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Abstract This paper focuses on human behavior recog-
nition where the main problem is to bridge the seman-
tic gap between the analogue observations of the real
world and the symbolic world of human interpretation.
For that, a fusion architecture based on the Transfer-
able Belief Model framework is proposed and applied
to action recognition of an athlete in video sequences of
athletics meeting with moving camera. Relevant features
are extracted from videos based on both the camera mo-
tion analysis and the tracking of particular points on
athlete’s silhouette. Some models of interpretation are
used to link the numerical features to the symbols to be
recognized which are running, jumping and falling ac-
tions. A Temporal Belief Filter is then used to improve
the robustness of action recognition. The proposed ap-
proach demonstrates good performance when tested on
real videos of athletics sports videos (high jumps, pole
vaults, triple jumps and long jumps) acquired by moving
camera and varying view angles. The proposed system
is also compared to Bayesian Networks.

Key words Human action recognition, Transferable
Belief Model, Temporal Belief Filter, Moving camera.

1 Introduction
Human motion analysis is an important topic of interest

in Computer Vision and Video Processing communities.
Research in this domain is motivated by the diversity

Pattern Analysis and Applications 2006 manuscript No.

of applications such as automatic surveillance [1], video
indexing and retrieval [2] and human-computer interac-
tion [3]. Human actions can be extremely various, e.g.
facial expression, hand gesture, human pose and peo-
ple interaction. The scientific challenge is to recognize
a behavior from observations coming from multimedia
features such as video, audio and text [4,5]. The global
problem is to link the real world which has intrinsi-
cally an analogue nature to the human interpreted world
which is symbolic [6].

In the context of video indexing and monitoring ap-
plications, human motion analysis is a means to auto-
matically analyze videos and to cope with the increasing
number of videos in databases. Low level analysis is not
very useful nor relevant for a end-user who prefers high
level indicators [6]. In this paper, we propose an architec-
ture to automatically recognize high level actions based
on low level shape-motion and understandable features.
The database is composed of video sequences of jumps
(long jumps, high jumps, pole vaults and triple jumps)
and the objective is to determine athlete’s actions such
as running, jumping and falling. The database is made of
real videos acquired by a moving camera under varying
view angles and can concern indoor or outdoor meet-
ings. Videos mainly comes from broadcast TV and are
compressed. Some samples of the database are pictori-
ally described in Figs. 1 and 9. Fig. 1 illustrates original
images and tracking results (three points): white level
pixels correspond to the detection of human and grey
level to noise (due to other moving objects and athletes).

Architectures proposed for human motion analysis
generally consists in three main steps: (i) the choice of
relevant numerical features, (ii) the definition of mo-
dels of symbols with respect to the features and (iii)
the conclusion about the reality of the symbols obtained
by a fusion process. Relevant features must be chosen
from the real world and correspond to numerical mea-
sures obtained by signal and image processing (there
are many technics largely based on statistical approach).
They must bring information about the symbols corre-
sponding to the human. We have chosen these features
by expertise, based on basic assumptions. Models of in-
terpretation are used to link features and their combi-
nations to symbols of interest. The usual approach is
a learning process from a reference database [7]. The
learning process cannot be a blind one because in this
case, the obtained symbols are not understandable for
human interpretation. If a sufficient large indexed-base is
available, a supervised learning can be applied to define
the symbols models. However intensive learning is often
needed [8] as for instance with hidden Markov models.
Human action-based video indexing cannot be strict at
any time because human behavior is intrinsically con-
tinuous. Moreover, there is a great disparity between
the individuals in the realization of a same activity, and
sometimes the same individual performs differently as
well. On the other hand, the database, the outputs of im-
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(a) A pole vault.

) A triple jump.

) A long jump.

(d) A high jump.

Fig. 1 Illustrations of images and tracking results on pole
vault, triple jump, long jump and high jump activities. These
athletics jumps videos are acquired by a moving camera with
different view angle and position from the athlete. The sam-
ples show moving objects such as other athletes (e.g. in triple
jump) or referee (e.g. in pole vault). White level pixels cor-
responds to the detection of human and grey level to noise
(other moving objects).

age/signal processing and the models are not completely
reliable and accurate. The symbols recognition process,
generally made by fusion, must take into account these
problems in order to make more robust the recognition.
The classical approach is based on the Bayesian frame-
work [9]. Tt is adapted when large databases are avail-
able but suffers from [8] intensive learning requirement,
misunderstanding of the learned models and difficulty
to add new information. More recent and almost unex-
plored (for human motion analysis) approaches [10] are
the Possibility Theory (associated to the fuzzy sets and
possibility measures) and the Transferable Belief Model
(TBM) (based on belief functions and plausibility mea-
sures). Differences between both fusion approaches are
discussed in [11] on a real example!. Possibility is well

! Many other papers are available on Smets’ homepage
http://iridia.ulb.ac.be/ psmets. The web page also pro-
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adapted for poor information and qualitative descrip-
tion such as ordinal information whereas TBM is more
adapted for numerical information, reinforcements and
compensatory effects in combinations [11]. TBM man-
ages smartly rules [12] produced by experts or systems
and which are useful for databases management or in-
dexing [13]. In the context of human motion analysis as
concerned in this paper, we explore the application of
the TBM.

The TBM has been developped by Smets [14] from
the previous work of Shafer on Fvidence Theory [15] (see
[16] to analyze the differences). This theory makes it
possible to take into account the continuous and blurred
aspects of the human behavior such as in transitions be-
tween actions. Indeed, it allows the explicit modelling of
doubt. Doubt, intrinsically present in human judgement
and algorithm results, is useful to represent total igno-
rance state like missing a priori whereas probability gen-
erally assumes the equiprobability principle. Moreover,
conflict is quantified within the TBM and this relevant
information can be used for the questionning of models
or rules defined beforehand by an expert but not cor-
responding anymore to the reality of the data. Conflict
is at the core of the Temporal Belief Filter (TBF) de-
velopped in [17] to improve human action recognition by
smoothing belief functions and separating actions states.
The conflict was also used for belief functions cluster-
ing [18]. Doubt and conflict information are seldom in-
corporated for human motion analysis. In this paper, a
new architecture for human action recognition in athletic
sports videos based on the TBM is proposed. Temporal
aspects of human motions are taken into account using
the TBF which is one step towards (unexplored) activity
recognition in the TBM framework.

The remainder of the paper is as follows. Related
work is discussed Section 2, an overview of the pro-
posed recognition architecture is presented Section 3,
features extraction is described Section 4, action mo-
dels and TBM framework are dealt with in Section 5,
the action recognition process is detailed Section 6 and
Temporal Belief Filter is presented Section 7. Experi-
mental results are described Section 8. Finally, Section 9
is dedicated to conclusion and future work.

