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Abstract This multidisciplinary research presents a novel

hybrid intelligent system to perform a multi-objective

industrial parameter optimization process. The intelligent

system is based on the application of evolutionary and

neural computation in conjunction with identification sys-

tems, which makes it possible to optimize the implemen-

tation conditions in the manufacturing process of high

precision parts, including finishing precision, while saving

time, financial costs and/or energy. Empirical verification

of the proposed hybrid intelligent system is performed in a

real industrial domain, where a case study is defined and

analyzed. The experiments are carried out based on real

dental milling processes using a high precision machining

centre with five axes, requiring high finishing precision of

measures in micrometers with a large number of process

factors to analyze. The results of the experiments which

validate the performance of the proposed approach are

presented in this study.

Keywords Hybrid intelligent system � Dental milling

process � Optimization � Unsupervised learning �
Identification systems � Multi-objective optimization

1 Introduction

Intelligent systems have been widely used for industrial

process modelling. Recently, different paradigms of artifi-

cial intelligence have been applied to different industrial

problems [1–3].

System identification [4–6] has made it possible to

model, simulate and predict the behavior of many indus-

trial applications successfully and in different areas, such

as control, robotics [7], energy processes [8], milling

machine [9], high precision [1], power system security

[10], etc. A novel and economically advantageous appli-

cation is the optimization process in the field of Medical

Therapeutics (Odonto-Stomatology), a booming industry

[9, 11–13].

Prosthetic restorations must have a high marginal fit

[14]. A bad marginal fit [15] affects fracture resistance and

reduces the longevity of the restoration, resulting in higher

risk of recurrent carious lesions and periodontal disease, as

well as the dissolution of the cement [16] which allows

entry of fluid and microorganisms between the tooth and

the restoration, causing discoloration, pulpal irritation,

secondary carious lesions and treatment failure [17].

Disturbances or marginal discrepancies between 50 and

120 micrometers are considered clinically acceptable in

relation to the longevity of the restorations [18, 19].

R. Redondo (&)

Department of Civil Engineering, University of Burgos,

Burgos, Spain

e-mail: rredondo@ubu.es

J. Sedano

Department of AI and Applied Electronics,

Castilla y León Technological Institute, Burgos, Spain

e-mail: javier.sedano@itcl.es

V. Vera � B. Hernando

Facultad de Odontologı́a, UCM, Madrid, Spain

e-mail: viventevera@odon.ucm.es

E. Corchado
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Improved processing and optimization of parameters, such

as processing time, temperature, accuracy, etc., for the

development of pieces (such as dental-oral prostheses for

partial crowns, inlays, onlays, etc., with application for

rehabilitation and oral-dental restoration) are the focus of

rigorous studies today [9]. The optimization process of

machine parameters, such as the time parameter [20],

permits significant economic savings due to the high

number of dental pieces produced daily by the same high

precision dental milling machine centre. Another important

factor in the milling process is the temperature of the tools,

which can be expanded or fractured by an inappropriate

feed rate or by the heating of the coolant. Maintaining a

constant temperature during the manufacturing process will

make it possible to produce dental pieces with suitable

quality. This could significantly help to increase a com-

pany’s efficiency, and substantially contribute to cost

reductions in the preparation and setting of the machines

processes.

One way to achieve this optimization is based on the

hybridization [9, 21–25] of emerging and active tech-

niques, such as neural [5, 25] and evolutionary computa-

tion [26, 27], nature-inspired smart systems [28], data

mining and decision support systems [29], information

fusion [30], ensemble models, visualization techniques

[31], cognitive and reactive distributed AI systems [32],

case-based reasoning [33], among others.

This study is organized as follows. Section 2 describes

hybrid intelligent systems. Section 3 introduces the unsu-

pervised neural models applied for analyzing the data sets.

Section 4 presents the system identification techniques

used in the system modelling. Section 5 introduces the

applied multi-objective genetic algorithm. Section 6 pre-

sents the hybrid intelligent system for the optimization of

the process. Section 7 describes the industrial case study, a

real dental milling process. The final section presents the

different models that are used to solve the high precision

dental milling optimization case study. At the end, the

conclusions are set out and some comments on future

research lines are presented.

2 Hybrid intelligent systems

The hybridization of intelligent techniques [9, 21–25] from

different computational intelligence fields is becoming

more and more popular due the growing awareness that

such combinations frequently perform better than the

individual techniques from computational intelligence

(evolutionary [26, 27] and neurocomputing [5, 25], fuzzy

systems [4], and so on).

