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Abstract
We describe a decision support system to distinguish among hematology cases directly from
microscopic specimens. The system uses an image database containing digitized specimens from
normal and four different hematologic malignancies. Initially, the nuclei and cytoplasmic
components of the specimens are segmented using a robust color gradient vector flow active contour
model. Using a few cell images from each class, the basic texture elements (textons) for the nuclei
and cytoplasm are learned, and the cells are represented through texton histograms. We propose to
use support vector machines on the texton histogram based cell representation and achieve major
improvement over the commonly used classification methods in texture research. Experiments with
3,691 cell images from 105 patients which originated from four different hospitals indicate more
than 84% classification performance for individual cells and 89% for case based classification for
the five class problem.

1 Introduction
Over the past few years there has been increased interest and efforts applied to utilizing content-
based image retrieval in medical applications [18,24,25,28,29,41]. Individual strategies and
approaches differ according to the degree of generality (general purpose versus domain
specific), the level of feature abstraction (primitive features versus logical features), overall
dissimilarity measure used in retrieval ranking, database indexing procedure, level of user
intervention (with or without relevance feedback), and by the methods used to evaluate their
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performance. In this paper, we present a decision system utilizing texture based representation
and support vector machine (SVM) optimization to classify hematologic malignancies.

The use of texture analysis for performing automated classification of disease based on features
extracted from radiological imaging studies has been reported in the medical literature
repeatedly. It has been successfully applied in breast cancer [32,33,42], liver cancer [23] and
obstructive lung disease [2].

Recently there have been a number of investigators who have begun to explore the feasibility
of utilizing texture features in the classification of pathology at the microscopic level. The
success of the methods vary with the domain of the problem, and the choice of representation
and optimization techniques. We also note that the testing methodology that is applied during
the experiments and the size of the datasets have very important role in the observed results,
and some test methodologies and small datasets can trigger biased results.

In [37], frequency domain features are used to classify among subclasses of normal and
abnormal cervical cell images using a database containing 110 cells from both normal and
abnormal groups. Using the spectra of cell images, 27 texture features are extracted with gray
level difference method and together with 22 frequency components, resulted in 92% correct
classification among subclasses. In [46], statistical geometric features, which are computed
from several binary thresholded versions of texture images are used to classify among normal
and abnormal cervical cells. The method gave 93% correct classification rate on a database
containing 117 cervical cells using only 9 statistical features.

A discrimination scheme among the main subsets of lung carcinomas was reported in [40] by
chromatin texture feature analysis using a test set comprised of 195 specimens. Texture features
describing the granularity and the compactness of the nuclear chromatin were extracted for
calculation of classification rules, which allowed the discrimination of different tumor groups.
Although the classification failed to distinguish among some subtypes of tumor groups, around
90% classification accuracy was achieved for small-cell and non-small-cell lung carcinoma
using the four dimensional texture features combined with simple decision rules.

In [34], adaptive texture features were described utilizing the class distances and differences
of gray level cooccurrence matrices of texture images. In [35], the adaptive texture features
were used for classifying the nuclei of cells in ovarian cancer. In this study a clear relation
between nuclear DNA content, area, first-order statistics, and texture is observed. The approach
discriminated the two classes of cancer with a correct classification rate of 70% on a test set
of 134 cases.

A decision support system to discriminate among three types of lymphoproliferatie disorders
and normal blood cells was presented in [5]. Cells were represented with their nuclear shape,
texture and area, where shape was characterized through similarity invariant Fourier
descriptors and multiresolution simultaneous autoregressive model was utilized for texture
description. The experiments conducted on a database consisting of 261 specimens using
tenfold cross validation were resulted with 80% correct classification rate. Notice that in all
the methods described, the results were acquired using small datasets and without obeying the
separation of cells among training–testing sets based on patient. We present a detailed
discussion about the testing methodologies and their effects on the results in Sect. 5.

