
Abstract In this paper, an efficient K-medians clus-

tering (unsupervised) algorithm for prototype selection

and Supervised K-medians (SKM) classification tech-

nique for protein sequences are presented. For se-

quence data sets, a median string/sequence can be used

as the cluster/group representative. In K-medians

clustering technique, a desired number of clusters, K,

each represented by a median string/sequence, is gen-

erated and these median sequences are used as pro-

totypes for classifying the new/test sequence whereas

in SKM classification technique, median sequence in

each group/class of labelled protein sequences is

determined and the set of median sequences is used as

prototypes for classification purpose. It is found that

the K-medians clustering technique outperforms the

leader based technique and also SKM classification

technique performs better than that of motifs based

approach for the data sets used. We further use a

simple technique to reduce time and space require-

ments during protein sequence clustering and classifi-

cation. During training and testing phase, the similarity

score value between a pair of sequences is determined

by selecting a portion of the sequence instead of the

entire sequence. It is like selecting a subset of features

for sequence data sets. The experimental results of the

proposed method on K-medians, SKM and Nearest

Neighbour Classifier (NNC) techniques show that the

Classification Accuracy (CA) using the prototypes

generated/used does not degrade much but the training

and testing time are reduced significantly. Thus the

experimental results indicate that the similarity score

does not need to be calculated by considering the en-

tire length of the sequence for achieving a good CA.

Even space requirement is reduced during both train-

ing and classification.

Keywords Clustering Æ Protein sequences Æ
Median strings/sequences Æ Set median Æ Prototypes Æ
Feature selection Æ Classification accuracy

1 Originality and contribution

Median string for a set of strings has been defined in

[17] and [20]. Self Organizing Map (SOM) method has

been used by Somervuo and Kohonen [39] for clus-

tering protein sequences and to determine the gener-

alized median strings using similarity values between

the protein sequences (using FASTA method with

BLOSUM50 scoring matrix [29]). SOM is computa-

tionally very expensive for protein sequences. Martinez

et al. have determined the performance of k-Nearest

Neighbour Classifier (k-NNC) using the prototypes

derived using approximated median string and set

median [20]. They have experimented on chromosome

data using edit distance (a dissimilarity index measure).

We use median sequence/string for a set of sequences

(set median) based on the pairwise similarity score

which is a measure of similarity index. In this paper,

supervised and unsupervised K-medians clustering

algorithms for a set of protein sequences based on the

P. A. Vijaya (&) Æ M. N. Murty Æ D. K. Subramanian
Department of Computer Science and Automation, Indian
Institute of Science, Bangalore 560012, India
e-mail: pav@csa.iisc.ernet.in

M. N. Murty
e-mail: mnm@csa.iisc.ernet.in

D. K. Subramanian
e-mail: dks@csa.iisc.ernet.in

Pattern Anal Applic (2006) 9:243–255

DOI 10.1007/s10044-006-0040-z

123

THEORETICAL ADVANCES

Efficient median based clustering and classification techniques
for protein sequences

P. A. Vijaya Æ M. Narasimha Murty Æ
D. K. Subramanian

Received: 30 October 2004 / Accepted: 6 July 2006 / Published online: 22 August 2006
� Springer-Verlag London Limited 2006

similarity scores obtained using a pairwise sequence

alignment (local alignment) algorithm are proposed for

prototype selection for protein sequence classification.

Performance of the K-medians clustering (unsuper-

vised) algorithm [Classification Accuracy (CA) ob-

tained using the prototypes selected] is compared with

that of leader based technique and Supervised K-

medians (SKM) classification technique is compared

with that of motifs based technique and Nearest

Neighbour Classifier (NNC) [5]. K-medians clustering

algorithm outperforms the leader based technique and

SKM classification technique performs better than that

of motifs based approach in terms of CA and is com-

putationally less expensive when compared to NNC.

Performance of hierarchical agglomerative clustering

schemes such as Single Link Algorithm (SLA) and

Complete Link Algorithm (CLA) and classification

techniques such as NNC, k-NNC and Efficient-NNC on

the data sets used are also reported in this paper for

comparison purpose. We also use a kind of feature

selection technique to reduce the time and space

requirements during protein sequence clustering and

classification. During training and testing phase, the

similarity score value between a pair of sequences is

determined by selecting a portion of the sequence in-

stead of the entire sequence. It is like selecting a subset

of features for sequence data sets and is one of the

simplest feature selection scheme. The experimental

results based on the proposed method of feature

selection show that the CA using the prototypes gen-

erated/used does not degrade much but the training

and testing time are reduced significantly. Also the CA

is not affected much when the lengths of the sequences

to be compared are reduced in median based algo-

rithms. Both the time and space requirements are re-

duced during the run time of training and testing phase.

Even testing time in NNC can be significantly reduced

by using this feature selection approach without much

degradation in the CA.

2 Introduction

In bioinformatics, the number of protein sequences is

now more than a million. Sequence alignment is useful

for discovering functional, structural and evolutionary

information in biological sequences. Protein sequences

that are very much alike or similar may probably have

a similar biochemical function or three dimensional

structure [6, 25, 30]. New sequences can be classified

using sequence similarity to a known protein class/

family/group. This in turn may help in predicting

the protein function or secondary structure of the

unknown sequence so that the expense on the biolog-

ical experiments can be saved. Additionally, if two

sequences from different organisms are similar, there

may have been a common ancestor sequence, and the

sequences are then defined as being homologous. The

problem we have considered here is: Given a set of

protein sequences, find a good set of prototypes to

correctly classify the new/test sequence in a reasonable

time.

Conventional NNC [4, 5] is computationally very

expensive to classify a new/test sequence to a protein

group/class. Clustering is basically an unsupervised

learning technique to divide a collection of patterns

into groups of similar objects using distance/similarity

measures. The objective is to form clusters or ‘‘natural

groupings’’ [5, 28] of the input patterns and hence the

technique is called as pattern clustering. The members

of the clusters and their representatives are assigned

class labels. Cluster representatives or some members

of the clusters can be used to assign a class label to a

new pattern. Thus pattern clustering is used as a pre-

processing step in pattern classification [5]. In pattern

clustering or pattern classification terminology, proto-

type is a representative of a group of patterns which are

closer to each other. The reduced set of a given data

set also forms a set of prototypes for pattern classifi-

cation. Prototype selection is primarily effective in

improving the classification performance of NNC and

also partially in reducing its storage and computational

requirements. Prototype selection for pattern classifi-

cation refers to the process of finding the representa-

tive elements (patterns) from the given training data

set. Prototypes may be either the elements/patterns of

the data set or new elements/patterns formed by ana-

lyzing the patterns in the given data set. We can use

both supervised and unsupervised learning techniques

for prototype selection. In case of labelled patterns,

normally the given data set is separated into training

set and validation/test set. Either supervised learning

or unsupervised learning technique is used for finding

the prototypes from the training set. The patterns of

the validation set are classified based on these proto-

types and the CA (CA is the ratio of the number of test

patterns correctly classified to the total number of test

patterns and is expressed in percentage) is determined

to evaluate the quality of the prototypes selected.

