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Abstract  The performance of two online linear classifiers - the Perceptron and Littlestone’s 

Winnow – is explored for two anti-spam filtering benchmark corpora - PU1 and Ling-Spam. We 

study the performance for varying numbers of features, along with three different feature selection 

methods: Information Gain (IG), Document Frequency (DF) and Odds Ratio. The size of the 

training set and the number of training iterations are also investigated for both classifiers. The 

experimental results show that both the Perceptron and Winnow perform much better when using 

IG or DF than using Odds Ratio. It is further demonstrated that when using IG or DF, the 

classifiers are insensitive to the number of features and the number of training iterations, and not 

greatly sensitive to the size of training set. Winnow is shown to slightly outperform the 

Perceptron. It is also demonstrated that both of these online classifiers perform much better than a 

standard Naïve Bayes method. The theoretical and implementation computational complexity of 

these two classifiers are very low, and they are very easily adaptively updated. They outperform 

most of the published results, while being significantly easier to train and adapt. The analysis and 

promising experimental results indicate that the Perceptron and Winnow are two very competitive 

classifiers for anti-spam filtering. 
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1 Introduction 

Spam emails are unsolicited messages that the receiver does not wish to receive. 

Increasingly today large volumes of spam emails are causing serious problems for 

users, Internet Service Providers, and the whole Internet backbone. It was reported 

that in May 2003 the amount of spam exceeded legitimate emails [1]. This means 

that more than 50% of transmitted emails are spam. Spam emails not only waste 

resources such as bandwidth, storage and computation, but also the time and 

energy of email receivers who must search for legitimate emails among the spam 

and take action to dispose of spam. As a result they can have a serious economic 

impact on companies. For example, a Ferris Research Report estimates that US 

companies spent $10 billion in lost productivity in 2003 due to spam emails [2]. 

Several proposals have been applied to reduce spam emails, ranging from 

technical to regulatory and economic [3]. In this paper we concentrate on 

technical approaches to addressing the problem of spam emails, specifically we 

explore automated anti-spam filtering methods. 

From the perspective of a computer science researcher, especially a machine 

learning researcher, anti-spam filtering can be regarded as a binary Text 

Classification (TC) problem. The classifier must distinguish between legitimate 

emails and spam. However, anti-spam filtering is different from standard TC 

problems in at least the following four aspects: 

1. The classes in anti-spam filtering are less topic-related than those in 

standard TC problem. Spam email is not based on definable topic classes. 

For instance, classes in standard TC, such as sports, education are related 

to specific definable subjects. This difference means anti-spam filtering 

may be more difficult than classifying more topic-related classes.  

2. Because in a real email system a large volume of emails often need to be 

handled in a short time, efficiency will often be as important as 

effectiveness when implementing an anti-spam filtering method.  

3. Some email receivers may pay more attention to the precision of the 

filtering. Some receivers would rather have a spam message be judged as 

legitimate, rather than a legitimate message judged as spam. This means 

different types of errors may have different costs in anti-spam filtering [4]. 

4. The contents of both the legitimate and spam email classes may change 

dynamically over time, so the anti-spam filtering profile should be easily 
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updatable to reflect this change in class definition. In this sense, anti-spam 

filtering is rather more like a dynamic adaptive filtering task than a static 

TC task. 

Thus, an effective and efficient classifier, which can be easily and effectively 

updated, is the goal for anti-spam filtering. This paper is an effort towards this 

goal. Two online linear classifiers: the Perceptron and Winnow are investigated in 

our experiments. The results show that they are very competitive classifiers for 

anti-spam filtering tasks. 

The remainder of the paper is organized as follows: Section 2 outlines relevant 

previous research in anti-spam filtering, Section 3 introduces the two linear 

classifiers used in our study: the Perceptron and Winnow, Section 4 describes our 

experiments, including details of the test collections, measures and experimental 

results, and finally our conclusions and future work are given in Section 5.  

 

2  Related work 

As we pointed out in Section 1, anti-spam filtering can be regarded as a specific 

type of TC problem. Many machine learning approaches have been explored for 

this task. For example rule-based methods, such as Ripper [5], PART, Decision 

tree, and Rough Sets, have been used in [6], [7] and [8]. However, pure rule-based 

methods haven’t achieved high performance because spam emails cannot easily 

be covered by rules, and rules don’t provide any sense of degree of evidence. 