Practical experience has indicated that hybrid intelli-

gence techniques might be helpful to solve some of the

challenging real-world problems. In a hybrid intelligence

system, a synergistic combination of multiple techniques is

used to build an efficient solution of a specific problem.

3 Exploratory projection pursuit

In this study, an extension of a neural principal component

analysis (PCA) version [34–36] and other exploratory

projection pursuit (EPP) [37–39] versions are used initially

to select the most relevant input features in the data set, and

secondly to study its internal structure.

Feature selection [40, 41] describes the tools and tech-

niques available for reducing inputs to a manageable size

for processing and analysis.

The feature selection approach in this study is based on

the issue of dimension reduction. Initially, some projection

methods, such as PCA [34–36], maximum likelihood

Hebbian learning (MLHL) [38] and cooperative maximum

likelihood Hebbian learning (CMLHL) [31, 42] are

applied. Their first step is to analyze the internal structure

of a representative data set from a case study. If after

applying these models, a clear internal structure can be

identified, this means that the data recorded is informative

enough. Otherwise, further data must be properly collected

[20].

Principal component analysis is a statistical model [34,

35] which describes the variation in a set of multivariate

data in terms of a set of uncorrelated variables, each of

which is a linear combination of the original variables.

Its goal is to derive new variables, in decreasing order of

importance, that are linear combinations of the original

variables and are uncorrelated with each other.

Using PCA, it is possible to find a smaller group of

underlying variables that describe the data. PCA has been

the most frequently reported linear operation involving

unsupervised learning for data compression and feature

selection [36].

3.1 A connectionist implementation of exploratory

projection pursuit

Exploratory projection pursuit [37–39] is a more recent

statistical method aimed at solving the difficult problem of

identifying structure in high-dimensional data. It does this

by projecting the data onto a low-dimensional subspace in

which the data structure is searched by eye. However, not

all projections will reveal this structure equally well. It

therefore defines an index that measures how ‘‘interesting’’

a given projection is, and then represents the data in terms

of projections that maximize the index.

The first step for EPP is to define which indexes rep-

resent interesting directions. ‘‘Interestingness’’ is usually

32 Pattern Anal Applic (2015) 18:31–44

123



defined with respect to the fact that most projections of

high-dimensional data give almost Gaussian distributions

[37]. Thus, to identify ‘‘interesting’’ features in data, it is

appropriate to look for those directions in which the data

projections are as far from the Gaussian as possible.

Kurtosis is based on the normalized fourth moment and

measures the heaviness of the tails of a distribution. A

bimodal distribution will often have a negative kurtosis,

which will therefore signal that a particular distribution

shows evidence of clustering.

If a Gaussian distribution with mean a and variance x is as

interesting as a Gaussian distribution with mean b and var-

iance y, then such information may be removed from the

data (sphering). In effect, the second-order structure can

obscure structures of a higher order that are more interesting.

Cooperative maximum likelihood Hebbian learning [42]

is based on MLHL [43], an EPP connectionist model.

CMLHL includes lateral connections [42, 44] derived from

the rectified Gaussian distribution (RGD) [45]. The RGD is

a modification of the standard Gaussian distribution in

which the variables are constrained to be non-negative,

enabling the use of non-convex energy functions. The

CMLHL architecture is depicted in Fig. 1, where lateral

connections are highlighted.

The lateral connections used by CMLHL are based on

the cooperative distribution mode that is closely spaced

along a non-linear continuous manifold. Consequently, the

resultant net can find the independent factors of a data set

in a way that captures some type of global ordering.

Considering an N-dimensional input vector (x), an

M-dimensional output vector (y) and with Wij being the

weight (linking input j to output i), CMLHL can be

expressed as:

Feedforward step:

yi ¼
XN

j¼1

Wijxj; 8i ð1Þ

Lateral activation passing:

yi t þ 1ð Þ ¼ yiðtÞ þ s b� Ayð Þ½ �þ ð2Þ

Feedback step:

ej ¼ xj �
XM

i¼1

Wijyi; 8j ð3Þ

Weight change:

DWij ¼ g:yi:sign ðejÞ ej

�� ��p ð4Þ

where g is the learning rate, s is the ‘‘strength’’ of the

lateral connections, b the bias parameter, and p is a

parameter related to the energy function [42, 43].

A is a symmetric matrix used to modify the response to

the data, the effect of which is based on the relation

between the distances between the output neurons. It is

based on Cooperative Distribution, but to speed up the

learning process, it can be simplified to:

Aði; jÞ ¼ dij � cos 2p i� jð Þ=Mð Þ ð5Þ

where, dijis the Kronecker delta.

