]. An
important example is the simple ‘‘optical flow’’ problem
[10, 2] where the task is to find, for a feature point from
one image, the corresponding point in the next image in
a sequence. Usually, it is assumed that some small
neighbourhood is also moving together with the point
and, therefore, a small image patch around the point can
be considered. When the displacements are small, the
Kanade-Lucas-Tomasi (KLT) algorithm [15, 22] is
commonly used to search for a similar patch in the next
image. Furthermore, it is often useful to track the fea-
ture points further through the sequence. The positions
of the tracked feature points are used, for example, in
people motion or in the ‘‘structure and motion’’ algo-
rithms [22, 1, 9]. There are various ways for detecting the
errors that occur during tracking. The task of ‘‘moni-
toring’’, i.e. checking whether the points found from a
sequence still look similar to the original feature point, is
discussed in [21, 18] and elaborated further in [6, 11].
Furthermore, the false measurements can also be
detected on a higher level of the processing chain, for
example, when the measurements are combined into 3D
structure and motion estimates (see [9]).

The problem considered in this paper is how to select
the feature points from the initial image that are less
likely to lead to false measurements (and are, therefore,
suitable for tracking). Feature point selection strategies
have been previously analysed and evaluated many
times [17]. However, selection in the tracking context
was not often analysed previously. In [23], there is a
tracking evaluation experiment for several corner
detectors. In [21], the Harris corner operator [8] is
analysed in conjunction with the accuracy of the
matching (summarised in Sect. 2). Standard feature
point operators (usually corner detectors) give a
numerical value, the so-called interest response (IR), at
a pixel location based on the intensity values from the
local image neighbourhood. The points with high IR are
the possible feature point candidates. The IR of the
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standard feature point detectors is related to the accu-
racy of the matching. However, tracking also involves
some other factors. The practical tracking is performed
by some sort of local search which might not converge
to the correct solution. Furthermore, similar structures
in the neighbourhood can lead to mismatching that is
hard to detect. With larger movements in the image (low
temporal sampling), we can expect the mismatching
problem to occur often. We propose an additional
goodness measure, ‘‘the size of the convergence region’’
(SCR), for the selected points, which can help to identify
and discard the point candidates that are likely to be
unreliable. In Sect. 3, for the KLT tracker, we propose a
simple method for estimating the SCR for a feature
point (initially presented in [25]). We show how this can
improve the standard feature point detectors. We use
two common, simple and fast corner detectors: the
Harris corner operator (many times evaluated to be the
best) and the recent, often used SUSAN corner detector
[19] (which is based on quite different principles). For
the selected corners, we estimate the SCR and show that
the points with small SCR are usually the points that are
erroneously tracked. For evaluation purposes, we use a
large set of data with ground truth. In Sect. 5.2, we
discuss how simple image blurring can also be used to
avoid textured regions, which is similar to our ap-
proach, and compare this to our method. In this paper,
we consider the KLT tracker. However, the main idea
could be useful, if appropriately applied, for numerous
other tracking/matching schemes.

Image motion

The simplest and most often used approach for calcu-
lating the movement of a small image patch from an
image, I0, is to search the next image, I1, for a patch that
minimises the sum of squared differences [10, 2]:

J ~d
� �

¼
ZZ

W
I1 ~ximð Þ � I0 ~xim þ~d

� �h i2
d~xim ð1Þ

where W is the window of the feature (interest) point
under consideration, ~xim ¼ xim yim½ �T presents
the 2D position in the image plane and ~d is the dis-
placement between the two frames. In practice, the
integration simply denotes the summing over all of the
image pixels within the patch.

If we use a truncated Taylor expansion approximation
inEq. 1, we can find a~d thatminimises the sumof squared
differences by solving:

Z~d ¼~e, with ð2Þ

Z ¼
ZZ

W

g2x gxgy

gxgy g2y

� �
d~xim and ð3Þ

~e ¼
ZZ

W
I0 � I1ð Þ gx gy½ �Td~xim ð4Þ

Here, gx ~ximð Þ and gy ~ximð Þ are the derivatives of I0 in the
xim and yim directions at the image point ~xim. The
dependence on~xim is left out for simplicity.

The Lucas-Kanade procedure [15, 14] minimises
Eq. 1 iteratively. The solution of the linearised system in
Eq. 2 is used to warp the new image, I1, and the pro-
cedure is repeated. This can be written as:

~d k þ 1ð Þ ¼~d kð Þ þ Z�1~e kð Þ, with~d 0ð Þ ¼ 0 ð5Þ

where ~d kð Þ represents the estimated displacement at the
k-th iteration. Equation 4 with the image I1 warped
using ~d kð Þ gives us ~e kð Þ (linear interpolation is usually
used). The algorithm described is the Gauss-Newton
minimisation procedure (see [5], Chapter 6).

