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Abstract CSIFT descriptors can achieve better performances in re-

In the past decade, SIFT descriptor has been witnessigting some certain photometric changes. One example
as one of the most robust local invariant feature dean be found in[]3], which shows that CSIFT is more
scriptors and widely used in various vision tasks. Mosttable than SIFT in case of illumination changes.
traditional image classification systems depend on theOn the other hand, thbag-of-featuregBoF) [7] [8]
luminance-based SIFT descriptors, which only analyzeined with thespatial pyramid matchingSPM) kernel
the gray level variations of the images. Misclassificatiof®] has been employed to build the recent state-of-the-art
may happen since their color contents are ignored. image classification systems. In BoF, images are consid-
this article, we concentrate on improving the perforered as sets of unordered local appearance descriptors,
mance of existing image classification algorithms bwhich are clustered into discrete visual words for the
adding color information. To achieve this purpose, diffepresentation of images in semantic classification.
ferent kinds of colored SIFT descriptors are introduced SPM divides an image int® x 2! segments in differ-
and implementedLocality-constrained Linear Coding ent scale$ = 0, 1, 2, computes the BoF histogram within
(LLC), a state-of-the-art sparse coding technology, ®ach segment, and finally concatenates all the histograms
employed to construct the image classification systeto build a spatial location sensitive descriptor of the im-
for the evaluation. The real experiments are carriexbe. In order to obtain better classification performance,
out on several benchmarks. With the enhancements aftodebook (a set of visual words), also named dictio-
color SIFT, the proposed image classification systenary, is constructed to represent the extracted descsiptor
obtains approximat&% improvement of classification Traditional SPM uses clustering techniques like K-means
accuracy on the Caltech-101 dataset and approxidate vector quantization(VQ) to generate the codebook.
improvement of classification accuracy on the Caltecldespite their efficiency, the obtained codebooks usually
256 dataset. suffer from several drawbacks such as distortion errors
and low discriminative ability[]10]. A lineaSPM based
on sparse codindScSPM) method[11] was proposed
by Yang et al. to relaxing the restrictive cardinality

Scale invariant feature transforn{SIFT) descriptors constraint of VQ. By generalizing vector quantization
[1] are widely used in many vision tasks, such as objett sparse coding followed by multi-scale spatial max-
recognition, image classification, video retrieval, etc. booling, ScSPM significantly outperforms the traditional
has been witnessed a very robust local invariant featu M kernel on histograms and is even better than the
descriptors in respect of different geometrical changasonlinear SPM kernels on several benchmarks.
However, SIFT was mainly developed for gray images, Yu et al [12] demonstrated that under certain as-
the color information of the objects are neglected. Thersumptions locality is more essential than sparsity for the
fore, two objects with completely different colors mayraining of nonlinear classifiers and proposed a modifi-
be regarded as the same. To overcome this limitatiocgtion of SC, named.ocal Coordinate CodindLCC).
different kinds of Colored SIFT (CSIFT) descriptors However, in both SC and LCC, the computationally
were proposed and developed by researchers to utilegpensive L1-norm optimization problem is to be solved.
the color information inside the SIFT descriptdrs [2] [3Wanget al. developed a faster implementation of LCC,
[4] [5] [B]. With the enhancement of color information,named locality-constrained linear codingLLC) [L3],
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which utilizes the locality constraint to project eaclof light hits the surface which will be reflected back in
descriptor into its local-coordinate system. It achieves t every direction.
state-of-the-art image classification accuracy even justConsider an image of an infinitesimal surface patch
using a linear SVM classifier. of some object. Let the red, green and blue sensors
According to our literature survey, although variougvith spectral sensitivities bgr()\), fa(A) and fp())
kinds of sparse representatio(SR) based image clas-respectively. The corresponding sensor values of the
sification algorithms with state-of-the-art performancesurface image aré [17] [18]:
have been developed, most of them use only luminance _
based SIFT descriptors [L[ 13 [l s e oy, 0™V = (8 [y fVeer () da+
. : : ; ms(n,s,V) [y fr(ANe(N)es(X) dA
Using color information can improve the robustness of L
traditional SIFT descriptor in respect of color variations
and the geometrical changes. However, facing the diverbere L € {R, G, B} is the color channel of light) is
CSIFT descriptors, the following questions are worth tthe wavelengthn is the surface patch norma,is the
be studied. direction of the illumination source, amds the direction
o Which CSIFT descriptor is the best for the SR base(g the viewer.e(A) is power of the incident light with
image classification system? wavelength\, ¢,(\) andc, are t.he the surface albe(_jo and
« In what extend, the performance of SR based im(,;lé:({,esnel reflectance, respectively. The geometric terms

classification system can be improved by using”’ and mg represent the diffuse reflection and the
CSIET? pecular reflection respectively.