Statistical or computation-based methods have proven more successful, and are 

generally adopted in mainstream work. Bayesian classifiers are the most widely 

used method in this field. Sahami et al. used Naïve Bayes with an unpublished 

email test collection [9]. In their work some non-textual features (e.g., the 

percentage of non-alphanumeric characters in the subject of an email) were found 

to improve the final performance. Following this work, many researchers 

including Androutsopoulos and Schneide applied Naïve Bayes in anti-spam 

filtering, their work is reported in [4][10][11][12] and [13]. Androutsopoulos et al. 

[10] found Naïve Bayes to be much better than a keyword-based method. Another 

of their findings was that Naïve Bayes performed comparably to a kNN classifier. 

Schneide et al. [13] compared two event models of Naïve Bayes: Multi-variate 

Bernoulli Model (MBM) and Multinomial Model (MM). They found that the two 
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models performed similarly over a large corpus, but that the MBM model 

outperformed the MM model over a smaller corpus, while MBM’s computation is 

simpler.  

In addition to the Naïve Bayes model, other Bayesian models have also been 

considered for anti-spam filtering. Androutsopoulos et al. [12] introduced a 

flexible Bayes model which is one kind of model for continuous valued features. 

Their experiments showed that the flexible Bayes model outperforms Naïve 

Bayes. Mertz1 used an N-gram language model to evaluate the probabilities in a 

Bayesian model using an unpublished corpus. He found that a tri-gram model is 

the best choice when compared to Naïve Bayes and bi-gram Bayesian models.  

Besides Bayesian methods, other machine learning methods, including Support 

Vector Machine (SVM), Rocchio, kNN and Boosting, have also been applied in 

the context of anti-spam filtering. Some interesting work based on Boosting 

approaches is described in [14] which applied Adaboost for filtering spam emails, 

and [12] which used another Boosting approach called LogitBoost. These 

boosting methods both achieved very good results on their evaluation tasks. A 

decision tree was introduced as a weak learner on both boosting methods. Other 

work has been reported based on kNN [11], SVM and Rocchio [6].  

Because most experimental results have been achieved using different corpora and 

some corpora are not publicly available, it is difficult to compare them 

objectively. To address this problem, Androutsopoulos et al. developed a number 

of publically available corpora, e.g. PU1 and Ling-Spam, that can be freely 

downloaded from their web site2, and subsequently many experiments have been 

reported using these corpora [4][7][10][11][12][13][14].  

To the best of our knowledge, few online linear classifiers have been considered 

in the area of spam filtering, and the filter update process was always omitted in 

the above work. These reasons motivate us to explore the application of online 

linear classifiers featuring very easy and fast updates to the task of anti-spam 

filtering.  

 
1 See http://www-900.ibm.com /developerWorks /cn/linux/other/l-spamf/index_eng.shtml.
2 http://iit.demokritos.gr/skel/i-config/downloads/
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3  The Perceptron and Winnow 

According to whether the decision surface in the feature space is a hyperplane or 

not, classifiers can be divided into two categories: linear classifiers and nonlinear 

classifiers. The most widely used classifiers are linear models. A linear classifier 

represents each class cBi B with a class weight vector wBi B and a threshold θBi B(i=1,2,3, 

…,|C|), where C is the category set and |C| is the number of different categories. If 

a document d (represented with d in the same vector space as wBi B) satisfies 

i iθ• >w d , it belongs toTP

3
PT class cBi B. Here, •  means the internal product of two 

vectors. Particularly, in a two-class linearly separable situation (see Figure 1), a 

linear classifier seeks to find a hyperplane that correctly classifies all the 

examples. Formally, let the N training examples be <xBi B,y Bi B>, where 1≤i≤N, xBi B is 

the k-dimension vector representation of the ith example, k is the number of 

features, yBi B=+1 or –1, respectively means a positive or negative example. Then, a 

linear classifier can be represented by a k-dimension weight vector w and a scalar 

θ, for each i which satisfies 

 

0  if  = +1
0  if  =  1-

i i

i i

y
y

θ
θ

• − ≥⎧
⎨ • − <⎩

w x
w x

  (1) 

Formula (1) can be rewritten as 

( ) 0i iy θ• − ≥w x    (2) 

                                                 
TP

3
PT Here, a document can belong to more than one class. If a document is restricted to only one class, it belongs 

to the class with the highest score •w d . The latter situation is used in our two-class case, which is suitable 
for anti-spam filtering. 
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Fig. 1 Linearly separable examples (the solid line represents the discrimination hyperplane) of two 

classes: cB1B and cB2B. 