4 System modelling using identification algorithms

System identification (SI) [4–6] aims to obtain mathematical

models to estimate the behavior of a physical process whose

dynamic equations are unknown. The identification criterion

consists of evaluating the group of candidate models that

best describes the data set gathered for the experiment. The

goal is to obtain a model that meets the following premise

[6]: a good model is one that makes good predictions and

produces small errors when the observed data is applied.

Classic SI refers to the parametrical literature, which has

its origin in linear system analysis [7]. Nevertheless,

increased computational capability and the availability of

soft computing techniques have widened research into SI.

Artificial neural networks (ANN) are one of the paradigms

used in SI [46]. When using ANN, the purpose of an

identification process is to determine the weight matrix

based on the observations Zt, so as to obtain the relation-

ships between the network nodes. The SI procedure com-

prises several steps: the selection of the models and their

structure, the learning methods, the identification and

optimization criteria and the validation method [6, 7, 46,

47]. Validation ensures that the selected model meets the

necessary conditions for estimation and prediction. Typi-

cally, validation is carried out using three different
Fig. 1 CMLHL: lateral connections between neighboring output

neurons
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methods: the residual analysis eðt; ĥðtÞÞ (by means of a

correlation test between inputs, their residuals and their

combinations), the mean squared error (MSE) and the

generalization error value [normalized sum of squared

errors (NSSE)], and finally a graphical comparison

between the desired outputs and the model outcomes

through simulation [7, 20].

5 Multi-objective optimization

Multi-objective optimization [48, 49] deals with solving

optimization problems which involve multiple objectives,

there is usually no single solution which is optimum with

respect to all objectives. The resulting problem usually has

a set of optimal solutions, known as Pareto-optimal solu-

tions, non-inferior solutions, or effective solutions [49].

Since there exists more than one optimal solution and

since without further information no one solution can be

said to be better than any other Pareto-optimal solution,

one of the goals of multi-objective optimization is to find

as many Pareto-optimal solutions as possible. Within these

multi-objective algorithms, there are two well-known

types among others, such as (1) the non-dominated sorting

genetic algorithm (NSGA-II) [50]. This algorithm sorts the

population in different surfaces according to the Pareto

dominance operator, but also using the so-called crowding

distance, and (2) the multi-objective simulated annealing

(MOSA) [51]. This algorithm is able to elicit a set of non-

dominated solutions and it has been shown as a good

meta-heuristic technique to evolve the model learning

when multi-objective problems arise. In this study, the

NSGA-II and the MOSA are used as the multi-optimiza-

tion strategy.

6 A novel hybrid intelligent system for multi-objective

machine parameter optimization in a dental milling

process

The process of optimizing the manufacturing dental

pieces in terms of time errors, based on the optimization

of the system behavior, is carried out within the

framework of this study by means of a hybrid intelligent

system. The potential of this novel system is exemplified

by the time error parameter and the temperature. The

first parameter is chosen as an important factor in this

process in terms of the economic benefit for a company.

In the second case, a proper temperature in the manu-

facturing process would make it possible to obtain better

quality products.

6.1 Identification of the relevant features

Firstly, the dental manufacturing process is parameterized

and its dynamic performance in normal operation is

obtained by the real process of manufacturing dental pie-

ces. The gathered data is then pre-processed using pro-

jection models based on the analysis of parameters as the

variance [34–36] or the kurtosis as CMLHL [31, 42]. This

is done to identify internal data set structures to analyze

whether the data set is sufficiently representative and to

identify the most relevant features.

6.2 Modelling and optimization of a normal dental

milling operation

Once the relevant variables and their transformations have

been extracted from the production data, a model capable

of fitting the normal manufacturing operation must be

obtained. This is done to identify bias in the time error for

manufacturing and the difference of temperature in the

machine. The different model learning methods used in this

study were implemented in Matlab� [52]. The model

structures were analyzed to obtain the models that best

suited the data set. Since the number of examples was

small, a tenfold cross-validation schema was selected. The

final model is obtained using all the data set.

Moreover, several different indexes were used to vali-

date the models [20], such as the percentage representation

of the estimated model, the graphical representation for the

prediction (ŷ1ðtjmÞ) versus the measured output (y1ðtÞ), the

loss function or error function (V) and the generalization

error value.