] ] ] In case white illumination and neutral interface reflec-
To fully exploit the potential of CSIFT descriptors foriqn model holds, the incident light energg)) = e and

image category recognition tasks, a CSIFT based imagg.sne| reflectance termy(\) = ¢, are both constant

classification system is constructed in this work. As g, es independent of the wavelength By assuming
widely used state-of-the-art SC based encoding alggye following holds:

rithm, LLC is employed to encode the CSIFT descrip-
tors for classification. Real experiments with different /fR(/\) = /fc(/\) = /fB()\) =/ @
kinds of CSIFT descriptors demonstrate that significant A A A

improvements can be obtained with the enhancement ofEq. (1) can be simplified:

color information.

The rest of this article is organized as follows. In
section[l, a reflectance model for color analysis is
presented. In sectidn Jll, different kinds of the CSIFTyherek; = [, fr(\)es(N) is a variable depends only
descriptors and their properties are discussed. Secti@hthe sensors and the surface albedo.
[V]introduces the basic concepts of the LLC. In section
Vland[VI, real experiments are carried out to study the lIl. COLOREDSIEFT DESCRIPTORS
proposed algorithm in various aspects. Finally, in section
[VIT] conclusions are drawn.

L(n,s,v) = emp(n, )kr + ems(n,S,V)esf (3)

On the basis of théDichromatic Reflection Model
the stabilities and reliabilities of color spaces in regard
of various photometric events such as shadows and

1. DICHROMATIC REFLECTANCE MODEL specularities are studied in both theoretically and em-

. _ . . pirically [19] [2] [20]. Although there are many existing
A physical model of reflection, nameichromatic I del : .
th lated t t t
Reflection Model was presented by Shafer in 198 -0'0r Space moae's, ey are corretated 1o Intensity; are

[7]. In which, the relationship between RGB-values o[*near combinations oRRG B; or normalized with respect

wred | 4 the photometric ch hio intensity rgb [[19]. In this article, we concentrate
captured images an € photometric changes, suc oﬂsinvestigating CSIFT using essentially different color

shadows and specularities, of environment was invesé- .
o ' ; L aces:RGB HSV, YCbCr Opponent rg and color
gated. Shafer indicated that the reflection of a incide ariant spices pponent 19

light can be divided into two distinct components: spec-
ular reflection and body reflection. Specular reflection is
when a ray of light hits a smooth surface at certain angl‘@: SIFT

The reflection of that ray will reflect at the same angle The SIFT algorithm was originally developed for
as the incident ray. The effect of highlight is caused bgrey images by Lowe[[21][]1] for extracting highly
the specular reflection. Diffuse reflection is when a ragiscriminative local image features that are invariant



to image scaling and rotation, and partially invariant
to changes in illumination and viewpoint. It has been

used in a broad range of vision tasks, such as image o “”dgf’ged o it maz = min
classification, recognition, content-based image-nedtje 60° X s +0°  if maz = R and
etc. The algorithm involves two steps: 1) extraction . G—B . G 2B

of the keypoints of an image; 2) computation of the # = ¢ 60° X mai=ra + 360 if mar = R and
feature vectors characterizing the keypoints. The first . 6B . G <B

step is carried out by convolving the input image with 60° X = T 120 !f maz =G

the DoG (difference of Gaussians) function in multiple 60° x oo=r +240° if maz = B

scales and detecting the extremas of the outputs. The (4)
second step is achieved by sampling the magnitudes and

orientations of the image gradient in a patch around the 0 if maz = 0
detected feature. A 128-D vector of direction histograms S = { maz—min _ | _ min  ihoreo )

is finally constructed as the descriptor of each patch.
Since the SIFT descriptor is normalized, it can invariant V = max ©6)
to the scale of gradient magnitude. But the light color
changes will affect it, because the intensity channel is a

je where,maz is equal to the maximal one @t, G, B,
combination of the R, G and B channels.

andmin is equal to the minimal one aoR, G, B.