So linear classifiers try to find suitable values for w and θ that correctly 

separate all the training examples. Obviously, if they exist, the separate 

hyperplane is 0i θ• − =w x . From Figure 1, we can also see that there is not a 

single discrimination hyperplane. A hyperplane with a large margin is selected in 

large margin linear classifiers such as SVMs. However, because there are few 

linear separated problems in the real world, the above problem is usually 

approximately solved by different optimization criteria. For example, the Least 

Mean Square (LMS) criterion leads to classifiers such as Widrow-Hoff [15], the 

“minimum distance to class centroid” criterion leads to Rocchio [16], and the 

minimum error criterion leads to the Perceptron [17] and Winnow [18]. The 

Perceptron and Winnow seek to find the w and θ values which generate 

minimum errors on training examples. Apart from Rocchio, the other three linear 

classifiers are online classifiers that adjust the weight vector after training each 

example. Online classifiers are appropriate for applications that start with few 

training examples or incrementally adjust the weight vector based on user 

feedback. Adaptive filtering is thus a task ideally suited to the use of online 

classifers. 

The Perceptron was developed by Rosenblatt [17] in the late 1950's and early 

1960's, while Winnow was introduced by Littlestone [18] in the late 1980’s. The 

basic idea of both of these classifiers is to update the vector w driven by 

classification errors, which is why they are called error-driven methods. The 

implementation process of the Perceptron or Winnow are composed of four steps: 
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Step 1: Initiate w = wB0 B, a fixed threshold θ, the maximum number of iterations 

n, and let the iteration counter j = 1, s =0.  The number of retained features is k, 

the number of training messages is N.  

Step 2: In the jth iteration, for each training example < ix ,y Bi B> (i = 1,2,...,N), if 

( ) 0s i iyθ• + <w x , which means an error occurs, then 1 ( , , , )s s i iupdate y θ+ =w w x  

and s = s + 1, where update() is an update function.  Record the number of errors 

in the jth iteration, eBj B. Let j =j + 1. 

Step 3: If j > n, exit iteration and go to Step 4, else go to Step 2. 

Step 4: Select the w with minimum e. The w after the last training example in the 

iteration is chosen in our experiments. 

 

The difference between the Perceptron and Winnow is that they use different 

types of update function. In particular, the Perceptron uses an additive update 

function while Winnow uses a multiplicative one. When a positive example (yBi B= 

+1) is incorrectly regarded as negative (denoted with type AP

+
P error) or a negative 

example (y Bi B= -1) regarded as positive (denoted with type AP

-
P error). The basic 

Perceptron classifier will update the weights as follows: 

1s s i iyη+ = +w w x    (3) 

While the function for Winnow is 

1, , ,  if 0 iy
s r s r i rδ+ = × ≠w w x  (4) 

where bothη(0<η<1) and δ(>1) are  positive constants called learning rates, 

and 1,s t+w , ,s rw  and ,i rx  (usually ,i rx ≥0) are respectively the r-th (1≤r≤k) 

component of vector 1s+w , sw and ix , where k is the number of retained features. 

From the above equations we can see that when a type AP

+
P error occurs (note that 

now y Bi B= 1), the weight vector will be increased by adding a positive vector(i.e.,η

xBi Bin equation 3) or each weight will multiply a number bigger than 1 (i.e.,δ in 

equation 4 ), while a type AP

-
P error corresponds to substracting or being divided by 

the same numbers as for a type AP

+
P error. 

Winnow has some variant forms. The above basic form (equation 4) is called the 

positive Winnow since all weights are non negative. Another form is the balanced 
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Winnow, which uses the difference between two weight vectors +w (called 

positive vector) and −w  (called negative vector) instead of the original w  (i.e., 

w = +w - −w ). The update function then becomes: 

 

1, , ,

1, , ,

,  if =+1 and  < s r s r i r
i s i

s r s r i r

y
β

θ
γ

+

−

+
+

−
+

⎧ = ×⎪ •⎨
= ×⎪⎩

w w x
w x

w w x
 (5) 

and 

1, , ,

1, , ,

,  if =-1 and   s r s r i r
i s i

s r s r i r

y
γ

θ
β

+

−

+
+

−
+

⎧ = ×⎪ • ≥⎨
= ×⎪⎩

w w x
w x

w w x
 (6) 

