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Abstract

The fundamental phenomenon that has been used to enhancentrergence speed of Learning
Automata (LA) is that of incorporating the running Maximurikélihood (ML) estimates of the action
reward probabilities into the probability updating rules electing the actions. The frontiers of this
field have been recently expanded by replacing the ML estisnaith their corresponding Bayesian
counterparts that incorporate the properties of the catgugriors [1-3]. These constitute the Bayesian
Pursuit Algorithm (BPA) [1], and the Discretized Bayesiam$uit Algorithm (DBPA) [2, 3]. Although
these algorithms have been designed and efficiently impieede and are, arguably, the fastest and most
accurate LA reported in the literatdethe proofs of their-optimal convergence has been unsolved.
This is precisely the intent of this paper. In this paper, wespnt asingle unifying analysi®y which
the proofs of both the continuous and discretized schemepraven. We emphasize that unlike the
ML-based pursuit schemes, the Bayesian schemes have talgatomsider the estimates themselves but
also thedistributional formsof their conjugate posteriors and their higher order momersll of which
render the proofs to be particularly challenging. As far askwow, apart from the results themselves, the

methodologiesf this proof have been unreported in the literature - theybarth pioneering and novel.
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1The version of the BPA presented here, namelyAhsorbingBayesian Pursuit Algorithm (ABPA), is distinct from the s@n
presented in [1]. The reason for proposing this nealEorbingversion will be explained in the body of the paper.

2The families of BPA are faster and more accurate than theinsparts that invoke the ML estimates because unlikectimeer
which use the information in the mean, the BPA families zéilthe information at a higher-end quantile (95%th pret@ntif the
posterior Bayesian distribution. This is the rationaletfa claim that they are probably, the fastest and most aecteported LA.



1 Introduction

This paper deals with the formal analysis of the converg@mnoperties of the most-recently proposed family
of Learning Automata (LA) which (a) are estimator-based, gle of a pursuit nature, and (c) utilize the

family of Bayesian estimates in their updating rules. Wdlstiarify all of these salient features of these

schemes and the consequent proof that we embark on, in thedaring paragraphs. To guide the reader
through the various aspects at stake, we shall briefly ¥isictucial issues individually.

Whatis a Learning Automaton (LA) : An LA is an adaptive decision-making unit that learns theroal
action from among a set of actions offered by the Environniieaperates in. At each iteration, the LA
selects one action, the Environment takes this action asptg and gives back to the LA a response based
on the action chosen. The response can be either a rewardeoialyp given the stochastic property of the
Environment. In this paper, we work with the so-callednodel of LA where the stochastic property is
characterized by the Bernoulli distributed reward proligs, and the action associated with the greatest
reward probability is uniquely defined as the optimal actiddased on the response and the knowledge
acquired in the past iterations, the LA adjusts its actidact®n strategy to make a “wiser” decision in the
next iteration. In this way, the LA, even though it lacks a @bete knowledge about the Environment, is
able to learn through repeated interactions with the Enwirent, and adapts itself to the optimal decision.
The field of LA has been studied for more than four decades aiddecumented surveys of the field are
given in [4-6].

Applications of LA: LA have found applications in a variety of fields, includiggme playing [7],
parameter optimization [8], channel selecting for secondaers in cognitive radio networks [9, 10], solving
knapsack problems [11], optimizing the web polling problg8, 13], stochastically optimally allocating
limited resources [11,14,15], service selection in stetib@nvironments [16], vehicle path control [17], and
assigning capacities in prioritized networks [18]. LA haiso been used in natural language processing,
string taxonomy [19], graph patitioning [20], and map léag21].