D. rg-SIFT

B. RGB-SIFT The rg-SIFT descriptors are obtained from theolor
space. It is the normalized RGB color model, used

As the most popular color modeRGB color space andg channels to describe the color information in the

provides plenty information for vision applications. Inmage p is constant ifr andg are given)rg color space

order to embedRGB color information into the SIFT is already scale-invariant with respect to light intensity

descriptor, we simply calculate the traditional SIFTThe conversion from RGB space to rg space is defined

descriptors on the each channelRGB color space. By as follows,

combining the extracted feature] 28 x 3 dimensions de-

scriptor is built (28 for each color channel). Compared - R @)
with conventional luminance-based SIFT, fR&Bcolor R+G+ B
gradients (or edges) of the image are captured.
__ G 8)
I"R+G+B (

C. HSV-SIFT E. YCrCb-SIFT

As one of the most popular color spaces, YCrCh

HSV-SIFT was introduced by Bosclet al. and color space provides very efficient representation of
employed for scene classification tagk ][22]. Similagcenes / images and is widely used in the field of
to RGB SIFT discussed above, they compute SIFVideo compression. It represents colors in terms of
descriptors over all three channels of the HSV colane luminance component’], and two chrominance
model and produces d28 x 3 dimensional SIFT components@, andC,). The YCbCr-SIFT descriptors
descriptor for each point. It is worth mention that, Hare computed on all the channels of YCbCr color space.
channel of HSV color model has scale-invariant andThe YCbCr image can be converted from RGB images
shift-invariant with respect to light intensity. Howeverusing equation below:
due to the combination of the HSV channels, the whole

descriptor has no invariance properties. The conversion v R-G
from RGB space to HSV space is defined by Eq. ol = R+(\§§—23 @)
@E)@). orl | milis
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F. Opponent-SIFT fast coding speed and state-of-the-art classification ac-

The Opponent color space was first proposed ITacy- It h_as _been widelylc_iteq in acad_em?c papers qnd
Ewald Hering in the late 19th century [23]. It consist§MPloyed in image classification applications. In this
three channels(;, Os, Os), in which theOs channel artlcle_, LLC is selected for feature coding in our real
represents luminance of the image, while the remaind@fPeriments. , ,
describe the opponent color (red-green, blue-yellow) -6t X denotes a set ofD-dimensional local de-
of the image. Opponent-SIFT descriptor is obtained glg}\?rs in an image, i.eX = [ngﬁi“"mN]. €
computing the SIFT descriptor over each channel of t Let B = [by,by,....bu] € R be a visual
Opponent color space and combine them together. THRdebook withM entries. The coding methods convert

RGB images transform in the opponent color space f&ch descriptor into a/-dimensional code. Unlike the
defined by Eq.[(0). sparse coding, LLC enforces locality constraint instead

of sparse constraint. A reconstruction for the basis de-
scriptorsB can be acquired by optimizing the following

equation:
o1 0.209 0587  0.144 1 [R] [0 N
02| = |—0.1687 —0.3313 05 | |G|+|128] . e
03 0.5  —0.4187 —0.0813] |B| |128 minz;”“_B“H FAldiOv|7s 2170 = 1, ¥ (12)
10) i=

where ® denotes the element-wise multiplication, and
) d; € RM is the locality adaptor that gives some de-
G. Color Invariant SIFT gree of freedom for each basis descriptor. LLC ensures
With the inspiration of Dichromatic Reflectancethese descriptors are proportionally similar to the input
Model (see sectioh]ll), the color-based photometric irdescriptorz;. Specifically,

variant scheme was proposed by M. Geusebrbek [2]. It , _
. . . i dist(x;, B)
was first applied to SIFT descriptor by Abdel-Hakim and di = exp| J (13)
Farag [8]. A linear transformation from RGB to color , ) )
invariant space is presented as the following: where dist(z;, B) = [dist(x1,b1), dist(za,b2), . - -,

A dist(x;, b)), anddist(x;, b;) is the Euclidean distance
E(z,y) 0.06 0.63 0.27\ |R(z,y) betweenz; and b;.0 is used for adjusting the weight
Ex(z,y) | = [0.30 0.04 035]| |G(z,y) decay speed for the locality adaptér.