 

where β and γ are two learning rates of balanced Winnow, and β is a 

promotion parameter, γ a demotion parameter, β>1, 0<γ<1, , 0i r ≠x . It has 

been shown that the Balanced Winnow outperforms positive Winnow because the 

former allows positive and negative weights at the same timeTP

4
PT.  

Both the Perceptron and Winnow have been shown to learn a linear separator if it 

exists [19], but they also appear to be fairly successful when there is no perfect 

separator [20][21]. The algorithms make no assumptions on the features. The 

advantages of the above online linear classifiers are that they are very simple and 

cheap to implement, can handle many irrelevant features [22], and can be updated 

very easily. The disadvantage is that they are theoretically only suitable for 

linearly separated two-class problems.  

The Perceptron is not as efficient as Winnow due to its additive update process. 

But, it has been shown that when the examples are sparse, the Perceptron 

performs better, otherwise, Winnow is the better choice between the two 

classifiers. Another advantage for Winnow is that its error bound is smaller than 

that of the Perceptron [23]. Some text classification work has been done based on 

the Perceptron and Winnow [20][21][24][25][26][27]. But the results are not 

always encouraging. However, we believe that the anti-spam problem may be a 

good application for online classifiers, because of the large number of irrelevant 

                                                 
TP

4
PT See TC. H. A. Koster, TDocument Classification. Url: HTUhttp://www.cs.kun.nl/~kees/ir2/papers/h03.pdfUTH 



features in spam and legitimate emails, and the need for incremental adaptation in 

this task.  

 

4 Corpora and preprocessing 

In order to explore the effectiveness of the Perceptron and Winnow classifiers for 

spam filtering and compare these methods to those used in previous work, the 

investigation described in this paper makes use of two existing public benchmark 

collections and reports results using standard evaluation methods as described in 

this section.  

4.1 Corpora 

The use of benchmark corpora enables the effectiveness of methods to be 

compared fairly. For example, many TC experiments have been done using the 

Reuters corpora5 . Two publicly available benchmark corpora for anti-spam 

filtering research,  the PU1 and Ling-Spam collections, were used in our 

experiments reported in this paper. A number of existing studies on anti-spam 

filtering have been reported based on these two corpora [4] [7] [10] [11] [12] [13] 

[14]. Both corpora can be freely downloaded from the Internet6.  

The PU1 corpus consists of 481 spam messages and 618 legitimate messages, 

which are all real private personal emails. Because of privacy problems, these 

messages have been transformed to an “encrypted” version prior to distribution, in 

which the words are encoded with integers. Unfortunately, this transformation 

also limits the potential to explore language-based filtering techniques. 

The Ling-Spam corpus was built up in a different way. The 481 spam messages 

are the same as the spam messages of PU1, but the 2412 legitimate messages were 

collected from a freely accessible newgroup, Linguist list. Thus Ling-Spam has no 

privacy problem and is not encrypted.  Because the legitimate messages of Ling-

Spam are more domain topic-specific than those of PU1, Ling-Spam is more 

appropriate for spam filtering of a topic-specific newsgroup.  

For both PU1 and Ling-Spam, only the subject and body texts were retained, all 

the other information, such as attachments, HTML tags, and other header fields 

9 

                                                 
5 See http://about.reuters.com/researchandstandard/corpus/. 
6 http://iit.demokritos.gr/skel/i-config/downloads/.



10 

were removed. Both PU1 and Ling-Spam have four versions available, these are 

denoted as: bared, lemmatized, stopword-eliminated, and lemmatized and 

stopword-eliminated. Thus each version is at a different level of lexical 

processing. We applied our classifiers using all these versions, with very similar 

results in each case. For this reason only the results for the bared form version are 

reported here. In the bared form version corpus, all the words, punctuation and 

other special symbols, e.g., “!” , “$”, are treated as tokens, and were retained in 

our classifiers. 