As new treatments emerge, each targeting specific clinical profiles, it becomes increasingly
important to distinguish among subclasses of pathologies. In modern diagnostic pathology,
sophisticated analyses are often needed to support a differential diagnosis, but these supporting
tests are not typically employed unless morphological assessment of a specimen first leads one
to classify the case as suspicious. In many cases, the differential diagnosis can only be rendered
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after immunophenotyping and/or molecular or cytogenetic study of the cells involved.
Immunophenotyping is the process commonly used to analyze and sort lymphocytes into
subsets based on their antigens using flow cytometry. For the purposes of our experiments the
immunophenotype provide independent confirmation of the diagnosis for all cases. The
additional studies are expensive, time consuming, and usually require fresh tissue which may
not be readily available. Since it is impractical to immunophenotype every sample that is
flagged by a complete blood count (CBC) device, passing the specimen through a reliable
image-based screening system could potentially reduce cost and patient morbidity.

We designed a texture based solution which distinguishes between normal cells and four
different hematologic malignancies. We discriminate among lymphoproliferatie disorders,
chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), follicular center cell
lymphoma (FCC), which can be confused with one another during routine microscopic
evaluation. Two acute leukemias, acute myelocytic leukemia (AML) and acute lymphocytic
leukemia (ALL), could only be classified in relation to the lymphoproliferatie disorders and
normal cells as a single unit labeled as acute leukemia. It is shown in [36] that there is no
statistical significance in morphometric variables for some subtypes of Acute Leukemia which
coincides with our observations. Although each of the disorders under study can exhibit a range
of morphological characteristics. Figure 1 shows representative morphologies for each.

Chronic lymphocytic leukemia is the most frequent leukemia in the United States. It is typically
a long-term but incurable disease with potential for a more aggressive treatment, e.g., [38].
MCL is a recently described entity (1992) which was not part of the initial working formulation
classification system for non-Hodgkin’s lymphoma [3]. Timely and accurate diagnosis of MCL
is of extreme importance since it has a more aggressive clinical course than CLL or FCC
[15,43]. The third lymphoproliferative disorder under study is FCC, which is a low-grade
lymphoma [1].

Chronic leukemias are associated, at least initially, with well-differentiated, or differentiating
leukocytes and a relatively slow course. On the other hand, acute leukemias are characterized
by the presence of very immature cells (blasts) and by the rapidly fatal course in untreated
patients. Acute leukemia primarily affect adults, with the incidence increasing with age.
Despite differences in their cell origin, subtypes of acute leukemias share important
morphological and clinical features [7]. Our database includes two subtypes of ALL and AML,
but in this study we consider them as a single unit.

The proposed system proceeds in three steps.

1. Segmentation: Our observations indicate that both the nucleus and the cytoplasm of
a cell contain valuable information regarding the underlying pathology, therefore we
analyze them separately. Given a microscopic specimen, initially the system locates
the region which contains the cell and then using a robust color gradient vector flow
(GVF) active contour model [49] segments the region into nuclear and cytoplasmic
components.

2. Cell representation: Texture information is used to characterize the morphological
structure of normal and diseased cells. A few example images from each disorder are
used to create the texton library which captures the structure of texture inside each
cells nucleus and cytoplasm. The cells are then represented with two texton histograms
corresponding to nuclear and cytoplasmic distribution.

3. Classification: We utilize SVMs over the texton histogram based representation to
classify the cell images and observe major improvements over the classical histogram
based classification methods in the literature such as k-nearest neighbors (kNN).
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We conduct four different experiments. In the first experiment, we compare texture features
constructed using different methods that were used traditionally in the literature. In the second
experiment, we compare the performance of several classification algorithms applied to texture
based diagnosis problem. In the third experiment, we show the discriminative power of the
proposed cell representation by comparing with several other commonly used features (shape,
area) for hematopathological diagnosis. Finally we compare our method with the method of
[5] which aims the same problem but has one less disorder class and observe major
improvements.

The paper is organized as follows. Image segmentation is briefly reviewed in Sect. 2. Section
3 presents the texture based cell representation. In Sect. 4, we present SVM optimization on
texton histograms. Section 5 explains the experimental setup, the database of ground truth
cases, and the experimental results of different classification methods, features and comparison
with previous methods.

