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Abstract

The fundamental phenomenon that has been used to enhance theconvergence speed of Learning

Automata (LA) is that of incorporating the running Maximum Likelihood (ML) estimates of the action

reward probabilities into the probability updating rules for selecting the actions. The frontiers of this

field have been recently expanded by replacing the ML estimates with their corresponding Bayesian

counterparts that incorporate the properties of the conjugate priors [1–3]. These constitute the Bayesian

Pursuit Algorithm (BPA) [1], and the Discretized Bayesian Pursuit Algorithm (DBPA) [2, 3]. Although

these algorithms have been designed and efficiently implemented1, and are, arguably, the fastest and most

accurate LA reported in the literature2, the proofs of theirε-optimal convergence has been unsolved.

This is precisely the intent of this paper. In this paper, we present asingle unifying analysisby which

the proofs of both the continuous and discretized schemes are proven. We emphasize that unlike the

ML-based pursuit schemes, the Bayesian schemes have to not only consider the estimates themselves but

also thedistributional formsof their conjugate posteriors and their higher order moments – all of which

render the proofs to be particularly challenging. As far as we know, apart from the results themselves, the

methodologiesof this proof have been unreported in the literature - they are both pioneering and novel.
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2The families of BPA are faster and more accurate than their counterparts that invoke the ML estimates because unlike the former
which use the information in the mean, the BPA families utilize the information at a higher-end quantile (95%th precentile) of the
posterior Bayesian distribution. This is the rationale forthe claim that they are probably, the fastest and most accurate reported LA.
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1 Introduction

This paper deals with the formal analysis of the convergenceproperties of the most-recently proposed family

of Learning Automata (LA) which (a) are estimator-based, (b) are of a pursuit nature, and (c) utilize the

family of Bayesian estimates in their updating rules. We shall clarify all of these salient features of these

schemes and the consequent proof that we embark on, in the forthcoming paragraphs. To guide the reader

through the various aspects at stake, we shall briefly visit the crucial issues individually.

What is a Learning Automaton (LA) : An LA is an adaptive decision-making unit that learns the optimal

action from among a set of actions offered by the Environmentit operates in. At each iteration, the LA

selects one action, the Environment takes this action as itsinput and gives back to the LA a response based

on the action chosen. The response can be either a reward or a penalty, given the stochastic property of the

Environment. In this paper, we work with the so-calledP-model of LA where the stochastic property is

characterized by the Bernoulli distributed reward probabilities, and the action associated with the greatest

reward probability is uniquely defined as the optimal action. Based on the response and the knowledge

acquired in the past iterations, the LA adjusts its action selection strategy to make a “wiser” decision in the

next iteration. In this way, the LA, even though it lacks a complete knowledge about the Environment, is

able to learn through repeated interactions with the Environment, and adapts itself to the optimal decision.

The field of LA has been studied for more than four decades and well-documented surveys of the field are

given in [4–6].

Applications of LA : LA have found applications in a variety of fields, includinggame playing [7],

parameter optimization [8], channel selecting for secondary users in cognitive radio networks [9,10], solving

knapsack problems [11], optimizing the web polling problem[12, 13], stochastically optimally allocating

limited resources [11,14,15], service selection in stochastic environments [16], vehicle path control [17], and

assigning capacities in prioritized networks [18]. LA havealso been used in natural language processing,

string taxonomy [19], graph patitioning [20], and map learning [21].

Structural Development of Field of LA: The development of LA has gone through four stages. Initial

LA were Fixed Structure Stochastic Automata (FSSA), with the state update and decision functions being

time invariant. Tsetlin, Krylov and Krinsky automata [5] are the most notable examples of this type. Later,

Variable Structure Stochastic Automata (VSSA) were developed, which are characterized by functions that

update the probability of selecting the various actions. Typical examples of traditional VSSA includes the

Linear Reward-Penalty (LR−P) scheme and the Linear Reward-Inaction (LR−I ) scheme [5]. The entire field

of LA was raised by a quantum level by the discovery and invention of the family of so-called Estimator

Algorithms (EAs) explained below.

Estimator Algorithms (EAs) : EAs augment an action probability updating scheme with theuse of

estimates of the reward probabilities of the respective actions. The design of EAs was pioneered by the study

of Pursuit Algorithms (PAs) [22]. The first PA was designed tooperate by updating the action probabilities
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based on theLR−I paradigm. Later, Oommen and Lanctot [23] presented the Discretized Pursuit Algorithm

(DPA) by discretizing the action probability space. The DPAwas shown to be superior to its continuous

counterpart. In order to highlight the distinct characteristics of the DPA and the PA, in this paper, the

latter is referred to as the Continuous Pursuit Algorithm (CPA). By the same token, being an EA in its own

right, every PA maintains running Maximum Likelihood (ML) reward probability estimates, to determine the

current “Best” action for the present iteration. More generally, the PA then pursues the current best action by

linearly increasingits action probability in a either aLR−I , LR−P, DLR−I or DLR−P paradigm [6]. As the PA

considers both theshort-termresponses of the Environment and thelong-termreward probability estimates

in formulating the action probability updating rules, it outperforms traditional VSSA schemes in terms of its

accuracy and its rate of convergence.