4.2 Feature selection 

All the different tokens are regarded as candidate features. The original feature 

space is very large, for example the total number of the unique tokens of PU1 and 

Ling-Spam are respectively 24749 and 65694. To reduce the feature space and 

eliminate noise, as most classifiers do, we use feature selection. We investigated 

three different methods: IG (Information Gain), Odds ratio and DF (Document 

Frequency), which are respectively defined as follows: 

1 2{0,1} { , }

( , )( ) ( , )log
( ) ( )t c c c

P f t cIG f P f t c
P f t P c∈ ∈

=
= =

=∑ ∑  (7) 

1

1
1

2

2

( | )
1 ( | )( , ) ( | )
1 ( | )

P f c
P f cOddsRatio f c P f c
P f c

−
=

−   (8) 

DF(f) = {d|f occurs in d}      (9) 

 

where cB1 Band c B2 Brefer to the spam class and legitimate class, d denotes a document, 

f is a candidate feature. P(f|c) is the probability that the feature f is in class c, f = 0 

or 1 respectively means f is absent or present.  

IG and DF have been found to be the two top-performing feature selection 

methods for LLSF and kNN classifiers [28]. Our previous work on adaptive 

filtering based on Odds Ratio achieved good results [29]. In this investigation, we 

are interested in assessing the performance of these three methods with the online 

classifiers in the context of anti-spam filtering.  
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In our experiments each document d is represented with a binary vector 

<x B1B,x B2 B,..,xBkB>, x Bi B=+1 or 0 (0 ≤ i ≤k), which respectively means the ith feature is 

present or absent in this document, k is the number of retained features after 

feature selection. Those features that actually occur in the document (x Bi B = 1) are 

called active features of this document.  

4.3 Measures 

Four traditional measures in text classification research are used for evaluation: 

recall, precision, F1 measure and accuracy. For the following definitions let there 

be: a total of a messages, including aB1 B spam and aB2B legitimate emails; b messages 

of which are judged as spam by an anti-spam filtering system, and among them, bB1 

Bmessages are really spam; and a total of a-b messages judged as legitimate, among 

which bB2 B messages are really legitimate. The evaluation measures of this system 

are defined as follows: 

1

1

brecall
a

=    (10) 

1bprecision
b

=   (11) 

21 recall precisionF
recall precision
× ×

=
+

 (12) 

1 2b baccuracy
a
+

=   (13) 

F1 combines recall and precision into a single measure and is frequently used in 

TC. Accuracy is widely used in many previous anti-spam filtering studies. 

However, we believe that it is greatly affected by the class distribution. For 

example, if the number of legitimate messages is much bigger than that of spam 

messages, the accuracy will not be greatly affected by spam messages. In other 

words, the accuracy may be very high even though the spam filtering performance 

is very poor due to the skew distribution. So the F1 measure is mainly used in our 

experiments, but accuracy results are included for comparison with existing work. 
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5 Experimental results 

We performed four sets of experiments using the PU1 and Ling-Spam test 

corpora. In the first set different feature selection methods were compared. The 

relationship between the number of features and the performance was also 

investigated. The second set of experiments focused on the size of the training set. 

The number of training iterations was tested in the third set of experiments. In the 

last set of experiments, the Perceptron and Winnow were compared with Naïve 

Bayes. Some computational analysis of these methods is made in the comparison 

section. 

The parameters of the classifiers were set to the same values for each test corpus 

for each classifier. All of the experiments were performed using 10-fold cross-

validation, where each corpus was equally divided into 10 parts, 9 of them were 

used for training, while the other part was used for testing. Learning rates were set 

to α=0.5, β=1.8, γ=0.5. The number of iterations was set to 15, except in the 

experiments testing the number of iterations. For the Perceptron, the weight vector 

w  was initialized to <1,1,…,1>, while for Winnow, the positive weight vector 
+w  and the negative weight vector −w  were initialized to <2,2,…,2> and 

<1,1,…1> respectively. For both classifiers, the threshold θ was initialized to 

the average number of active features in a training document, so for each 

document vector d, the initial value of •w d  in the Perceptron classifier or 

( )+ −− •w w d  in Winnow classifier was comparable to θ. 

5.1 Experiments with different feature selection approaches 
and feature set size 

Our first experiments used different feature selection approaches for both the 

Perceptron and Winnow. Three feature selection approaches were applied: IG, DF 

and Odds ratio. The top-k words with the highest IG, DF or Odds ratio were 

selected as the final features.  We then changed the number of features k. The 

range variations were divided into two parts. In the first part, k varied from 10 to 

200 by 10, and then from 200 to 800 by 50; in the second part, it varied from 500 

to 15000 by 500. The first part was also used for comparison with Naïve Bayes (in 

our experiments, Naïve Bayes doesn’t perform well when the number of features 

is very large, see Figure 7). Due to the space limitation in a single figure, results 



for the first part are shown in Figure 7, while results for the second part are shown 

in Figure 2.  

