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Abstract In this paper, we propose a novel method for

moving foreground object extraction in sequences taken by

a wearable camera, with strong motion. We use camera

motion compensated frame differencing, enhanced with a

novel kernel-based estimation of the probability density

function of background pixels. The probability density

functions are used for filtering false foreground pixels on

the motion compensated difference frame. The estimation

is based on a limited number of measurements; therefore,

we introduce a special, spatio-temporal sample point

selection and an adaptive thresholding method to deal with

this challenge. Foreground objects are built with the

DBSCAN algorithm from detected foreground pixels.

Keywords Kernel-based density estimation �
Motion detection � Wearable cameras

1 Introduction and motivation

Wearable video capture has been recently gaining popu-

larity due to the availability of new low weight and low

energy consuming hardware. From the pioneering works of

Steve Mann [1] in the domain of wearable computing, who

worked at concealing image acquisition and computing

power inside non-invasive clothing, the technology has

evolved to allow autonomous devices with a long battery

life and image capture capabilities. One example is the

SenseCam device [2], which can be hang around the neck

due to its low weight, while recording images all day long.

This type of device produces a new kind of video data,

which brings new possibilities from the point of view of

recording and using data acquired during everyday activi-

ties [3]. The advent of personal video capture using video

cameras or mobile phones with cameras is one of the

factors leading to a sharp increase of the quantity and

ubiquity of such a data.

Automatic analysis approaches that were working on

more traditional types of video, such as static, or motion-

controlled cameras, now need to be adapted, in order to be

able to automatically extract meaningful information from

those new data. Segmenting foreground objects from the

background is one such a basic module, which has a broad

interest, as it is commonly used to bootstrap many higher-

level analysis algorithms, such as object-of-interest detec-

tion and tracking. Strong motion and parallax, low quality

of signal (reduced by motion blur) makes such videos very

challenging. Moving object detection in these videos is not

just a matter of camera motion compensation and then
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detection of foreground pixels as if it was a still-camera

video. As we show this in the paper, all steps in a ‘‘com-

pensation-like’’ scheme in such a complex environment

have to be studied very thoroughly. We will show formally

that the proposed technique outperforms Stauffer and

Grimson-like approaches on compensated frames.

We now present the application that motivated this

work, before developing the generic foreground segmen-

tation problematic it led to.

1.1 Motivation

This work is motivated by the development of new meth-

ods for the observation of patients suffering from dementia

diseases (e.g. Alzheimer). The observation of patients

during their daily activities helps diagnosing dementia

stages and proposing targeted assistance. Such observa-

tions at home are not much developed now, because of the

tremendous amount of time that it would require to be

generalised. The stakes are high, as the recent PAQUID

epidemiological study [4] has shown that the presence of

some restrictions in Instrumental Activities of Daily Living

(IADL) was correlated with the future appearance of a

dementia related disease.

The IADLs are here considered to be the events of

interest. They correspond to the interaction of the patient

with objects during daily activities, such as preparing the

meal and having dinner, washing dishes, receiving a

phone call, opening doors, etc. Difficulties can arise at

several cognitive levels, from the ability to control one’s

hands from a motor point of view to the elaboration and

the correct realisation of strategies to accomplish the

activities. Monitoring such difficulties requires acquiring

enough pertinent information, which motivated the

development of a wearable video capture device we first

introduced in [5], and which is represented in Fig. 1. In

this device, the camera is worn close to the patient’s

shoulder. Two types of camera can be used: a fish-eye

camera and a standard button camera. Some examples of

image snapshots acquired with such a device are shown in

Fig. 2.

Wide-angle cameras proved to be more useful as they

allow for better recording of events close to the camera

such as IADLs, but the recorded video is difficult to

Fig. 1 Acquisition device and

context

Fig. 2 Examples of image

snapshots from acquired videos

with fish-eye camera (top line)

recordings, button camera

recording (bottom line)
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analyse as the image undergoes a strong non-linear defor-

mation. The button cameras allow for a good understanding

of the environment as well as the analysis of instrumental

activities. Although at the present stage of our research we

deal with button camera recordings, in the future we intend

to use wide-angle cameras as well.

1.2 Problematics

The objective of the analysis of recorded videos (illustrated in

Fig. 3) is to extract meaningful events related to the IADLs,

in order to provide practitioners with video indexing assis-

tance when using the videos for diagnosis purpose. We can

identify two important low-level cues that are useful for

IADL-related event analysis. The segmentation of the

patient’s hands and the detection of persons moving in front

of the camera are strongly related to the instrumental activity

or the situation of the patient, which helps understanding the

context of an action. These two segmentations both benefit

from a low-level segmentation that could separate the moving

foreground (corresponding to hands or persons) from the

background, which remains static in the 3D world.

One challenge of such a task resides in the relative

instability of the camera position, which is strongly cou-

pled to the movement of the wearer and the low quality of

the frames due to motion blur.

In the rest of the paper, we tackle the problem of

extracting foreground objects from a video taken by a

moving wearable camera in the conditions of strong and

unpredictable camera motion.

To handle these difficult conditions we propose motion

compensated frame differencing and a kernel-based back-

ground model estimation, with a specific spatio-temporal

selection of measurements to handle the sparseness of the

data.

Hence, in Sec. 2, the problem of foreground object

detection is discussed with the current state-of-the-art

solutions and the general scheme of the proposed method is

presented. In Secs. 3, 4 and 5 the details of the proposed

method are described. Section 6 summarises the results and

Sec. 7 draws the conclusion and shows perspectives for

future work.

2 Foreground object detection

The detection of moving objects is an important task for

video surveillance and computer vision systems. After

reviewing relevant works amongst the numerous research

papers on the subject, we will present an overview of the

proposed approach.

2.1 Related work

Segmentation of the foreground moving objects is an

intensively researched topic [6–19]. In most of the cases,

there is no available information about the foreground so it

cannot be modelled directly. Instead, the background is

modelled by using the information of consecutive frames

from the past, where the background considered to be

unchanged.