Structural Development of Field of LA: The development of LA has gone through four stages. Initial
LA were Fixed Structure Stochastic Automata (FSSA), with shate update and decision functions being
time invariant. Tsetlin, Krylov and Krinsky automata [Skahe most notable examples of this type. Later,
Variable Structure Stochastic Automata (VSSA) were deyadlp which are characterized by functions that
update the probability of selecting the various actionspidagl examples of traditional VSSA includes the
Linear Reward-PenaltyLg_p) scheme and the Linear Reward-Inactidi (;) scheme [5]. The entire field
of LA was raised by a quantum level by the discovery and irieentf the family of so-called Estimator
Algorithms (EAS) explained below.

Estimator Algorithms (EAs): EAs augment an action probability updating scheme withube of
estimates of the reward probabilities of the respectivimast The design of EAs was pioneered by the study

of Pursuit Algorithms (PAs) [22]. The first PA was designedfeerate by updating the action probabilities



based on thég_| paradigm. Later, Oommen and Lanctot [23] presented ther&liged Pursuit Algorithm
(DPA) by discretizing the action probability space. The DRAs shown to be superior to its continuous
counterpart. In order to highlight the distinct charastiics of the DPA and the PA, in this paper, the
latter is referred to as the Continuous Pursuit AlgorithrPAL By the same token, being an EA in its own
right, every PA maintains running Maximum Likelihood (Mleward probability estimates, to determine the
current “Best” action for the present iteration. More getigy the PA then pursues the current best action by
linearly increasingts action probability in a either Br_|, Lr_p, DLr_| or DLg_p paradigm [6]. As the PA
considers both thehort-termresponses of the Environment and theg-termreward probability estimates
in formulating the action probability updating rules, itparforms traditional VSSA schemes in terms of its
accuracy and its rate of convergence.

The Estimates used in EAsPrior to the work that we have reported receraly,of the reported Pursuit
and Estimator Algorithms exclusively incorporated theniag ML estimates of the action reward proba-
bilities into the probability updating rule for selectingetactions. These estimates have, indeed, been used
in [6,23-26].

The Use of Bayesian Estimates in PAsAs opposed to invoking ML estimates, more recently, the
authors of this present paper have proposed the introdguofithe family of Bayesian estimates in the LA.
This has led to various Bayesian Pursuit Algorithms (BPA®)luding the Continuous Bayesian Pursuit
Algorithm (CBPAY [1], and the Discretized Bayesian Pursuit Algorithm (DBP2)3]. Although the BPAs
follow the same “pursuit” paradigm of learning, by virtuetbe fact that one can invoke the properties of
their posterior distributions, the Bayesian estimatesigeomore accurate estimation and are, consequently,
superior to their counterparts which invoke the ML paradigndeed, the families of BPAs are, arguably,
the fastest and most accurate LA reported in the literature.

The State-of-the-Art of BPAs Both the above-mentioned Bayesian-based algorithms bega de-
signed and efficiently implement&dand their effectiveness in solving the learning problenefizeen clearly
demonstrated. However, the issue that remains unsolvde iprbofs of theie-optimal convergence. We
thus present in this papersingle unifying analysiby which the proofs of both the schemes are proven.

Difficulty of the Proofs of EAs: The most difficult part in the design and analysis of LA cetsbf the
formal proofs of their convergence accuracies. The mattieatdechniques used for the various families
(FSSA, VSSA, Discretized etc.) are quite distinct. The proethodology for the family of FSSA is the
simplest: it quite simply involves formulating the Markokain for the LA, computing its equilibrium (or
steady state) probabilities, and then computing the asytmpction selection probabilities. The proofs of
convergence for traditional VSSA are more complex and ire/the theory of small-step Markov processes,
distance diminishing operators, and the theory of Regulactfons. The proofs for Discretized LA involve

the asymptotic analysis of the Markov chain that represtaeté A in the discretized space, whence thil

3In the interest of compactness, unless otherwise statediiefer to the CBPA as the BPA.
4As mentioned in the Abstract, the version of the BPA preskfitere, namely thébsorbingBayesian Pursuit Algorithm
(ABPA), is distinct from the version presented in [1]. Thagen for this is explained presently.
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probability of convergence to the various actions is euveldlaHowever, understandably, the most difficult
proofs involve the family of EAs. This is because the congamg involves two intertwined phenomena,
namely the convergence of the reward estimatefthe convergence of the action probabilities themselves.
Ironically, the combination of these vectors in the updatinle is what renders the EA fast. However, if the
accuracy of the estimates are poor because of inadequateatsh (i.e., if the sub-optimal actions are not
sampled “enough number of times”), the convergence acguat be diminished. Hence the dilemma!