Cluster representatives/prototypes may be either the

elements/patterns of the data set or new elements/

patterns formed using the patterns in the data set. The

prototypes selected are used for classifying new pat-

terns later. We use clustering techniques (both super-

vised and unsupervised) to generate hard partitions

[23, 28] as we are interested in prototype selection for

244 Pattern Anal Applic (2006) 9:243–255

123

pattern classification. We use a set of labelled patterns

(well classified sequences by experts) to evaluate the

performance of the algorithms proposed in this paper.

In supervised classification technique, we use the

knowledge of labels while determining the prototypes

whereas in case of K-medians clustering technique, we

do not use labels while determining the prototypes

from the training data set.

Some of the well known clustering approaches [13,

14, 23, 28] have been used for grouping protein se-

quences for various purpose. ProtoMap [47] is de-

signed based on weighted directed graph. A graph

theoretic approach, transitive homology, is used in [2].

In CLICK [36], graph theoretic and statistical tech-

niques have been used. In SCOP [3] and CluSTr [19],

single link clustering method [13] has been used. Self

Organizing Map (SOM), based on generalized median

strings is used in [39] on a set of protein sequences

using a measure of similarity index.

PFAM [48] is a large collection of multiple sequence

alignments and hidden Markov models covering many

common protein domains. SYSTERS [49, 18] is a

protein sequence database created using set theoretic

concepts and single link clustering method. Protonet

[50] provides global classification of proteins into

hierarchical clusters. PIRSF [51], the PIR Superfamily/

Family concept, the original classification based on

sequence similarity, has been used as a guiding prin-

ciple to provide non-overlapping clusters of protein

sequences to reflect their evolutionary relationships.

In [41, 42], an efficient, incremental, top-down

clustering algorithm has been used to generate a hier-

archical structure of prototypes for protein sequence

classification. Single link clustering method is compu-

tationally very expensive for a large set of protein se-

quences as it requires an all-against-all initial analysis.

Also the number of database (db) scans increases if the

proximity matrix [13] cannot be accommodated in the

main memory. Even in graph based approaches, the

distance matrix values are to be calculated. SOM is

computationally more expensive when compared to

other partitional clustering schemes based on K-means

and leader algorithms [14, 13]. Martinez et al. [20] have

determined the performance of k-NNC using the pro-

totypes derived using approximated median string and

set median. They have experimented on chromosome

data using the edit distance measure [6, 25, 30] which is

a measure of dissimilarity index. Han et al. [10] have

designed a hypergraph based model using frequent

item sets for clustering data. Guralnik and Karypis [8]

have designed a K-means based algorithm using

frequent itemsets. Bandyopadhyay [1] has used a

feature extraction and fuzzy clustering technique for

classification of amino acid sequences. Here we pro-

pose a Supervised K-medians classification technique

and a one-level partitional clustering method based on

set median—‘K-medians’, for prototype selection for

protein sequence classification, as centroid cannot be

defined for a set of protein sequences without deter-

mining a set of motifs.

NNC [4] is used in [46, 34] for protein secondary

structure prediction. To classify a new sequence, con-

ventional NNC method [4] is computationally very

expensive for a large training data set. Wang et al. [45]

have used a motifs based method and a blocks based

approach is used in [11] for protein sequence classifi-

cation. Supervised K-medians (SKM) algorithm [43]

performs well for protein sequence classification when

compared to the motifs based approach [45].

In all the clustering and classification methods

involving sequence similarity, pairwise sequence simi-

larity is calculated by considering the entire sequence

and is computationally expensive. In this paper, we

propose a method to reduce both the run time and

space requirements without much degradation in the

CA, by using a type of feature selection method. This

can be used in any clustering or classification algorithm

based on similarity scores of pairwise sequence align-

ment. We have used this in supervised and unsuper-

vised K-medians clustering algorithms and also

compared with the NNC.

This paper is organized as follows. Section 2 deals

with the significance of protein sequence alignment.

Section 3 contains the details of the algorithms used.

Experimental results are discussed in Sect. 4. Conclu-

sions are provided in Sect. 5.

3 Protein sequence alignment

Proteins are sequences composed of an alphabet of 20

amino acids. In protein sequences, the amino acids are

abbreviated using single letter codes such as A for

Alanine, S for Serine and so on [6, 25, 30]. Each amino

acid is made up of three bases or nucleotides. Amino

acids in a protein sequence may change after few

generations because of insertion/deletion/substitution

operation. Homologous sequences which are similar

may have a common ancestor sequence. Similar pro-

tein sequences may have a similar biochemical function

and a three dimensional structure. Similarity score

between a pair of sequences is determined by aligning

them using gap (-) characters. The two types of pair-

wise sequence alignments are local [37] and global [26].

In local alignment, stretches of sequence with the

highest density of matches are aligned, thus generating

Pattern Anal Applic (2006) 9:243–255 245

123

one or more islands of matches. It is suitable for se-

quences that differ in length or share a conserved

region or domain. Local alignment helps in finding

conserved amino acid patterns (motifs) in protein se-

quences. Local alignment programs are based on

Smith–Waterman algorithm [37].

Score of an alignment A protein sequence is made up

of an alphabet of 20 amino acids which are abbreviated

using 20 English characters. The three edit operations

are substitution (match or mismatch), insertion and

deletion.
Let

X
¼ Alphabet;

X
¼ fA;C;G;T; S; . . .g:

Edit operation is a pair (x,y), where

ðx; yÞ�
X[

f�g
� �

�
X[

f�g
� �

; ðx; yÞ 6¼ ð�;�Þ:

Let sequence/subsequence a = ACCGGSA and

sequence/subsequence b = AGGCSG.

One possible alignment is

a0 ¼ ACCGG� SA

b0 ¼ A��GGCSG

The sequence of edit operations, Se, in the above

alignment is Se = (A,A)(C, –)(C, –)(G,G)(G,G)(– ,C)

(S,S)(A,G) (i.e. Substitution (match), Deletion, Dele-

tion, Substitution (match), Substitution (match),

Insertion, Substitution (match) and Substitution (mis-

match)).

An alignment consists of pairs such as (x,y) where

x; y�
PS

f�gð Þ such that |a0| = |b0| = la, where la is the

length of the aligned sequence. So a0 or b0 has totally la
characters and let ah

0 or bh
0 represent the hth character

in a0 or b0.