2 Related work

Many methods have been proposed for action recog-
nition [19]. Generally, a recognition system consists in
comparing observations to models which are generally
learned from databases or set by expert knowledge. Mo-
dels can be reduced to clusters and the recognition be-
comes a problem of classification [5]. Models can also be
features vectors as in template matching [20] and the

poses links towards other researchers in the TBM community
as well as softwares.
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recognition process consists in choosing the best tem-
plate according to a measure of similarity. But gener-
ally, models are built from huge databases [7] under a
bayesian framework [9]. Most of methods belong to this
active category deserving attention.

In the probability modelling context, an action or an
activity is often described by means of state machines
which is an intuitive approach close to human-reasoning.
State-based methods consists in building state machines
and then let it evolute according to observations. Hid-
den Markov Models (HMM) and Dynamic Bayesian Net-
works (DBN) are well-known in the Computer Vision
community. They have been widely studied [21,22]. Some
adaptations of these methods have been also proposed
notably in [23] where authors exploit DBNs, Partially
Coupled HMM, whose topology is determined using the
Bayesian Information Criterion, and Multi-Observation
HMM for causality discovery and events modelling. In [24],
an interesting description and comparison between DBN
and HMM is proposed for sports video sequence inter-
pretation. In [13], HMM, DBN and rules are integrated
in one system for multimedia database management.

Neural Networks represent models based on states
but are not based on probability. The network topol-
ogy is determined by means of optimization procedures
requiring also large learning sets. In human action and
activity recognition, Time Delay Neural Networks are
applied [25].

Despite huge databases, even including multimodal
information [4,5], domain-specific information is often
required to assign an application dependant semantic to
the result of the recognition process [26,27]. Sometimes,
systems are built only for one application [28].

The community of Artificial Intelligence has also fo-
cused on state-based models representation. One impor-
tant tool is the Petri net [29]. A Petri net is able to
take into account the synchronization problem. It is of-
ten used for monitoring and control as in [30] with appli-
cation to nuclear power plant supervision. Many adap-
tations of this framework has been proposed notably for
including fuzzy measures [31] and stochastic aspect [32].

Based on belief theory, a few work can be cited: in [33]
a method based on rules is proposed for manoeuvrer
recognition and in [34], Petri nets are extended to be-
lief theory. In [35] a classifier of human postures is pre-
sented and in [36] another classifier for emotions recog-
nition. The two last methods are based on belief the-
ory, not on TBM, actually they do not consider conflict
and use Dempster rule. Moreover their methods are sta-
tic whereas in this paper we use the Temporal Belief
Filter [17] which takes temporal aspects of belief into
account. The Transferable Belief Model, proposed by
Smets and Kennes [14] is therefore originally exploited
in this paper for human action recognition based on be-
lief functions. The TBM allows to manage uncertainty,
imprecision, expert rules, partial knowledge, conflict and
open world assumption.

3 Recognition architecture

Actions recognition

Transferable Belief Model

Temporal belief filtering by model change detection
Fusion processes

Numerical parameters to belief on symbols

f f

Advanced Camera motion
parameters parameters

Image processing

Human points detection
and tracking

Camera motion estimation

Video stream

Fig. 2 The proposed architecture for human action recog-
nition in videos. It is based on two levels of processing and
relies on the TBM framework for belief representation and
combination.

Human action recognition requires several steps as
depicted in Fig. 2. The video stream is provided by real
video sequences of athletics jumps preliminarily acquired
by a moving camera. In the low level processing step,
relevant features are extracted. They are generally ap-
plication dependant [4] and based on more or less as-
sumptions [37]. In this paper, the choice of the features
is based on three a priori assumptions:

— The human is tracked by the cameraman. This as-
sumption is satisfied when the human is the center of
interest (e.g. in athletics jumps, athletes are tracked
to satisfy telespectators, trainers and sponsors).

— A single human is moving. The case of multiple hu-
mans is more complex and not considered here.

— The trajectories of particular human body points
(human’s head, center of gravity and one end of leg)
give information on actions. The system is generic
enough to add new information.

The two first assumptions are very common in Com-
puter Vision as discussed in the survey of Moeslund [37]
(from year 1980 to 2000). In sports video, the athlete
is generally the object of interest thus the first assump-
tion holds. The system should be improved to be applied
in surveillance applications where multiple people are to
be considered. Usually [1], multiple people are tracked
in controlled and indoor environments using color-based
features [38] which are not robust to be used in real
videos acquired in outdoor or indoor scene as it is the
case in sports videos.



In the high level processing step, features are as-
signed a semantic according to actions trueness. Seman-
tic assignment consists in describing actions by means of
weighted symbols where weights (belief) are computed
according to the values of features. A variety of opinions
is thus available concerning actions and a consensus is
obtained by combining them in the Transferable Belief
Model framework. Then, a Temporal Belief Filter [17] is
applied to ensure temporal consistency of the opinions
as well as action transitions discovering. The proposed
architecture is built such as to be generic enough to add
new features and new actions.

4 Features extraction

In this section, the low level part of the architecture
is described. Numerical features are extracted at each
frame of the video and are provided by a camera motion
estimation and a tracking algorithms. Features are: the
horizontal translation, the vertical translation, the diver-
gence, the variation of center of gravity, the alternation
of legs, and the angle between horizon and human axis.

4.1 Camera motion estimation

An affine model is used to describe the camera motion.
Such a model is generally sufficient for most of real video
sequences. The flow vector W p;) = [u(p;),v(p;)]” of a
point p; located at (x,y) in an image can be described
by a parametrized affine motion such as:

~ulpi)| | Pam P 0 T;

W(pl) N |:’U(pz):| B |:Pt1m:| * [ 0 Pdivj| |:yz:| (1)
Only features { Phm, Pym, Paiv } are retained. They allow
to consider 2D translation motion (horizontal for P,
and vertical for P,,,) with divergence (Pg;, ). The diver-
gence is mainly used as a complementary feature of the
horizontal translation for frontal motion. The computa-
tion of these coeflicients are achieved by a robust itera-
tive and multiresolution method described in [39]. The
method has been implemented (motion2D software?) by
the Vista Team of IRISA. The motion model proposed
in [39] takes into account the global variation of illumi-
nation between two successive frames thus, it is robust
to illumination changes as required for real videos. The
method runs on gray level images thus is independant
from color. This method was already successfully applied
for dynamic content analysis [40] and video indexing [41].

A dominant motion image is obtained from the cam-
era motion estimation. The intensity of a pixel in this
image depends on its membership to the dominant mo-
tion that is assumed to be the motion of the background.
Fig. 4(b) depicts such images corresponding to running,

2 The software can be downloaded on http://www.irisa.
fr/Vista/Motion2D.
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jumping and falling actions for a high jump sequence.
The silhouette of the athlete is in black because it does
not belong to the dominant motion (foreground).

Fig. 3 depicts some examples for a high jump com-
posed of four actions. References are given to emphasize
the feature relevance according to actions.