2 Image segmentation
In order to extract features from the cell images, we start with the image segmentation. In our
application, the region of interest (ROI) containing the object cell, is automatically selected
for each image [12]. Both the nuclei and the cytoplasm of cells contain valuable distinguishable
information for classification. Therefore, the robust color GVF snake [49], which combines
L2E robust estimation and color gradient, is applied for segmenting both the nuclei and the
cytoplasm.

A 2D parametric snake [48] is a curve x(s) = (x(s),y(s)) defined via the parameter s ∈[0,1] to
minimize an energy function

(1)

where x′(s) and x″(s) are the first and second derivatives of the curve with respect to parameter
s, and τ and ρ are constants.

According to Helmholtz theorem, the external energy can be replaced with −Θ(x,y) in (1),
where Θ is the GVF in image coordinates. The GVF is computed as a diffusion of the gradient
vectors of a gray-level edge map derived from the image. The diffusion version of the gradient
vector can enlarge the capture region of traditional snake and also lead the snake into concave
regions. It is defined as Θ(x,y) = [u(x,y),v(x,y)] and minimizes the energy function

(2)

where ∇{Gσ(x,y)* I(x,y)} is the gradient of the input image I(x,y) after Gaussian smoothing with
covariance σ2 I2 and mean 0; ux, …, vy are the partial derivatives w.r.t. x and y; η is a constant.
In our approach, the original GVF vector field Θ is replaced by Θ*, which is the diffusion field
in the L*u*v* color space that is more closer to the human perception of color. The color
differences in this space can be approximated by Euclidean distances [47, Sect. 3.3.9].
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Applying the principle of calculus of variations, the problem is solved by the following Euler–
Lagrange differential equation:

(3)

where x″(s) and x″″(s) are the second and fourth derivatives of the curve with respect to the
parameter s. Furthermore, instead of randomly choosing initial curves, we apply L2E based
robust estimation to locate the initial positions, which improves both the convergence speed
and the robustness. Figure 2 shows some segmentation results using the approach. The
performance of segmentation algorithm slightly varies for different classes of disorders and on
average 93% of nuclear and 91% of cytoplasmic components are correctly identified. For more
details about the color gradient and robust estimation guided active contour segmentation
algorithm, we refer to [49]. Notice that, we convert the images to gray level and normalize to
minimize the effects of imaging conditions only after segmentation, since color is an important
cue for segmentation.

3 Feature construction
In this section we describe texture based cell representation. A detailed comparison of texture
based representation with other common features used in hematapathologic diagnosis is given
in Sect. 5.5.

3.1 Texture features
The earlier texture research characterizes a texture according to statistical measures of gray
level occurrence relation inside the texture image. The most popular methods are gray level
difference [16], gray level cooccurrence matrices [17], gray level run length matrices [14] and
autoregressive models [31].

In more recent studies, a texture is characterized through textons which are basic repetitive
elements of textures. The form of the textons are not known and they are learned through
responses to a set of linear filters, and the resulting responses are clustered. The cluster centers
are then selected as the textons. The approach has been successfully used in several fields of
texture research including classification, segmentation and synthesis [9,20,30,44].

Recently, it has been proposed that the raw pixel values could replace filter responses to
characterize a texture. Local intensity information in spatial domain was used for texture
synthesis in [11,21] and texture classification in [45]. In this approach, the neighboring pixels
around the pixel of interest are stacked into an array and used as the feature vector.

After filtering the images, each pixel is mapped to d-dimensional space, where d is the number
of filters. Similarly, if local neighborhoods are used, d is equal to size of the local neighborhood.
A few sample images are selected from each texture class and the filter responses/local
neighborhoods are clustered using k-means clustering algorithm [10]. The cluster centers are
selected as textons, therefore the km parameter of the clustering algorithm determines the
number of textons. This process is repeated for all the c texture classes, and the cluster centers
are concatenated to each other to form the texton library. There are c·km = p textons in the
texton library.