The modelling of the background even in the case of

still cameras raises a lot of difficulties like occlusions,

shadows cast by the foreground objects, change of illumi-

nation, moving background elements (trees, flags, waves).

The objects’ silhouettes, obtained by background subtrac-

tion, are often not accurate, which affects the performance

of higher-level applications.

In the well-known work of Stauffer and Grimson [6], the

authors present a method that can deal with some of the

above-mentioned problems like lighting changes, repetitive

motion, and long-term scene changes. They use an adaptive

background model for motion segmentation. The colour

distribution of each pixel is estimated with a Gaussians

Mixture Model (GMM). The Gaussian distributions are

then evaluated to determine which are most likely to be the

model of the background. For improving this idea further,

recursive equations are used in [7, 32] and [8] to constantly

update the parameters and to simultaneously select the

appropriate number of components in the GMM for each

pixel.

A similar approach using maximum likelihood decision

rule together with GMM for background model was pro-

posed in [9]. Its advantage is smoother object detection,

due to a regularisation based on Markov Random Field

modelling.

Fig. 3 Principle of multi-level

analysis for the video acquired

using the wearable camera
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In [10] an approach is proposed to consistently label

people and to detect human–object interactions using

mono-camera surveillance video. After background sub-

traction [11], the non-stationary objects are used to build a

robust appearance-based correlogram model combined

with histogram information for each human and object in

the scene. This method is capable of detecting when people

merge into groups and to segment them even in case of

partial occlusions. It can also detect when a person deposits

or removes an object. People who have left the scene and

reappeared later can be identified based on their stored

colour model.

The periodic changes of the background represent one of

the main difficulties in case of surveillance cameras. The

traditional background models fail to recognise the

changing background parts and treat them as foreground.

The authors of [12] propose a method that can deal with

periodically changing background elements, by modelling

the dynamic characteristics using the optical flow param-

eters in a higher dimensional space as a feature. The

background model is calculated by kernel density estima-

tion with data-dependent bandwidth.

All these research works deal with a stationary cam-

era, when the background on 2D sequenced scene is

static and can be efficiently modelled. The extraction of

moving objects in the case of a moving camera is even

more challenging. There are two different motions in an

observed scene: the ego-motion of the camera and the

motion of the object. To extract the object’s motion, the

camera motion has to be estimated and compensated

[13].

In [14] the authors present a surveillance system with a

moving camera. Its motion is estimated with feature

tracking. The moving object detection is done via back-

ground compensation. Here the camera is an outdoor sur-

veillance camera, with more planar view and less abrupt

camera motion, than in our ‘‘wearable’’ case.

In [15] a system is introduced which uses a single

camera to extract human motion in an outdoor environ-

ment. The camera is installed on a mobile robot and the

motion of the camera is compensated using corresponding

feature sets and outlier detection. The positions of moving

objects are estimated using an adaptive particle filter and

Expectation–Maximisation (EM) algorithm.

A similar system is described in [16], where the authors

propose an integrated computer vision system designed to

track multiple humans and extract their silhouette with a

pan-tilt stereo camera. The detection of foreground objects

is performed by camera motion compensation and disparity

segmentation.

The authors of [17] propose a framework, derived

from a perceptual grouping principle, namely the

Helmholtz principle. This principle basically states

that perceptually relevant events are perceived because

they deviate from a model of complete randomness.

Detection is then said to be performed a contrario:

moving regions appear as low probability events in a

model corresponding to the absence of moving object in

the scene. However, in the presence of strong parallax,

some parts of the static background may be considered

as a moving object.

The method described in [18] deals with detection of

motion regions in video sequences observed by a moving

camera, in the presence of strong parallax, due to 3D static

objects. The proposed method classifies each image pixel

into planar background, parallax or moving regions

using 2D planar homographies, epipolar constraint and a

so-called structure consistency constraint. The method was

tested on different outdoor sequences with encouraging

results, but a known limitation of the algorithm is that, it

cannot handle abrupt camera motion, which is necessary in

our case.

In [19] the background is modelled by one single

probability density function using a nonparametric density

estimation method over a joint domain-range representa-

tion of image pixels. The foreground is also modelled

based on previous detections and used competitively with

the background model. The strength of the method is its

capability to handle dynamic textures, cyclic motions and

‘‘nominal’’ camera motion. They use fixed cameras, where

the camera motion comes from the effect of wind or

trembling of the ground. The magnitude of these motions

can be very strong but the scene does not change and the

number of measurements is not limited as strictly as it is in

our case.

As we can see from this, analysis deal with static

cameras. In the case of a strongly moving camera, the

problem remains complex. With regard to the state-of-the-

art, our contribution consists in intelligent combination of

fundamental methodologies for the detection of moving

foreground objects in wearable video settings. Hence, to

compensate motion blur frames, we used hierarchical block

matching, which is more robust to blur than conventional

pixel-based methods.

Then to filter remaining motion compensation errors we

built a so-called ‘‘Modified Error Image’’. The latter allows

of application of costly kernel-based estimators to a

reduced number of pixels in image plane.

In estimating the density we proposed a smoothed

bandwidth estimation on spatio-temporal patches, thus

taken into account both temporal history and spatial

context.

In decision-making process, we use an efficient heuris-

tics for probability approximation. Finally, we apply a

known clustering method DBSCAN in a mixed motion and

colour space to extract foreground objects.
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2.2 General scheme of moving foreground

object detection

The method we propose consists of three steps: (1) Motion

compensated frame differencing, (2) Estimation of fore-

ground filter model, (3) Detection of moving objects (see

Fig. 4).

The compensation of camera motion is a must in step

(1). After the compensation, the two frames have the same

coordinate system and an error image can be calculated as

a difference of compensated frames. This error image

should contain only the foreground regions.

Due to changes in the perspective, quantization error

and other sources of noise (transmission noise, strong

motion blur, etc.), the foreground contains a lot of false

positives. To eliminate this noise we use a foreground filter

model (step (2)), built on a Modified Error Image (MEI)

resulting from step (1). Because of the movement of the

person who is wearing the camera and changes of capturing

conditions in a natural environment, this model has to be

continuously updated. The last step is the Detection of the

moving objects. Based on the model from step (2), the

background pixels are eliminated from the MEI and then a

density-based clustering (DBSCAN) is applied to the

remaining foreground pixels to build foreground objects.