The Estimates used in EAs: Prior to the work that we have reported recently,all of the reported Pursuit

and Estimator Algorithms exclusively incorporated the running ML estimates of the action reward proba-

bilities into the probability updating rule for selecting the actions. These estimates have, indeed, been used

in [6,23–26].

The Use of Bayesian Estimates in PAs: As opposed to invoking ML estimates, more recently, the

authors of this present paper have proposed the introduction of the family of Bayesian estimates in the LA.

This has led to various Bayesian Pursuit Algorithms (BPAs),including the Continuous Bayesian Pursuit

Algorithm (CBPA)3 [1], and the Discretized Bayesian Pursuit Algorithm (DBPA)[2,3]. Although the BPAs

follow the same “pursuit” paradigm of learning, by virtue ofthe fact that one can invoke the properties of

their posterior distributions, the Bayesian estimates provide more accurate estimation and are, consequently,

superior to their counterparts which invoke the ML paradigm. Indeed, the families of BPAs are, arguably,

the fastest and most accurate LA reported in the literature.

The State-of-the-Art of BPAs: Both the above-mentioned Bayesian-based algorithms havebeen de-

signed and efficiently implemented4, and their effectiveness in solving the learning problem have been clearly

demonstrated. However, the issue that remains unsolved is the proofs of theirε-optimal convergence. We

thus present in this paper asingle unifying analysisby which the proofs of both the schemes are proven.

Difficulty of the Proofs of EAs: The most difficult part in the design and analysis of LA consists of the

formal proofs of their convergence accuracies. The mathematical techniques used for the various families

(FSSA, VSSA, Discretized etc.) are quite distinct. The proof methodology for the family of FSSA is the

simplest: it quite simply involves formulating the Markov chain for the LA, computing its equilibrium (or

steady state) probabilities, and then computing the asymptotic action selection probabilities. The proofs of

convergence for traditional VSSA are more complex and involve the theory of small-step Markov processes,

distance diminishing operators, and the theory of Regular functions. The proofs for Discretized LA involve

the asymptotic analysis of the Markov chain that representsthe LA in the discretized space, whence thetotal

3In the interest of compactness, unless otherwise stated, wewill refer to the CBPA as the BPA.
4As mentioned in the Abstract, the version of the BPA presented here, namely theAbsorbingBayesian Pursuit Algorithm

(ABPA), is distinct from the version presented in [1]. The reason for this is explained presently.
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probability of convergence to the various actions is evaluated. However, understandably, the most difficult

proofs involve the family of EAs. This is because the convergence involves two intertwined phenomena,

namely the convergence of the reward estimatesand the convergence of the action probabilities themselves.

Ironically, the combination of these vectors in the updating rule is what renders the EA fast. However, if the

accuracy of the estimates are poor because of inadequate estimation (i.e., if the sub-optimal actions are not

sampled “enough number of times”), the convergence accuracy can be diminished. Hence the dilemma!

Proofs of PAs: The proofs for the convergence of PAs have been studied and reported for decades

in [6], [23], [24], [25] [26], which, unfortunately, all have a common flaw that has been recently discovered

by the authors of [27]. Further, the authors of [27] submitted a new proof for the convergence of the CPA

which adequately rectified the flawed proofs. The new proof, focusing only on the CPA, was based on the

monotonicity property of the probability of selecting the optimal action, and required the introduction of an

additional assumption that forced the learning parameter to be continuously decreasing over time. In order to

provide a unifying analysis that is applicable to both the CPA and the DPA, the authors of [28–31] presented

a completely different proof methodology based on the submartingale property and the theory of Regular

functions. The latter proof, indeed, requires the PAs to have absorbing states [32, 33], and thus when it is

applied to the CPA, the CPA needs to be artificially rendered absorbing, i.e., by constraining the learning

process to jump to an absorbing barrier in a single step when any of the action probabilities is greater than

or equal to a user-defined threshold that is close to unity. The artificially rendered absorbing CPA was called

Absorbing CPA (ACPA) to highlight the difference.

Intent of this Paper: In this paper, we intend to prove the convergence accuracies of the latest EAs,

namely, the BPA and the DBPA. To ensure that the algorithms have absorbing barriers, as in the case of the

CPA mentioned above, the BPA is rendered artificially absorbing, and is thus referred to as the Absorbing

BPA (ABPA). The discretized BPA, however, is truly absorbing, and it is thus unmodified. The unified

proof that we present is thus valid for both the ABPA and the DBPA. From the perspective of Martingale

convergence theory and the theory of Regular functions, in principle, the present proof is related to the

foundational concepts of the proofs in [28–31]. However, the difference is non-trivial and is not just cosmetic.