EM(I,y) 0.34 0.60 0.17) |B(z,y) An approximation is proposed if_[1L3] to accelerate

(11) its computational efficiency in practice by ignoring the
Where E(x,y), EA(I, Y), EM(J:, y), denoting ,respec- second term in Eq.(12). They directly use thienearest
tively, the intensity, the yellow-blue channel, and théasis descriptors of; to minimize the first term. The
red-green channelE, E\, and E\, are the spectral encoding process is simplified by solving a much smaller
differential quotients, and represent as the same as timear system,

above. Measurement of the color invariants is obtained N
by E, Ex and E. minz llz; — Bui||?s.t.1Tv; = 1,Vi (14)
v
i=1
IV. LOCALITY-CONSTRAINEDLINEAR CODING This gives the coding coefficients for the selected k

The bag-of-featurgBoF) approach has now played Jasis vectors and other coefficient are set to zero.
leading role in the field of generic image classification
research[[11][I3][15]. It commonly consists of feature V. EXPERIMENTAL RESULTS
extraction, codebook construction, feature coding, andTo evaluate the performances of different kinds of
feature pooling. Previous experimentally results showthe CSIFT descriptors in aparse representatiobased
that, given a visual codebook, choosing an appropriateage classification system, two benchmark datasets:
coding scheme has significant impact on the classific@altech-101[24] and Caltech-256_[25] are employed
tion performance. in the real experiment. Since color information is the
Different kinds of coding algorithms are developegrerequisite for the CSIFT descriptors computation, to
[17] [13] [15] [10], among them]ocality-constrained achieve a fair comparison, the gray images in the
Linear Coding (LLC) [13] is considered as one ofCaltech-101 and Caltech-256 are removed. To enable
the most representative methods, which provides batblored images of some categories are sufficient for
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training a stable classifier (the number of colored imag _ I

less than 31), we add some new color images of the sa .z = == ——RGB-STFT

category that is to make sure there are at least 31 coloi,: 8% T el

. . e HSV-SIFT

images in each category. A = g g
ER 4/ ...... {/t/;,,,_f\ | | =% Opponent= STFT
B 3 ~&- e~ SIFT

A. Implementation 5 s P oo SIFT

. . B g0y e
In all the experiments, the same processing cha o ¥
similar the settings refereed in this literature is used - B e A B W

number of training images per class

ensure Consistency.

1) Colored SIFT(CSIFT) / SIFT descriptors extrac-
tion. The dense CSIFT/SIFT descriptors are exig. 1. The different number of training images per class o t
tracted as described in section 111 within a regulagassification performance.
spatial grid. The step-size is fixed to 8 pixels

and patch size td6 x 16 pixels. The dimension I . .

: : order to test the performance with different sizes of train-
of luminance-based SIFT descriptor i28. For ing data, different numbers (5, 10,., 30) of trainin
CSIFT descriptors, RGB-SIFT, SIFT, HSV'S”:T'im(‘:]a es ’er category is evalur;\tedplyn each ex eri?nent
YCbCr-SIFT, Opponent-SIFT, rg-SIFT and Color ges p gory ' pert '

we randomly selech images per category for training

Invangnce SIFT (C-SIFT) are implemented for th%md leaving the remainders for testing. The images were
experimentation.

. esized to keep the maximum size of height and width
2) COde.bOOkS construction. After the CSlF.T/SIng larger than 300 pixels with a conserved aspect ratio.
descriptors are extracted, a codebook of size 10

is created using the K-means clustering method or the sake of simplicity, the codebook size is fixed to
g ustering 6 Fdoa (the performance of different codebook sizes will
a randomly selected subset (with sizex 10°) of

: ; be studied in section VI[JA). The corresponding results
3) Eztggl(i:tt;-?:()cilsslt'r:;i-n(i?jsclirr;petgrrs’coding{LLC) The using different kinds of CSIFT descriptors (RGB-SIFT,
CSIFT/SIFT descriptors are encoded by LLC using " -, HSV-SIFT, YCDCr-SIFT, Opponent-SIFT, rg-SIFT

the above constructed coodbooks. the number g?d Color Invariance SIFT (C-SIFT)) are illustrated in

. : . o . Tabled and Figurd]l. According to the experimental
ggg:tt?ors is set to 5 with the shift-invariant Con'results, all the CSIFT/SIFT descriptors achieve their best