3 Motion-compensated frame differencing

In our case of a non-static background, to know what parts

of the picture are changing because of the camera motion

and what parts are changing independently, the camera

motion has to be estimated.

For correctly aligning video frames, a Hierarchical

Block-Matching (HBM) algorithm [20, 21], was used. It

allows estimating strong motion and has proven to be the

best motion estimation approach in video coding applica-

tions, and it is robust to local motion blur. The principle of

HBM consists of dividing the current video frame I(t) into

a set of blocks. Then for each block its best match is

searched in frame Iref by minimising a sum of absolute

difference criterion, which is a function of a frame differ-

ence: DIðtÞ ¼ IðtÞ � Iðt � 1Þj j. The difference of block

centre positions d~¼ ððxt � xt�1Þ; ðyt � yt�1ÞÞ is called a

displacement vector. We refer the reader to [20, 21] for

details of HBM, which allows estimating large displace-

ments, up to 30 pixels in our case (see Fig. 5).

The resulting motion vectors are then used as initial

measures for a robust motion estimator [22] allowing for

the rejection of outliers—and obtaining the global camera

motion model:

d~ðcx; cyÞ ¼
a1

a4

� �
þ a2 a3

a5 a6

� �
cx

cy

� �
; ð1Þ

where d~ðcx; cyÞ is the displacement vector of the pixel

block of centre (cx,cy).

3.1 Creation of the modified error image

After camera motion compensation our goal is to separate

the moving objects from the background containing noise.

Here we resort to the family of methods, which model the

probability density function of the background pixels and

use it in the decision-making. The approach proposed will

neither use the original frame entirely, nor a simple frame

differencing. We propose a new measurement scheme

building a signal we call ‘‘Modified Error Image’’ (MEI).

After estimating and compensating the camera motion,

the two consecutive images are aligned in the same coor-

dinate system so that a frame difference can be calculated.

Let I(t - 1), I(t) be two consecutive frames. With (1) we

transform I(t - 1) according to the camera motion between

I(t - 1) and I(t). We use this motion-compensated image,
~I:(t - 1) = I((t - 1), (x ? dx,y ? dy)) to calculate an

error image E(t), which shows the pixels moving inde-

pendently from the camera:

Input Previous 
Frame 

Input Current 
Frame 

)1( −tI

)(tI

(1) Motion-compensated Frame Differencing 
(see section 3 for details ) 

(2) Estimation of Foreground Filter Model
(see section 4 for details)

(3) Detection of Foreground Objects
(see section 5 for details)

Fig. 4 Diagram of the foreground object extraction method

Fig. 5 Three consecutive

frames from a wearable outdoor

video with strong motion
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EðtÞ ¼ ~Iðt � 1Þ � IðtÞ
�� �� ð2Þ

Figure 6 shows how the motion compensation enhances

the result of frame differencing.

In the case of ideal camera motion compensation and in

the absence of noise, the pixels with non-zero motion

magnitude would be those that have ego-motion. In reality,

due to changes in the perspective, quantization error and

motion blur, the highly contrasted contours in the scene

will never be perfectly compensated. Thus, the resulting

error image will contain not only the pixels of a moving

object, but false positive pixels too, making the direct

detection of moving objects’ pixels impossible.

Hence, we propose to create a new, modified error

image, on which the differentiation between ‘‘static’’

artefacts and moving objects could be done along the time.

The differentiation of static pixels and moving ones

based only on grey level values is limited and we do not

have any a priori information on the objects, hence for

better discrimination, we would like to fully exploit the

available colour information. We propose to use the colour

information of the original image, thus the MEI at time t,

will contain the colour information of the original frame on

those (x,y) pixels, where, the value of the error image,

E(x,y,t) is significant. More formally, the modified error

image, Em is built as follows:

Emðx; y; tÞ ¼
Iðx; y; tÞ if Eðx; y; tÞ[ thE

0 else

(
ð3Þ

where I is a 3 channel frame taken by the camera at time t,

E is the grey scale motion compensation error at time t. The

threshold thE helps filtering irrelevant, but non-zero values

from the error image. We experimentally fixed it to

thE = 10. Hence, the modified error image contains colour

information of the original frame, which will be used at the

decision-making step. Figure 7 shows an example of the

MEI.

Contrary to approaches, which use the whole original

colour frames for moving foreground detection, the MEI

drastically saves computational workload: only pixels of

original frames, where motion compensation error is

strong, will be considered. According to our experiments,

in average only 17% of the pixels of the original frame

have to be processed. Furthermore, with motion compen-

sated frame differencing and MEI building, we properly

eliminate complex background motions, thus reducing the

overall complexity of object detection. While in [12] for

each pixel a Probability Density Function (PDF) based

decision is made on its label foreground/background, in our

approach the PDF based decision is done for false fore-

ground removal only, as it is explained in the following

section.

4 Estimation of foreground filter model

The objective in this phase is to estimate a PDF of the

colour distribution associated to the background for each

separate pixel on the MEI. This estimation is based on a

short-term image history, in order to consolidate obser-

vations over several frames, after motion compensation.

The assumption is that a pixel corresponding to a

Fig. 6 Top left: Previous frame

(I(t - 1)), Top right: Current

frame (I(t)), Bottom left:
Difference frame, Bottom right:
Difference with motion

compensation (E(t))
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moving foreground object will have varying colours over

such a time interval, whereas a pixel belonging to the

background will have more stationary colours. Compar-

ing the current pixel colour to its corresponding back-

ground model therefore allows refining detection by

taking into account more frames. In order to decrease the

computational complexity, this estimation is done only

for pixels that have been segmented as potential fore-

ground pixels during the motion-compensated frame-

differencing phase. We assume that large homogenous

foreground areas (e.g. car, bus) do not appear in a home

environment and we do not have to face the so-called

foreground aperture problem. The rest of this section is

devoted to present how to estimate such a meaningful

PDF.