The loss function or error function (V) is the numeric

value of the MSE that is computed using the estimation

data set by means of Eq. (6), while the generalization error

value is the numeric value of the NSSE that is computed

using the validation data set by means of Eq. (6). The

percentage representation of the estimated model is cal-

culated as the normalized mean error for the prediction

(FIT1, FIT) using the validation data set and the complete

data set, respectively, Eq. (7), where N is the number of

samples of the data set used. Finally, the variance of the

mean square errors (k) is calculated [8].

J1 mð Þ ¼ 1

N

XN

t¼1

y tð Þ � ŷ1 t mjð Þj j2 ð6Þ

FIT %ð Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
J1 mð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1 y tð Þj j2

q

0
B@

1
CA100 ð7Þ
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Once the model of the time error and the difference of

temperature parameter in the machine for manufacturing

dental pieces are selected, these models are used as two

fitness functions in a multi-objective optimization with

NSAGII and MOSA to obtain the best optimization of the

time errors and changes of temperature. Both algorithms

used in this study were implemented in Matlab� [53]. The

complete novel hybrid intelligent system is shown in

Fig. 2.

7 A real case scenario: a dental milling process

optimization

Society demands esthetics, biocompatibility, and durabil-

ity. This results in the need for fully adjusted dental

treatments, with maximum strength and better appearance,

but without limitation of materials or existing teeth situa-

tions (bridges, large structures, etc.,).

The development of technology in dentistry is advanc-

ing with the application of both industrial tools and com-

puter science in this field (dental science).

The milling process in the preparation of dental pros-

theses is currently the most modern processing prosthesis

in existence. This technique involves a process in which

the frame molds for crowns and bridges are milled or

polished from different material blocks.

The material (Cr–Co, Ti), the tools and the feed rates

affect the conformation times. Since the processing

involves polishing/milling the piece, the time of confor-

mation determines its size. It is important to obtain the

optimum diameter of the material block for minimizing

tool wear and the loss of material.

Another important factor is the temperature of the

milling tools, which can be expanded or fractured because

of an inappropriate feed rate or because of the heating of

the coolant. This could result in the inappropriate confor-

mation of prosthetic restorations (crowns, bridges).

The industrial case scenario is based on the real data

gathered by means of a Machining Milling Center of

HERMLE type-C 20 U (iTNC 530), with swiveling rotary

(280 mm), with a control system using high precision drills

and bits, by optimizing the time error detection for man-

ufacturing dental metal.

The real case study is described by an initial data set

of 114 samples obtained by the dental scanner in the

manufacturing of dental pieces with different tool types

(plane, toric, spherical, and drill) characterized by 15

input variables (see Table 1). The input variables are the

type of work, the thickness, the size of the tool, the

radius of the tool, the tool, the number of pieces,

the revolutions of the drill, the feed rate in each of the

dimensions (X, Y and Z), the advance in the angle,

the advance in the rotation, the initial tool diameter, the

Obtaining data from dental scanner in real 

process of manufacturing dental pieces

Data pre-processing using projection models 

(PCA & CMLHL)

1. Identify internal data set structures 

2. Identify the most relevant features 
Use relevant variables in next step

Obtain two models capable of fitting the time 

error and difference of temperature in 

manufacturing operation of dental pieces using 

ANNs 

Use models as two fitness functions in 
multi-objective optimization: NSGA-II and MOSA

Best optimization of feed rate X and feed rate 

Y to minimize the time errors and difference of 

temperature in machine operations using  

multi-objective optimization

Fig. 2 A novel hybrid intelligent system to optimize a dental milling process
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initial temperature and the estimated duration of the

work.

There are two main parameters to estimate in this

research: the time error for manufacturing and the differ-

ence of temperature in the machine. The time error for

manufacturing is the difference between the estimated time

by the machine itself and real work time (negative values

indicate that real time exceeds estimated time). The dif-

ference of temperature in the machine is the difference

between initial and final temperature in a dental milling

process.

8 Results

This multidisciplinary research initially analyzed the data

set to obtain the variables/characteristics that are most

closely related to manufacturing time errors and difference

of temperature in the machine.

In the first step, several unsupervised models were

applied for the sake of comparison. In this case, neural

versions of PCA and CMLHL were applied as powerful

techniques for identifying internal data set structures. In

order to analyze the two main parameters to be estimated

(the time error for manufacturing and the difference of

temperature in the machine) the initial data set was divided

into two data sets: one with the time error and another with

the difference of temperature.

The axes forming the projections (Figs. 3a, b, 4a, b)

represent combinations of the variables contained in the

original data sets. In the case of PCA, the model is looking

for those directions with the biggest variance, while

CMLHL is looking for the kurtosis (directions which are as

little Gaussian as possible) [38, 42].