Indeed, we emphasize that unlike the ML-based pursuit schemes, the Bayesian schemes have to not only

consider the estimates themselves but also thedistributional forms of the conjugate posteriors– all of which

render the present proofs particularly challenging. Thus,as far as we know, apart from the results themselves,

themethodologiesof this proof have been unreported in the literature - they are both pioneering and novel.

The rest of the paper is organized as follows: Section 2 reviews the notations and algorithmic processes

followed by both the ABPA and the DBPA. Section 3 proves, in detail, the convergence of the ABPA and the

DBPA, i.e., that they are bothε-optimal in all stationary environments. We conclude the paper in Section 4.
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2 Overview of the ABPA and the DBPA

We first submit a brief survey of the ABPA and the DBPA so that the readers can possess a fundamental

understanding of them both.

Both the ABPA and the DBPA are based on the “pursuit” paradigmof learning. Firstly, they maintain

an action probability vectorP = [p1, p2, ..., pr ], where ∑
j=1...r

p j = 1, and wherer is the number of actions.

In each iteration, the question of which action is to be selected is determined by randomly sampling the

action probability vector. Secondly, they maintain running Bayesian(as opposed to ML) estimates for the

reward probabilities. The action associated with the largest reward probability estimate is considered as the

“best” action in each current iteration. Thirdly, given theresponse of the Environment and the knowledge

of the current best action, the ABPA increases the probability of selecting the current best action as per the

continuous LR−I rules, while the DBPA increases the action probability of the current best action as per the

discretized LR−I rules.

In all brevity, we mention that far more details about the algorithms and their simulated performances

have already been reported in the literature. To avoid repetition, they are not included here. Rather, we refer

the reader to [1] for additional details about the BPA, and to[2, 3] for additional details about the DBPA.

The only difference between the ABPA and the BPA is that if anyone of the action probabilities,p j(t +1),

exceeds a pre-defined Threshold,T, which is a user-defined quantity set to be very close tounity, p j(t +1)

will jump directly to unity and the learning process is terminated. At this juncture, wesay that the LA has

been “absorbed” into one of the absorbing barriers, where the r unit vectors are the absorbing states.

We first present the notation used in the ABPA and the DBPA.

Table 1: Notations used in the ABPA and the DBPA

Parameters Descriptions

α The action selected by LA.
p j The jth element of the action selection probability vector,P.

a j ,b j The two positive parameters of theBetadistribution for Action j.

d̂ j

The jth element of the Bayesian estimates vectorD̂,
given by the 95% upper bound of the cumulative distribution
function of the correspondingBetadistribution.

h
The index of the maximal component of
the reward probability estimates vectorD̂.

m The index of the optimal action.

R
The response from the environment,
whereR= 0 (reward) orR= 1 (penalty).

∆ The minimum stepsize;∆ = 1
rN , with N being a positive integer;

N is also considered as the learning parameter for the DBPA.
λ The learning parameter for the ABPA; 0< λ < 1.

We now formally describe the ABPA and DBPA algorithms. The reader must observe that both of these

algorithms have identical steps in the estimation and learning phases, but differ only in the manner by which
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the action probabilities are updated - in a continuous manner for the ABPA and in a discretized manner in

the DBPA. Consequently, to avoid repetition, both of them are presented in a single schema below. After

describing the algorithms, we consider the primary contribution of the paper, namely the definition of an LA

beingε-optimal, and the proof of the ABPA and DBPA beingε-optimal.
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Algorithms: ABPA & DBPA
Notations: Refer to Table 1.
Initialization:
1. p j(t) = 1/r, where r is the number of actions.
2. Seta j = b j = 1.
Method:
For t:=1 to ForEverDo

1. Pickα(t) randomly as perP(t). Supposeα(t) = α j , for which the Environment’s response is R(t).

2. Based on the Bayesian nature of the conjugate distributions, updatea j(t) andb j(t) as below:

If R(t) = 0, Then a j(t) = a j(t −1)+1;b j(t) = b j(t −1);

Else a j(t) = a j(t −1);b j(t) = b j(t −1)+1;

3. Define f j(t) = f j(v;a j(t),b j (t)) =
v(aj (t)−1)(1−v)(bj (t)−1)

∫ 1
0 u(aj (t)−1)(1−u)(bj (t)−1)du

.

f j(t) is the probability distribution function of the Beta distribution of the jth action at timet.

4. Identify the upper 95% reward probability bound ofd̂ j(t) for each actionj as:

∫ d̂j (t)
0 f j(v;a j (t),b j (t))dv=

∫ d̂ j (t)

0 v(aj (t)−1)(1−v)(bj (t)−1)dv
∫ 1

0 u(aj (t)−1)(1−u)(bj (t)−1)du
= 0.95.

5. If d̂h(t) is the largest element of all the estimates at timet, then updateP(t +1) as follows:

• Continuous linear rules for the ABPA,

If R(t) = 0, Then

p j(t +1) = (1−λ)p j(t), j 6= h,

ph(t +1) = 1− ∑
j 6=h

p j(t +1).