Similarity Score (a similarity index measure) of an

alignment, W, is given by

Wða0; b0Þ ¼
Xla

h¼1

Eða0
h; b

0
hÞ; ð1Þ

where, E is the score of an operation. The scores are

defined by biologists for insertion, deletion, substitu-

tions (for both match and mismatch), gap initiation/

open and gap extension. If linear gap penalty is con-

sidered then a constant gap penalty is used for every

insertion or deletion operation. In case of affine gap

penalty, the function used is g(f) = gap_open_penalty

+ k¢ · gap_extension_penalty, where k¢ is the con-

tiguous number of gaps after a gap initiation/open.

Dynamic programming techniques [30, 25] are used for

finding the score from an optimal alignment. For

finding the similarity score between two protein se-

quences, percent accepted mutation (PAM) or blOcks

substitution matrix (BLOSUM) substitution matrices

such as PAM250, BLOSUM60, BLOSUM62, etc. [25,

30] are used. PAM matrix was originally generated by

Dayhoff [30, 25] using a statistical approach. PAM

matrix values were derived from closely related pro-

teins. BLOSUM was originally generated by Henikoff

and Henikoff [25, 30]. They use the BLOCKS database

to search for differences among sequences. PAM250

and BLOSUM62 are the most widely used substitution

matrices. We use PAM250 matrix in our experiments.

PAM or BLOSUM matrices contain the substitution

values for all pairs of 20 amino acids. The insertion,

deletion and gap penalties are to be properly selected

for determining the similarity score and are suggested

by the biologists. The score values for different sub-

stitutions are stored in a substitution matrix, which

contains for every pair (A,B) of amino acids, an entry

SAB (the score for aligning A with B). Scores are

calculated for the subsequences aligned in local align-

ment and for the entire aligned length in case of global

alignment. Optimal alignment is the one which gives

the highest similarity score value among all possible

alignments between two sequences. Higher the simi-

larity score value between a pair of sequences, they are

more likely to be in the same group. Pairwise sequence

alignment score value is used in clustering similar se-

quences or classifying a new/test sequence to a known

protein class/group/family. It may further help in pre-

dicting the protein function or structure of an unknown

sequence.

Edit distance measure (a dissimilarity index) can

also be used to cluster similar sequences. Edit distance

between a pair of aligned sequences is given by

Edit distða0; b0Þ ¼
Xla

h¼1

eða0
h; b

0
hÞ; ð2Þ

where, e is the distance/cost value associated with each

operation. Proper distance/cost values for the various

edit operations and also gap penalties are to be chosen

for determining the edit distance. These values are also

suggested by the biologists. Lower the edit distance

value between a pair of sequences, they are more likely

to be in the same group.

If u and v are the lengths of the two sequences a and

b, respectively, then the time and space complexities of

the local or the global alignment algorithm (dynamic

programming technique) is O(uv) [30, 25]. Space

complexity is O(max(u,v)), if the edit path is not

246 Pattern Anal Applic (2006) 9:243–255

123

necessary for an a-posteriori use. Median based clus-

tering and supervised classification techniques for

protein sequence classification are explained in the

next section. We use similarity score (a similarity index

measure) [12] for protein sequence comparisons in our

experiments.

4 Median based algorithms and timing analysis

Median string (generalized) of a set of strings can be

defined as the string that minimizes the sum of dis-

tances or sum of squared distances (for a dissimilarity

index measure such as Euclidean distance [14, 5] or

edit distance—refer Eq. 2) or maximizes the sum of

similarity scores (for a similarity index measure such as

similarity score—refer Eq. 1—or Jaccard’s coefficient

[31]) to the strings of a given set [20, 17, 7]. Euclidean

distance or Jaccard’s coefficient can be determined

only for input patterns with a fixed number of attri-

butes or features, whereas edit distance or similarity

scores are used for input strings of variable sizes. The

generalized median string may not be a pattern present

in the set of strings and the search for such a median

string is a NP-Hard problem and therefore, no efficient

algorithms to compute the generalized median strings

can be designed [20]. Thus the use of the set median

string, which is a string/pattern present in the set that

minimizes the sum of distances (or maximizes the sum

of similarity scores) to the other strings of the set is

very common. Martinez et al. [20] use a greedy ap-

proach to find the approximated median strings which

is computationally expensive when compared to that of

determining the set median strings. We use set median

sequences/strings in our experiments which are deter-

mined using similarity scores. To determine set median

strings, K-medians algorithm which is similar to K-

means algorithm is used. In both the algorithms, K

patterns that are randomly selected are considered as

the initial cluster representatives and are iteratively

improved to minimize the sum of error/distances or

squared sum of error/distances (in case of dissimilarity

index measure). In K-means algorithm, the mean or

the centroid in a cluster is determined at every itera-

tion whereas in K-medians algorithm, the most cen-

trally located pattern/string is determined. One can

also use medoid as the cluster/group representative.

Medoid or Median (set median) is the most centrally

located pattern in a cluster but K-medoids [15, 31] and

K-medians algorithms [7, 43, 44] are designed differ-

ently. Both are suitable for any type of data. A set of

medoids can be determined using algorithms such as

Partitioning Around Medoids (PAM) [15, 31] or

Clustering LARge Applications (CLARA) [15, 31] or

Clustering Large Applications with RANdomized

Search (CLARANS) [27].

In PAM algorithm [15, 31], initially K patterns are

arbitrarily selected as medoids and the initial partition

is formed. Then every non-selected pattern is assumed

to be a medoid in place of an existing medoid and the

total cost incurred in swapping the objects is deter-

mined. Then that non-selected pattern is considered to

be a medoid if it can reduce the total cost and minimize

the intra-cluster distances. The process is carried out

for t iterations or till there is no change in the clusters

formed. Then finally the set of medoids which can form

a good set of clusters is selected for forming the final

partitions. PAM algorithm is more robust when com-

pared to K-means algorithm [13] as it uses medoids as

cluster centers and also it minimizes the sum of dis-

similarities instead of sum of squared distances. PAM

is suitable for any type of data set. Its time complexity

is O(K(n – K)2dt) and the space complexity is O(nd)

[27, 15], where n is the total number of patterns, d is

the dimensionality of the pattern and t is the number of

iterations. Time complexity of PAM algorithm is

higher than that of K-medians algorithm. CLARA [15,

31] is a sampling based clustering technique designed

for large data sets and it uses PAM algorithm on the

randomly selected S patterns, where S < n, instead on

the entire training set. CLARANS [27] is an

improvement over PAM and CLARA and is designed

for spatial databases.