4.1 Measurement matrix

In order to estimate the PDF for background pixel values,

we build a measurement matrix M. This matrix contains the

information of the original frames, in n consecutive time

instances and it is continuously updated along the time.

Because of the unpredictable camera motion, a short tem-

poral window is used for gathering frames to M (For the

presented experiments a 15 frame long time window was

used). In this way, we can ensure that the frames in M have

large overlapping parts, and are less affected by motion

compensation errors.

Updating at time t means adding the information of the

current frame at time t to the measurement matrix of the

previous time instance, t - 1.

Mðx; y; tÞ ¼ HtMðx; y; t � 1Þ [ Iðx; y; tÞ
Mðx; y; 1Þ ¼ Iðx; y; 1Þ

ð4Þ

where the operator [ means adding new frame of mea-

surements, while the oldest frame is being removed. Thus

the number of frames in the matrix remains always the

same. The operator Ht stands for the affine transformation

with the estimated parameters of camera motion between

time instance t - 1 and t, (1). Applying this transforma-

tion, we compensate all frames in the matrix to the refer-

ence frame, the current one.

4.2 Estimation of background colour model

The measurements, stored in M, are used to estimate the

probability that an incoming pixel belongs to the back-

ground. We use a kernel-based density estimation method

[23].

4.2.1 Kernel-based density estimation

Density estimation is the construction of an estimate of an

unobservable probability density function, based on

observed data. The data are usually thought of as a random

sample, drawn from an unobservable density function.

Perhaps the most popular approaches for density estimation

are Kernel-based Density Estimation (KDE) and Gaussian

Mixture Model (GMM). We have chosen KDE over GMM

since it is more reliable in case of low number of data

available, as stated in [24]. Namely, we use Kn nearest

neighbour approach (see [25], p. 174 for the detailed

description of the method).

The aim of this estimation method is to extrapolate the

measured data into a regular density function. For the

extrapolation, kernel functions, placed at each measure-

ment point, are used with a smoothing parameter. We have

considered using marginal or joint probability density

estimation (see Sec. 6 for test results).

Let v1, v2,…, vn be a set of d-dimensional, i.i.d. sample

points in Rd, drawn from a random variable that follows a

probability density function f. Let K: Rd ? R be a kernel

satisfying the following conditions:Z
Rd

KðvÞdv ¼ 1; ð5Þ
Z

Rd

vKðvÞdv ¼ 0; ð6Þ
Z

Rd

vvT KðvÞdv ¼ 1 ð7Þ

and K(v) C 0. The (5, 6, 7) together with non-negativity

define K as a zero-mean, unit-variance PDF. In our case

d = 3 as v is a colour vector of a pixel.

We can define the kernel-based approximation of

function f at the estimation point v for a given n as follows:

Fig. 7 The original image (on the left) taken by the camera, grey scale error image (in the middle), and the MEI (on the right)
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~f ðvÞ ¼ 1

n � Hk k1=2
Xn

i¼1

KðH�1ðv� viÞÞ ð8Þ

where n is the number of vi sample points, and H is a

smoothing parameter (bandwidth matrix), which deter-

mines the width and the height of the kernel function.

For the sake of simplicity, we use a diagonal bandwidth

matrix:

H ¼
r2½c1] 0 0

0 r2½c2] 0

0 0 r2½c3]

2
4

3
5 ð9Þ

where each r2 represents the bandwidth for a colour

channel.

The selection of the kernel function and the bandwidth

parameter are obviously very important, since they both

have a strong influence on the accuracy and the smoothness

of the PDF estimate.

4.2.2 Selection of bandwidth and kernel function

The kernel bandwidth can be either fixed or varying.

Choosing a fixed bandwidth is simple and computationally

efficient, but usually less accurate than variable bandwidth,

especially when there are only a few sample points available.

To adapt the bandwidth to the sample data, we considered

two traditional ways for variable bandwidth selection: the

balloon estimator and the sample-point estimator [23]. In the

case of the balloon estimator, the bandwidth is a function

H = H(v) of the estimation point. Usually it depends on the

sample-point neighbourhood of the estimation point.

The sample-point estimator means that the kernel’s

bandwidth is a function H = H(vi) of the sample point vi on

which it is centred, thus all the kernels building up the

density might have different bandwidth.

In this work, we use a sample-point density estimator,

which can be defined as follows:

fsðvÞ ¼
1

n

Xn

i¼1

KHðviÞðv� viÞ

¼ 1

n

Xn

i¼1

1

HðviÞk k1=2
KðH�1ðviÞðv� viÞÞ ð10Þ

where n is the number of measurements, and H(vi) is the

sample-point bandwidth matrix associated to the ith sample

point vi.

A common choice for the bandwidth calculation consists

of using the distance of the sample point vi from its kth

nearest neighbour. However, in our case, the number of

sample points is low and this kind of calculation might give

false result, as it was pointed out in [26].

Choosing a high value for K would mean that the dis-

tance from the kth sample point to the point vi can be high

even if there are (at maximum k - 1) other sample points

near to vi. In this case the information that there are other

points near is completely lost. Choosing a low value for k,

would mean that the distance might be low even if there are

not many other samples near to the point, which makes the

calculation sensitive to noise. Choosing a right k in case of

few measurements is not always possible.

To handle this problem we use the distance from all the

k nearest neighbours, instead of using the distance from the

kth alone. The ri[c] parameter is calculated as a variance of

the k nearest neighbours around the measurement vi:

r2
i ½c] ¼ 1

k

Xk

j¼1

vi½c� � vj½c�
� �2 ð11Þ

where vj is the jth nearest value to vi in the measurement

matrix c is the index of colour channel. For the estimate
~f ðvÞ to converge to the true unknown PDF, the following

should be satisfied: k(n)/n ? 0 when n ? ?. We use

k ¼
ffiffiffi
n
p

, where n is the number of available measurements.