Else

P(t +1) = P(t).

/*If any p j(t +1)≥ T, makep j(t +1) jump to 1 and break the loop*/

If p j(t +1)≥ T,∀ j ∈ (1,2, ..., r), Then

p j(t +1) = 1,

Break

EndIf

• Discrete linear rules for the DBPA,

If R(t) = 0, Then

p j(t +1) = max{p j (t)−∆,0}, j 6= h,

ph(t +1) = 1− ∑
j 6=h

p j(t +1).

Else

P(t +1) = P(t).

EndFor
End Algorithm: ABPA & DBPA
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3 The ε-optimality of the ABPA and the DBPA

Theε-optimality5 of the ABPA (or the DBPA) are defined by the following statement, where ‘t’ is measured

in terms of the number of iterations.

Definition of the ABPA (or the DBPA) being ε-optimal: Given anyε > 0 and δ > 0, there exist a

λ0 > 0 (or a N0 > 0) and a t0 < ∞ such that for all time t≥ t0 and for any positive learning parameterλ < λ0

(or N > N0), Pr{pm(t)> 1− ε}> 1−δ.

Informally speaking, this implies that given a sufficientlysmall (large) value for the learning parameter,

the LA will converge to the optimal action with an arbitrarily high probability.

We now prove that the above statement is true. From the perspective of Martingale convergence theory

and the theory of Regular functions, the proof follows the lines of the arguments for the convergence proofs

of the ACPA [29], which consists of four steps.

1. Firstly, given a sufficiently small (large) value for the learning parameterλ (or N), all the LA’s actions

will be selected an sufficiently large number of times beforea finite time instant,t0.

2. Secondly, for allt > t0, with an arbitrarily high probability,d̂ j , estimated from a Bayesian perspective,

will remain in a small enough neighborhood ofd j , implying thatd̂m will be the maximal element in̂D

with an arbitrarily high probability.

3. Thirdly, suppose that fort > t0, the probability thatd̂m is ranked as the largest element inD̂ is large

enough. Then the action probability sequence of{pm(t)}, with t > t0, will be a submartingale.

4. Finally, if {pm(t)t>t0} is a submartingale, by the submartingale convergence theorem and the theory

of Regular functions, the probability of the LA converging to the optimal action converges to 1, i.e.,

Pr{pm(∞)→ 1} → 1.

Obviously, each of the above steps of the proof relies on its previous step, and so the relationship between

them can be depicted asStep1⇒Step2⇒Step3⇒Step4. In the following subsections, we will formalize

the proofs of each of the four steps one by one.

3.1 Step1: All actions will be selected enough number of times beforet0

The step asserts that by utilizing a sufficiently small valuefor the learning parameter,λ, for the ABPA, (or

by using a sufficiently large value for the learning parameter, N, for the DBPA), each action will have been

selected a sufficiently large number of times by a finite time instantt0.

The reader will observe that this claim intrinsically depends on the respective probability updating rules

of the ABPA and the DPBA, which are exactly the same updating rules invoked by the ACPA and DPA

5In the interest of compactness and to avoid repetition, the definition and explanations/statements are given for the ABPA in the
main text, and described in a parenthesized manner separately for the DBPA.
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respectively, that utilize the ML estimates. In other words, the proofs of these results are already found in

the literature, namely in [26] and in [23] respectively. Theproofs are thus not repeated here.

3.2 Step2 : d̂m will be ranked the largest element inD̂ with an arbitrarily high probability.

We defineA1(t) as the event that at the time instantt, d̂m(t) is the largest element inD(t), i.e.,

A1(t) = {d̂m(t)> d̂ j(t),∀ j 6= m}.

In that case:

q(t) = Pr[A1(t)] = Pr{d̂m(t)> d̂ j(t),∀ j 6= m},

is the probability thatd̂m(t) is the largest element inD(t). The goal of this step is to prove that for any small

valueδ ∈ (0,1), if each action has been selected a sufficiently large numberof times by the time instantt0,

then

q(t)t>t0 > 1−δ. (1)

In other words, we prove that ift > t0, the probability of the optimal action being estimated as the best action

is arbitrarily close to unity.

We now define another eventA2(t) as

A2(t) = {|d̂ j(t)−d j |<
w
2
,∀ j = 1, ..., r},

wherew is the absolute difference between the two largest reward probabilities. ThenA2(t) indicates that at

the time instantt, for each action, the reward probability estimate is withinthe w
2 neighborhood of its real

value. We can thus see that

A2(t)⇒ A1(t). (2)

If we further define

q′(t) = Pr[A2(t)] = Pr{|d̂ j (t)−d j |<
w
2
,∀ j = 1, ..., r}, (3)

then on the basis of Eq. (2), we have

q′(t)< q(t).
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Therefore, if we can prove that

q′(t)t>t0 = Pr{|d̂ j(t)t>t0 −d j |<
w
2
,∀ j = 1, ..., r} > 1−δ, (4)

then Eq. (1) holds. In other words, we are to prove that whenever t > t0, the probability of every reward

probability estimate,d̂ j(t),∀ j = 1, ..., r, being within aw
2 neighborhood of its real value,d j , is greater than

1−δ.