The histograms are created by assigning the filter response of each pixel to the closest texton
in the texton library (vector quantization) and then finding the occurrence frequencies of each
texton throughout the image. The k-means clustering algorithm used during texton library
generation finds a suboptimal solution for determining quantization levels in a d-dimensional
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space, which is enough in many practical situations. Finally, each texture image is modeled
via a p-bin texton histogram, representing all classes.

3.2 Cell representation
The nucleus and cytoplasm of the cells were segmented, as described in Sect. 2. Following
segmentation, the cell images are converted to gray level and normalized such that the mean
is 0 and standard deviation is 1. Since the cell images are acquired in different imaging
conditions, the normalization is an important operation to minimize the effect of different
imaging conditions. The normalization significantly improves the final classification results
and supporting claims using similar normalization techniques were also reported in [34]. Notice
that, the segmentation algorithm described in previous section uses color information, where
as texture representation is computed on normalized gray level images.

We compared the performance of classifiers based on different filter banks and local
neighborhood in Sect. 5.3. Although there were not significant differences among some of the
filter banks, we found that the M8 filter bank [44] is the most suitable for our cell representation.
The filter bank consists of 38 filters, from which two filters are rotationally symmetric
(Gaussian and Laplacian of Gaussian) and 36 of them are edge and bar filters at three scales.
We use σ = 10 for Gaussian and Laplacian of Gaussian functions. The edge and bar filters are
selected with σx = 1 and σy = 3 at the finest scale, and are doubled at each of the three scales.
The filters are computed at six orientations. Among the oriented filters, only the maximum
filter response is retained at each scale, therefore the feature space is d = 8 dimensional. The
filters in M8 filter bank are shown in Fig. 3. The detailed comparison of different filter banks
are explained in Sect. 5.3.

We analyze the texture of cytoplasm and nucleus independently. A few random cell images
(ns = 30) are selected from each class and filter responses inside the segmentation mask are
clustered using k-means clustering algorithm with km = 30. The clustering is performed
separately for pixels inside the nucleus and cytoplasm, and repeated for each disease class.
Since the size and the variability of cytoplasm texture is less than the nucleus texture, we
generate half the number of clusters from the cytoplasm than from the nucleus. We concatenate
the cluster centers from each class and construct the texton libraries separately for cytoplasmic
and nuclear texture. The algorithm for texton library generation is given in Fig. 4.

Using the constructed texton library, the cells are represented with their texton histograms.
Given an arbitrary cell image, the pixels inside the cytoplasm and nucleus are filtered and the
responses are quantized to the nearest textons in the library. As a result each cell image is
represented with two texton histograms of sizes c·km and c·km/2 corresponding to nuclear and
cytoplasmic texture. The texton library generation and cell representation process is illustrated
in Fig. 5.

4 Classification
We utilize support vector machines (SVMs) to classify among four types of malignancies and
normal cells. SVMs were first introduced in [6] for binary classification problems. The
technique is a generalization of linear decision boundaries where decision surface is
constructed in a large transformed version of the original feature space.

We first focus on the binary classification problem (c = 2). Let {(xi, yi)}i = 1, …, n be the training
set with the respective class labels, where xi ∈ℝp and yi ∈{± 1}. The SVM solves the following
optimization problem
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(4)

where the training samples are mapped to an enlarged space with the function h(x). Minimizing
βTβ is equivalent to maximizing the margin between the positive and negative samples and γ
is the tradeoff between the training errors {xi;i}i = 1, …, n and the margin. We maximize the
dual problem of (4) since it is a simpler convex quadratic programming problem. The dual
problem and the decision function involve mapping h(x) through an inner product, therefore
it suffices to define the inner product through a kernel function without defining the mapping.
In our implementation we use the linear kernel function, i.e., K(x,x′) = x·x′. A more detailed
discussion on SVMs can be found in [8].

Next we focus on the multi-class classification problem. The first group of methods construct
several binary classifiers and combines them to solve multiclass classification problem. The
most popular two methods are one-against-one and one-against-all classifiers. In one-against-
one classifier, a binary classifier is trained for all combinations of classes. Then, the label of a
test example is predicted by the majority voting among the classifiers. In one-against-all
classifier, for each class a binary classifier is trained by labeling the samples from the class as
positive examples and samples from the other classes as negative examples. A query point is
assigned to the class having maximum decision function among all the classes.