We use a clustering (unsupervised) technique—‘K-

medians’ and a classification technique—‘Supervised

K-medians (SKM)’ for protein sequences based on the

median strings/sequences. For string/sequence data

sets, centroid (mean vector of a set of patterns where

each pattern and centroid has d numerical attribute

values) of a group/class/cluster cannot be defined

without determining a set of motifs. But we can use set

median which can be determined using sum of dis-

tances or similarity scores [20] for a set of sequences to

select the group representative called the median

string/sequence [39, 20, 43, 44]. Mathematically, med-

ian string/sequence of a set, s, consisting of q protein

sequences (set median) using similarity score can be

defined as,

Med Seqs ¼ argmaxiðscoreiÞ; ð3Þ

where

scorei ¼
Xq

j¼1

WðX0
i ;Y

0
j Þ; 1 � i � q; i 6¼ j ð4Þ

Pattern Anal Applic (2006) 9:243–255 247

123

and W is the similarity score value between the opti-

mally aligned sequences Xi
0 and Yj

0, where the se-

quence Xi 2s and the sequence Yj 2s.

4.1 K-medians clustering technique

In K-medians clustering algorithm, initially K se-

quences are randomly selected from the training set as

cluster representatives and the remaining sequences

are assigned to the nearest representative. The local

alignment score value is calculated from a sequence to

all other sequences in that cluster and the sum of these

score values is determined. The sequence for which

this sum is maximum is the median string/sequence of

that cluster. The sequences in the training set are

again assigned to the respective clusters based on the

new set of median strings/sequences. This process is

carried out for a fixed number of iterations or stopped

when there is no change in the set of median strings.

The median string/sequence of a set of protein se-

quences can be considered as the most centrally lo-

cated pattern in that cluster and is the representative/

prototype of that cluster. The median strings/se-

quences determined are used as prototypes for clas-

sification purpose. We call this approach as

‘K-medians’ algorithm as K clusters are represented

by K median strings/sequences.

4.2 SKM classification technique

SKM is a classification technique [43]. In SKM algo-

rithm, median sequence is determined in each of the

protein group/class consisting of labelled patterns.

Hence the value of K (total number of protein clas-

ses/groups) and the cluster elements are fixed. In

SKM algorithm, median string/sequence of a class is

the most centrally located pattern in that class and is

the representative/prototype of that class. This is

similar to Minimum Distance Classifier (MDC) [5] in

which the class representative is the centroid for a set

of pattern vectors, where each pattern has d numeri-

cal attributes. Testing functions are similar for

K-medians and SKM algorithms but the training

functions differ.

We compare the results of SKM with that of motifs

based approach, NNC, k-NNC [5] and Efficient-NNC.

A brief description of the motifs based classification

technique has also been given in the next section along

with the timing analysis. The timing analysis and the

results of K-medians algorithm, leader algorithm, sin-

gle link algorithm (SLA), complete link algorithm

(CLA), NNC and its variants have been reported.

4.3 Feature selection method and timing analysis

4.3.1 Feature selection method for protein sequences

Selecting an appropriate portion of the sequence may

be viewed as one of the simplest feature selection

scheme for sequence data sets. That means the fea-

tures/motifs/conserved regions present in a part of the

sequence are sufficient for clustering and classification

purpose. We evaluate the performance of the proposed

feature selection method on NNC, K-medians and

SKM algorithms. In all our algorithms, the local

alignment program provided by [12] is used with nec-

essary modifications to construct a function for finding

the highest score value between two sequences from

the optimal alignment. Either the entire length or the

selected portion of a pair of sequences is submitted to

the local alignment algorithm. We try to save time and

space during the execution of this similarity score

function as it is the most time and space consuming

function (time and space complexity is quadratic).

4.3.2 Timing analysis

Let u and v be the lengths of the two sequences to be

compared in general. Let us consider the following

three cases while analysing the time requirements.

Case 1: 100% of the total length of the sequence. Let

u1 and v1 represent these lengths for the two

sequences to be compared so that u1 = u

and v1 = v.

Case 2: 75% of the total length of the sequence. Let

u2 and v2 represent these lengths for the two

sequences to be compared so that u2 = 0.75u

and v2 = 0.75v.

Case 3: 50% of the total length of the sequence. Let

u3 and v3 represent these lengths for the two

sequences to be compared so that u3 = 0.5u

and v3 = 0.5v.

(i) NNC, k-NNC and efficient-NNC

In NNC, there is no training/design phase. Each of

the test/new patterns is compared with all the training

patterns. Time and space complexity of pairwise local

alignment algorithm is O(uv). Therefore, the time

complexity to classify a new sequence in conventional

NNC is O((uv)n), where n is the total number of se-

quences in the training set. Then the time complexity is

248 Pattern Anal Applic (2006) 9:243–255

123

O((u1v1)n), O((u2v2)n) and O((u3v3)n) and space

complexity is O(u1v1), O(u2v2) and O(u3v3) (or

O(max(u1,v1)), O(max(u2,v2)) and O(max(u3,v3)), if

the edit path is not necessary to be remembered for

later use) for the cases 1, 2 and 3, respectively. As u3

< u2 < u1 and v3 < v2 < v1, both the time and space

requirements are reduced during run time of local

alignment algorithm for the cases 2 and 3. Space

complexity of NNC is O(nl), if all the n sequences are

stored in the main memory, where l is the average

length of a sequence. Otherwise the number of data-

base scans may increase. In k-NNC technique, the

distances/similarity scores from a test pattern to all the

training patterns are sorted and the k nearest neigh-

bours are selected. Depending on the majority voting,

the test pattern is classified. Time and space complexity

of k-NNC are O((uv)n + nlogn) and O(nl) respec-

tively. In Efficient-NNC technique, we use the fol-

lowing procedure to reduce the time requirements

when compared to that of NNC. The pairwise simi-

larity score is calculated initially by considering only

the 50% of the total length of the sequence. If the score

is above a given threshold value then the pairwise

similarity score is calculated considering the entire

length. We thus eliminate some of the sequences for

full comparison purpose. We use this approach as the

sequence data sets do not have a fixed number of

attributes. This has some similarity with the efficient or

modified NNC techniques [21, 24, 32, 40] proposed for

data sets with a fixed number of attributes. Most of the

existing efficient NNC techniques [21, 24, 32, 40, 22]

cannot be applied directly on sequence data sets con-

sisting of patterns of variable lengths and also many of

these efficient NNC techniques do not scale up with the

dimensionality of the pattern.