From figure 2 we can see that for both the Perceptron and Winnow, IG and DF 

perform similarly well, and clearly much better than Odds ratio. This finding is 

similar to Yang’s observation that IG and DF are two top-performing feature 

selection methods when using kNN and LLSF classifiers [28]. A reasonable 

explanation for this observation that IG and DF outperform Odds ratio, is that 

Odds ratio biases toward favoring those features which are good at representing 

spam class, whereas features good for representing the legitimate class are also 

very useful in the Perceptron and Winnow classifiers because they allow negative 

weights. 
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Fig. 2  F1 results with varying the number of features. 

 

It is also shown that both the Perceptron and Winnow perform very stably when 

the number of features varies from 500, especially using IG and DF. When the 

number of features is smaller, the performance improves rapidly to a steady level 

while the number of features increases (see Figure 7). This means that the two 
13 
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classifiers can perform very well under a relatively small feature space, thus the 

computational cost can be reduced. 

Another interesting observation relates to the results using Odds ratio (see those 

lines with triangles in Figure 2). It is obvious that the results using Ling-Spam are 

much worse than those using PU1. We believe the reason for this is that the Odds 

ratio biases toward favoring the features that are effective at representing the spam 

class, but for Ling-Spam the features selected from spam emails are not good for 

classifying legitimate emails and spam. Therefore, for the Ling-Spam corpus, 

when the number of features increases, the performance first keeps low and then 

increases because some other useful features are involved. But when the number 

of features increases to a certain level, some unuseful features are introduced and 

the performance doesn’t improve further.  

In order to check the generality of the feature selection results, two more 

corpora—PU3 (2313 legitimate emails and 1826 spam) and PUa (571 legitimate 

emails and 571 spam)were used. These can be downloaded from the same website 

as PU1, but are very different from PU1 and Ling-Spam. In fact, each of PU1, 

PU3 and PUa was derived from a different user [12]. Results using PU3 and PUa 

are shown in Figure 3. These results are similar to those results using PU1 and 

Ling-Spam (see Figure 2). Thus it can be concluded that our observation for 

feature selection is consistent, at least for these four very different corpora. 
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Fig.3 Experimental results using PU3 and PUa 

5.2 Experiments with different size of training corpus 

In the second set of experiments we investigated the performance of the 

Perceptron and Winnow when varying the size of the training corpus. We used t% 

of the training examples, where t varied from 10 to 100 by 10. The top 2000 

featuresTP

7
PT with highest IG scores were selected, and the learning rates are α=0.5, 

β=1.8, γ=0.5. The number of training iterations was set to 15. 

 

                                                 
TP

7
PT In fact, we found that our results are insensitive to different values of parameters, including the number of 

features, learning rates, and the number of training iteration. So, here we just choose the values for 
instantiation without special purpose. 
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Fig. 4  F1 results with different size (represented by the percentage of the total training corpus) of 

the training corpus. The 100% size of PU1 training corpus is 989, while the value is 2603 for Ling-

Spam. 

 

Figure 4 shows that when the size of the training corpus increases, the 

performance of both the Perceptron and Winnow also increases. But that the F1 

performance only increases slowly compared to the increase in the size of the 

training set. For Winnow, the increase is less than that of the Perceptron. The 

figure shows that it is unnecessary to use a very large training corpus to get a 

relatively high performance (above 90%) when using these two algorithms in anti-

spam filtering. However, if higher performance is wanted, more training 

documents are needed. 

5.3 Experiments with different number of training iterations 

In these experiments, we investigate how the number of training iterations affects 

the performance. Figure 5 shows the results of our experiments, the number of 

iterations varied from 1 to 20 in increments of 1.  

From Figure 5 we can see that the performance improves when the number of 

iterations increases at first, and after that it remains stable again. It can be 

concluded that to train the Perceptron or Winnow, it is not necessary to train the 

examples many times. In both cases the stable performance level is reached after 

around 8 iterations. 
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Fig. 5 F1 results with different numbers of training iterations for the Perceptron and Winnow, 

using PU1 and Ling-Spam. 

5.4 Comparison experiments  

In these experiments, we compare the performance between the Perceptron and 

Winnow, and compare them with Naïve Bayes classifier. Some computational and 

impelmentation analysis is also give for comparison. 