The second group of methods considers all the classes together and solves the multi-class
problem in one step. Due to a large scale optimization problem, these methods are
computationally more expensive which makes them unsuitable for large size applications. A
detailed comparison of multi-class SVMs can be found in [22].

In this paper we utilize one-against-one SVM classifier. Besides we present results for one-
against-all SVM classifier, kNN classifier which is widely used for texture classification
problems and LogitBoost classifier which allows us to describe the uncertainty of the
classification, in Sect. 5.

5 Experiments
5.1 Cell database

Immunophenotyping was used to confirm the diagnosis for a mixed set of 86 hematopathology
cases: 18 MCL, 20 CLL, 9 FCC, and 39 acute leukemia. In addition there were 19 normal
cases. For each case, we have varying number of cell images ranging from 10 to 90. In total
we have 3,691 cell images from 105 cases. All cases originated from the archives of either City
of Hope National Medical Center in California, University of Pennsylvania of School of
Medicine, Spectrum Health System, Grand Rapids, MI or Robert Wood Johnson University
Hospital at the University of Medicine and Density of New Jersey.

There were obvious variations in the staining characteristics of specimens among the
institutions, which were introduced because of differences in manufacturers of the dyes,
choices in automated stainers and due to the overall intensity variations. All of these variables
led to variations in shadowing, shading, contrasts and highlighting cues providing an added
challenge for the classification algorithms. Four MCL samples from different institutions are
shown in Fig. 6, which demonstrates the imaging variations among different institutions.

Stained specimens were examined by a certified hematopathologist using an Olympus AX70
microscope equipped with a Prior 6-way robotic stage and motorized turret to locate, digitize
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and store specimens. The system utilizes interactive software developed in Java and C++. The
imaging components of the system consist of an Intel-based workstation interfaced to an
Olympus DP70 color camera featuring 12-bit color depth for each color channel and 1.45
million pixel effective resolution. Figure 7 shows samples from normal and each disorder
category originated from Robert Wood Johnson hospital. As seen in the images our cell
database covers a wide range of characteristics for each disease category.

5.2 Test methodology
The texture statistics of the cell images from a single case are similar to each other. As a result,
the division of test and training sets without obeying the separation of cells based on per case
(patient), produce biased results towards better classification rates.

We perform leave one out tests in our experiments. We select all the cell images from a single
case as the test set and the remaining cell images in the database as the training set. The cells
from the selected case are classified using the trained classifier. Training is repeated for each
case (patient). In Sect. 5.6, we also present results for tenfold cross validation, where a model
can be trained using some cells of a case and used to classify some other cells of the same case.
We refer to this scheme as not obeying the separation.

We present the results for two different tests: cell classification and case classification. In cell
classification, we predict the label of each cell with the trained classifier. In the case
classification, we assign the label of the case according to the majority voting among its cells.
Notice that there are variable number of cell images per case, ranging from 10 to 90.

5.3 Filter banks
In the first experiment, we compare the texture features generated by using M8 filter bank with
LM [30], S [39], M4 [44] filter banks and the local neighborhood method [45]. The LM filter
bank consists of 48 anisotropic and isotropic filter: first and second derivative of Gaussians at
6 orientations and 3 scales; 8 Laplacian of Gaussian filters and 4 Gaussian filters. The S filter
bank consists of 13 rotationally symmetric filters and M4 filter bank is similar to M8 filter
bank except, edge and bar filters appear only at single scale.

Initially, ns = 30 random cell images are selected from each of the five classes, and the images
are convolved with the filter banks. Also, the local neighborhood based features are constructed
by stacking 7 × 7 neighborhood of each pixel. We do not normalize the images while
constructing local neighborhood based features since the method uses local intensity
information.