(ii) Motifs based method

For determining a set of frequently occurring motifs

and sorting them, the algorithms developed by Wang

et al. [45] have been used. They select a sample of the

sequences (using random sampling without replace-

ment), qs, from a given set of sequences, q, to deter-

mine a set of motifs. They use a generalized suffix tree

(GST) which is an extension of suffix tree designed for

representing a set of strings [45]. The time complexity

of GST is proportional to the total length of all the

sequences used for finding a set of motifs [45]. There-

fore, the time complexity of this GST for a group/class

of sequences is O(qsl), where l is the average length of

a sequence. Motifs generated are tested with the rest of

the sequences in the given group in order to find their

frequency of occurrence. The most time consuming

part in their algorithm [45] is that of finding the num-

ber of occurrences of each motif. Training time de-

pends on the input parameters such as minimum length

of the motif, minimum number of occurrences, number

of mutations and form/style of the motif (*wxyz..* or

*wx..*yz..*). We determine motifs of the form *wxyz..*

for different number of mutation values in our exper-

iments. We appropriately fix the minimum number of

occurrence as a percentage of the total number of se-

quences in that group. The short motifs (length of 4–10

characters) have higher frequency of occurrence. The

frequency of occurrence of these motifs increases as

the number of mutations is increased (as reported in

[45]). The total number of motifs generated increases

with increase in the number of mutations. Therefore

the training time also increases as the number of

mutations is increased. Sorting software developed by

Wang et al. [45] sorts the motifs according to their

length and also eliminates the substrings whose fre-

quency of occurrence is same as that of their super-

strings. Time complexity of this sorting algorithm is at

least O(rlogr) [33], where r represents the average

number of motifs generated in a class and for K classes,

the time complexity of the sorting algorithm is

O((rlogr)K). Programs were developed by us for

organizing the output of the sorting program (i.e. to

remove all the unwanted statements and to have only a

list of motifs without the character ‘*’ and with their

frequency of occurrence, for each class) and for clas-

sifying the test sequences. To organize the output of

the sorting program for each class, the time complexity

is O(Kr) as at least r motifs are read from each class.

The classification program is a simple string matching

program. To find whether a given string is a substring

of a sequence of length l, the time complexity is O(l)

[16]. Therefore, to classify a new/test sequence using

Motifs based method, the time complexity is O(fl),

where f is the total number of selected motifs from all

the classes and l corresponds to the length of the test

sequence. Discovery, sorting, organization and selec-

tion of motifs are the different parts in the training

phase and many intermediate files are created. Some

steps in the training phase involve manual intervention

and thus the procedure is semi-automatic in motifs

based method. Space complexity in the motifs based

algorithm is O(ql) as all the q sequences of an average

length of l each, belonging to a class are stored in the

main memory at any time.

In the experiments, motifs were generated by

inputting the values for the parameters. For classifica-

tion purpose, frequently occurring motifs of size 4–10

characters were selected. If a class contains less than 10

Pattern Anal Applic (2006) 9:243–255 249

123

motifs, then all the frequently occurring motifs were

considered from that class irrespective of their lengths.

Highest CA was obtained for protein sequence classi-

fication for this type of motif selection. CA was

determined using the motifs selected with a weight of 1

and also a weight calculated based on the frequency of

occurrence. But they did not differ much.

(iii) K-medians and SKM algorithms

Time and space complexity analysis is same for K-

medians (unsupervised clustering) and SKM algo-

rithms except for the number of iterations. Time

complexity to find the median string for all clusters/

groups is O(q2(uv)Kt), where t is the number of itera-

tions and q is the size of a cluster (on an average, the

size of a cluster may be considered as n/K). Value of t

is 1 for SKM algorithm. Only q(q – 1)/2 score values

are to be calculated for each cluster/group as W(ai
0, bj

0)

is equal to W(bj
0, ai

0). Space complexity of K-medians

and SKM algorithms are O(nl) (if proximity values are

calculated as and when required) and O(q2) respec-

tively. Sum of the score values are to be calculated for

all the q sequences in a cluster/group and the median is

to be selected. Time complexity to classify a new/test

sequence is O((uv)K) for both K-medians and SKM

algorithms. Herein, both the time and space require-

ments are reduced for cases 2 and 3, during the exe-

cution of the local alignment algorithm in training as

well as in testing phase. The training phase is fully

automatic in the SKM method.

(iv) Leader algorithm

Leader is an incremental clustering algorithm in

which L leaders representing L clusters are generated

using a suitable threshold value [38]. The first pattern is

selected as the leader of a cluster. The remaining pat-

terns are assigned to one of the existing clusters or to a

new cluster depending on the chosen threshold value.

In leader based algorithms, threshold value T—a user

defined parameter, should be properly chosen. We use

the following procedure to choose the threshold value.

Threshold value can be chosen depending on the

maximum and the minimum similarity values between

the objects of a class in case of supervised learning. In

case of unsupervised learning technique, similarity

values are calculated from a pattern to all the other

patterns in the training data and they are sorted in the

descending order. The largest similarity values that are

closer to each other in the beginning of the sorted list

correspond to the patterns belonging to the same

cluster as that of the pattern with which the similarity

values were computed. The largest value (other than

W(u0,u0) (refer Eq. 1) will give an idea to choose the

threshold value. It requires only one database scan and

is suitable for large data sets. Time complexity to find

the leaders is O((uv)Ln) and space complexity is

O(Ll). Time complexity to classify a new/test sequence

is O((uv)L).

(v) Single link and complete link algorithms

Hierarchical agglomerative clustering (bottom-up/

merging) procedures start with n singleton clusters and

form the hierarchy by successively merging the clusters

until a desired number of clusters is obtained. Single

link algorithm (SLA) and complete link algorithm

(CLA) are of this type. In SLA, the distance between

two clusters C1 and C2 is the minimum of the distances

d(X,Y) (a dissimilarity index), where X 2C1 and Y 2C2

and the two clusters with the smallest minimum pair-

wise distance are merged at every level. In CLA, the

distance between two clusters C1 and C2 is the maxi-

mum of the distances d(X,Y), where X 2C1 and Y 2C2

and the two clusters with the smallest maximum pair-

wise distance are merged at every level. As we use

similarity index measure, we made suitable changes in

the algorithm. For SLA and CLA, proximity matrix

requires O(n2) space. Time complexity of SLA and

CLA are O(n2uv) and O(n2(logn)uv), respectively [14,

35]. In hierarchical clustering techniques, a cluster

representative like centroid or median or medoid is

chosen from the resulting clusters at the end. We use

median sequence (set median) as the cluster repre-

sentative. Time complexity to classify a new/test se-

quence in SLA or CLA is O(uvK).

5 Experimental results

To evaluate the performance of the algorithms, the

following two data sets were considered. The data sets

are in the FASTA format [25, 30].

5.1 Protein sequence data sets

Protein sequence data set 1 (PSDS1) Protein se-

quences of HLA protein family have been collected

from ‘‘http://www.obi.ac.uk/imgt/hla’’. It contains 1,609

sequences grouped into 19 classes. Protein sequences

250 Pattern Anal Applic (2006) 9:243–255

123

of AAA protein family have been collected from

‘‘http://www.aaa-proteins.uni-graz.at/AAA/AAA-Se-

quences.text’’. AAA protein family sequences have

been categorized into six classes according to their

functions and it consists of 227 sequences. From Glo-

bins protein family, sequences have been collected

from 4 different groups and 629 sequences have been

considered from the data set provided along with the

software package hmmer-2.2g (‘‘http://ftp.genet-

ics.wustl.edu/pub/eddy/hmmer/hmmer-2.2g.tar.gz’’).