The image derivatives and the matrix Z are calculated
only once [7]. System 2 is solved in each iteration using
the same matrix Z. Therefore, the matrix Z should be
both above the noise level and well conditioned. This
means that the eigenvalues, k1 and k2, of Z should be
large and they should not differ by several orders of
magnitude. Since the pixels have a maximum value, the
greater eigenvalue is bounded. In conclusion, an image
patch can be accepted if, for some predefined k, we have:

IRHarris ¼ min k1; k2ð Þ > k ð6Þ

We use the presented formulation as in [21]. The
approximation, Zj j � atrace Zð Þ2, from [8] is avoided be-
cause of the additional parameter, a. The described point
selection and tracking is known as the KLT-tracker.

Estimating the convergence region

We denote the true displacement by d�
!

and define
~x kð Þ ¼ d�

!�~d kð Þ. In the ideal case (no noise and no
deformations), the minimised function 1 can be locally
approximated by J ~xð Þ �~xT Z~x. This is another way to
interpret the Harris operator given by Eq. 6. Here, we
introduce the notion of ‘‘the convergence region’’ for a
selected point, which is more global in nature.

The iteration in Eq. 5 can be rewritten as:

~x k þ 1ð Þ ¼~x kð Þ � Z�1~e, with~x 0ð Þ ¼ d�
! ð7Þ

First, we define V ~xð Þ ¼ ~xk k and successful tracking
would mean that:

V ~x kð Þð Þ ¼ ~x kð Þk k ! 0 for k !1 ð8Þ

The convergence region is the domain where, for each
initial displacement ~x, the tracking process converges.
The size of this region would be an appropriate criterion
to define how well the feature point could be tracked.

Suppose that we can find a domain, S, with the fol-
lowing properties:

8~x kð Þ 2 S, _V ~x kð Þð Þ\0 and~x k þ 1ð Þ 2 S ð9Þ

with _V ~x kð Þð Þ ¼ V ~x k þ 1ð Þð Þ � V ~x kð Þð Þ. Convergence is
guaranteed within S since what we state is simply that
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we want to always move closer to the solution. Our
function, V ~xð Þ, is symmetric and monotonously increas-
ingwith ~xk k. If we find the point~xC closest to the origin for
which _V ~xCð Þ>0, then the region ~xk k\ ~xCk k will have the
mentioned properties. The distance ~xCk k can be used to
describe the size of the estimated convergence region and,
consequently, it is a proper feature point goodness mea-
sure, denoted further as IRSCR.

In Fig. 1, we present an illustrative example. We se-
lected 30 ‘‘corner-like’’ feature points (7·7-pixel image
patches). After a circular camera movement, some of the
feature points were erroneously tracked (black boxes).
From the scatter diagram, we observe that the radius of
the estimated convergence region (x-axis, IRSCR in pix-
els) discriminates the well tracked and the lost feature
points. We also see that the smaller eigenvalue does not
carry this information (y-axis, relative IRHarris value
with respect to the largest).

The theory presented here is inspired by the non-
linear system analysis methods [24] and, in this sense,
V ~xð Þ corresponds to the Lyapunov function. The func-
tion, V, and its derivative, _V , are highly non-linear and
depend on the local neighbourhood of a feature point.
An example is given in Fig. 2. The function _V is pre-

sented using a 0.5-pixel grid. The circle presents the
estimated convergence region.

Implementation

In the practical implementation, for each feature point,
we compute _V ~xð Þ for some discrete displacements
around the feature point until we find the first _V ~xð Þ>0.
We can use the following algorithm:

Input: I0,gx,gy,W,Z�1,SS (an array of 2D displace-
ments, ~d, with non-decreasing ~d

���
���; we use eight points

(angular sampling every 45�) on concentric circles with
radii increasing in 0.5-pixel steps starting from the initial
0.5-pixel radius)

1. ~x 0ð Þ ¼ d�
! ¼
� �

SS ið Þ (initially i=0)
2. Calculate ~e (window W from I1 simulated using

W shifted for d�
!

from I0)
3. ~x 1ð Þ ¼~x 0ð Þ � Z�1~e (one Lucas-Kanade iteration step)

4. If ~x 1ð Þk k> ~x 0ð Þk k (equivalent to _V>0) return
~xCk k ¼ ~x 0ð Þk k else {i=i+1; go to 1}

Output: IRSCR ¼ ~xCk k
The computational cost for a feature point is com-

parable to the computations needed for calculating the
movement of the point. In our case, the average number
of iterations (that are similar to the KLT iterations) is