: . . . : classification accuracy with 30 training images per class.
4) $ﬁglﬂgflt2§ﬁ§tlﬂ p;z:gf i?zgglqggfy():o%' utIt indicates that more training data may bring better
the final dgscri gt]orrz)f each ima eplt i erforr';e@assification accuracy in testing, while the improvement
P ge. P ecame slight when the size of the number of training

g'tg_;g.fxgl.i ?hF:aNcl:lc:frre:nselclj(er'lr’12l>; 2e?sr;dfle2 4n images is more thaf0. Both RGB-SIFT and YCbCr-
u glons | ponding Ievels), feavi gg%FT outperform state-of-the-art luminance-based SIFT
same weight at each layer. The pooled features 0

the sub-regions are concatenated and normalizg this dataseF. The YCbCr-SIFT achieves the best per-
to form the final descriptor of each image: fSfmance. For m;t_ance, when 30 |mages.of each category
e . ' ... are used for training, YCbCr-SIFT obtains the average

5) Clas§|f|cat|on. a on_e-vs—all Imegr SVM Cla.SS'f'ercIassification accuracy 069.1%; RGB-SIFT provides

sh[mi)]wlr? ;;:3 ptgrftorra:art]fgzsclassmer, since 1t ha?ne second best average classification accuré®y o).
' It is worth mentioning that even without color infor-

mation, SIFT achieves third best average classification

B. Assessment of Color Descriptors on the Caltech-1@tcuracy of68.17%. Approximately 1% improvement
Dataset in average classification accuracy can be obtained by

The propose algorithm is carried out using the coldMPloying CSIFT descriptors.

images of Caltech-101 dataset, which contains 101

object categories including animals, flowers, vehicles, _

shapes with significant variance, etc. Some color images Assessment of Color Descriptors on the Caltech-256
are added to avoid insufficient of training data in certaiRataset

categories as discussed before. The number of originalA more complex dataset, Caltech-2561[25], is also
images in every category still varies from 31 to 800. lemployed for the experiments. It consists of 256 object



TABLE |
CLASSIFICATION RATE(%) COMPARISON ONCALTECH-101

Training images 5 10 15 20 25 30

RGB-SIFT 4577+ 1.02 | 55.90+ 0.69 | 61.26+-0.84 | 64.84+-0.68 | 66.70+0.81 | 68.65+1.13
SIFT 45.014-0.76 55.39+-0.42 60.514+0.60 | 64.25+-0.72 | 66.29+0.71 | 68.17+-0.98
HSV-SIFT 33.96+0.96 44.06+0.40 50.48+0.60 | 54.42+0.63 | 57.76+0.94 | 59.47+1.31

YCbCr-SIFT 46.484+ 0.91 | 56.97+0.60 | 62.0%+ 0.31 | 65.45+0.63 | 68.17£0.76 | 69.18+1.19
Opponent-SIFT | 27.00+0.48 35.07+0.58 39.310.55 | 41.93+0.99 | 44.21£1.06 | 45.870.74

rg-SIFT 32.51+0.56 41.70+0.88 46.82£0.48 | 50.35+0.40 | 53.15+0.83 | 55.18+1.09
C-SIFT 32.640.52 41.90+0.43 47.870.56 | 51.02+0.59 | 54.05+0.69 | 55.72+-0.88
TABLE Il _ 5
CLASSIFICATION RATE(%) COMPARISON ONCALTECH-256 S am T
= N 40% - 8 SIFT

Training 15 30 45 60 = @ Sk ol HSV-5TFT
images 2 Bao //A"'/ 3 ¥0BCr— SIFT
RGB-SIFT | 26.70+0.33| 33.04-0.22| 36.56+0.32| 38.71+0.38 o =2 : e e —#*=Opponent~ SIFT
SIFT 25.06:0.07| 31.22:0.24] 34.9210.39] 37.2240.35 Eoom ,,/ e e a2
HSV-SIFT | 21.95+0.30| 28.18-0.22| 31.79+0.28| 34.03+0.29 EE = -
YCbCr- 28.58+0.32| 35.20+0.18| 38.97+0.34| 41.31+0.27 0%
SIFT 13 30 45 60
Opponent- | 14.37A-0.24| 17.92+-0.22| 20.0+:0.20 | 21.43+0.45 number of training images per class
SIFT
Rg- SIFT | 18.16+0.24| 22.98+0.26| 25.88+0.36| 27.63t0.31 Fig. 2. The different number of training images per class loa t
c- SIFT 14.56+0.18| 19.30+0.22| 22.13+0.19| 24.19+0.27 classification performance.