In relation to time error, (see Fig. 3), both methods,

PCA (Fig. 3a) and CMLHL (Fig. 3b), are able to find a

clear internal structure in the data set by identifying several

clusters (see Tables 2, 3). Both methods also identified

feed rate X and Y as relevant variables. It is clear that

CMLHL provides a sparser representation than PCA, and

that CMLHL projections provide more clear information

identifying parameters, such as type of work and time error

as other important variables.

An analysis of the results obtained with the CMLHL

model (Fig. 3b) leads to the conclusion that this method

has identified several different clusters ordered by feed rate

X and Y and the type of work. Inside each cluster, there are

further classifications by ‘time error’ and the data set can

be said to have an interesting internal structure based on the

clusters identified.

In relation to the difference of temperature, (see

Fig. 4), both methods, PCA (Fig. 4a) and CMLHL

(Fig. 4b), found a clear internal structure in the data set

by identifying several clusters (see Tables 4, 5). It is

clear that CMLHL provides a sparser representation than

that obtained by PCA, and that CMLHL projections

provide more clear information identifying parameters,

such as the type of work, feed rate X and Y, initial

temperature and difference of temperature as important

variables.

An analysis of the results obtained with the CMLHL

model (Fig. 4b) leads to the conclusion that this method

has identified several different clusters ordered by the

Table 1 Different features from the process, their units and ranges

Variable (units) Range of values

Type of work (TW) One locator attachment of cobalt-

chromium (1), single-implant crown

of cobalt-chromium (2), four-unit

implant bridge of cobalt-chromium

(3), single crown of cobalt-

chromium (4), two-unit implant

bridge of cobalt-chromium (5) and

four crowns bridge of cobalt-

chromium (6).

Thickness (mm) (T) 8 to 15

Size of tool (mm) (ST) T2 to T23

Radius (mm) (R) 0.25 to 1.5

Tool (To) Toric, spherical, plain, drill

Number of pieces (NP) 1 to 4

Revolutions per minute

(RPM)

9,600 to 38,000

Feed rate X (mm per min)

(FR X)

0 to 3,000

Feed rate Y (mm. per min)

(FR Y)

0 to 3,000

Feed rate Z (mm per min)

(FR Z)

75 to 2,000

Advance in angle (mm per

min) (AA)

0 to 550

Advance in rotation (mm per

min) (AR)

0 to 550

Initial diameter tool (mm)

(ITD)

91.5035 to 110.4407

Initial temperature (�C) (IT) 24.8 to 30.4

Estimated work time

(s) (EWT)

12 to 2,034

Time error for

manufacturing (s) (TE)

-28 to -449

Difference of temperature in

the machine (�C) (DT)

0.9 to 6.7

Difference of diameter of the

tool (mm) (DD)

0.00080 to 0.11950
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difference of temperature and type of work. Inside each

cluster, there are further classifications by ‘feed rate X, Y’

and ‘initial temperature’ and the data set can be said to

have an interesting internal structure based on the clusters

identified.

When the data set is considered sufficiently informative,

as in this case, the next step is to model the relationship

between inputs and production time errors, and between

inputs and the difference of temperature in the process,

which is accomplished by applying several artificial neural

network modelling systems.

Two multilayer perceptron networks (MLP) (feedfor-

ward network) were used to monitor time error and the

difference of temperature in the manufacturing of dental

pieces. The data set is pre-processed from the input and

output normalization step, and the reduction of the input

vectors dimension (the data set gathered in the previous

step). The MLP is trained from the most widely used

training algorithms, such as the Levenberg–Marquardt

algorithm [54], quasi-Newton methods [55], resilient

backpropagation algorithm [56], and escalated conjugate

gradient algorithm [57], using the criteria of normal stop-

ping, early stopping, and Bayesian regularization tech-

niques [58].

The features for the two best MLPs proposed and its

indexes are stated below:

Fig. 3 PCA projection (a) and CMLHL projection (b) for data set with time error
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The feedforward network—called f1—to predict the

time error has 30 hyperbolic tangent units (layer 1), 25

hidden hyperbolic tangent units (layer 2), 25 hidden

hyperbolic tangent units (layer 3), 4 hidden hyperbolic

tangent units (layer 4), and 1 linear output unit. The

parameters in the network were estimated using the

Levenberg–Marquardt algorithm with normal stopping

criterion. Normalizing the minimum and maximum values

of data set to [-1 1].