Proofs of PAs The proofs for the convergence of PAs have been studied epatted for decades
in [6], [23], [24], [25] [26], which, unfortunately, all hava common flaw that has been recently discovered
by the authors of [27]. Further, the authors of [27] subrdittenew proof for the convergence of the CPA
which adequately rectified the flawed proofs. The new pramfu$ing only on the CPA, was based on the
monotonicity property of the probability of selecting thatimal action, and required the introduction of an
additional assumption that forced the learning parametee tcontinuously decreasing over time. In order to
provide a unifying analysis that is applicable to both thé&@Rd the DPA, the authors of [28—-31] presented
a completely different proof methodology based on the subngale property and the theory of Regular
functions. The latter proof, indeed, requires the PAs tcehabysorbing states [32, 33], and thus when it is
applied to the CPA, the CPA needs to be artificially rendetesbebing, i.e., by constraining the learning
process to jump to an absorbing barrier in a single step whgrogthe action probabilities is greater than
or equal to a user-defined threshold that is close to unitg. drtificially rendered absorbing CPA was called
Absorbing CPA (ACPA) to highlight the difference.

Intent of this Paper: In this paper, we intend to prove the convergence accugafi¢he latest EAs,
namely, the BPA and the DBPA. To ensure that the algorithree Blsorbing barriers, as in the case of the
CPA mentioned above, the BPA is rendered artificially abisgrband is thus referred to as the Absorbing
BPA (ABPA). The discretized BPA, however, is truly absodpirand it is thus unmodified. The unified
proof that we present is thus valid for both the ABPA and thePBBFrom the perspective of Martingale
convergence theory and the theory of Regular functions,riimciple, the present proof is related to the
foundational concepts of the proofs in [28—31]. However,difference is non-trivial and is not just cosmetic.
Indeed, we emphasize that unlike the ML-based pursuit sebgthe Bayesian schemes have to not only
consider the estimates themselves but alsaltteibutional forms of the conjugate posteriorsll of which
render the present proofs particularly challenging. Thadar as we know, apart from the results themselves,
the methodologie®f this proof have been unreported in the literature - theybath pioneering and novel.

The rest of the paper is organized as follows: Section 2 wes/tbe notations and algorithmic processes
followed by both the ABPA and the DBPA. Section 3 proves, itadgthe convergence of the ABPA and the

DBPA, i.e., that they are bottroptimal in all stationary environments. We conclude thpgran Section 4.



2 Overview of the ABPA and the DBPA

We first submit a brief survey of the ABPA and the DBPA so that teaders can possess a fundamental
understanding of them both.

Both the ABPA and the DBPA are based on the “pursuit” paradifrearning. Firstly, they maintain
an action probability vectoP = [py, p2,..., pr], where 5 pj =1, and where is the number of actions.

In each iteration, the question of which action is tJo:lt')'ér debkcs determined by randomly sampling the
action probability vector. Secondly, they maintain rumgnBayesian(as opposed to ML) estimates for the
reward probabilities. The action associated with the kstrgeward probability estimate is considered as the
“best” action in each current iteration. Thirdly, given tresponse of the Environment and the knowledge
of the current best action, the ABPA increases the prolhalufiselecting the current best action as per the
continuous k_; rules, while the DBPA increases the action probability @ turrent best action as per the
discretized k_, rules.