RUNNING JUMPING FALLING
T T T T T

~0.4l L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Fig. 3 Camera motion features for a high jump. From top
to bottom (w.r.t frame number): Py, (horizontal motion),
Pym (vertical motion) and Pa;, (divergence). References are
given for running, jumping, falling and standing up.

4.2 Human points detection and tracking

The temporal curves of the position of the three follow-
ing major human points: head, center of mass and end of
leg, are supposed to be sufficient to help in the recogni-
tion of global actions. Among the available method [38],
the human point detection and tracking algorithm pre-
sented in [42] is used here and adapted to detect and
track 3 points®. The method consists of two steps: de-
tection and tracking, and requires a binary silhouette.

4.2.1 Segmentation The dominant image motion ob-
tained from the camera motion estimation is thresh-
olded (o = 0.1) and a median filter is applied to remove
small regions and to create homogeneous areas. Then
erosion and dilatation are combined to refine the silhou-
ette shape.

4.2.2 Detection This initialization is executed in the
first frame of the sequence. The human points detec-
tion method consists, first, of determining the center
of the mass, of coordinates (z,y.), of foreground pix-
els. The major human body axis passing through the
mass center point is then computed by calculating its
orientation ©. The orientation @ is defined by the three

3 In the first version, 18 points are tracked but in this pa-
per, image quality is not sufficient for such level of detail
(which is not useful here).
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) Dominant motion images.

) Human points detection and tracking.

Fig. 4 Original video sequence, dominant motion images
and human points detection and tracking results for a high
jump.

second order central moments C1 1,Cs 0, Co 2 defined as
7= Z(x,y)EF(x zc)P(y — ye)? thus:

) ©)

© = arctan (
Ca,0 — Co,2

It is assumed that the human stands in the first frame so
that the head point and the end of the leg, of coordinates
(zn,yn) and (2, y;) respectively, should be found. Given
the mass center (x.,y.) as the reference, both previous
points represent extremities of the silhouette.

4.2.8 Tracking In this step, the three points are tracked.

This procedure is executed in every frame of the se-
quence by considering the current frame and its previous.
First, the pixels of the binary silhouette image are reclas-
sified to reduce the number of wrongly classified pixels.
For that, the minimum distance of each foreground pixel
from the previous position of the three human points
is computed. If it is higher than a threshold (adaptive
to image data and defined as a percentage of the hu-
man height) then the foreground pixel is classified as the
background. Background pixels that belong to human
silhouette holes are classified as the foreground class.
The procedure of reclassification increases the accuracy
of human points detection. In Fig. 4(c), some results
are presented: white pixels correspond to moving objects
(foreground), and black ones to background. Thus, the
quality of the estimated human silhouette is improved.
Finally, the three points are detected by the detection
algorithm previously described. This method produces
two pairs of solutions for the head point and the leg
point, as it is unknown if the head point is found above

or under the mass center. We choose the pair which is
closer to the estimated pair of the previous frame.

4.3 Synthesizing advanced features

The coordinates obtained from the tracking module are
relevant but not interpretable in terms of human actions.
New advanced features are computed from the coordi-
nates in order to elucidate the description of actions:

— Swing (Psying) describes how is positioned the main
axis of the human compared to the horizontal axis
(Fig. 5). This measure is an angle value and is com-
puted in two steps: First it is assumed that the three
points draw a straight and a regression based on
these points allows to compute the coefficients of this
straight. In the second step, the angle between the
straight and the horizontal axis is computed (Fig. 5).

— Coordinates variation (Pycq) is more relevant than
coordinates itself. A high variation is interpreted as
a great motion either upward or downward with re-
spect to the sign of the variation.

— Alternation (Pyter) represents the human legs mo-
tion. The computation consists, first, in considering
the axis passing through the head point and the cen-
ter of gravity and, second, in detecting where is lo-
cated the end of leg point (right or left hand side of
the axis). The signal provided is binary (right/left)
and the analysis of the frequency (using the mean of
alternation in an interval of frames) allows to detect
the speed of alternation.

RUNNING JUMPING | FALLING

Swing (degree)

T 2 %0 4 s 70 e s 10 10

Fig. 5 Swing angle feature computation and example of vari-
ation for a high jump.

Fig. 6 depicts the three advanced features for a high
jump composed of four actions. References are given to
emphasize the relevance of the features according to ac-
tions.

5 Models of action interpretation

Each low level redundant/complementary features, pro-
vided here by the camera motion estimation and the
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Fig. 6 Example of advanced features for a high jump se-
quence. From top to bottom: Pyce (variation of the centre of
gravity), Pswing (swing, in degree) Paier (gait period). Ref-
erences are given for running, jumping, falling and standing
up. The video corresponds to the same as in Figs. 3-4.

Table 1 Raw features provided by low and mid level mod-

ules.
camera motion (affine motion features)
Prm horizontal translation
Pym vertical translation
Piv divergence
tracking (coordinates)
Pyeg variation of center of gravity
Paiter | alternation
Pswing | angle between horizon and human axis

tracking, informs about the trueness of the different pos-
sible high level actions made by the human, e.g. running,
jumping or falling. A semantic is assigned to each fea-
ture by means of symbols. According to their numer-
ical value, a belief in these symbols is computed us-
ing fuzzy-inspired models of interpretation. Reliability
factors are automatically computed. Then, beliefs are
combined using the Transferable Belief Model (TBM)
framework [14] to obtain a more complete information
about actions by taking imprecision, uncertainty, relia-
bility and conflict concerning features into account. The
TBM is an axiomatically well-founded framework which
relies on Evidence Theory [10] and based on the work
of Shafer [15] and allows to combine distinct? sources of
belief. The TBM was successfully used for many appli-
cations such as detection of submarines [44] and target
identification [12].

The TBM framework is well-adapted for action recog-
nition notably because doubtful transitions between ac-
tions are explicitly modelled and conflict between fea-
tures is emphasized reflecting the need to improve the
fusion process.

4 The notion of distinctness is close but not equivalent to
the independence notion in probability theory. See [43] for
more details.
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5.1 Numerical features to belief on symbols

5.1.1 Frame of discernment In the TBM framework,
the value of a low level feature has to be converted into
belief on symbols that describe an action state. This nu-
meric to symbolic conversion shortens the semantic gap.
The name of the feature is used as subscript of P. For
instance, concerning the horizontal motion hm, the sym-
bols associated to the numerical feature Py, would be
small, denoted Sp,,, and high, denoted Hyp,,. In the se-
quel, the word symbol is replaced by hypothesis to agree
with formalism in belief theory.