For any actionα j , Figure 1 illustrates the relationships between the Beta distribution of the Bayesian

estimate of the reward probability,f j(t), the reward probability estimate,̂d j(t), the mean,d̄ j(t), and the real

reward probability,d j . The basic idea of proving Eq. (4) consists of two steps. Firstly, we prove that for all

j, the mean,d̄ j(t), will be arbitrarily close to the real reward probability,d j , if each action has been selected

an arbitrarily large number of times. Secondly, given that each action has been selected an arbitrarily large

number of times, we prove that the quantityd̂ j(t), i.e., the 95% percentile of the posterior Beta distribution

at timet, will be arbitrarily close to the mean,̄d j(t).

Figure 1: The relationships between the reward probabilityd j , the meand̄ j , the 95% percentilêd j .

1. We prove thatd̄ j(t)→ d j for all j = 1, ..., r.

To achieve this, we firstly note that based on the result of Section 3.1, there exists a time instant,

denoted in this section ast1, such that whent > t1, each action will be selected an arbitrarily large

number of times. Secondly, as the Beta distribution,f j(t), is the posterior probability distribution

of d j , and d̄ j(t) is the mean of the Beta distribution, this mean (of the posterior Beta distribution)

converges, in the limit to the ML estimate because of the weaklaw of large numbers, when the number

of samples goes to infinity. One should observe that for any finite time instant, the initial values of

a j(0) andb j(0) will lead to a term that contributes to the mean,d̄ j(t), but this contribution goes to zero

ast → ∞. Therefore, provingd̄ j(t)→ d j is equivalent to proving the convergence of the corresponding
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ML estimates which has been presented in [29]6. Consequently, whent > t1 andt → ∞, d̄ j(t) → d j .

In other words, there exists a time instantt1 < ∞, after which each action will have been selected an

arbitrarily large number of times, and

Pr{|d̄ j(t)−d j |<
w
4
}>

r
√

1−δ. (5)

If we now considerall the actions, the above implies that7:

Pr{|d̄ j (t)−d j |<
w
4
,∀ j = 1, ..., r} > 1−δ. (6)

2. We prove thatd̂ j(t)→ d̄ j(t) for all j = 1, ..., r.

To do this, we definey∈ [0,1] as a random variable subject to the Beta distribution,f j(t). Let σ(t)

be the standard deviation ofthisdistribution at timet. Then according to Tchebychev’s inequality, for

any real numberk, we have

Pr{y− d̄ j(t)≥ kσ(t)} ≤
1

k2+1
. (7)

As d̂ j(t) is the 95% percentile of the Beta distribution, we have

Pr{y≥ d̂ j(t)}= 0.05.

If we define a quantityY as

Pr{y≥Y} ≤ 0.05, (8)

as per the definition of thepercentile,

Y ≥ d̂ j(t),

i.e.,Y is the 95% and above percentile.

We now fixk as

1
k2+1

= 0.05. (9)

6We emphasize that proving the convergence in the case of utilizing the corresponding ML estimates is not merely a consequence
of the weak law of large numbers. Indeed, one has to also take into consideration the specific details of the LA updating rules using
which the actions are chosen for the estimation purposes. The arguments to do this are quite intricate, and they have beenpresented
in fine detail in [29]. This proof is not repeated here, but canbe included if requested by the Referees.

7In the interest of simplicity, at this juncture we have assumed thatd̄ j are independent of each other. We believe that this
assumption can be easily relaxed by considering only the individual d j ’s as in Eq. (5), and not all of them together, as in Eq. (6).

11



In that case, by comparing Eq. (7) and Eq. (8), we have

Y = d̄ j(t)+kσ(t),

indicating that the distance betweenY and d̄ j(t) is kσ(t). As k is fixed by Eq. (9), andσ(t) → 0 as

t → ∞, there exists a time instantt2 < ∞, such that whent > t2, kσ(t) < w
4 . Since the 95% percentile

value and the percentile values larger than 95% are within aw
4 neighborhood of the mean, the 95%

percentiled̂ j(t)t>t2 will certainly be within this neighborhood also.

Based on the proofs of the above two steps, if we lett0 = max{t1, t2}, we can assert that whent > t0:

Pr{|d̄ j (t)−d j |<
w
4
,∀ j = 1, ..., r} > 1−δ, and

|d̂ j(t)− d̄ j(t)|<
w
4
,∀ j = 1, ..., r.

Therefore,

q′(t) = Pr{|d̂ j(t)−d j |<
w
2
,∀ j = 1, ..., r} > 1−δ,

whence

q(t)> q′(t)> 1−δ,

and the result is proven.