In all brevity, we mention that far more details about theoalhms and their simulated performances
have already been reported in the literature. To avoid itapetthey are not included here. Rather, we refer
the reader to [1] for additional details about the BPA, anflt@] for additional details about the DBPA.
The only difference between the ABPA and the BPA is that if ang of the action probabilities; (t + 1),
exceeds a pre-defined Threshald,which is a user-defined quantity set to be very closertity, p;(t + 1)
will jump directly to unity and the learning process is terminated. At this juncturesayethat the LA has
been “absorbed” into one of the absorbing barriers, where thit vectors are the absorbing states.

We first present the notation used in the ABPA and the DBPA.

Table 1: Notations used in the ABPA and the DBPA

| Parameters | Descriptions \

a The action selected by LA.

P; The j™ element of the action selection probability vectr,
aj,b; The two positive parameters of tBetadistribution for Actionj.
The j™ element of the Bayesian estimates ve@or

d]- given by the 95% upper bound of the cumulative distribution

function of the correspondinBetadistribution.
The index of the maximal component of

the reward probability estimates vecfor

The index of the optimal action.

The response from the environment,

R whereR = 0 (reward) olR = 1 (penalty).

A The minimum stepsize) = % with N being a positive integer;
N is also considered as the learning parameter for the DBPA.

A The learning parameter for the ABPA<OA < 1.

We now formally describe the ABPA and DBPA algorithms. Thader must observe that both of these

algorithms have identical steps in the estimation and legrmphases, but differ only in the manner by which



the action probabilities are updated - in a continuous maforehe ABPA and in a discretized manner in
the DBPA. Consequently, to avoid repetition, both of them presented in a single schema below. After
describing the algorithms, we consider the primary couatidn of the paper, namely the definition of an LA
beinge-optimal, and the proof of the ABPA and DBPA beiagptimal.



Algorithms: ABPA & DBPA

Notations: Refer to Table 1.

Initialization:

1. pj(t) = 1/r, where r is the number of actions.
2. Setaj =b; =1.

Method:

For t:=1 to ForEverDo

1. Picka(t) randomly as peP(t). Supposei(t) = aj, for which the Environment’s response is R(t).
2. Based on the Bayesian nature of the conjugate distritsjtiopdate; (t) andbj(t) as below:

If R(t) =0, Then aj(t) =aj(t—1)+1;bj(t) =b;(t —1);
Else aj(t) :aj(t—l);bj (t) :bj (t—l)—l—l;

. . (@j()-1) (1 _(bj(H-1)
3. Deﬂneﬁﬂ)::ﬁ@aaﬂu,m(o)::ﬁﬁ@a%hhigmmknmf

f;(t) is the probability distribution function of the Beta disttion of thejth action at timet.

4. Identify the upper 95% reward probability boundcip(t) for each actionj as:

dj (t) . 9O (a0 “Day)biO-Dgy
Jo' fi(v;ay(t), by (t))dv= fj1u<aj gy = 0.95

5. If dn(t) is the largest element of all the estimates at tiptaen updaté(t + 1) as follows:

e Continuous linear rules for the ABPA,

If R(t) =0, Then
pi(t+1) = (1-A)pj(t), ] #h,

— P;j (t+ 1).
2,
Else

P(t+1) =P(t).
M*If any pj(t+1) > T, makepj(t+ 1) jump to 1 and break the loop*/
If pj(t+1)>T,Vje(1,2,..,r), Then

pj(t+1)=1,
Break
EndIf

e Discrete linear rules for the DBPA,

If R(t) =0, Then
pj(t+1) =maxp;(t) — 4,0}, j #h,

— ;pj (t+1).
J
Else

P(t+1) = P(t).

EndFor
End Algorithm: ABPA & DBPA



3 Thee-optimality of the ABPA and the DBPA

Thee-optimality’ of the ABPA (or the DBPA) are defined by the following statemevhere t’ is measured
in terms of the number of iterations.