All hypotheses concerning a feature P are gathered
in a frame of discernment {2p. A frame of discernment
is referred as FoD is the sequel. For instance, {25, =
{Shm, Hpm} is the FoD of feature Pj,,. Each FoD is
exhaustive and this supposes the closed-world assump-
tion, i.e. all possible states of P are foreseen. Singletons
and subsets of a FoD (2p are called propositions and are
contained in its power set 2P. For instance: 2%nm =
{07{Shm}v{Hhm}v {Shm> Hpm}} is the set of proposi-
tions concerning the state of feature P,,. A proposition
composed of several hypotheses explicitly models the
doubt between these hypotheses. In the sequel, and to
simplify the notation, a subset of one element is replaced
by this element while a subset of two or more elements
is replaced by the logical OR (U) of these elements. For
instance, {Spm} < Shm and {Shm, Hum} < Shm U Hpm.

5.1.2 Belief masses assignment It is necessary to quan-
tify the confidence in each proposition because numerical
features are imprecise as well as the definition of their as-
sociated hypothesis. The basic belief assignment (BBA),
mgP , is a belief function that assigns such weights. The
mass mgp (X) is the belief on proposition X C 2p w.r.t.
the value of feature P. The superscript is very important
in order to avoid combining masses defined on different
frames as we will see further. The subscript allows to
distinguish the features. A BBA is defined formally as:

0
2p 00 mpT(0) =0
mpt 27 — [0, 1] L R
X —m?(X) XECQ:ng xX)=1

A value mgp (X)) expresses a confidence in proposition
X C 24 but does not imply any additionnal claims re-
garding subsets of X [10]. It is the fundamental differ-
ence with probability theory.

In this paper, a fuzzy set-inspired method is used
to define the BBAs. Fuzzy intervals are well adapted to
represent the description of a state which is inherently
vague as it is the case for a feature state or an action.
A trapezoidal fuzzy interval describing the proposition
X C 2, with |2] = 2, is defined by a set of four thresh-
olds {th%,th% th3 th%}, with [thl th%] representing
the support of X (m®(X) # 0) and [th%,th%] the core
(m2° (X) =1).
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Table 2 Application of the coefficients of reliability.
‘ th ‘ Pvm ‘ Pdiv ‘ Pvcg ‘ Pswing ‘ Palter

Qdist

Asup

The thresholds setting is currently done in two steps.
We assume some videos are annotated at each frame by
one of the propositions concerning feature state (high,
low...) Given these references, the mean of each feature
is computed over the videos. These mean values allows
to estimate the position of the trapezes. Then, in a sec-
ond refinement step, the tresholds are adjusted in case
they involve conflict during the fusion process. The mod-
ification consists in increasing the core of doubt. This
allows to have a coherent fusion process. An automatic
learning could be performed using for instance an EM
approach [45].

An example of BBA concerning the horizontal mo-
tion Py, is given in Fig. 7. The core of the trapezoidal
fuzzy interval representing the set Spn,, U Hpp, is in-
terval [th%,th%] = [4,5] and the support is interval
[th, th%] = [2,6]. For instance, if Py, = 2.3 then BBA
is mp"™ (Hpn U Spm) = 0.33 and mp"™ (Spm) = 0.67
(null for other propositions).

Fig. 7 A basic belief assignment based on fuzzy rules for
the feature P, estimated by the camera motion estimator.
The absolute value is taken because only the amplitude is
interesting here. A belief is assigned to each hypothesis and
set of hypotheses of the FoD 2p, .

This method is applied for all features. It can be no-
ticed that doubt between hypotheses explicitly appears
as for instance Sp,, U Hpp,.

5.2 Integrating reliability of features

In the TBM, the discounting process [15] weighs the be-
lief of a feature according to the reliability of the corre-
sponding source. The reliability is an important tool for
action recognition in video because it allows to give a
penalty on belief provided by sources that work in non-
optimal conditions.

A coefficient of reliability, denoted a € [0,1], is ap-
plied on a belief mgp and a new belief m%’QP is obtained
as follows:

mE?(X) = (1—a)-mP"(X), VX C 2p
mEr(2p) = a+ (1 - a) - mpr (2p)

(4)

and (1 — «) is the dual of the reliability called discount-
ing factor. Expert knowledge or statistics can be used to

compute this coefficient [46]. Our methodology consists
in computing them from data at each frame®. It allows to
take into account reliability that evolves w.r.t. the qual-
ity of the video. Two coefficients have been computed,
one for tracking (ag;s¢) and one for camera motion esti-
mation (Qsyp):

— Qg;st: the distance between the center of gravity and
the head is assumed to be constant between two suc-
cessive frames. The distance is normalized into [0, 1]
(by using the size of the image) and is used as a co-
efficient of reliability. When the distance is constant,
the coefficient is close to 1 so the reliability is high
and vice-versa. This coefficient reflects the quality of
the tracking: when other moving objects appear, the
binary silhouette can be of bad quality and so does
the tracking.

— Qgyp: the camera motion estimation allows to gen-
erate the support size which is a number between
[0, 1] reflecting the number of pixels belonging to the
dominant motion. When this number is close to 1
then almost all pixels belong to the dominant mo-
tion whereas none object is moving when it is close
to 0. This feature is defined by a fuzzy interval with
core [0.7,0.8] and [0.6,0.90] as support. This coeffi-
cient allows to discount the features coming from the
camera motion estimation.

Coefficients are sum up in Tab. 2 which indicates as
well the discounted features.

6 Belief fusion for action recognition

BBAs associated to the features are now available. The
objective of the fusion process is to combine these BBAs
to obtain a confidence about the trueness of actions. We
recall that a belief mass mgp (X) is the belief on propo-
sition X C 2p according to the value of feature P. The
superscript is very important in order to avoid combin-
ing masses defined on different frame as we will see in
this section. The subsrcipt allows us to distinguish the
features.

6.1 Action Representation

The features do not give directly information on an ac-
tion. For instance, an action can be described as follows:

IF the variation of the centre of gravity position
is high AND the horizontal motion is small THEN
action jumping is right

More generally, each action is described by a rule with
the following prototype: IF [condition] THEN [conclusion],
where a condition is a logical rule involving features

5 Here, the frame is an image but not a FoD.



states and the conclusion is the consequence on the ac-
tion states. Logical rules are well handled in the TBM
framework using rules of combination®. However, before
combining the BBAs associated to the features, they
must be defined on a common FoD. The fusion process
is decomposed in three steps: (i) a refinement process
(where BBAs are defined on product spaces), (ii) a fusion
process (where BBAs are combined) and (iii) a coarsen-
ing process (where the trueness of action is inferred).

6.2 First step: refinement process

For two features, P; and P,, the cartesian product of
their FoD, 2p, p, = £2p, x {2p,, allows to obtain a com-
mon FoD. One says that 2p, and {2p, are extented to
£2p, p,. The extension is denoted T, e.g. 2p, T £2p, p,.