3.3 Step3 : {pm(t)t>t0} is a Submartingale

Before we proceed with the proof of this assertion, we clarify the basic definition of submartingales. Given a

sequence of random variablesX1,X2, ...,Xt , ..., if the sequence satisfies the condition that for any time instant

t,

E[|Xt|]< ∞, and

E[Xt+1|Xt ,Xt−1, ...,X1]≥ Xt ,

then the sequence is a submartingale. We now prove that subject to a specific condition, the sequence of

{pm(t)t>t0}, i.e., the sequence of{pm(t)} aftert0, indeed is a submartingale.

Firstly, aspm(t) is a probability, 0< E[pm(t)]≤ 1< ∞.

Secondly, the description of the algorithms tell us that at the iterationt, an action, sayα j , is selected by

the LA. According to the updating rules of the ABPA and the DBPA, if the environment gives a penalty as a
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Table 2: The various possibilities for updatingpm for the next iteration under the ABPA (whenever anyp j(t)< T) and
the DBPA.

Algorithms Responses The greatest element in̂D Updatingpm

pm(t +1)

ABPA
Reward, (w.p.d j )

d̂m, (w.p. q(t)) (1−λ)pm(t)+λ
d̂ j , j 6= m, (w.p. 1−q(t)) (1−λ)pm(t)

Penalty, (w.p. 1−d j ) d̂ j , j = 1...r, (1) pm(t)

DBPA
Reward, (w.p.d j )

d̂m, (w.p. q(t)) pm(t)+ct∆
d̂ j , j 6= m, (w.p. 1−q(t)) pm(t)−∆

Penalty, (w.p. 1−d j ) d̂ j , j = 1...r, (1) pm(t)

response (with probability 1−d j ), pm remains the same. But if the LA receives a reward (with probability

d j ), one of the following two possibilities follows:

1. If d̂m(t) is the largest element inD(t), i.e., actionm is estimated as the best action at iterationt, which

happens with probabilityq(t), thenpm(t +1) will be increased according to the linear rules with the

learning parameter beingλ under the ABPA, and with∆ under the DBPA.

2. If d̂m(t) is not the largest element inD(t), which happens with probability 1−q(t), thenpm(t+1) will

be decreased according to the corresponding linear rules.

Let us now proceed with computing the expectation ofpm(t +1). To do this, we catalogue the details of

the respective updating possibilities in Table 2, based on which we can calculate the expectation ofpm(t+1)

explicitly for each scenario, as the following:

• For the ABPA:

E[pm(t +1)|P(t)] = ∑
j=1...r

p j (d j (q[(1−λ)pm+λ]+ (1−q)[(1−λ)pm])+ (1−d j)pm)

=pmdmqλ−dmλp2
m+ pm+λ(q− pm) ∑

j 6=m

p jd j

=pm+λ(q− pm) ∑
j=1...r

p jd j .

• For the DBPA:

E[pm(t +1)|P(t)] = ∑
j=1...r

p j (d j (q(pm+ct∆)+ (1−q)(pm−∆))+ (1−d j)pm)

= ∑
j=1...r

(p jd jqct∆)− ∑
j=1...r

p jd j∆+ ∑
j=1...r

p jd jq∆+ ∑
j=1...r

p j pm

=pm+ ∑
j=1...r

p jd j (q(ct∆+∆)−∆).

In the interest of conciseness, in the above two equations wehave omitted the reference to the time index, ‘t’,

and hencep j(t), pm(t) andq(t) were written asp j , pm andq, respectively. Given these explicit expressions
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of the expectation ofpm(t +1), we see that for the ABPA,

Di f f1(t) = E[pm(t +1)|P(t)]− pm(t) = λ(q(t)− pm(t)) ∑
j=1...r

p j(t)d j . (10)

The corresponding expression for the DBPA is:

Di f f2(t) = E[pm(t +1)|P(t)]− pm(t) = ∑
j=1...r

p j(t)d j (q(t)(ct ∆+∆)−∆). (11)

Invoking the definition of a random variable being a submartingale, we see that in order for the sequence

{pm(t)t>t0} to be a submartingale, we needDi f f1(t) andDi f f2(t) to be greater than or equal to 0 aftert0.

We shall examine both these individually.

With regard to Eq. (10), we invoke the terminating conditionfor the continuous version of Pursuit

algorithms, in which we consider the learning process to have converged ifp j(t)> T = 1−ε,( j = 1,2, ..., r).

Therefore, if we set the quantity (1−δ) defined in Section 3.2 to be greater than the thresholdT, as per the

result in Section 3.2, there exists a time instantt0 <∞, such that whent > t0, q(t)> 1−δ>T > pm(t), which,

in turn, guarantees thatDi f f1(t)t>t0 > 0, proving that{pm(t)t>t0} is a submartingale under the ABPA.

Now with regard to Eq. (11), we see that we needq(t)> ∆
ct ∆+∆ for {pm(t)t>t0} to be a submartingale. As

per the action probability updating rules of the DBPA,ct = 1,2, ..., r −1, implying that ∆
ct∆+∆ = 1

r ,
1

r−1, ...,
1
2.