It is generally accepted that the choice of the bandwidth

is more important than the choice of the kernel function

[27], although when the number of sample points is lim-

ited, the kernel function might have higher influence on the

estimation. Several kernel functions (e.g. Epanechnikov,

Gaussian, uniform, triangle, quadratic, etc.) were tested and

the Gaussian function proved to be the most suitable for

our task (see Sec. 6.3.4).

Choosing the Gaussian as kernel function the density

estimator will be:

fx;yðvÞ ¼
1

n 2pð Þd=2
Xn

i¼1

1

HðviÞk k1=2
e�

1
2

v�við ÞT H�1ðviÞ v�við Þð Þ

ð12Þ

4.3 Spatio-temporal selection of the measurement

points

To cope with the lack of data, due to limited temporal

history, we propose a new concept of a spatio-temporal

PDF, which will be explained in this section. We call it

spatio-temporal according to the choice of sample points:

we use both spatial neighbourhood and temporal history.

In [6] and [12] the sample points at given (x,y) coordi-

nates are the n previous measurements taken at the same

(x,y) position: (v(x,y,1), v(x,y,2),…,v(x,y,n)). However,

when the camera is moving the case is different: even after

motion compensation the real background scene position

that corresponds to the (x,y) pixel in one frame, might

move a little, due to minor errors of camera motion com-

pensation or quantization. Assuming that this error is ran-

dom, the use of a small (x,y) centred patch can solve the

problem.
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We have tested two different methods for gathering

measurements from the patch. The straightforward idea is

to use all points from it. In this case, some noise might be

added to the data but we can increase the number of

measurements significantly.

The other idea is to use that pixel from the patch which

might correspond to the pixel in question. To find it we

look for the closest pixel in colour space. This way the data

contains less noise but the number of measurements

remains low.

We have made experiments with both methods and

based on the results we have chosen the first approach (see

the ‘‘Results’’ section for more detailed explanation).

Based on the values of the measurement matrix, prob-

ability density functions (PDF) are built for each non-zero

(x,y) pixel of the current modified error image using (12),

where vi is the previously measured value of the (x,y) point,

obtained from the M matrix through spatio-temporal

selection, n is the number of measurements, Hi = H(vi) is

the bandwidth matrix (see (9) and (11)).

We have to note that n is an effective maximal number

of the non-zero measures available for PDF building. In

practice, the number of available measurements can change

for each pixel. In case when there is no measurement for a

pixel we do not apply the kernel-based filter, thus these

pixels will remain on the Filtered Error Image as

foreground.

5 Detection of foreground objects

Once the PDF has been built for each pixel in the current

MEI, we can proceed to the detection of moving fore-

ground objects. Here the pixels will be first classified as

belonging to the foreground or background on the basis of

the PDFs characteristics. Then the detected pixels will be

grouped into clusters (moving objects) on the basis of their

motion, colour and spatial coordinates in the image plane.

5.1 Classification of foreground/background pixels

The fx,y(t) function is a PDF that shows how likely the

pixel (x,y) takes a value v. Based on this likelihood we want

to divide the domain R of all possible v values into two

parts: R1 and R2. R1 is associated to the background colours

and R2 to the foreground colours. If we measure a value

which is in R1, it will be classified as background; other-

wise it will be classified as foreground. The union of R1 and

R2 has to be equal to R which is the whole domain.

When classifying a measured value into background or

foreground two kinds of mistakes can be made: classify a

background point as foreground and classify a foreground

point as background. Let p1 be the background PDF and p2

be the foreground PDF. Then the probabilities of mis-

classification are:

Pð2 1;Rj Þ ¼
Z
R2

p1ðvÞdv ð13Þ

Pð1 2;Rj Þ ¼
Z
R1

p2ðvÞdv ð14Þ

In our case P(2|1,R) is the probability of false detection

of an object pixel and P(1|2,R) is a missed detection of an

object pixel. If both PDFs would be known, we could find

an optimal division of R that minimises the two kinds

of error: P(2|1,R) ? P(1|2,R). However the PDF of the

foreground is not known in our case, hence we propose a

threshold-based decision scheme using only the back-

ground PDF.

5.1.1 Adaptive threshold calculation

Our goal now is to keep P(2|1,R) small, while ensuring that

the territory of the background remains as small as possi-

ble. We define R1 and R2 as follows:

R1 ¼ v 2 R fx;yðvÞ
��� � Tx;y

n o
; ð15Þ

R2 ¼ v 2 R fx;yðvÞ
��� \Tx;y

n o
; ð16Þ

where fx;yðvÞ is the PDF of the background and Tx,y is a

threshold. The higher the Tx,y, the smaller the R1, and the

bigger the Pð2 1;Rj Þ. By calculating the integral of fx;yðvÞ
over R2 P(2|1,R) can be controlled and we kept it under

a predefined a (misclassification probability of the back-

ground):Z
R2

f ðvÞdv ¼ Pð2 1;Rj Þ\a ð17Þ

Determining T based on this integral requires too much

computational power. To avoid this, we use a simple

heuristic. First let us introduce a heuristic property, the

Efficiency Measure (EM) for a PDF, which shows how

efficiently the PDF can be covered by a closed sub-domain:

EM ¼
R

rj j f ðxÞdx

rj j ð18Þ

where |r| is the measure of the sub-domain. Our heuristic

claims that the average height of the function in the sample

points vi (where the Gaussians are centred) is proportional

to EM (and thus inversely proportional to the territory

needed to cover it).Pn
i¼1 f ðxiÞ

n
/ EM ð19Þ
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If we choose the threshold to be proportional to that

average, than it will be higher (and R1 will be smaller) if

the EM is high, and lower (R1 will be bigger) when the EM

is small. It means that the threshold will be adapted to the

shape of the PDF. After this consideration we have chosen

the Tx,y threshold as follows:

Tx;y ¼ k �
Pn

i¼1 fx;yðviÞ
n

ð20Þ

where k is a constant, n is the number of the available

measurements and vi 2 Mðx; yÞ.