Fig. 1 An illustrative experiment; 30 points are selected and
tracked. IRHarris and the new IRSCR for the points is presented in
the scatter diagram (the black squares are the erroneously tracked
points)

Fig. 2 Feature point 4 (zoomed
in), function _V in the
neighbourhood of the point and
the estimated SCR (smallest
circular area where _V\0)
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8·2·average ~xCk k. The 8 is due to the 45� angular
sampling step and the 2 is because of the 0.5-pixel
sampling step. Increasing the number of angular or
radial sampling steps does not lead to significant changes
in the results we present in the next section (Sect. 5)
while decreasing the number of sampling steps degrades
the results. Furthermore, in our experiments, the algo-
rithm was modified to stop when we find _V>0 for the
third time (step 4 from above is modified) and for
IRSCR, we used the average of the three distances, ~xCk k.
This leads to some improvement since isolated points
having _V>0 are suppressed.

Experiments

The initial frames from the image sequences we used are
presented in Fig. 3. The sequences are from the CMU
VASC Image Database. The ‘‘marbled-block’’ sequence
used in [16] is added (complex motion; both camera and
an object are moving). The sequences exhibit a variety of
camera movements, object textures and scene depth
variations. We used 2,143 ‘‘corner-like’’ points for
tracking. The chosen sequences have very small dis-
placements between the consecutive frames, therefore, it
was possible to track the feature points (7·7-pixel pat-
ches) for some short time. This was used as the ground
truth. To generate more difficult situations and introduce
some errors, we start again from the initial frame and use
the KLT tracker with 20 fixed iterations to calculate the
displacements between the initial and i-th frame in the
sequence (skipping the frames in between). We choose i
so that, for each sequence, the displacement is errone-
ously calculated for at least 20% of the feature points.

Improving the Harris and SUSAN corner selection

First, we selected ‘‘corner-like’’ points having IRHarris

>0.05. From the initial 2,143 points, 754 lead to false
measurements. We selected the same number of feature
points using the SUSAN corner detector and got 876
‘‘bad’’ points. The worse performance of the SUSAN
detector in the tracking context is in agreement with [23].
In our experiments, we use the 3·3 Sobel operator for
the image derivatives. For the SUSAN corner detector,
we use the usual 3.5-pixel-radius circular neighbourhood
for the feature points (giving a mask, W, containing
37 pixels). If IC is the intensity value at the centre
pixel, the response function is IRSUSAN ¼ 37=2�

P
W

exp � I ~ximð Þ � ICð Þ
�

t6
� �

. Any negative values are dis-
carded. For additional details, see [19]. For our data, we
have empirically chosen t=15. For both SUSAN and
Harris detectors, the feature points are the local maxima
but constrained to be at least a distance of 15 pixels
from each other.

During the selection, we need to set a threshold and
discard the feature point candidates having IR below the
threshold. If we plot the results for different thresholds,

we get a ‘‘receiver operator characteristic’’ (ROC) curve
that shows the discriminative power of the IR. For our
data set that contains 2,143 feature points with the
ground truth, we plot the empirical ROC curves (linear
interpolation is used between the points on the curve).
A feature point belongs to the true-positives if it was se-
lected and it was well tracked. The false-positives are the
points selected but lost during tracking. Relative values
are used; we divide by the total number of the well tracked
and the ‘‘bad’’ ones, respectively. The ROC curves in
Fig. 4 show the large improvements when the new IRSCR

is used.Awidely accepted comparisonmethod is touse the

Fig. 3 Image sequences used in our experiments
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area under the ROC curve (AUC) [4]. A summary of all of
the experiments is given in Table 1. We also calculate the
standard error for the AUCmeasure by using a Gaussian
distribution assumption, as in [4].

Feature point selection and blurring

Tracking errors can occur when points are selected in a
textured area of an image. This is properly detected

using the SCR. See, for example, the experiment from
Sect. 3 (Figs. 1 and 2). Another simple method for
detecting and discarding these kinds of points is to blur
the image (convolve with a Gaussian kernel with stan-
dard deviation r) so that only the isolated strong corners
remain. Note that the positions of the detected corners
(local maxima) are different in a blurred image [12],
therefore, the corners need to be detected in the original
image where the tracking is actually done. Then, we can
blur the image and, for each of the initially detected
points, we can define an additional goodness measure,
IRHarris(r) (Harris with blurring). The improvement with
this additional measure for different ris presented in
Fig. 5 by plotting the ROC curves for our data set. The
optimal result for our data set was achieved by using
r=2.5, and it is similar to the result when using SCR.
Table 1 presents a summary of the results.