Thus, totally we have considered 29 different classes

containing the sequences according to protein func-

tions. Similar protein sequences may have similar

functions. We have considered these groups of protein

sequences as they have been classified according to

functions by scientists/experts. The data set considered

has totally 2,565 sequences. From this, randomly 1,919

sequences were selected for training and 646 for test-

ing, such that the samples from each class are in both

the training and test sets (but mutually exclusive).

Protein sequence data set 2 (PSDS2) In PROSITE

database, profiles of different domains/groups/families

based on the conserved regions or motifs have been

stored. The protein sequences belonging to these do-

mains mostly have similar functions or three dimen-

sional structures. Protein sequences from Swiss-prot

and TrEMBL database which corresponds to each of

these PROSITE groups have been accessed and stored

to form the database by using the sequence retrieval

system from ‘‘http://www.tw.expasy.org’’. Thus, totally

we have considered 29 different classes/groups con-

taining the sequences corresponding to PROSITE

groups. The data set considered has totally 4,325 se-

quences. From this, randomly 3,259 sequences were

selected for training and 1,066 for testing, such that the

samples from each class are in both the training and

test sets (but are mutually exclusive).

5.2 Results and discussions

The experiments were done on an Intel pentium-4

processor based machine having a clock frequency of

1,700 Mhz and 512 MB RAM. The experimental re-

sults using various algorithms are reported in Tables 1,

2, 3, 4, 5. In the result tables, training time is the total

time taken for selecting the prototypes from the

training set. Training or design is done only once and

once the prototypes are selected, only the testing time

is to be compared between the algorithms. Testing time

is the time taken for classifying all the test patterns in

the validation/test set. Table 1 shows the performance

of K-medians algorithm, SLA, CLA and leader based

clustering techniques without feature selection, for the

two protein sequence data sets used. In leader based

technique, the results correspond to different threshold

values chosen. In K-medians algorithm, the results

correspond to the desired value of K and the number

of iterations, t = 5. CA obtained using the median

sequences as prototypes is very high compared to that

of leaders. In our experiments, the proximity values are

calculated as and when required in K-medians algo-

rithm as all the n sequences are stored in the main

memory, whereas in SLA and CLA, n · n proximity

matrix values are calculated and stored in the begin-

ning. If n · n proximity matrix is calculated and

stored in the main memory then the training time in K-

medians algorithm may be further reduced. Perfor-

mance of CLA is better than that of SLA on both the

data sets. CLA performs very well on the data set

PSDS2 when compared with that on PSDS1. Perfor-

mances of the classification techniques—NNC, k-NNC

and an efficient-NNC are also reported in Table 1. k-

NNC performs better than NNC and Efficient NNC

techniques on both the data sets in terms of CA

whereas efficient-NNC provides the same CA as that

of NNC in a lesser time.

Table 2 shows the performance of SKM and motifs

based technique for protein sequence classification. In

SKM, the number of prototypes is equal to the number

of classes in the data set used and in motifs based ap-

proach, the results have been reported for different

values of mutations. CA using median sequences of the

known classes is better than that of motifs based ap-

proach. CA can be further improved in SKM by

selecting some supporting prototypes—SKM-SP (SKM

with Supporting Prototypes) in each class using a

threshold value. Supporting prototypes are the se-

quences which are far from the median string in a class.

Training time does not increase much in SKM-SP as q

· q score matrix values are stored for a class in SKM.

But the testing time increases with the increase in the

number of supporting prototypes.

From Tables 1, 2, 3, 4, it is evident that the CA is

good in median based algorithms but the training and

testing time are quite high. Hence we have tested the

proposed feature selection method on median se-

quence based algorithms and also on NNC for com-

parison. Tables 3, 4, 5 show the experimental results of

the algorithms with feature selection. For all the three

cases, three different regions (lower, middle, upper)

are selected in a protein sequence. Both training and

testing time are reduced for cases 2 and 3 when com-

pared to case 1. In K-medians algorithm, even 50% of

the total length itself gives very good CA when number

of prototypes generated is more (from results of

Pattern Anal Applic (2006) 9:243–255 251

123

Table 3) whereas supervised K-medians algorithm

performs well when 75% of the total length is consid-

ered (from results of Table 3). In NNC, we can reduce

the testing time for cases 2 and 3 when compared to

case 1, without any degradation in the CA. For the data

set considered, it is evident from the results shown in

Table 5 that the NNC performs very well with 75% of

the total length itself and also accuracy has not de-

graded much when 50% of the total length is consid-

ered. It can also be observed from the results that the

first half or lower three fourths of a protein sequence

has better (or more) features/motifs and is responsible

for higher accuracy for cases 2 and 3 for the data set

used. When all the features are used the CA reduces [5,

23]. With feature selection, CA increases in most of the

cases as can be observed from Tables 3, 4, 5. This is

because the generalization error [9] may reduce when a

selected subset of features is used.

Table 1 Time and
classification accuracy

s seconds; CA classification
accuracy; SLA single link
algorithm; CLA complete
link algorithm; # iterations, t
= 5 for K-medians

Data set Algorithm Threshold # prototypes Training
time (s)

Testing
time (s)

CA
(%)

PSDS1 K-medians – 29 22173.36 236.62 70.89
– 109 34504.92 1102.22 95.82
– 454 66483.00 3635.37 99.22
– 554 99255.67 4410.45 99.22

Leader 188 29 306.27 219.19 41.48
400 109 967.39 853.13 57.12
500 454 3599.18 2594.86 66.87
600 554 4419.34 3353.57 71.05

SLA – 109 53643.15 698.65 70.43
– 554 51047.65 3486.75 75.54

CLA – 109 55163.03 892.94 79.25
– 554 53125.23 3480.12 84.36

NNC – 1919 – 19104.02 99.84
k-NNC k = 5 1919 – 22356.45 99.86
Efficient-NNC 300 1919 – 14568.35 99.84

PSDS2 K-medians – 29 25487.50 376.03 82.08
– 110 47353.06 1411.77 97.09
– 220 62936.77 2761.29 97.27
– 473 98534.55 5262.19 97.84

Leader 36 29 719.37 170.69 58.06
100 110 2506.64 1521.85 96.34
200 220 4481.40 2495.38 96.34
300 473 8272.21 4575.88 96.34

SLA – 110 76221.32 1426.12 97.93
– 473 61601.53 5080.19 97.93

CLA – 110 78874.33 1395.47 98.03
– 473 75696.42 5014.19 98.12

NNC – 3259 – 45125.12 97.93
k-NNC k = 5 3259 – 50427.46 98.03
Efficient-NNC 150 3259 – 32128.28 97.93