For nuclear texture we use km = 30 cluster centers, and for the cytoplasm texture km = 15 cluster
centers, from each class. Therefore, the texton library has 150 textons for nuclei and 75 textons
for the cytoplasms, total of 225 bin histogram for each cell.

The classification performance of different features are given in Table 1. The results indicate
that M8, S and LM outperforms the M4 filter bank and local neighborhood method. There are
not obvious differences among the M8, S and LM filter banks. The case classification
performance of LM and S filter banks are slightly better than M8 whereas cell classification
performances support the inverse argument. We consider cell classification performance as
more important, since cases are classified according the majority voting of the cells and a few
classified/misclassified samples among a case can drastically change the result. Moreover,
M8 filter bank is the most compact space which has 8 features whereas LM and S filter banks
have 48 and 13 features, respectively. The clustering and quantization steps take much longer
time using the later methods, e.g., 1 h for M8 versus 8 h for LM.
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5.4 Classification methods
In the second experiment we compare the one-against-one SVMs with three classification
algorithms: LogitBoost, one-against-all SVMs, kNN.

Nearest neighbor classifier with the χ2 distance metric is the widely applied classification
algorithm used with histogram based texture representation. In kNN classification [19, p. 415],
the closest kn training samples to the query point are detected and the query point is labeled
with the class having the majority votes among the detected points. It is shown with the
experiments that among the other possible choices for the distance function (KL-divergence,
Bhattacharya distance, Euclidean distance), χ2 distance performs best for the texture similarity
measure. The χ2 distance between two one-dimensional histograms h1 and h2 is measured as

(5)

We select the optimum value of the number of neighbors parameter as kn = 15, via cross-
validation. Since χ2 distance measures dissimilarity between two distributions we do not
normalize each feature to have zero mean standard deviation for kNN classification, where as
we perform normalization for other methods.

The second method, for comparison is multiclass LogitBoost classifier [13]. LogitBoost
algorithm learns an additive multiple logistic regression model by minimizing negative log
likelihood with quasi-Newton iterations. The probability of a sample x being in class l is given
by

(6)

where Fl(x) is an additive function

(7)

At each boosting iteration m, the algorithm learns the weak classifiers fmj(x), j = 1, …, c by
fitting weighted least squares regressions of training points xi, i = 1, …, n to response values
zij with weights wij where

(8)

and  is the binary class indicator such that  if class of i-th sample yi = j, and 0 otherwise.

We utilize regression stumps as weak learners, which are regression trees with a single split
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(9)

We learn the regression coefficients a, b, the threshold θ while xt denotes the t-th dimension
among the 225 dimensions of the feature vector x. In our implementation we performed M =
300 boosting iterations. We refer readers to [13] for more technical details.

For SVM classifiers we use linear kernel and a soft penalty (γ = 0.01) for training errors [26,
Chap. 11]. The classification rates are given in Table 2. Results indicate that we achieve major
improvements over the widely used kNN based texture classifier with the introduction of SVMs
or LogitBoost. The one-against-one SVM and LogitBoost classifiers produced comparable
results, while outperforming the other methods significantly. The performance of one-against-
one SVM classifier is better than LogitBoost classifier in cell classification. However,
LogitBoost has certain advantages over SVM. In medical applications, it is also important to
report the uncertainty about an estimation. Since LogitBoost classifier estimates the posterior
distribution of class labels through (6), with this method we can describe the uncertainty of the
estimation for each individual cell. In our application, we utilize one-against-one SVM
classifier since it produces most accurate results.

We achieve very successful results since even the most experienced doctors can predict the
correct label after investigating several other medical records besides images. In a similar setup,
but including fewer cases from normal and three lymphoproliferatie disorders (four class
problem), three different human experts could only classify less than 70% of the cells correctly
[5], which illustrates the superior performance of our approach.

In Tables 3 and 4 we present the confusion matrices for cell and case classification using one-
against-one SVM. The rows of the table show the actual cell classes and the columns show the
predicted cell classes. The normal and acute cells are classified accurately, whereas there is
some confusion among CLL, MCL and FCC cells. In the case classification almost all of the
classes are predicted correctly, and only FCC cases have several misclassifications. This is
mainly because we have limited number of training examples from the FCC cases.