5.1.2 Decision-making rule

Once the adaptive threshold has been defined, the classi-

fication of pixels into foreground/background is straight-

forward. We perform it on the modified error image

Em(x,y,t): if the new value v has a high probability at the

given (x,y) position then we consider it as part of the

background and eliminate it from the error image:

Em
f ðx; y; tÞ ¼

Emðx; y; tÞ if fx;yðvÞ� T

0 otherwise

(
ð21Þ

The resulting Em
f ðx; y; tÞ is the filtered error image,

which contains the points of the foreground.

The typical results of this classification are depicted in

the left-most column of Fig. 8. Due to the noise and errors

in motion estimation, this detection result still contains

some noise, such as isolated pixels. Furthermore, the

foreground pixels are spread over the frame while in the

context of our problem, the moving objects should repre-

sent compact areas in the image plane.

We can reasonably suppose that with the high frame rate

we have, the pixel displacements of objects are similar.

Hence we propose to cluster detected foreground points in

a mixed feature space, supposing that an object will be

represented by one single cluster or by a set of clusters

close to each other in the image plane.

5.2 Clustering of the foreground points with DBSCAN

To find moving objects’ silhouettes and eliminate the

remaining noise, we used a clustering algorithm, called

DBSCAN (Density-Based Spatial Clustering of Applica-

tions with Noise) [28] in a mixed feature space Rl. In this

space with l = 7 dimensions, each foreground point is

described with a feature vector X = (x, y, C1, C2, C3, dx,

dy)T which contains the x,y coordinates, the colour coor-

dinates C1, C2, C3 in normalised RGB space and the

coordinates of a displacement vector dx, dy expressing

pixel motion. Intuitively this means that the points that are

close to each other, moving together and have similar

colour will be put in the same cluster.

DBSCAN is a density-based clustering algorithm that

can separate arbitrary shaped clusters. The main advanta-

ges of DBSCAN are: it does not require knowing a priori

the number of clusters, does not have a bias towards a

particular cluster shape or size and it is resistant to noise

[28, 29]. On the other hand, it does not work well on high

dimensional data or a dataset with varying density. For all

these reasons—presence of detection noise, low dimen-

sionality of the feature space, arbitrary shape of presumed

clusters we found it to be convenient for our problem.

The results of the clustering can be seen in Fig. 8.

Column c, contains the clusters obtained with DBSCAN

Fig. 8 The main steps: error image (a), filtered error image (b), foreground objects detected by DBSCAN (c) and the foreground objects on the

original image (d)
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from a raw foreground detection results (column b). One

can see that a lot of detection has been filtered. The

bounding boxes of the clusters are superimposed on the

original frame in the right-most column.

6 Results

The presented results were obtained on healthy volunteers

and real patients. In order to keep the conditions of the

experiment ergonomic for the observed subjects, the vid-

eos show their standard everyday conditions. They usually

stay alone at home. This is why the sequences containing

moving objects (persons, animals) are very rare. In the

corpus of duration of 9 h 17 min moving objects (persons

in our case) only occur occasionally for short periods of a

few seconds. Hence to construct the ground truth for the

tests of our method, we mainly used these short sequen-

ces. Some key frames and the corresponding results are

presented in Fig. 9. A sample of the dataset and the

belonging ground truth on healthy volunteers is publicly

available at: http://www.labri.fr/projet/AIV/projets/peps/

index.php?id=50.

In order to assess the false detection rate of our method

experiments on sequences without moving objects will also

be presented.

6.1 Evaluation metrics

To evaluate the performance of the method we used

F-score [30]:

F ¼ 2
1

Re
þ 1

Pr

ð22Þ

where Re is the detection rate (recall) and Pr is the positive

rate (precision).

The Recall and Precision were measured using two

kinds of Ground Truth (GT) data. For comparison with a

base-line method [7] we used handmade rectangular

shaped GT. Every pixel inside the GT area was considered

as foreground and every pixel outside the GT rectangular

as background.

Fig. 9 Example of pictures

from the tested sequences (From

top to bottom: Francois 1,

Francois 2, Daniel 1, Daniel 2)

with detection results
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During the search for the best parameters we used a

modification of the above described GT. The modifications

will be explained in details later.

6.2 Comparison with a base-line method: Gaussian

mixture model

As a base-line method we used a variety of Stauffer and

Grimson’s GMM method [8]. This alternative method is

based on [7], with additional selection of the number of the

Gaussian components: [31]. Both GMM and Kernel-based

model were tested on motion compensated images. Here

GMM is used as a background model: the pixels that do not

fit to the model will be foreground pixels. The maximum

number of Gaussians in the method [8] was fixed as K = 4.

The initial bandwidth for a new mode was chosen r = 11

and the complexity reduction prior constant was CT = 0.2.

The method was used without shadow detection. The

results of the detection as a function of the learning

parameter a, which tunes the update of Gaussians, are

given in Fig. 10a. For detailed description of the method

see [7, 8]!

The best result obtained for GMM in terms of F score

was at a = 0.75 where F = 0.156.

In order to test the effectiveness of the Modified Error

Image (3) as pre-filter, we have taken the MEI as initial

foreground mask and confirmed it by detected pixels with

GMM method applied to motion compensated frames. This

is the same concept as the Kernel-based density estimation

was used in our method (see Sec. 5.1.2). The received

F score was higher with this pre-filtering concept:

F = 0.183. Hence the MEI not only saves a lot of com-

putational time, but increases the effectiveness of the

foreground detection.

Exchanging the GMM with the proposed Kernel-based

estimation with Gaussian kernel shows further improve-

ment: F = 0.206.

Figure 10 shows the results of GMM, GMM filter and

Kernel-based filter methods as a function of dependency on

the previous frames. The peak F scores are summarised in

Table 1. The best result in case of Kernel-based filter was

obtained at n = 20. Since the F score does not change

much between n = 15 and 20, to save computational

power we decided to use n = 15. The F score at n = 15 is

0.202.

6.3 Step by step validation of the kernel-based

filtering method

As Table 1 shows, Kernel-based method gives better

results in the same circumstances; hence, it was chosen

over GMM for calculating PDF for each candidate fore-

ground point, based on previous measurements. The

question is what parameter set (colour space, measurement

point selection, patch size, etc.) is the most suitable for our

task, where a special difficulty is presented by the strongly

limited number of measurements.