The feedforward network—called f2—to predict the

difference of temperature has 30 hyperbolic tangent units

(layer 1), 20 hidden hyperbolic tangent units (layer 2), 5

Fig. 4 PCA projection (a) and CMLHL projection (b) for data set with difference of temperature

Table 2 Samples description and clusters obtained using PCA

method with time error

Cluster Feed rate X, Feed rate

Y (mm per min)

Estimated work time (s)

C1 3,000 From 660 to 378

C2 1,000 From 408 to 6

C3 850 From 168 to 12

C4 700 From 900 to 258

C5 250 and 200 From 690 to 12

C6 75 From 1,794 to 348

C7 0 From 48 to 6

38 Pattern Anal Applic (2015) 18:31–44

123



hidden hyperbolic tangent units (layer 3), and 1 linear

output unit. The parameters in the network were estimated

using the Levenberg–Marquardt algorithm with Bayesian

regularized criterion. Normalizing the data set to media

null and variance 1.

These models (f1 and f2) do not only present the lowest

V (0.001 and 5.25E-5) and NSSE (0.013 and 0.12E-3),

but also a higher system representation index value FIT1

(82.45 and 99.87 %) and a small k(0.1E-4 and 1.32E-9).

From these indicators, it may be concluded that the ANNs

selected are able to simulate and predict the behavior of

time errors and the difference of temperature for manu-

facturing dental pieces (as a consequence of the production

process).

Table 3 Samples description

and clusters obtained using

CMLHL method with time error

Cluster Type of work Time error (s) Feed rate X, Y (mm per min)

C1

C1.1 4 From -238 to -202 3,000

C1.2 2 From -317 to -227

C1.3 1 From -218 to -211

C2

C2.1 4 From -98 to -42 1,000

C2.2 2 From -44 to -71

C2.3 1 From -51 to 306

C3

C3.1 4 From -128 to -43 700

C3.2 2 From -86 to -75

C3.3 1 From -110 to -104

C4

C4.1 4 From -46 to -33 250 and 200

C4.2 2 From -46 to -35

C4.3 1 From -39 to -35

C5

C5.1 4 From -36 to -28 75 and 0

C5.2 2 From -45 to -30

Table 4 Samples description

and clusters obtained using PCA

method with difference of

temperature

Cluster Difference of temperature (�C) Initial temperature (�C) Feed rate X, Y (mm per min)

C1

C1.1 From 6.7 to 0.7 From 24.1 to 25.7 3,000

C1.2 From 3.3 to 0.9 From 28.1 to 31

C2

C2.1 From 6.7 to 0.7 From 24.1 to 25.3 1,000

C2.2 From 3.8 to 0.9 From 28.4 to 31

C3

C3.1 From 6.7 to 0.7 From 24.1 to 25.7 700

C3.2 From 3.3 to 0.9 From 28.4 to 31

C4

C4.1 From 6.7 to 0.7 From 24.1 to 25.7 250 and 200

C4.2 From 3.3 to 0.9 From 28.4 to 31

C5

C5.1 From 6.7 to 0.7 From 24.1 to 25.3 75 and 0

C5.2 From 3.8 to 0.9 From 28.4 to 31
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The models of time error (f1) and difference of tem-

perature (f2) obtained may be used as two fitness functions

in the next step to determine the best operating conditions

for the dental milling processes, i.e., to choose the values of

feed rate X and feed rate Y with the least possible time error

and the least change of temperature in the process.

Figure 5 shows the representation of this optimization

process. Where IT, TW, and EWT are values fixed and FR

X and FR Y are values obtained when TE and DT are close

to zero.

For the problem, 11 experiments have been designed

and 10 runs of each experiment have been carried out for

statistics purposes. The experiments use a population size

of 100 individuals, 200 iterations for the NSGA-II [and a

bigger number of iterations for the MOSA (200, 500, and

1,000 in some experiments)]. The crossover probabilities

are 0.8 and mutation probabilities are 0.2. MOSA uses

D = 0.1, T0 = 1, and T1 = 0.01. The results are shown in

Table 6 and in the boxplot of Fig. 6. In Table 6, the 11

experiments are compared for the best individual error

found and for the individual closest to the origin. Although

some differences have been found, both the MOSA and the

NSGA-II are valid to learn the models. Nevertheless, the

NSGA-II presents a worst behavior in the MSE of time

error in some experiments.