Although the performance of IRHarris(r) for correctly
chosen r is similar to IRSCR, they are inherently different
measures. Figure 5 presents further improvement for the
empirical combination, IRSCR+log(IRHarris(r=2.5)). The
improvement can be considered as proof that the two

Fig. 4 Improving Harris and
SUSAN corner detectors using
SCR. The ROC curves and the
areas under the ROC curves
(AUC) are reported

Table 1 A summary of the areas under the ROC curve and the
standard errors

Corner selection + additional check AUC (standard error)

Harris + (SCR + log(Harris(s=2.5))) 0.77 (0.010)
Harris + SCR 0.73 (0.011)
Harris + Harris(s=2.5) 072 (0.011)
Harris + Harris(s=3.5) 0.70 (0.011)
SUSAN + SCR 0.67 (0.011)
Harris + Harris(s=1.0) 0.63 (0.012)
Harris(s=1.5) 0.58 (0.013)
Harris 0.56 (0.013)
SUSAN 0.50 (0.013)

Fig. 5 Improving feature
selection with additional image
blurring. The ROC curves and
the areas under the ROC curves
(AUC) are reported
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measures describe different effects. Finding the optimal
combination is beyond the scope of this paper. Fur-
thermore, the SCR measure has no parameters and it is
clearly related to tracking, while blurring is rather
ad-hoc and we need to choose an appropriate r.
Another ad-hoc idea would be to selectively scale
for each point, as discussed in [13]. The corners at
larger scales are usually isolated corners. This ad-hoc
procedure would be very slow and is not considered
here.

Error detection and improved feature point selection

Finally in this section, we show the influence of the
improved point selection on practical KLT tracking.
During tracking, the points are ‘‘monitored’’ in order to
detect possible tracking errors. If the KLT tracker has
found a point that is not similar enough to the initially
selected point, we assume that an error has occurred and
stop tracking this point. The erroneously tracked points
are the points that have the resulting similarity measure
(Eq. 1) above a certain error detection threshold. In [18],
the affine transformation of the initial feature point
appearance is used to improve the comparison. In
Fig. 6, we show the error detection ROC curve for the
affine comparison after the first new frame of the image
sequences. We observe that, already after one frame, the
detection is not perfect. There are erroneously tracked
points that are difficult to detect because the KLT
search finds some other similar structures. If the sim-
ilar structures are close to the correct feature point
position, even some higher level error detection is
likely to fail (for example, some ‘‘smoothness’’ con-
straints or the 3D scene constraints used in the
‘‘structure and motion’’ algorithms [9]). In Fig. 6, we

also present the ROC curve for the KLT tracker with
the improved point selection. The ROC curve presents
a summary for all possible values of the error detection
threshold and all possible values of the threshold for
the improved feature selection using IRSCR. We
observe a significant improvement already after the
first frame.

Conclusions

The problem of estimating the motion of a feature point
has two aspects: the accuracy of the result and the
convergence of the tracker. The accuracy is well ad-
dressed by the standard feature point detectors. The
corner-like points can be accurately matched; the Harris
corner operator is a nice example. A well conditioned
matrix Z from Eq. 2 assures low sensitivity to the noise
but only if the tracking converges. We analysed in this
paper the problems with convergence of the tracker. Our
new goodness measure is an estimate of the convergence
region. The new measure can be used as an additional
check to improve the selection of the points for tracking.
Significant improvements are possible, as we demon-
strated on a large data set.

Originality and contributions

The term ‘‘feature point’’ denotes a point in an image
that is sufficiently different from its neighbours (L-cor-
ner, T-junction, a white dot on black background, etc.).
The position of a feature point is well defined and this is
useful for the tracking/matching problem where the task
is to find, for a feature point from one image, the cor-
responding point in the next image in a sequence. When
the displacements are small, the Kanade-Lucas-Tomasi
(KLT) algorithm is often used for tracking. There are
various techniques that can be applied to detect the
errors that occur during tracking. This paper presents an
analysis of the problem of initial feature point selection
in the tracking context. We point out that the standard
feature point criteria are more concerned with how
accurate the feature point tracking will be, rather than
how robust the tracking will be. We present a simple
method for improving the initial selection of the fea-
ture points to reduce the number of possible errors
during tracking and thereby ease the demand on the
algorithms that further process the positions of the
tracked points (for example, RANSAC in the ‘‘struc-
ture and motion’’ algorithms, etc.). The method is
evaluated and compared to two standard feature point
selection methods on a large set of real data. We also
analyse how blurring the images can improve feature
selection. We compare this scale-space approach to our
method. The results are presented for the common
KLT tracker but the main idea could be useful, if
appropriately applied, for numerous other tracking/
matching schemes.

Fig. 6 Error detection (affine) and influence of the improved
feature point selection (SCR), error detection AUC=0.948
(standard error 0.004), error detection with improved point
selection AUC=0.972 (standard error 0.003)
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