Therefore, if we set 1− δ > 1
2, then as per the result in Section 3.2, there exists a time instant t0 < ∞, such

that whent > t0, q(t) > 1−δ > 1
2 ≥ ∆

ct ∆+∆ . Consequently,{pm(t)t>t0} is a submartingale under the DBPA.

The Claim of Step 3 is thus proven for both the ABPA and the DBPA.

3.4 Step4 : Pr{pm(∞) = 1}→ 1 under the ABPA and the DBPA

Since{pm(t)t>t0} is a submartingale for both the ABPA and the DBPA, according to the submartingale

convergence theory [5],

pm(∞) = 0 or 1.

Denotingej as the unit vector with thejth element being 1, then

pm(∞) = 1⇔ p(∞) = em.

If we define the convergence probability

Γm(P) = Pr{P(∞) = em|P(0) = P},

our task is to prove:

Γm(P)→ 1. (12)
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To prove Eq. (12), we shall use the theory of Regular functions, and the arguments used follow the lines

of the arguments found in [5] for the convergence proofs of Absolutely Expedient schemes.

Let Φ(P) as a function ofP. We define an operatorU as

UΦ(P) = E[Φ(P(n+1))|P(n) = P].

If we repeatedly applyU , we get the result of then-step invocation ofU as:

UnΦ(P) = E[Φ(P(n))|P(0) = P].

The functionΦ(P) is referred to as being:

• Superregular: If UΦ(P)≤ Φ(P). Then applyingU repeatedly yields:

Φ(P)≥UΦ(P)≥U2Φ(P)≥ ...≥U∞Φ(P). (13)

• Subregular: If UΦ(P)≥ Φ(P). In this case, if we applyU repeatedly, we have

Φ(P)≤UΦ(P)≤U2Φ(P)≤ ...≤U∞Φ(P). (14)

• Regular: If UΦ(P) = Φ(P). In such a case, it follows that:

Φ(P) =UΦ(P) =U2Φ(P) = ...=U∞Φ(P). (15)

Moreover, ifΦ(P) satisfies the boundary conditions

Φ(em) = 1 andΦ(ej) = 0,(for j 6= m), (16)

as per the definition of Regular functions and the submartingale convergence theory, we have

U∞Φ(P) = E[Φ(P(∞))|P(0) = P]

=
r

∑
j=1

Φ(em)Pr{P(∞) = ej |P(0) = P}

= Pr{P(∞) = em|P(0) = P}

= Γm(P). (17)

Comparing Eq. (17) with Eq. (15), we see thatΓm(P) is exactly the functionΦ(P) upon which ifU is

applied an infinite number of times, the sequence of operations will lead to a function that equals the function

Φ(P) itself, because it would then be aRegularfunction. This observation readily leads us to the conclusion

that Γm(P) can be indirectly obtained by investigating a Regular function of P. However, as in the case
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of Absolutely Expedient LA, a Regular function is not easilyfound, although itsexistenceis guaranteed.

Fortunately, Eq. (13) and Eq. (14) tell us thatΓm(P), i.e., the Regular function ofP, can be bounded from

above (below) by the superregular (subregular) function ofP. Furthermore, as we are most interested in the

lower bound ofΓm(P), our goal is to find a propersubregularfunction ofP, which also satisfies the boundary

conditions given by Eq. (16), which then will guarantee to boundΓm(P) from below.

Consider a specific instantiation ofΦ to be the functionΦm, defined below as:

Φm(P) = e−xmpm,

wherexm is a positive constant. Then, under the ABPA,

U(Φm(P))−Φm(P) = E[Φm(P(t +1))|P(n) = P]−Φm(P)

= E[e−xmpm(t+1)|P(t) = P]−e−xmpm

= ∑
j=1...r

e−xm(pm(1−λ)+λ)p jd jq+ ∑
j=1...r

e−xm(pm(1−λ))p jd j(1−q)

+ ∑
j=1...r

e−xmpm p j(1−d j)−e−xmpm

= ∑
j=1...r

p jd je
−xmpm

(

qe−xm(1−pm)λ +(1−q)exmpmλ −1
)

.

We are, first of all, to find a proper value forxm such thatΦm(P) is superregular, i.e.,

U(Φm(P))−Φm(P)≤ 0.

We will see that by determining a suitable superregular function, the corresponding subregular function

which satisfies the boundary conditions, can be easily determined.

Determining such anxm is equivalent to solving the following inequality:

qe−xm(1−pm)λ +(1−q)exmpmλ −1≤ 0. (18)

We know that whenb> 0 andx→ 0,

bx=̇1+(lnb)x+ (lnb)2

2 x2.

If we setb= e−xm, whenλ → 0, Eq. (18) can be re-written as

q

(

1+(lnb)(1− pm)λ+
(lnb)2

2
(1− pm)

2λ2
)

+(1−q)

(

1+(lnb)pmλ+
lnb2

2
p2

mλ2
)

−1≤ 0.