Fig. 10 Results of the GMM

alone and pre-filtered as a

function of learning parameter

(a), and results of Kernel-based

method as a function of the

number of previous frames

considered for building the PDF

Table 1 Peak F scores for the base-line and the Kernel-based method

GMM GMM filter Kernel-based filter

Peak F score 0.156 0.183 0.206

Precision 0.0938 0.114 0.152

Recall 0.469 0.458 0.316
Fig. 11 Results obtained with different patch sizes: 1 9 1, 3 9 3,

5 9 5
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In the following we will test Kernel-based filters on the

MEI. To better evaluate the filters, we introduce a new

Ground Truth.

So far we used a handmade GT, where the true fore-

ground was marked with rectangular shaped areas. From

now on we will restrict these true foreground points to

those pixels that are non-zeros on the MEI: the true fore-

ground can be created with a logical AND between the

handmade GT and the MEI.

This modification makes sense since our initial data for

Kernel-based filtering is the MEI, which means that only

the non-zero pixels of the MEI has the chance to be on the

final foreground mask. Note that, since the GT is different,

the following results are not directly comparable with the

results of the previous sub-section (Sec. 6.2.1.). To be

unambiguous the F score values, calculated on this modi-

fied GT will be named as F scoreMEI.

6.3.1 Patch size

If only few consecutive frames are available, it is natural to

use measurements from the surrounding area of a pixel. It

will not only raise the number of measurements but might

help dealing with smaller motion compensation errors (see

Sec. 4.3). We compared the F scoresMEI of kernel methods

in the case of 1 9 1, 3 9 3 and 5 9 5 sized patches as a

function of probability threshold coefficient (20). See

Fig. 11.

While in the case of a 1 9 1 patch size the F scoreMEI is

more stable, with a larger patch size it has higher peak and

it drops very quickly. This can be explained by the fol-

lowing: the threshold values are calculated as a function of

average kernel heights. In the case of a larger patch the

height of the kernels will be higher, since the measurement

values are closer to each other and this results small sigma

values. If the threshold is higher, the changes of the coef-

ficient have greater impact on the result.

The test results confirmed that larger patch size is more

suitable in our ‘‘wearable’’ case (see Table 2 for summary).

For sake of computational complexity we used 3 9 3 sized

patches.

6.3.2 Measurement point selection techniques for joint

and marginal representation

If not only previous pixel values are used as measurements,

but the measurement values are selected from a patch, then

different methods can be used for selecting points from the

patch. Here we compare two ways for measurement

selection (see Sec. 4.3). The first is to use all values from

the patch, the second is to use only the closest value in the

colour space.

Figure 12 shows the results obtained by different point

selection techniques in case of a 3 9 3 patch. The corre-

sponding peak F scoreMEI values can be found in Table 3. We

can see that selecting only the closest point from a patch gives

better results than selecting all points from it. Selecting the

closest value helps correcting small errors of motion com-

pensation without adding too much noise to the estimation.

However, using only one point from a patch does not

increase the number of measurements, just make the

measurements more accurate. In case of marginal PDF

calculation it enhances the results, but if we use joint dis-

tribution PDF over the colour space we can see that the

number of measurements is not enough with respect to the

number of dimensions. This explains why the all value

selection method works better in case of joint distribution,

as it can be seen on Fig. 13.

Table 2 Peak F scoresMEI obtained with different patch sizes

Patch size 1 9 1 3 9 3 5 9 5

Peak F scoreMEI 0.306 0.310 0.322

Fig. 12 Results obtained with different point selection techniques,

both with marginal distribution

Table 3 The best results obtained with joint and marginal distribution

Distribution Marginal Joint

Patch size 1 9 1 3 9 3 5 9 5 1 9 1 3 9 3

Measurement selection N/A All Closest All Closest N/A All Closest

Peak F scoreMEI 0.305 0.303 0.310 not tested 0.322 0.304 0.342 0.306

The best value is highlighted with bold
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Table 3 shows the best results obtained with joint and

marginal distribution with optimal patch size and mea-

surement selection method.

6.3.3 Effect of the choice of the colour space

We also have examined the performance of the filter in

different colour spaces. Figure 14 shows the measurements

taken in RGB, normalised RGB, HSV, and YUV colour

spaces. We obtained the best results in normalised RGB

colour space. Although HSV and RGB colour spaces are

more stable, since the threshold coefficient is a chosen

constant (see 20), it is more important that the highest

value of the curves is better for nRGB colour space.

6.3.4 Effect of the choice of the kernel function

The method was tested with different Kernel functions:

Gaussian, Quadratic, Tricube, Epanechnikov, Triangle and

Uniform kernels. Figure 15 shows the obtained results. We

got the best result with Gaussian kernel function, which is

the smoothest of the tested kernel functions and this

property has high importance in case of a small number of

measurements.

6.3.5 Choice of the kernel width

Here we compare three methods for kernel width calcula-

tion: using a constant value for bandwidth or the distance

from kth nearest neighbour or the average distance from the

closest k nearest neighbours. Using fixed bandwidth gives

significantly lower F scoreMEI values than the other two:

the peak F scoreMEI is 0.302. The other two methods show

similar results, however, using the k nearest neighbours

gives slightly higher F scoresMEI (see Fig. 16).

6.3.6 Summary of the chosen parameters

Table 4 summarises the decisions for the selection of

parameters.

6.4 Overall detection performance of the proposed

method

The proposed method was compared to a GMM based

foreground object detection described in [8] (implementa-

tion available at [31]).

Table 5 shows the final results of the proposed method

and the alternative method (Gaussian Mixture Model based

method) on videos acquired with a standard button camera.

The results we obtain are almost 3 times better on these

complex sequences than those of the method [8]. Some

example results of the compared methods are given in

Fig. 17. In these experiments moving objects were shot by

a standard camera and the persons were not very close to

the device. The ground truth was made by hand for all the

sequences.