VI. FURTHER EVALUATIONS

classes and totaly 30,607 images, which have muchThe experimental results of section V-B 4nd V-C show

higher intra-class variability and object location vaitab that, among the different CSIFT descriptors, YCbCr-

ity compared with the images in Caltech-101. Similar t§!FT and RGB-SIFT achieve better image classification

section\-B, the gray images are also removed for famerformance than the state-of-the-art luminance-based
comparison of various CSIFT/SIFT descriptors. SincelFT. While, it is well-known that choosing different

there are at least 80 color images per category, no m&@debooks size, different numbers of neighbors in LLC
image is added. and different pooling methods will affect the final clas-

sification results. In this section, further evaluations ar

In each experiment, we randomly seleet (n € carried out for more comprehensive studies of these two
{15,30,45,60} is fixed for each experiment) imagescs|FT descriptors.

from every category for training and leaving the remain-

ders for testing. For the sake of simplicity, the codebook .

size is fixed to 4096 (according to our experiencé: Impact of Codebook Size

it produces the best classification performance). TheFirstly, we test the impacts of different codebook sizes
images were resized to keep the maximum size of heigll2, 1024 and 2048) using the Caltech-101 dataset.
and width no larger than 300 pixels with conserveds discussed in section]V, the codebooks are trained
aspect ratio. The details of classification results are shdy the K-Means clustering algorithm. Different numbers
in Table[dl and Figuré]2. Among all these descriptorg5, 10, ..., 30) of training images per category are
YCbCr-SIFT produces the best performance as well. Bvaluated. The number of neighbors in LLC is set as
case 60 random selected training images of each categbryThe corresponding results are presented in Table I,
are used, YCbCr-SIFT achieve the average classificatidableTM , Tabld'¥ and Figurgl 3. YCbCr-SIFT descriptor
accuracy of41.3%; moreover, RGB-SIFT also providesoutperforms the others in all the tests. In most cases,
the second best average classification accurd®y%). the highest classification accuracy is obtained by using
Compared with the performance of luminance-basetodbook of size 1024. However, when the codebook
SIFT descriptors, CSIFT brought approximateby en- of size 2048 is utilized, the classification accuracies de-
hancement in regard of average classification accuracyease (except YCbCr-SIFT descriptor with 30 training
which can be significant in many image classificatioomages per category). It may be caused by the over-
tasks. completeness of the codebooks, which results in large



deviations in representing similar local features. It i ;g:_“ e
interesting to notice that, by using more training data, tt _ 565-: SIFT (2048)
problem of over-completeness might be overcome. F¢ . = SIFT(2048)
the instance, YCbCr-SIFT descriptor with codebooks (S 4., YCbCr—
size 2048 and 30 training images per category achie\ 2 0% SIFT (2048)
the highest average classification accuracy. E 5% ES{(I}E;(I s
5 56% —~ STFT(1024)
B. Impact of Different Number of Neighbors - ”i ~—YChCr-
The performances of the proposed algorithm usirs ;6; +§égI“°2“
different number of neighbor&” in LLC are also es- g 4s% SIFT(512)
timated. The codebook size is fixed as 1024, the numt £ sgs —SIrGLE
of training image per category is 30. The results ai= 44% — YChCr-
shown in Tablé]l and Figulg 4. With the increase of th  42% SIFT(512)

neighbor numbel in LLC, the classification accuracy  40% 1
takes on the trend of rising first, then drops afiee> 25. 5 10 15 20 25 30
The highest average classification accuracy is obtain.., — "umber of training images per class
by using YCbCr-SIFT descriptdf2.59%). In contrast to

the highest classification result of SIFGY(18%), more Fig. 3. The different number of training images per class loa t

than3% improvement is achieved. classification performance.
C. Comparison of Pooling Methods T S S A B

Besides the max-pooling method, sum-pooling is ars ~ 73% CEF g o RGE-
other choice which can also be used to summari:= 3‘ ror TR LR T /0. SO T STFT
the features of each SPM layer. Table]VII, TaBle VIl % £ e N —— STFT
show the experimental results using the two methors 3 69% ;
respectively. In Figurg]5 they are illustrated together fcs . : YCbCr-
comparison. The codebook size is 1024. The numb : 2L

| | | | | |

of neighbors used in LLC is 5. It can be noticed the®  65%

the max-pooling method significantly outperforms sun 5 10 15 20 25 30
pooling. number of K
Maz : v; = max(vi,ve,...,0;) (15)
) Fig. 4. The different number of training images per class loa t
Sum vy =v1+v2+ ...+ (16)  classification performance.