Besides five class classification problem, we diagnosed the cells and the cases as normal versus
disorder. Since the problem is binary classification, one-against-one and one-against-all SVMs
reduced to binary SVM classifier. The classification rates both for cells and cases are given in
Table 5. The results indicate that we can diagnose a case as being normal or disorder almost
perfectly, only a single case is misclassified among the whole database.

5.5 Other features
In the third experiment we compared the texture based representation with several other
features that are commonly used for hematopathology diagnoses. The first set of features are
related to area of the cell. We use nucleus and cytoplasm area and nucleus/cytoplasm area ratio.
The second set of features are related to the shape of the nucleus. We analyze the shape of the
nucleus based on elliptic Fourier descriptors [27] which are made invariant to changes in
location, orientation and scale [5]. We achieve rotation invariance by compensating for the
arbitrary position of the starting point on the contour and for the arbitrary orientation of the
contour. Scale invariance is achieved by normalizing each Fourier coefficient. The following
conditions are considered.
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• If the first harmonic locus is an ellipse, the rotation is defined relative to the semi-
major axis of the locus and we normalize the coefficients by the magnitude of the
semi-major axis.

• If the first harmonic locus is circular, the rotation is made with respect to the line
defined by the centroid of the contour and the most distant point on the contour and
we normalize the coefficients by magnitude of the radius.

We obtain translational invariance by removing the DC coefficient from the Fourier series. We
retrieve 16 harmonics (64 coefficients) for the shape of each nucleus.

We present the one-against-one SVM classification results for each of the features and the
combination of all the features in Table 6. For the combined features we stack all the features
into an array. We see that neither area based nor shape based features are alone enough to
perform classification. The texture based features outperform both of the other features
significantly. Notice that, although indirectly, the area information is presented inside the
texture features, since each bin of the texton histogram is equal to the number of occurrence
of the texton in the image. There are minor improvements from texture based representation,
84.45%, to combined features, 84.62%, in cell classification and 89.52–91.42% in case
classification.

The distribution of the classification performances according to different disorders show
variation from texture based features to combined features. The confusion matrix of case
classification using combined features are given in Table 7. Usually in the advanced stages of
FCC the nuclei show variability from the other diseases. We see that two more FCC cases are
correctly classified with combined features relative to Table 4. The results almost did not affect
the other classes which supports the claim. We achieve only minor improvements over the
texture features with the introduction of morphological features such as area and shape.

5.6 Comparison with previous method
In this section we compare our approach with the method of [5]. The problem considered in
[5] is a subset of our problem, where only four classes are considered (Normal, MCL, FCC,
CLL). The cell database of [5] contains only 261 specimens and the testing is performed by
adopting tenfold cross validations which do not obey separation based on patient.

The results of [5] is given in Table 8. To directly compare our results with [5] and illustrate
the effect of test methodology, we also performed tenfold cross validations and presented the
cell classification results in Table 9. Even though the problem that we solve is more difficult
(one more class), we see that our results are significantly better than [5] except for FCC class.
Only the classification of FCC cells were slightly better in [5], but we note that there were only
20 FCC cells in their experiments.

The classification rates of our method with tenfold cross validation tests are significantly higher
than the leave-one-out tests performed previously. The cell classification rate changed from
84.45 to 93.18%. We see that the separation of training and test sets without obeying case
separation, produces biased results towards better performances. The specimens from a single
case may have similarities to each other, which are uncorrelated to the class of the disorder.

6 Discussion
In many areas of pathology, the intrinsic variability in diagnostic complexity is compounded
by a continuing lack of standard criteria for the identification of diseases and their histologic
features. In the case of some lymphoproliferative disorders, most pathologists have the
opportunity to review such a limited number of cases. There exists a striking disparity between
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the diagnoses of an expert in hematopathology and the pathologists in community hospitals.
Using advanced imaging and computational tools might potentially enable investigators to
detect and track subtle changes in measurable parameters.