The BBAs mglPl and mﬁ? must be rewritten on this
common FoD before combination. For that purpose, the
vacuous extension [14,12] is applied leading to the BBAs

Qp, 192p, . Q2p,192p, .
Plpl PP oand m P2P2 PrFP2 The vacuous extension of

mgfi on 2p, p, (notation for 2p, x 2p,) is:
2p, .
mp, *(B) if €= DB x 2p,
and B C 2p, (5)
0 otherwise

2p,192p;,p;
P;

(€)=

For instance, feature P,.4, concerning the center of grav-
ity position, is described by the states high (Hycg), mid-
dle (Myeq) and low (Lyeg). The associated FoD is {2,y =
{Hycg, Mycg, Lucg}- The feature Py, concerning the hor-
izontal motion is described by the states small (Spm),
high (Hpm) leading to the FoD Q2p = {Shm, Ham }-
The cardinality of 2j,,,0¢y is the product of the cardi-
nality of each FoD: |24, veql = [2hm] X [{24cq| equals to
6 in this example with: 2,cq hm = {Hveg N Shim, Myeg N
Shma chg N Shma chg N Hhm; Mvcg N Hhm; chg N Hhm}
where N corresponds to the logical AND. The resulting
BBA m2rm 1 9mm.ves i vowritten by applying the vacuous

hm
extension:

2nmT2vcq,hm ,
my) [ Fveg.s (-Q'chmshm) ~ mﬁ%m(shm)

hm
'Q m Q’UC( 1M 1IN
myrr 1Qvea i (0O Hyn) <= mi2 (Hpw)  (6)

‘Q m Q’UC m m
iy H2veatm (O Dnm) = M ()

where 2,00 N X = (Hyeg U Mycg U Lyeg) N X = (Hyeg N
X)U (Myeg N X) U (Lyeg N X). That means the feature
Pry, gives no information about the symbolic state of
veg, giving a sense to the term vacuous to describe the
extension to the product space. This technic must be
performed for all the features used in the rule’s premise.

5 De Morgan’s algebra can also be applied.
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6.3 Second step: fusion process

The conjunctive rule of combination [14] (called (n)-rule),
which is commutative and associative, and the disjunc-
tive rule of combination [47] (called (U)-rule) are gener-
ally used to combine distinct pieces of evidence.

Given two distinct BBAs m¥ and m$, defined on
the same FoD 2 (for instance 2 = 2p, X {2p,), their
combination is defined as:

ml, Om,(E)= Y. mf(C)mED) (7
CAD=FE

with A =N (resp. U) for the conjunctive (resp. disjunc-
tive) rule of combination. The rules of combination are
used in logical rules. Tables of rules can also be used [48].
The cardinality of a FoD {2 of the resulting BBA can
be of great cardinality which can be reduced using the
method proposed in [49]. Hereafter, the FoD (2 is re-
duced using a coarsening process (a kind of projection):
each element in 2% is interpreted as one elements of 24.
This allows to obtain the trueness on the action A.

6.4 Third step: coarsening process

After combining the new BBAs, a coarsening operator,
denoted |, based on the logical rules is applied from the
FoD £2p, p, to the FoD {24 in order to give information
about the trueness of action A. The coarsening can be
viewed as a mapping denoted p and defined as follows:

p: 2P x 29r — 204 g
(X,Y) — Z ®

For the example given in the beginning of the part 6.1,
the function p is described by the table of rules given
Tab. 3. Action jumping A is true if H,., and Sy, are
true, and false for the other cases. If there is any doubt
about Hycg and Sk, it is reported to the trueness of A.
It can be noticed that Tab. 3 is built with only the focal
elements” of the BBAs. It allows to decrease the number
of element from 2% = 64 to 24 elements. Tab. 3 shows
15 elements because the belief on the empty set is null
by construction (eq. 3) besides, m(Lycg U Hyeg) = 0 due
to the modelling by fuzzy intervals. Furthermore, and in
order to simplify the notation, the vacuous extension is
not written but it is implicit.

Conclusively, the BBA m%‘t p,» COncerning an action
A and taking into account the features initially defined
on different FoDs, is defined as follows:

mBip,(Z)= Y mpr(xXny)  (9)
Z=p(X,Y)

7 A focal element corresponds to a proposition for which
the belief is not null.



Human action recognition in videos based on the Transferable Belief Model 9

Table 3 Example of coarsening by means of a table of rules. For instance, action jumping A is true if Hycq and Shy, are true,
and false for the other cases. This table is built only with the propositions for which the belief is not null. Furthermore, to
simplify the notation, the vacuous extension is not written but it is implicit.

H'ucg (H'ucg U Mvcg) M'ucg (M'ucg U L'ch) L'ch
Hpm Fa Fa Fa Fa Fa
Hpm UShm  RaUFa Fa Fa Fa Fa
Shm Ra RaUFu Fa Fa Fu
According to the previous example, the following BBA -
. . . MODEL
is obtained: ' REDICTIO CHANGE
M=T
0 orM=F
mp’p,(Ra) = mplplpfz (Sham N Hocg)
. QF
Q Q !
mpp, (RaUFa) = mPflez ((Shm U Hpm) N Hyeg) Mt MODEL o
QP Y FUSION | CHANGE m 4
+ mp, le (Shm N (chg U Mvcg)) o DETECTION

and m%‘ p,(Fa) is the sum of all the other elements.

6.5 Note on computationnal issues

The use of the matrix notation in the TBM operations
elucidates the transfers of belief between sets involved in
rules of combination [50]. However it is not well suited
for a FoD (2 of high cardinality since the matrix dimen-
sion is of 2/l x 21l In [51], authors proposed bit wise
representation which is more effective. The difficulty of
combination computation increases exponentially with
the cardinality of the common FoD and some methods
exist to reduce it [49].

7 Temporal belief filter

The Temporal Belief Filter (TBF) was proposed in a
previous work described in [17]. The TBF works on each
action independently taking as input the BBA obtained
after features fusion. The TBF provides a BBA without
conflict, temporally consistent (without high variation)
and consonant (action states are made exclusive). The
latter properties is an important characteristic of the
TBF because the BBA has only two focal sets®: either
Ry and RAUFy, or Fy and RoUFy. In the former case,
the action is said to be in the right state while false state
in the latter case.

The general principle of the TBF is depicted in Fig. 8.
The core of the TBF is based on implication rules well-
managed in the TBM framework [12]. An implication
rule is generally used to specialize a BBA. We have in-
terpreted implication rules R and F as models of evo-
lution denoted M € {R,F}. Each one focuses on one
hypothesis of the FoD of an action A which is either R 4
or Fs. At each frame f, the TBF works in two steps: (i)
state prediction and (ii) state updating.

8 A focal set in a BBA is a set for which the associated
belief mass is not null.

Fig. 8 The Temporal Belief Filter (TBF) principle where
4 is the prediction, m?A is the output value of the TBF
24

. 2
My
at frame f given the state of actions and m ;' # is the measure
provided by the fusion of the features at frame f.