Besides, in Fig. 7 is depicted one of the multi-opti-

mization experiments accomplished and shown in

the Table 6, concretely the experiment number five. The

X-axis shows the feed rate X (mm per min) and the

Y-axis represents feed rate Y (mm per min), for from 0

to 3,000. The features fixed are 29 �C for initial tem-

perature and 900 s for estimated work time. In Fig. 7a,

the Z-axis represents the output variable range (time

error) from -3,000 to 1,000 s. This value is also shown

on the vertical bar. In Fig. 7c, the Z-axis represents the

output variable range (difference of temperature) from

-8 to 4 �C. The difference in temperature is also shown

on the vertical bar. Figure 7b, d presents the final value

got for the feed rate X and Y with a value close to zero

in the two outputs optimized (the black point in the

interior of circle).

9 Conclusions and future work

The novel hybrid intelligent system with a multi-objec-

tive optimization process described in this research can

be successfully used to optimize machine parameters for

industrial processes, based on the obtained results. The

optimization process may increase a company’s effi-

ciency and substantially reduces the cost of preparing

and setting machine processes. We have used this

method for multi-objective optimization and adjustments

during the manufacturing process of dental pieces, such

as implants according to medical specifications for pre-

cise moldings.

The method proposed is based on the selection of the

most important features in an initial step. ANNs are then

trained for modelling the features and these can, thus, be

used as two fitness functions in the multi-objective opti-

mization. Finally, a NGSA-II and MOSA try to achieve the

best conditions for manufacturing from the model.

Table 5 Samples description and clusters obtained using CMLHL

method with difference of temperature

Cluster Difference of

temperature (�C)

Type of

work

Initial temperature

(�C)

C1 6.7 2 24.1

C2 6.7 2 25.3

C3 5.6 4 24.8

C4 4.7 6 25.2

C5 3.3 1 31

C6 2.4 1 30.4

C7 3 4 25

C8 2.3 4 25.7

C9 2.7 2 28.4

C10 2 4 31

C11 1.7 4 29.3

C12 0.9 4 30.4

C13 0.9 5 29

C14 0.7 4 25.3

C15 3.3 2 28.7

Fig. 5 Multi-objective optimization NSGA-II and MOSA for the

variables TE and DT. IT, TW, and EWT are values fixed. The values

FR X and FR Y are obtained
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The data set collected in this real dental milling process

presents an important manufacturing time error rate of

about 26.8 %. This is due to the difference between the

estimated time of the machine itself and the real production

time. The obtained model is capable of modelling more

than 82 % of the actual measurements in relation to the

time error (modelling more than 96.1 % of real time work).

This helps to reduce the error and the variability rate of

manufacturing processes down to 4 %, compared to the

initial 26.8 %, which is an acceptable error rate in planning

work for dental milling. In addition, the difference of

temperature between the beginning and the end of the

dental manufacturing process has an increase of about

10.2 %. The obtained model is capable of modelling more

than 99 % of the actual measurements in relation to the

difference of temperature (modelling more than 99 % of

real final temperature work).

The multi-objective optimization is able to find the best

values for the feed rate X and Y from some fixed parame-

ters, such as normal conditions of manufacturing and the

multi-objective minimization of time errors, and the dif-

ference of temperature. Although, both the MOSA and the

NSGA-II are valid to learn the models, the best results—

considering the 10 runs—are obtained in less time with

NSGA-II; i.e., the solution can be obtained with less

computational cost. Therefore, the milling process will be

able to minimize the time errors and the difference of

temperature to a value as close to zero as possible.

Table 6 Experimentation results for manufacturing under different conditions in the dental milling process

Algorithm used Execution Values fixed Values obtained for the closest to the origin MSE