Fig. 13 Results obtained with ‘‘all points’’ and ‘‘closest point’’

selection techniques, both using joint distribution

Fig. 14 Results obtained in 3 different colour spaces

Fig. 15 F-scoresMEI with different Kernel functions as a function of

threshold coefficient
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The precision and recall rates were calculated based on

the overlap between the pixels annotated as foreground in

the ground truth and the estimated foreground image in

case of both methods. Both the ground truth and the esti-

mated foreground are rectangular shaped. See the illustra-

tion on Fig. 18. Our proposed method performs better both

in recall and precision metrics.

6.5 Experiments on ‘‘empty’’ sequences

To assess false detection rate of our method we have also

made experiments on ‘‘empty’’ sequence (see Fig. 19)

where no moving objects were available. Both methods

give false positives, but our proposed method is more than

70% better in average (lower curve in Fig. 19).

6.6 Time performance

The algorithm was tested on Intel Pentim 4, 3.4 GHz CPU,

1 GB memory with Linux operating system. In the present

state the run time of the algorithm is far from real-time (see

Table 6), since we use non-optimised software imple-

mentation without hardware acceleration. This therefore

requires offline processing of the recorded data.

Since the most time consuming steps are well parallel-

izable the use of GPGPU can be a perspective for real-time

processing. As Table 6 shows, the most time consuming

steps are the Block-Matching and the Kernel-Based Fore-

ground Filtering. The parallelization of the former is well

studied in the literature [33, 34]. For the latter let us

examine its time consumption in detail.

Table 7 shows the computational time needed for pro-

cessing an average patch. It can be seen that the calculation

of one patch takes only a few milliseconds and as the

patches are independent from each other a naive way of

parallelization is to handle each one of them as an inde-

pendent thread.

Another approach could be going down to pixel level.

According to our measurements the most time demanding

step in the processing of a patch is the calculation of the

threshold, which is essentially the repeated calculation of

(11). Equation (11) is the sum of Gaussian kernel values

that can be calculated independently. Hence a promising

way of parallelization is the parallel processing of

the components of (11). A drawback in this case is the

increased number of memory accesses compared to the

patch-based decomposition.

These are two ways of breaking down the problem

into parallel threads. Other, more sophisticated ways of

Fig. 16 Comparison of kNN and kthNN bandwidth selection

methods

Table 4 Summary of the decisions at parameter selection

Density estimation

method

Probability

representation

Patch

size

Measurement pixel selection

methods

Colour

Space

Kernel

function

Kernel width

Mixture of Gaussians Marginal 1 9 1 All RGB Gaussian Fix

nRGB Epanechnikov

3 3 3 HSV Tricube Kth Nearest

NeighbourKernel-based
estimation

Joint Closest Uniform

5 9 5 YUV Triangle K Nearest
NeighbourQuadratic

Our choices are marked in bold

Table 5 Precision, recall and F score rates for 4 different sequences

for the proposed and a concurrent method

Sequence name # Frames GMM based

method

Proposed method

Francois 1

(indoor)

60 0.050/0.332/0.087 0.365/0.906/0.52

Francois 2

(indoor)

141 0.242/0.331/0.279 0.801/0.799/0.8

Daniel 1

(outdoor)

90 0.267/0.428/0.329 0.624/0.574/0.598

Daniel 2

(outdoor)

30 0.236/0.302/0.265 0.467/0.772/0.582

The most informative values are highlighted with bold

Pattern Anal Applic (2011) 14:311–328 325

123



parallelization may also be studied, but this is not a subject

of this paper.

7 Conclusion and perspectives

This work was motivated by recent studies [4] about the

correlation of restriction in IADL with the future appear-

ance of a dementia related disease. This result suggests that

monitoring of IADL could help in the early detection of

dementia. Hence in this paper we proposed a method for

detection of moving objects from video frames, recorded

with a wearable moving camera carried by patients. We

estimated and compensated strong camera motion with a

block-matching-based global motion estimator, and used a

motion-compensated frame differencing for change detec-

tion. To enhance the result of the frame differencing we

Fig. 17 Example images of

foreground detection of the

GMM based (left) and the

proposed method (right)

Fig. 18 Illustration of the regions used for evaluation

Fig. 19 The number of false foreground pixels on an empty sequence

Table 6 Time consumption of the main steps of the algorithm in

seconds

Block-

matching

Motion

compensation

Kernel-based

foreground

filtering

Clustering

with

DBSCAN

Overall

16.0209 0.1210 23.1958 0.0761 39.4138

Table 7 Time consumption of the Kernel-based foreground filtering

of one patch in milliseconds

One kernel (one

component of (11)

One PDF

value (11)

Bandwidth

of a kernel

Threshold Overall

0.0044 0.0314 0.8918 8.0261 8.9537
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proposed a novel, kernel-based PDF foreground filter

model to eliminate false detections. Here we followed the

approach of Kn nearest neighbours with a small amount of

measurements and proposed a novel scheme for the choice

of the scale parameter of Gaussian kernels. To detect

moving foreground pixels we proposed an adaptive thres-

holding scheme using heuristics on the shape of estimated

PDFs.

On the remaining foreground points the DBSCAN

clustering algorithm was used to build foreground objects

from the points. It allowed for elimination of isolated noisy

detection results thus reducing the false detections.

In the application context of wearable cameras, the

problem we addressed was really challenging. We had to

estimate PDFs based on the information of 15 frames only

while the camera shows the same scene. Beside this strict

condition, the quality of many frames was very poor due to

the strong motion of the camera.

The time performance is reasonable for offline pro-

cessing, specifically taking into account the fact that this

processing is not necessary for each frame in the recorded

video, if a convenient tracking approach is proposed for the

detected objects.

Furthermore, for more semantic interpretation of the

content, in order to give the medical researchers more

insights on the recorded content, learning of object appear-

ance models is necessary. This is a subject of our future work

as well.

Finally, to speed up our algorithm we are considering

using General-Purpose computing on Graphics Processing

Units (GPGPU) [35].
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26. Bugeau A (2007) Détection et suivi d’objets en mouvement dans
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