 

 
Fig. 6  Comparative results of the Perceptron and Winnow, using PU1 and Ling-Spam  

Figure 6 shows the comparison between the Perceptron and Winnow on both PU1 

and Ling-Spam, using IG. Learning rates are α=0.5, β=1.8, γ=0.5. The 

number of iterations is set to 15. The figure is recompiled from the previous 

results in figure 2. The Winnow performs slightly better than the Perceptron.  

We then compared the Perceptron and Winnow with Naïve Bayes, which is 

believed to be one of the fastest and most effective classifiers for anti-spam 

filtering [4][7][9][11][12][13][14]. Keyword-based methods are usually used in 

anti-spam software and can be regarded as good baseline classifiers for our 
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research.  However, Androutsopoulos et al. [10] have already demonstrated 

Naïve Bayes to be much better than a widely used keyword-based method, so we 

directly choose Naive Bayes as our baseline classifer. In our experiments, we 

implemented both the Multi-variate Bernoulli Model (MBM) and the Multinomial 

Model (MM), see Section 2, forms of Naïve Bayes, and found that the MBM 

model slightly outperformed the MM model, especially using the PU1 corpus. 

Therefore, we used the results of the MBM model for our Naïve Bayes classifier. 

Figure 7 shows the comparative results. The performance of all three classifiers is 

shown with varying number of features first from 10 to 200 by 10, and then from 

200 to 800 by 50. 

From Figure 7, we can see that when the number of features is small, Naïve Bayes 

performs comparably to the Perceptron and Winnow filters, but that when the 

number of features increases, the performance of Naïve Bayes falls, while the 

performance of the Perceptron and Winnow increase and then, as shown 

previously (see Figure 2), become very stable as the number of features increases. 

A reasonable explanation for this behaviour is that anti-spam filtering is a task 

with many irrelevant features, but Naïve Bayes can’t perform very well if many 

irrelevant features are considered to estimate the probabilities. However, from 

Figure 2, we can see clearly that the Perceptron and Winnow can handle such 

conditions very well. These experiments were repeated using PUa and PU3 

corpora, and although these two corpora are rather different from PU1 and Ling-

Spam, we got very similiar results. Thus, we believe our approaches can be 

generalized for other spam corpora. 
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Fig. 7  Comparative results of Naïve Bayes, the Perceptron and Winnow classifiers 

Table 1 lists the best F1 results that we found using the above three classifiers. It 

should be pointed out that with different parameters the results may change a 
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little. But as shown before, the performance of the Perceptron and Winnow filters 

are quite stable. Some other previous results using PU1 and Ling-Spam can be 

found in [4][7][10][11][12][13][14]. From Table 1, we can see that for the PU1 

corpus, the best F1 result so far was 97.90% using Adaboost classifiers [14], while 

our results for the Perceptron and Winnow are respectively 97.40% and 97.57%. 

For Ling-Spam, the best Accuracy result so far is 99.2% still using the Adaboost 

classifier8, while our results of the two classifiers are 98.89% and 99.31%. 

Compared to previous studies, our results are very competitive. Further analysis 

later in this section shows that our classifiers are much cheaper than Adaboost, 

and that they can easily be updated, thus our approaches are more suitable for 

spam filtering. 

 
Table 1  The best F1 results of NB, the Perceptron, Winnow and some top previous results 

 
Corpus Classifier Recall Precision F1 Accuracy 

NB 98.55 87.53 92.69 93.18 

Perceptron 97.29 97.55 97.40 97.72 

Winnow 97.09 98.17 97.57 97.91 

Adaboost  97.09 98.73 97.90 N/A 

PU1 

SVM 95.60 97.08 N/A 96.70 

NB 90.65 97.94 94.06 98.13 

Perceptron 94.60 98.75 96.58 98.89 

Winnow 97.72 98.14 97.92 99.31 

Lingspam 

AdaBoost 96.7 98.6 N/A 99.2 

 

Table 2 lists the computational complexity of the training (excluding feature 

selection) and classification of the three classifiers. 

 
Table 2  Computational complexity of three classifiers in anti-spam filtering. N is the number of 

training messages. k the number of features, n the number of iterations in the Perceptron and 

Winnow training, t the number of iterations in the Boosting methods. 