Experiments Time (m) TW IT EWT FR X FR Y DT TE DT TE

1 NII 41 1 31 12 1,111.36 1,663.99 4.43E209 2.31E211 2E-05 6.74E-11

M(200) 229 1 31 12 419.31 718.48 2.217 -0.12 4.389 4.317

2 NII 43 2 28.7 12 784.58 1,517.3 -0.883 -0.20 13.822 1.778

M(200) 141 2 28.7 12 803.13 1,633.81 -1.126 1.16 13.265 5.181

M(500) 456 2 28.7 12 740.88 1,431.94 -0.903 -0.86 4.33 1.434

M(1000) 4,380 2 28.7 12 806.80 1,695.88 -1.33 -0.259 2.489 0.908

3 NII 41 3 25.7 366 839.08 939.69 0.182 6.94E206 0.077 1.62E-03

M(200) 119 3 25.7 366 874.71 788.15 0.366 0.184 0.107 9.539

4 NII 46 4 28.4 378 449.29 1,305.34 -3.2E205 7.03E208 0.131 54,859.73

M(200) 66 4 28.4 378 453.11 646.09 0.0059 0.123 1.089 1.638

5 NII 45 5 29 900 953.86 1,132.3 -4.4E215 3.27E213 0.00015 1.05E-06

M(200) 65 5 29 900 434.11 646.09 0.038 0.448 0.154 34.68

6 NII 45 6 25.2 1,380 498.13 1,711.1 1.784 0.0002 8.703 23,273.33

M(200) 88 6 25.2 1,380 971.64 2,045.09 1.353 0.0065 4.734 12.229

7 NII 45 1 30.4 282 192.96 475.59 1.265 0.021 3.504 0.648

M(200) 80 1 30.4 282 646.45 870.97 1.355 -0.103 2.133 0.114

8 NII 44 6 25.2 660 117.39 1,709.47 0.0019 -0.00017 11.263 11,141.42

M(200) 54 6 25.2 660 142.19 1,671.5 0.412 -2.534 6.430 66.352

9 NII 44 2 28.7 66 904.5 1436 4.88E215 -1.14E213 6.3E-07 7.62E-12

M(200) 49 2 28.7 66 763.53 1,245.88 -0.156 0.287 3.541 11.938

M(500) 253 2 28.7 66 829.46 1,284.11 0.088 -0.181 0.254 6.290

10 NII 45 3 28.4 378 66.78 1,266.11 0.173 0.029 1.09 0.019

M(200) 81 3 28.4 378 60 1,266.19 0.156 -1.602 4.34 6.103

M(500) 240 3 28.4 378 749.68 1,011.99 2.627 0.136 7.37 2.47

11 NII 45 6 25.2 2,034 1,631.99 1,090.45 2.686 0.011 7.506 0.041

M(200) 117 6 25.2 2,034 572.99 1,264.7 3.199 0.413 11,519 9.164

MSE value of the mean central point of the MSE function for the individuals of lowest MSE value individual in the populations (MSE) and the

closest to the origin individual in the populations, considering the 10 runs of each experiment

M MOSA, NII NSGA-II

Bold type depicts the execution time and the best values obtained for the closest to the origin in DT and TE for each experiment
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Future lines of research will investigate the selection of

the most suitable features using a wrapper feature selection

method, in which Genetic Algorithms and ANNs are

hybridized. Finally, an algorithm will be developed to

automatically identify the best operating conditions: minor

time errors for the manufacturing of dental pieces and

minor differences of temperature. Moreover, the resulting

model would be applied to different metals used in pros-

thetic dentistry and in other industrial processes, such as

the automotive sector.
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Applying soft computing techniques to optimise a dental milling

process. Neurocomputing 109:94–104. http://dx.doi.org/10.1016/

j.neucom.2012.04.033

10. Kalyani S, Swarup K (2012) Design of pattern recognition system

for static security assessment and classification. Pattern Anal

Appl 15 (3):299–311. http://dx.doi.org/10.1007/s10044-011-

0218-x

Fig. 7 Output response of the time error and the difference of

temperature for different input variable ranges in the manufacturing

of two unit implant bridges of cobalt-chromium. a 3D graph, the

X-axis represents feed rate X, the Y-axis is the feed rate Y and the

Z-axis the output (time error). b 2D graph, the X-axis represents feed

rate X and the Y-axis is the feed rate Y. The black point is the chosen

output (time error). c 3D graph, the X-axis represents feed rate X, the

Y-axis is the feed rate Y and the Z-axis the output (difference of

temperature). d 2D graph, the X-axis represents feed rate X and the Y-

axis is the feed rate Y. The black point is the chosen output (difference

of temperature)

Pattern Anal Applic (2015) 18:31–44 43

123

http://dx.doi.org/10.1111/j.1468-0394.2011.00588.x
http://dx.doi.org/10.1007/s10044-011-0245-7
http://dx.doi.org/10.1007/s10044-011-0245-7
http://dx.doi.org/10.1016/j.neucom.2012.04.033
http://dx.doi.org/10.1016/j.neucom.2012.04.033
http://dx.doi.org/10.1007/s10044-011-0218-x
http://dx.doi.org/10.1007/s10044-011-0218-x


11. Miyazaki T, Hotta Y, Kunii J (2009) A review of dental CAD/

CAM: current status and future perspectives from 20 years of

experience. Dent Mater J 28(1):44–56

12. Fuster-Torres MA, Albalat-Estela S, Alcañiz-Raya M, Peñarro-
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