Substituteb with e−xm, we see that

xm

(

xm− 2(q(1−pm)+pm(1−q))
λ(q−2qpm+p2

m)

)

≤ 0.
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As xm is defined as a positive constant, we have

0< xm ≤
2(q(1− pm)+ pm(1−q))

λ(q−2qpm+ p2
m)

. (19)

Denoting

xm0 =
2(q(1−pm)+pm(1−q))

λ(q−2qpm+p2
m)

,

we havexm0 > 0, implying that whenλ → 0, xm0 → ∞.

We now introduce another function

φm(P) = 1−e−xmpm

1−e−xm ,

wherexm is the same as defined inΦm(P). Moreover, we observe the property that ifΦm(P) = e−xmpm is

a superregular (subregular), thenφm(P) = 1−e−xmpm

1−e−xm is a subregular (superregular) [5]. Therefore, thexm, as

defined in Eq. (19), which rendersΦm(P) to be superregular, forces theφm(P) to be subregular.

Obviously,φm(P) meets the boundary conditions, i.e.,

φm(P) =
1−e−xmpm

1−e−xm
=











1, whenP= em,

0, whenP= ej .

Therefore, according to Eq. (14),

Γm(P)≥ φm(P) =
1−e−xmpm

1−e−xm
. (20)

As Eq. (20) holds for everyxm bounded by Eq. (19), we take the greatest valuexm0. Moreover, asλ → 0,

xm0 → ∞, whenceΓm(P)→ 1 under the ABPA, proving theε-optimality of the ABPA.

We now consider the DBPA. For the same functionΦm(P) = e−xmpm, under the DBPA,

U(Φm(P))−Φm(P) = E[Φm(P(t +1))|P(t) = P]−Φm(P)

= E[e−xmpm(t+1)|P(t) = P]−e−xmpm

= ∑
j=1...r

e−xm(pm+ct∆)p jd jq+ ∑
j=1...r

e−xm(pm−∆)p jd j(1−q)

+ ∑
j=1...r

e−xmpm p j(1−d j)−e−xmpm

= ∑
j=1...r

p jd je
−xmpm

(

q(e−xmct ∆ −exm∆)+ (exm∆ −1)
)

. (21)
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If we now follow the same algebraic steps as in the ABPA8, we determine thexm that rendersU(Φm(P))−

Φm(P)≤ 0 as:

0< xm ≤
2(q(ct +1)−1)

∆(q(c2
t −1)+1)

. (22)

Denoting

xm0 =
2(q(ct+1)−1)
∆(q(c2

t −1)+1)
,

we see thatxm0 > 0 becausect = 1,2, ..., r −1 andq(t)(t>t0) >
1
2. Thus, when∆ → 0, xm0 → ∞. Substituting

xm0 into Eq. (20), we see that as∆ → 0, xm0 → ∞, whenceΓm(P) → 1 under the DBPA, thus proving its

ε-optimality.

We have hereby proved that both the ABPA and DBPA areε-optimal in all stationary environments.

4 Conclusions

Estimator Algorithms (EAs) which use Maximum Likelihood (ML) estimates have been acclaimed to be the

fastest Learning Automata (LA). Discretized versions of all these schemes have also been proposed. More

recently, we have further enhanced EAs by replacing the ML estimates with their corresponding Bayesian

counterparts that incorporate the properties of the conjugate priors [1–3]. Further, since the Bayesian esti-

mates take into account the information in the higher order moments of the underlying distributions of the

estimates, they provide a more accurate estimation strategy than the ML estimates – which only consider

the information contained in the first order moment, i.e., the mean. The consequent algorithms that we have

proposed are the Bayesian Pursuit Algorithm (BPA) [1], and the Discretized Bayesian Pursuit Algorithm

(DBPA) [2, 3]. Although these algorithms have been designedand efficiently implemented, and are, ar-

guably, the fastest and most accurate LA reported in the literature, the proofs of theirε-optimality have been

unsolved.

In this paper, we have formally proven, with a single unified proof, theε-optimality of both the Ab-

sorbing Continuous Bayesian Pursuit Algorithm and the Discretized Bayesian Pursuit Algorithm, where the

ABPA is the BPA with artificially rendered absorbing states.From the perspective of the Martingale con-

vergence theory and the theory of Regular functions, the proof which we have submitted is akin to the proof

for the convergence of the family of PAs [28–31]. However, unlike the ML-based pursuit schemes, the

Bayesian schemes have to not only consider the estimates themselves but also thedistributional formsof

their conjugate posteriors and their higher order moments –all of which render the proofs to be particularly

challenging. The interesting feature of this current prooffor the family of Bayesian-based EAs is that it takes

into consideration both the means and the standard deviations of the estimates.
8In order to not burden the reader with cumbersome algebraic manipulations, we omit the straightforward steps.
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We believe that the present proof for the convergence accuracy of the family of BPAs will add more

insight into the mechanism by which EAs can be both improved and analyzed.
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