 
Learning method Training Classification 

NB O(kN) O(k) 

Perceptron O(nkN) O(k) 

Winnow O(nkN) O(k) 

                                                 
8 See M. DeSouza, J. Fitzgerald, C. Kemp and G. Truong, “A Decision Tree based Spam Filtering Agent”, 
http://www.cs.mu.oz.au/481/2001_projects/gntr/index.html, 2001 

http://www.cs.mu.oz.au/481/2001_projects/gntr/index.html


Adaboost with 

decision tree 

O(tkN2) O(t) 

 

Naïve Bayes is believed to be one of the fastest classifiers (either for training or 

test phases) among those used in anti-spam filtering [12].  Its computational 

complexity is O(kN) for training and O(k) for test. Both the Perceptron and 

Winnow also have a O(k) time complexity for test. So using either of these 

classifiers to filter spam messages is very fast. 

Although Adaboost classifiers using decision trees as weak learners can get very 

good results, their training time is much longer than other classifiers. So it is not 

very suitable when handling large number of Email messages. 

For both the Perceptron and Winnow, when training, the worst situation is that in 

each iteration for each training example, the weight vector is updated. The 

complexity of each update is O(k). Thus the total update complexity is O(nkN). 

The sorting complexity for searching the minimum error number is O(n2). 

Because usually n<<k, the training complexity of the Percepron and Winnow is 

O(nkN). In fact, the two methods are both error-driven and the number of active 

features are small for each message, so the actual number of update features at 

each iteration is much smaller than k (e.g., when the top 5000 IG features are 

selected for Ling-Spam or PU1, the average number of active features in training 

documents are 134 or 155 respectively). Meanwhile, as shown previously, n, k 

and N can be reduced to small values while still achieving good results. In other 

words, the practical filters based on these two classifiers are very fast for both the 

training and test phases. 

Obviously, the space costs are also very cheap for these two classifiers, since they 

only store the weight vectors. Another advantage is that they are very easily 

updated since they are online classifiers. When users change their definition for 

spam emails, the Perceptron and Winnow can easily be updated through user 

feedback. 

 

6 Conclusion and future work 

In this paper, two online linear classifiers, the Perceptron and Winnow, have been 

investigated in the context of anti-spam filtering under two benchmark corpora, 
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PU1 and Ling-Spam. We studied their performance when varying the number of 

features along with three different feature selection methods: Information Gain 

(IG), Document Frequency (DF) and Odds ratio. The size of training set, and the 

number of training iterations were also investigated for both classifiers. The 

experimental results show that both the Perceptron and Winnow perform much 

better when using IG or DF than using Odds ratio, and that they are insensitive to 

the number of features and the number of training iterations and not greatly 

sensitive to the size of training set. It was also shown that Winnow slightly 

outperforms the Perceptron, and that both of them perform much better than 

Naïve Bayes. We also found the same conclusions when using two additional test 

corpora PUa and PU3, which are very different from PU1 and Ling-Spam.The 

theoretical and implementation computational complexity of these two classifiers 

are very low, and they can very easily be adaptively updated. The analysis and 

promising experimental results indicate that the Perceptron and Winnow are two 

very competitive classifiers for anti-spam filtering. 

As we pointed out in the Introduction section, users may pay more attention to the 

precision than the recall.  Our future work will include considering the above 

classifiers under a cost-sensitive framework. Meanwhile, we believe that many 

other features, including non-textual features, such as hyperlinks, can improve the 

filtering performance, and we will take them into account. Other work is currently 

focused on developing a benchmark corpus for Chinese spam email filtering. We 

will collect and build up a text corpus, and more information, including structural 

information such as hyperlinks, will be retained for applying more approaches, 

e.g., some Web information retrieval techniques. An interesting question, which 

we will be exploring, is the extent to which our results for English corpora prove 

that these techniques will be effective for all languages? 

Another problem is that the volume of data here is very small. Can we trust these 

results over a larger volume of messages? And when spam changes or evolves, 

can the system cope with the evolving spam? We hope to address these questions 

using the spam Email research corpus developed by NIST for the Spam Detection 

task at the annual TREC conference in 2005 (TREC2005) in the near future.  
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7 Originality and Contribution 

To the best of our knowledge, this is the first application of two linear classifiers 

the Perceptron and Winnow, which are moderate classifiers in traditional text 

categorization, to the task of spam filtering. Feature selection approaches are 

compared based on public benchmark corpora. Filtering performance, 

computation complexity, application issues are compared with previous filtering 

approaches. Experimental results show that these two classifiers outperform 

existing methods for spam filtering and they are very fast and suittable for real 

use. 
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