7.1 Prediction

The prediction step relies on the following assumption: if
an action state is R4 (resp. Fu) at frame (f — 1) then it
would be partially R4 (resp. Fla) at frame f. This model
of evolution R (resp. F) is weighted by a confidence
value of vz € [0,1] (resp. v# € [0,1]):

Model R:

If R4 at (f — 1) then R4 at f with belief of yg
Model F:

If Fo at (f — 1) then Fy at f with belief of vp

(10)

In the sequel, the following vector notation of a BBA
defined on a FoD 24 is used:

m® = [m?4(0) m®(Ra) m®(Fa) m® ()]

A model of evolution can be interpreted as a BBA. For
instance, for the model R:

T
mpt =0 yg 0 1—9g] (11)
The disjunctive rule of combination (Eq. 7) is then used
to compute the prediction Th?j‘w from the previous BBA

m< i #, and the model of evolution m$ e

m?j‘w =mf @m (12)
The (U)-rule never assigns more belief to an hypothesis
than does the previous BBA. As a clue, the prediction
with model R (Eq. 13) is given by:

Q%(R ) =R X mf 1(RA)

A (24) = (1= yr) x m§4 (Ra) + mi4 (24) (13)
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the others belief are null. When vy, = 1, the prediction
equals the previous BBA reflecting a total confidence in
the current state of action A, while when v, = 0, the
model expresses a total ignorance.

7.2 State change

Prediction ﬁl?j‘w and measure m?A represent two dis-
tinct pieces of information concerning the state of action
A at frame f. They are conjunctively combined (Eq. 7).
If the sources are discordant, then a conflict appears in-
dicating a potential state change, i.e. the model might be
changed. The conflict value €7 (Eq. 14) is thus relevant
for model change requirement:

ef = (MF4,0mF)() (14)

The conflict analysis is required to know whether the
current model is no longer valid. The CUSUM process
of the conflict is well adapted for solving problems con-
cerning abrupt and short changes or gradual and long
changes in the conflict value because it allows to sum up
conflict during time.

The initial CUSUM process works as follows: when the
CUSUM value becomes greater than a warning threshold
7T, then the frame is stored as f,, and the model is kept
as valid. As soon as the cUSUM value becomes greater
than a stop threshold 7; (at frame f5) then the model
is changed and the new model is applied from fs. When
a conflict appears between prediction and measure, as
it could be the case in interval [f,, fs], it was chosen
to trust the model of evolution. Thus, the prediction is
kept instead of an erroneous measurement and it avoids
propagating conflict which is absorptive by the (0)-rule:

, M @mfr if ef =0
m{A = (15)

o .
i otherwise

Eq. (15) accounts for the fact that the BBA m?j‘l can
have only two focal sets (Eq. 13) depending on the cur-
rent model M. Furthermore, the output of the TBF is
a BBA without conflict and with only one hypothesis
whose belief is not null. The interest of the (U)-rule is
emphasized when there is often conflict because it allows
to obtain m?ioo(ﬁ 4) = 1 which reflects total ignorance
of the system.

To cope with low conflict during a long time, a fad-
1ng memory process has been embedded which allows to
forget gradually past event. The fading memory process
requires a coefficient nicknamed fader, and denoted as
A, which works on the current cusuMm CS(f) as follows:

CS(f) — CS(f — 1) X A+ ¢5 (16)

The fader is here chosen as a constant and is applied at
each frame.

E. Ramasso et al.

The two models (R and F) are tuned once and one
model is applied while it is valid. Otherwise, it is changed
by the other. A model change is required for an action Ay
when the stop threshold 7,* is reached by its cusum. If
the model change is accepted and performed, then the in-
terval of frames It = [f,,, min(fs, fu, +WW)] can be inter-
preted as an interval of transition between the two action
states. The parameter W limits the size of the transition.
The vacuous BBA is assigned to the frames belonging to
It to well represent ignorance: meA(QA) = 1. After a
model change, the new model is applied from the upper
bound of the interval of transition It and the CUSUM is
reset.

Remark concerning the initialization procedure: The
TBF is an online process. During the initial phase, it
is required to determine which is the best model fitting
the first data. For that, the CUSUM process is applied on
an interval of frames for all models and the chosen one
minimizes the cusuM. The initial TBF output is set to
the vacuous belief functions (ignorance, full doubt) with
m%‘ (RaUFy4) =1 (with fo the first frame).

Parameters setting: It is required to set the parame-
ters in a relevant order: first the fader and the models
together, then the stop threshold, the warning threshold
and at last the window. If the fader X is too low, then
the cUsuM is strongly attenuated. In this case, the stop
threshold 7, has to be small enough to be reachable by
the cusuM. For a given fader A, the value of the stop
threshold 7, can be estimated if the start frame fs, s is
available. Thus, the estimation can be made as follows:
the TBF has to be applied with a model of type F (false
state) from the beginning of the video sequence and with
a stop threshold 7 unreachable (close to infinity). Then,
T, = CS(fsrey) ie. the value of the cusuMm at the start
frame. If the data do not contain too much conflict, the
estimation should be optimal (only one max value and
locating at frame fg,.5) otherwise, the fader has to be
increased and the procedure iterated. The mean of the
estimated value over a learning set is possible. Concern-
ing the coefficients of the two models (y7 and vx), their
role is initially to decrease the conflict between predic-
tion and measure while limiting the variation between
two frames.

8 Experiments

The system is tested for action recognition in athlet-
ics jumps. The robustness of the system to illumination
changes is assessed. At last, a comparison with Bayesian
Networks is provided.
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Fig. 9 Running, jumping and falling actions frame which
illustrate the diversity of the database.

8.1 Database description

The database used for testing is made of 33 videos ac-
quired with a moving camera and several unknown view
angles. The number of frames concerning each action is
given in Tab. 4. The database is characterized by its het-
erogeneity (see Figs. 1 and 9) with a panel of view an-
gles as well as environments and athletes (out/indoor,
male, female, other moving people). Indeed, the videos
come from TV broadcast recorded either on DVD or
VHS tapes (which are digitalized). They are compressed
using Divx encoder in 25 fps and 352x288 size. Several
meetings are represented such as Olympic Games 2004,
French National Championship 2004, Dartfish sequences
(http://www.dartfish.com) and others samples from
TV in 2003. About a half of the database concerns in-
door meetings and another half for outdoor. The camera
location changes w.r.t. meetings and in each meeting, the
camera moves (the camera motion features are automati-
cally estimated) and the view changes (these information
are not integrated in the system as a prior knowledge).
Since the videos are real, other moving people can appear
(Fig. 1) and illumination can change (Figs. 12 and 13).
Some of the videos are in slow motion (about 15%). They
are all annotated manually (with action true/false la-
bels).

Table 4 Description of the database: running, jumping and
falling actions and their corresponding number of frames
(cols. 3-5). Ny is the total number of videos.