Table 2 Time and CA in
SKM algorithm, SKM-SP
algorithm and Motifs based
method

SKM Supervised K-medians;
SKM-SP SKM with
supporting prototypes

Data Set Algorithm # Mutations
or threshold

Motifs used
or # prototypes

Training
time (s)

Testing
time (s)

CA
(%)

PSDS1 Motifs based 0 498 6722.56 2.58 85.60
1 7238 9859.06 40.41 86.53
2 20346 16288.74 103.22 86.22

SKM – 29 3285.55 417.94 97.05
SKM-SP 200 79 3295.23 751.02 97.83

400 347 3313.06 2407.18 98.29
PSDS2 Motifs based 0 2472 5462.56 21.93 89.30

1 31165 7183.43 261.81 90.52
2 130328 23224.82 1086.00 96.52

SKM – 29 4187.66 488.11 96.99
SKM-SP 100 240 4210.53 3354.62 97.37

200 837 4418.41 14199.53 97.37

252 Pattern Anal Applic (2006) 9:243–255

123

6 Conclusions

In this paper, the experimental results on the two pro-

tein sequence data sets used show that the K-medians

clustering algorithm performs well when compared to

leader based technique and SKM classification tech-

nique performs better than motifs based approach.

Also the CA is not affected much when lengths of the

sequences to be compared are reduced in median based

algorithms and NNC. Both time and space require-

ments are reduced during run time of training and

testing phase. This feature selection approach may be

Table 3 Time and CA in K-
medians algorithm with and
without feature selection

Data set % of length of
the sequence

Region selected
in the sequence

prototypes Training
time (s)

Testing
time (s)

CA
(%)

PSDS1 100 – 109 34504.92 1102.22 95.82
75 Lower 109 21815.42 562.91 95.97
75 Middle 109 21409.99 568.11 95.66
75 Upper 109 20544.82 434.64 95.66
50 Lower 109 10277.91 277.68 94.11
50 Middle 109 10916.26 415.76 95.20
50 Upper 109 9741.59 304.38 93.34

PSDS2 100 – 110 47353.06 1411.77 97.09
75 Lower 110 29402.92 1346.22 96.71
75 Middle 110 24194.95 1087.79 96.62
75 Upper 110 23103.93 974.70 96.24
50 Lower 110 12264.53 398.88 94.84
50 Middle 110 13802.29 448.45 95.77
50 Upper 110 11805.31 434.23 93.62

Table 4 Time and CA in
SKM algorithm with and
without feature selection

Data set % of length of
the sequence

Region selected
in the sequence

prototypes Training
time (s)

Testing
time (s)

CA
(%)

PSDS1 100 – 29 3285.55 417.94 97.05
75 Lower 29 2162.25 221.23 98.14
75 Middle 29 2219.62 199.61 97.05
75 Upper 29 2208.84 197.26 94.27
50 Lower 29 1288.72 129.73 96.74
50 Middle 29 1312.48 116.86 78.63
50 Upper 29 1300.29 114.33 65.32

PSDS2 100 – 29 4187.66 488.11 96.99
75 Lower 29 3077.88 299.54 95.40
75 Middle 29 3333.04 388.48 96.24
75 Upper 29 3346.39 393.87 95.56
50 Lower 29 1757.32 235.08 91.36
50 Middle 29 1815.26 227.85 91.55
50 Upper 29 1751.01 228.28 92.12

Table 5 Time and CA in
NNC with and without
feature selection

Data set % of length of
the sequence

Region selected
in the sequence

prototypes Testing
time (s)

CA
(%)

PSDS1 100 – 1919 19104.02 99.84
75 Lower 1919 12276.06 100.00
75 Middle 1919 12434.65 99.84
75 Upper 1919 12464.78 99.53
50 Lower 1919 7360.59 99.69
50 Middle 1919 7460.31 99.69
50 Upper 1919 7432.94 99.07

PSDS2 100 – 3259 45125.12 97.93
75 Lower 3259 27851.83 97.84
75 Middle 3259 28797.25 97.56
75 Upper 3259 32149.18 97.65
50 Lower 3259 19021.33 97.18
50 Middle 3259 19261.99 97.18
50 Upper 3259 19323.94 97.56

Pattern Anal Applic (2006) 9:243–255 253

123

used in any clustering/classification technique which

involves pairwise sequence alignment algorithm. The

training and testing time may also be reduced by using

FASTA or BLAST sequence alignment programs [30,

25], which are faster than the dynamic programming

techniques used for sequence alignment. Whether a

protein sequence belongs to more than one domain or

not may be determined/decided by using the k nearest

prototypes [5] and their similarity values.

Acknowledgments We thank the anonymous reviewers for
their thoughtful comments and constructive suggestions, which
helped to improve the quality of this paper.

References

1. Bandyopadhyay S (2005) An efficient technique for super-
family classification of amino acid sequences: feature
extraction, fuzzy clustering and prototype selection. Fuzzy
Sets Syst 152(1):5–16

2. Bolten E, Schliep A, Schneckener S, Schomburg D, Schrader
R (2001) Clustering protein sequences-structure prediction
by transitive homology. Bioinformatics 17(10):935–941

3. Conte LL, Ailey B, Hubbard TJP, Brenner SE, Murzin AG,
Chotia C (2000) SCOP: a structural classification of protein
database. Nucleic Acids Res 28(1):257–259

4. Cover T, Hart P (1967) Nearest neighbour pattern classifi-
cation. IEEE Trans Inform Theory 13(1):21–27

5. Duda RO, Hart PE, Stork DG (2000) Pattern classification,
2nd edn. Wiley, New York

6. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological
sequence analysis. Cambridge University Press, Cambridge

7. Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L
(2003) Clustering data streams: theory and practice. IEEE
Trans Knowl Data Eng 153:515–528

8. Guralnik V, Karypis G (2001) A scalable algorithm for
clustering sequential data. In: Proceedings of I IEEE con-
ference on data mining, pp 179–186

9. Hamamoto Y, Uchimura S, Tomita S (1996) On the behavior
of artificial neural network classifiers in high-dimensional
spaces. IEEE Trans Pattern Anal Mach Intell 18(5):571–574

10. Han E, Karypis G, Kumar V, Mobasher B (1997) Clustering
in a high dimensional space using hypergraph models. In:
Proceedings of data mining and knowledge discovery

11. Henikoff S, Henikoff JG (1994) Protein family classification
based on searching a database of blocks. Genomics 19:97–
107

12. Huang X, Webb M (1991) A time-efficient, linear-space local
similarity algorithm. Adv Appl Math 12:337–357

13. Jain AK, Dubes RC (1988) Algorithms for clustering data.
Prentice-Hall, Upper Saddle River

14. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a re-
view. ACM Comput Surv 31(3):264–323