As can be seen from Figuiré.5, the best performance is
achieved by the combination ofrfax-pooling and “¢2

. luminance-base SIFT descriptors, YCrCb-SIFT descrip-
normalizatiori.

tor acquired approximat¥ increase on the Caltech-101
dataset (see sectién VI-B) and approximéie increase
VIl. CONCLUSION on the Caltech-256 dataset (see secfion] V-C). Besides
In this article, CSIFT descriptors are introduced tthe YCrCb-SIFT descriptor, RGB-SIFT descriptor also
improve the state-of-the-aftocality-constrained Lin- provides favorable performance. As one of the most
ear Coding (LLC) based image classification systemrepresentative SR based image classification algorithms,
Different kinds of CSIFT descriptors are implementethe improvements achieve on LLC show that using
and evaluated with varies settings of the parameteGSIFT descriptors is an approach with good potential
Real experiments have demonstrated that, by utilizirig enhance state-of-the-art SR based image classification
color information, considerable improvements can b&stems. On the other hand, although be reported can
obtained. Among the CSIFT descriptors, YCrCb-SIFachieve invariant or discriminatory object recognition,
descriptor achieves the most stable and accurate image found that the performances of some others CSIFT
classification performance. Compared with the higldescriptors are not as good as expected. One potential
est average classification accuracy achieved by usisglution is combing different CSIFT descriptor to build



Training images 5 10 15 20 25 30
SIFT 46.01+0.65 | 55.814-0.41 | 60.98+0.50 | 63.99+-0.97 | 66.23£0.49 | 67.10£1.10
RGB-SIFT 46.5H40.59 | 56.28+0.60 | 60.92+-0.45 | 64.10+0.62 | 66.01:£0.82 | 67.10+1.26
YCbCr-SIFT 46.81+0.81 | 57.18+0.39 | 62.25+-0.56 | 65.53+0.65 | 67.62£0.61 | 69.16+0.80
TABLE IV
THE CODEBOOKS OF SIZEL024
Training images 5 10 15 20 25 30
SIFT 45.014+0.76 | 55.39+0.42 | 60.514+0.60 | 64.25+-0.72 | 66.29:0.71 | 68.17+0.98
RGB-SIFT 45771.02 | 55.90-0.69 | 61.26+0.84 | 64.84:-0.68 | 66.70:0.81 | 68.65+1.13
YCbCr-SIFT 46.484+ 0.91 | 56.9740.60 | 62.09t 0.31 | 65.45-0.63 | 68.1740.76 | 69.18+1.19
TABLE V
THE CODEBOOKS OF SIZR2048
Training images 5 10 15 20 25 30
SIFT 43.56+0.78 | 54.18+0.78 | 60.08+0.72 | 63.18+0.54 | 65.68+0.63 | 67.91+1.21
RGB-SIFT 43.79-0.91 | 54.33+0.55 | 59.8%+-0.73 | 63.0740.94 | 65.770.73 | 67.94+0.79
YCbCr-SIFT 44.62+0.75 | 55.214-0.51 | 61.42+-0.33 | 65.13+:0.66 | 67.42£0.64 | 69.45+0.84
TABLE VI
COMPARISON ON THE SIZES OF THE NEIGHBORHOOD SIZE
Number of K 5 10 15 20 25 30
SIFT 67.91+1.21 | 68.414+1.03 | 68.74+-0.94 | 68.31£0.84 | 68.99+0.86 | 68.51+1.17
RGB-SIFT 67.94+0.79 | 68.614+-0.82 | 68.72-0.89 | 68.99+0.71 69.18+1.1 68.78+0.13
YCbCr-SIFT 69.45+0.84 | 70.44+1.03 | 71.370.72 | 72.59+0.63 | 72.56+1.22 | 72.39+1.47
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a better one, we will try to study it in the future work.
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