As part of our ongoing PathMiner project, we have already described the design, development,
and evaluation of an Image Guided Decision Support system for unsupervised imaging,
analysis, and archiving of hemapathology specimens [4,5,49]. In our studies, nuclear texture
was shown to be the most important discriminating feature for discriminating among a set of
malignant lymphomas and leukemia which can sometimes be confused with one another during
routine microscopic evaluation [12]. In the current paper we have investigated the statistical
optimization of the underlying algorithms. Our experiments focused on the utilization of
SVMs. Even with the inherent difficulties in differentiating among the disorders under study,
classification results throughout our studies using texton histogram representation showed
performance improvement through introduction of new classifiers. We achieve very successful
results considering the difficulty of the problem.

The literature ascribes much of the difficulty in rendering consistent evaluation of expression
patterns in cancer tissue microarrays to subjective impressions. When characterizations are
based upon computer-aided analysis, objectivity reproducibility and sensitivity improve
considerably. Encouraged by the results generated during the course of our studies we plan to
explore the use of texture information for discriminating between healthy and cancerous tissues
in immunofluorescing pathology specimens including cancer tissue microarrays.

7 Originality and contribution
This study describes a texture based solution which distinguishes between normal cells and
four different hematologic malignancies. A new representation for cell images is introduced
utilizing texture features. The texton libraries for cytoplasmic and nuclear components of the
cell images are constructed and images are represented with two histograms corresponding to
both regions.

Utilizing SVMs with the proposed representation, significant classification improvements are
observed over the existing texture classification techniques. It is also shown that using
multiclass LogitBoost algorithm, it is possible to infer about the uncertainty of the estimation
without decreasing the performance significantly.

Experiments are conducted on a cell database consisting of samples from four different
hospitals, 105 cases and 3,691 cell images. The database covers wide range of characteristics
for each disorder class and includes obvious variations in the imaging conditions among
different institutions. Detailed experiments are reported comparing the proposed approach with
the selection of other features and classification techniques that are commonly used in
hematopathological diagnosis, and the existing methods on the similar problems.
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Fig. 1.
Representative morphologies for normal and disorders under study. a normal, b chronic
lymphocytic leukemia (CLL), c mantle cell lymphoma (MCL), d follicular center cell
lymphoma (FCC), e acute myeloblastic leukemia (AML), f acute lymphoblastic leukemia
(ALL)
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Fig. 2.
Image segmentation results applying robust color GVF snake: a normal, b CLL, c MCL, d
FCC, e acute leukemia. The outer and inner curves correspond to cytoplasm and nucleus
segmentations, respectively
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Fig. 3.
M8 filter bank. There are total of 38 filters from which two filters are rotationally symmetric
(Gaussian and Laplacian of Gaussian) and the remaining 36 filters are edge and bar filters at
three different scales
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Fig. 4.
Texton library generation
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Fig. 5.
Texton library generation and cell representation. Black and gray vectors correspond to nuclear
and cytoplasmic features respectively
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Fig. 6.
Mantle Cell Lymphoma (MCL) samples from four different institutions. a Robert Wood
Johnson University Hospital. b University of Pennsylvania of School of Medicine. c City of
Hope National Medical Center in California. d Spectrum Health System, Grand Rapids, MI.
The images reflect the obvious variations in imaging conditions among different institutions
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Fig. 7.
Samples from normal and each disorder category from Robert Wood Johnson (RWJ) University
Hospital. Even from a single institution, the samples show great variability
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Table 2

Cell and case classification rates of different classification algorithms

One-Ag.-One SVM LogitBoost One-Ag.-All SVM kNN

Cell classification 84.45 83.14 81.60 81.17
Case classification 89.52 89.52 87.62 84.76
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Table 5

Normal vs. disorder classification rates

SVM LogitBoost kNN

Cell classification 98.09 97.13 96.29
Case classification 99.05 99.05 99.05
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Table 6

Classification rates, based on area, shape, texture and combined features utilizing one-against-one SVMs

Shape Area Texture Combined

Cell classification 47.43 66.96 84.45 84.62
Case classification 50.47 70.48 89.52 91.42
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