15. Kaufman L, Rousseeuw P (1990) Finding groups in data: an
introduction to cluster analysis. Wiley, New York

16. Knuth DE (1998) Art of computer programming, 2nd edn,
vol 3. Addison- Wesley, Reading

17. Kohonen T (1985) Median strings. Pattern Recogn Lett
(3):309–313

18. Krause A (2002) Large scale clustering of protein sequences.
Ph.D. Thesis, Berlin

19. Kriventseva EV, Fleischmann W, Zdobnov EM, Apweiler G
(2001) CluSTr: a database of clusters of SWISS-
PROT+TrEMBL proteins. Nucleic Acids Res 29(1):33–36

20. Martinez CD, Juan A, Casacuberta F (2003) Median strings
for k-nearest neighbour classification. Pattern Recogn Lett
24:173–181

21. MicA L, Oncina J, Vidal E (1994) A new version of the
nearest-neighbor approximating and eliminating search
algorithm (AESA) with linear preprocessing time and
memory requirements. Pattern Recogn Lett 15:9–17

22. MicA L, Oncina J, Carrasco R (1996) A fast branch and
bound nearest neighbor classifier in metric spaces. Pattern
Recogn Lett 17:731–739

23. Mitra S, Acharya T (2003) Data mining: multimedia, soft
computing and bioinformatics. Wiley, New York

24. Moreno F, MicA L, Oncina J (2003) A modification of the
LAESA algorithm for approximated k-NN classification.
Pattern Recogn Lett 22:1145–1151

25. Mount DW (2002) Bioinformatics—sequence and genome
analysis. Cold Spring Harbor Lab Press, New York

26. Needleman SB, Wunsch CD (1970) A general method
applicable to the search for similarities in the amino acid
sequence of the proteins. J Mol Biol 48:443–453

27. Ng RT, Han J (2002) CLARANS: a method for clustering
objects for spatial data mining. IEEE Trans Knowl Data Eng
14(5):1003–1016

28. Pal SK, Mitra P (2004) Pattern recognition algorithms for
data mining: scalability, knowledge discovery and soft gran-
ular computing. CHAPMAN & HALL/CRC

29. Pearson W (1999) The FASTA program package http://
ftp.virginia.edu/pub/fasta

30. Peter C, Rolf B (2000) Computational molecular biol-
ogy—an introduction. Wiley, New York

31. Pujari AK (2000) Data mining techniques. Universities Press
(India) Private Limited

32. Ramasubramanian V, Paliwal KK (2000) Fast nearest
neighbor search algorithms based on approximation-elimi-
nation search. Pattern Recogn 33:1497–1510

33. Sahni S (1998) Data Structures, Algorithms and applications
in C++. WCB McGraw Hill

34. Salzberg S, Cost S (1992) Predicting protein secondary
structure with a nearest neighbour algorithm. J Mol Biol
227:371–374

35. Schutze H (2004) Single-link, complete-link and average-link
clustering. ‘‘http://www.csli.stanford.edu/~schuetze/com-
pletelink.html

36. Sharan R, Shamir R (2000) CLICK: a clustering algorithm
with applications to gene expression analysis. In: Proceedings
of 8th ISMB, pp 307–316

37. Smith TF, Waterman MS (1981) Identification of common
molecular subsequences. J Mol Biol 147:195–197

38. Spath H (1980) Cluster analysis algorithms for data reduc-
tion and classification. Ellis Horwood, Chichester

39. Somervuo P, Kohonen T (2000) Clustering and visualization
of large protein sequence databases by means of an exten-
sion of the self-organizing map. In: Proceedings of 3rd
international conference on discovery science, pp 76–85

40. Vidal E (1986) An algorithm for finding nearest neighbors in
(approximately) constant average time. Pattern Recogn Lett
4:145–157

41. Vijaya PA, Murty MN, Subramanian DK (2003) An efficient
incremental protein sequence clustering algorithm. In: Pro-
ceedings of IEEE TENCON, Asia Pacific, pp 409–413

42. Vijaya PA, Murty MN, Subramanian DK (2004) An efficient
hierarchical clustering algorithm for protein sequences. Int J
Comput Sci Appl 1(2):61–75

254 Pattern Anal Applic (2006) 9:243–255

123

43. Vijaya PA, Murty MN, Subramanian DK (2003) Supervised
K-medians algorithm for protein sequence classification. In;
Proceedings of 5th international conference on advanced
pattern recognition, pp 129–132

44. Vijaya PA, Murty MN, Subramanian DK (2004) An efficient
technique for protein sequence clustering and classification.
In: Proceedings of 17th international conference on pattern
recognition, Cambridge, UK, Vol II, pp 447–450

45. Wang JTL, Thomas GM, Dennis S, Bruce S (1994) Chern,
discovering active motifs in sets of related protein sequences
and using them for classification. Nucleic Acids Res
6(4):559–571

46. Yi TM, Eric S (1993) Protein secondary structure prediction
using nearest neighbour methods. J Mol Biol 232:1117–1129

47. Yona G, Linial N, Linial M (2000) ProtoMap: automatic
classification of protein sequences and hierarchy of protein
families. Nucleic Acids Res 28(1):49–55

48. http://www.pfam.cgb.ki.se/
49. http://www.systers.molgen.mpg.de/
50. http://www.protonet.cs.huji.ac.il/
51. http://www.pir.georgetown.edu/pirsf/

Author Biographies

P. A. Vijaya received her B.E.
degree in E and C Engineering
from the Malnad College of
Engineering (MCE), Hassan,
University of Mysore, India
and M.E. and Ph.D. degree in
Computer Science and Engi-
neering from the Department
of Computer Science and
Automation (CSA), Indian
Institute of Science (IISc),
Bangalore, India. She is an
Asst. Professor in the Depart-
ment of E and C Engineering,
MCE, Hassan. Her research
area is pattern clustering and
classification.

M. Narasimha Murty received
his B.E., M.E. and Ph.D. de-
grees from IISc, Bangalore,
India. Currently, he is a Pro-
fessor and also the Chairman in
the Department of CSA, IISc,
Bangalore, India. His research
interests are in pattern recog-
nition, data mining, genetic
algorithms and machine learn-
ing techniques.

D. K. Subramanian received his
B.E., M.E. and Ph.D. degrees
from IISc, Bangalore, India.
Currently, he is Professor
Emeritus in the Department of
CSA, IISc, Bangalore, India.
His research interests are in
data mining, distributed data-
bases and transaction process-
ing.

Pattern Anal Applic (2006) 9:243–255 255

123

	Efficient median based clustering and classification techniques for protein sequences
	Abstract
	Originality and contribution
	Introduction
	Protein sequence alignment
	Median based algorithms and timing analysis
	K-medians clustering technique
	SKM classification technique
	Feature selection method and timing analysis
	Feature selection method for protein sequences
	Timing analysis
	Experimental results
	Protein sequence data sets
	Results and discussions
	Tab1
	Tab2
	Conclusions
	Tab3
	Tab4
	Tab5
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