Jump/Action || Ny || Running | Jumping | Falling || Total
High jump 9 604 351 205 1160
Long jump 8 632 220 213 1065
Pole vault 8 598 417 243 1258
Triple jump || 8 676 405 377 || 1458

[ Total [[33] 2510 [ 1393 | 1038 [[ 4941 ]

The test consists in recognizing three actions in four

athletics jumps. Actions are: running, jumping and falling.

Activities (jumps) are: pole vault, high jump, triple jump
and long jump. In addition to camera view variation,
other moving people and moving camera, the challenge

of the tests concerns the fact that each video represent
one jump and that each jump is made of actions. There-
fore, in each video (jump), an action is not separated
from the others as usually done in experiments. We as-
sume that the system has to be able to detect actions
separately within an activity stream.

A second test is performed with Bayesian Networks
in order to compare it with the proposed approach. The
test aims at emphasizing the advantage of belief func-
tions and TBM.

8.2 Settings and assessment

The TBF parameters are set once for each action. The
setting of the Temporal Belief Filter is the same for all
actions in pole vault, high jump and long jump (illus-
trating the robustness of the TBF). In triple jump, the
value of the stop threshold for jumping and falling is
lower because the duration of these actions in this type
of jump is small. The recognition is performed frame by
frame and independently.

Recall and precision indexes, noted R and P respec-
tively, are used for the evaluation and are computed as
follows: R = % and P = C—;‘R where C' is the refer-
ence set obtalned by expert annotations, R is the set of
retrieved frames provided by the recognition, and C N R
is the number of correctly retrieved frames.

Since the proposed TBM based system provides be-
lief functions, it is required to take a decision in order
to assess it. For that, an action A is considered as true
when m*4(R,) > 0 (this criteria® focuses on the specific
element R4, i.e. A is true).

8.8 Recognition performance of the proposed TBM
based approach

Tab. 5 gathers the recall and precision indexes for ac-
tion recognition in each type of jump using the proposed
approach based on the Transferable Belief Model (see
“TBM?” lines). A comparison with usually used Bayesian
Networks is also provided (see “BN” lines). The BNs re-
sults are discussed further (Section 8.5). The running
action is almost the same for each jump accounting for
a high overall recognition rate for all jumps. Jumping
and falling are well recognized in pole vault and high
jump. Results of jumping and falling recoginition are
less good in the two other types of jumps: in triple jump,
these actions have a small duration thus can be deleted
by the Temporal Belief Filter, and in long jump, the
athlete moves a lot his arms thus disturbing the track-
ing and therefore the features linked to it. Errors are

® When the BBAs are defined on a FoD with a cardinality
greater than 2, the decision must not be taken using belief
masses but pignistic probabilities [52].
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Table 5 Recall R, precision P and F; measure (all in %) for the recognition of actions running, jumping and falling by the

proposed TBM based method and using Bayesian Networks.

. Running Jumping Falling
Jump/Action | o s 2l e T R IR PR
. TBM |97.7 844 906|749 764 1756|757 852 802

High jump

BN [88.7 927 907|799 712 753|793 830 81.2
Lone TBM]| 92.0 756 83.0/61.2 536 571|671 731 700
ONgJUMP RN 94,6 707 80.9| 24.8 57.1 346|325 729 450
ol . _TBM][859 732 790[77.4 712 742[752 786 769
ol vat BN |84.0 81.3 827|721 720 721|688 772 728
oo TBM| 829 646 72.6|55.6 662 604|629 535 57.8
PIeJUMP TTRT91.0 - 52.6  66.7 | 33.4 66.9 44.6|509 73.7 60.2

mainly caused by other moving people or objects dis-
rupting tracking. For instance it is the case for the pole
in a pole vault because its size is quite important com-
pared to the athlete.

Recognition performance could be improved by a more
detailed decomposition of these actions (raising the prob-
lem of granularity). Moreover, actions have been de-
scribed in a static way but dynamic recognition is more
relevant. This is challenging because it implies to take
into account chaining of events in the TBM framework:
this was dealt with a very few times in the past [34,53].

Mustrations of Figs. 10 and 11 concern jumping ac-
tion in two high jump sequences. Parameters settings
are the same for both with: A = 0.8, 7,, = 0.8, 7, = 4,
YR =vF = 0.9 and W = 5.

BELIEF ON JUMPING ACTION
BEFORE TEMPORAL BELIEF FILTERING
T T T T

|0

3

(a) Result of the combination of parameters for jumping action

recognition. The conflict appears in magenta, the belief on the

fact that jumping action is true is in blue, while in red for false
and green for imprecise.
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(b) Result after applying the temporal belief filter. The conflict

has been converted into ignorance between action states (true

and false), and colors of the curves are the same as previously
except that the ground truth is underlined in black.
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(c) Conflict and cusuM evolution. Note the memory fadding
effect.

Fig. 10 Result of the high level module: evolution of the
belief on the trueness on jumping action in a high jump se-
quence (normal speed video).
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(a) Result of the combination of parameters for jumping action
recognition in a high jump. The conflict appears in magenta,
the belief on the fact that jumping action is true is in blue,

while in red for false and green for imprecise.
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(b) Result after applying the temporal belief filter. The conflict

has been converted into ignorance between action states (true

and false), and colors of the curves are the same as previously
except that the ground truth is underlined in black.
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(c) Conflict and cUSUM evolution. Note the memory fadding
effect.

Fig. 11 Result of the high level module: evolution of the
belief on the trueness on jumping action in a high jump se-
quence (slow motion video).

Fig. 10 depicts the impact of the Temporal Belief Fil-
ter on the recognition (for a normal speed video): Firstly,
a belief specialization process is automatically performed
thus reducing uncertainty and imprecision according to
the data and models. For instance, from frame 10 to 20,
the uncertainty is reduced (green curve). Secondly, igno-
rance is expressed in transitions areas where the conflict
is important. From frame 50 to 60, the conflict collapses
(magenta curve). Conflict is thus automatically inter-
preted as a transition when located between two differ-
ent states, e.g. from R4 to F4. Between frames 95 to
106, a jumping action is detected whereas it is actually
a standing up action. This is due to the fact that both
camera and human motions (features) in the standing
up are close to the ones of a jumping action. In order to
distinguish between both actions, a state machine could
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be used using the swing value as feature [54]. This “dy-
namical” recognition using constraints between actions
is not the scope of this paper and needs more studies us-
ing the TBM. Fig. 11 is a slow motion video sequence. In
this particular type of video sequence, the camera mo-
tion estimation introduces large discontinuities in related
features and so does in the fusion process (Fig. 11(a)).
The TBF shows its efficiency for smoothing belief while
keeping, even boosting, belief on actions as it can be
shown in Fig. 11(b). This high level belief filtering can
thus be used instead of usual features filtering.

8.4 Robustness w.r.t. illumination variation

The robustness of the proposed system depends mainly
on the camera motion estimation since both the track-
ing and the recognition processes rely on it. The esti-
mation of the camera motion parameters is based on
the minimization of a cost function which embeds the
global variation of illumination [39]. Moreover, the soft-
ware (motion2D) used for the camera motion estimation
was already applied in many papers because of its ro-
bustness. In this experiment, we show the effect of the
illumination variation on the results of this algorithm.

Fig. 12 pictorially describes the impact of the illumi-
nation variation in two different high jumps and consid-
ering two different environments: one is indoor and the
other is outdoor. Each line of Fig. 12 ((a)-(b)) is made
of 7 images:

— three successive input images: one at f — 1, f and
f+1

— two dominant motion images (computed by the cam-
era motion estimation): one for the estimation be-
tween f — 1 and f, and one between f and f + 1,

— two images for the tracking results at f and f 4 1.

The first line (for Figs. 12(a)-(b)) represents a pattern
(reference): the original images (the three first) are such
that the global illumination variation is close to 0. Thus
the dominant motion images are assumed to be good.
Then, for each line (after the first one), the illumination
of the second image is artificially increased (by addition
of brightness). The value of the variation is given on
the left of Fig. 12 ((a)-(b)). The first and third original
images are the same as for the first line thus they are not
depicted. The estimation algorithm is thus disrupted by
a positive variation between f — 1 and f and a negative
one between f and f + 1.

This experiment demonstrates that the limit of vari-
ation is of 13%. Beyond this value, the camera motion es-
timation fails despite the compensation. Obviously, this
threshold of 13% is not the same for all images since
their characteritics and their own content can disturb
the estimation but it gives a rough value for “optimal”
conditions.

Fig. 13 pictorially describes the relative variation (in
percent) of illumination between two successive images
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(b) The outdoor case.

Fig. 12 Influence of illumination variation on camera mo-
tion estimation and tracking for an indoor scene (a) and out-
door (b) in two high jumps. Each line is made of 7 images:
three successive input images (at f — 1, f and f + 1), two
dominant motion images (estimation between f — 1 and f,
and between f and f + 1), and two images for the tracking
results (at f and f + 1). The first line (of (a) and (b)) rep-
resents a pattern: the three first images are the original ones
with a global illumination variation close to 0. For each line,
different from the first, the illumination of the second image
is artificially increased (left axis).

in the database for a few videos. Each point of a curve
represents the value 100 x (Iy — I;_1)/I;—1, with I
the global illumination in frame f. These samples are
disturbed cases (considering the whole video). It clearly
shows that the illumination variation in the videos re-
mains largely under the limit found previously (< 13%).
We can assume that, in the database, the conditions of
the application of the camera motion estimation method
are fulfilled.
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(a) Relative illumination
variation in high jump.

(b) Relative illumination
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(c) Relative illumination
variation in triple jump.

(d) Relative illumination
variation in long jump.

Fig. 13 Each curve depicts the evolution in percent of the
relative illumination variation between two successive images
in a same jump, one curve corresponds to one video.

8.5 Comparison with Bayesian Networks

The proposed approach is novel because of an original
use of the TBM framework as well as the Temporal Be-
lief Filter. Usual methods are based on simple thresholds
(precise and certain) or, more frequently, on probabili-
ties which encodes precise and uncertain information.
We use belief functions to model imprecise, uncertain
and conflicting belief functions.

8.5.1 Methodology The proposed TBM based approach
is compared with Bayesian Networks (BNs). BNs ma-
chinery is not described in this paper, we just provide
the settings. For the tests we have used the Weka soft-
ware [55]. The set of features (Phm, Pom, Paivs Pocg,
Pater, Pswmg), described in Tab. 1, is used as input.
One BN is used for each type of jump (one for pole vault,
one for high jump...) A 10-fold cross validation process is
used for the assessment of actions recognition (running,
jumping and falling) thus 90% of the dataset is used for
learning and 10% for testing. The Minimum Description
Length (MDL) criteria is used to learn automatically the
topology of the BNs.

8.5.2 Results and analysis The mean of the recognition
over the 10 tests is provided in Tab. 5 for each action in
each jump. BNs results are less good than the proposed
approach based on TBM partly because not sufficient
statistics are provided to learn their topology despite of
the fact that 90% of the dataset was necessary for learn-
ing the complex structure. Bayesian approach is very
sensitive to the duration of actions and to the number
of images. The same problem appear with HMM.
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On the end-user point of view, the TBM based ap-
proach is more adapted than BNs. In particular, it is
straightforward to add new information and knowledge
compared to BNs. This is correlated to the complexity of
the topology of BNs: the number of observation symbols
is generally large (> 10) and the number of states does
not really fit the reality (there is no semantic given to
the states). The same problem occurs with HMM [8].

Despite a quite straightforward description of actions
and simple but understandable methodology, the pro-
posed TBM based approach leads to good results on this
dataset, globally better than Bayesian Networks. One
explanation is the representation of doubt, i.e. impreci-
sion, in the belief: only the available is encoded without
erroneous a priori. Moreover, doubt is modified accord-
ing to the conflict between features in order to have a
coherent fusion process. At last, the proposed method-
ology is not sensitive to action duration in comparison
to BNs.

9 Conclusion and future work

This paper proposes a new architecture for on line hu-
man action recognition in athletics sports videos. The
novelty of the proposed approach holds in the fact that
the Transferable Belief Model framework is used instead
of the usual probability theory. The TBM relies on belief
functions which are more general than probabilities. The
TBM allows to explicitly model and combine the avail-
able information, from certain and precise up to total
ignorance and emphasizes conflict in the fusion process.
The TBM architecture proposed here easily integrates
new features or new actions and the description of ac-
tions is made understandable for end-users. A Temporal
Belief Filter is built in the proposed system in order to
make more robust the recognition process and to smooth
belief on actions. The proposed architecture is tested on
a database composed of 33 athletics videos with moving
camera where the purpose is to recognize running, jump-
ing and falling actions in four different types of jumps.
Good results were obtained, better than Bayesian Net-
works despite 90% of the database was used for testing
the latter.

In this paper, temporal links between two actions are
not integrated: the semantic level only concerns the cur-
rent state of the behavior i.e. the current action. Thus,
the next step of this work is to deal with a sequence of
actions corresponding to an activity such as high jump,
long jump, triple jump and pole vault. The goal is then
to determine at any time if an activity is in progress or
finished. This system could be used for video shots clas-
sification within a video stream. Its advantage concerns
the fact that both actions and activities are recognized.
Another fascinating challenge is adaptation [8]. Because
the recognition process is application dependent, some
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knowledge must be a priori given by an expert but they
are relatively inaccurate and sometimes unreliable. For
instance, in HMM, the learning step is very heavy and
not adapted for changing environments [8]. We propose,
in future work to deal with this problem. In fact, the
TBM emphasizes the conflict in the fusion process quan-
tifying inconsistency between sources of information. This
information can be used to adapt the models provided
by experts to the reality of the data.
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