Definition of the ABPA (or the DBPA) being €-optimal: Given anye > 0 and d > 0, there exist a
Ao >0(oraNy>0)and ap < o such that for all time ¢ tg and for any positive learning paramet®r< Aqg
(or N > No), Pr{pm(t) >1—¢} >1-20.

Informally speaking, this implies that given a sufficiergiyall (large) value for the learning parameter,
the LA will converge to the optimal action with an arbitrgrhigh probability.

We now prove that the above statement is true. From the peisp®f Martingale convergence theory
and the theory of Regular functions, the proof follows timed of the arguments for the convergence proofs

of the ACPA [29], which consists of four steps.

1. Firstly, given a sufficiently small (large) value for tleatning parametex (or N), all the LA's actions

will be selected an sufficiently large number of times beffmite time instantt.

2. Secondly, for alt > tg, with an arbitrarily high probabilit)dj, estimated from a Bayesian perspective,
will remain in a small enough neighborhooddyf implying thatdn, will be the maximal element iB

with an arbitrarily high probability.

3. Thirdly, suppose that fdr> tp, the probability thatl, is ranked as the largest elementris large

enough. Then the action probability sequencémf(t)}, with t > to, will be a submartingale.

4. Finally, if {pm(t)i>t,} is @ submartingale, by the submartingale convergenceetreand the theory
of Regular functions, the probability of the LA convergirgthe optimal action converges to 1, i.e.,

Pr{pm(») — 1} — 1.

Obviously, each of the above steps of the proof relies onr@gipus step, and so the relationship between
them can be depicted &epl = Step2 = Step3 = Step4. In the following subsections, we will formalize

the proofs of each of the four steps one by one.

3.1 Stepl: All actions will be selected enough number of times beforg

The step asserts that by utilizing a sufficiently small védtrethe learning parametex, for the ABPA, (or
by using a sufficiently large value for the learning parameéte for the DBPA), each action will have been
selected a sufficiently large number of times by a finite timstantto.

The reader will observe that this claim intrinsically degemn the respective probability updating rules

of the ABPA and the DPBA, which are exactly the same updatiigsrinvoked by the ACPA and DPA

5In the interest of compactness and to avoid repetition, gfimition and explanations/statements are given for the/ABRhe
main text, and described in a parenthesized manner selydiatthe DBPA.
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respectively, that utilize the ML estimates. In other wortlie proofs of these results are already found in

the literature, namely in [26] and in [23] respectively. Tgreofs are thus not repeated here.

3.2 Step2: dm will be ranked the largest element inD with an arbitrarily high probability.

We defineA (t) as the event that at the time instantin(t) is the largest element id(t), i.e.,
Aq(t) = {dm(t) > dj(t), ¥ #m}.
In that case:
a(t) = PriAy(t)] = Pr{dn(t) > dj(t), ] # m},

is the probability thatfm(t) is the largest element iD(t). The goal of this step is to prove that for any small
valued € (0,1), if each action has been selected a sufficiently large nuwifEmes by the time instartp,

then
q(t)t>to >1-0. (1)

In other words, we prove thattf> ty, the probability of the optimal action being estimated &slibst action
is arbitrarily close to unity.

We now define another eveAg(t) as
- W
Ao(t) = {[dj(t) —dj| < 5, Vj=1,....r},

wherew is the absolute difference between the two largest rewanlghilities. TherA,(t) indicates that at
the time instant, for each action, the reward probability estimate is wittia 5 neighborhood of its real

value. We can thus see that
Ao(t) = Aa(t). (2)
If we further define
q(t) = PriAg(t)] = Pr{ld; () =} | < 5.¥] = L....7}, ®)
then on the basis of Eq. (2), we have

q(t) <q(t).



Therefore, if we can prove that
/ " w .
q (t)t>to = Pr{|dj (t)t>to — dJ| < —,\V/j = l, ...,I’} >1— 6, (4)

then Eq. (1) holds. In other words, we are to prove that whertex tg, the probability of every reward
probability estimatedj (t),¥j =1,...,r, being within a5 neighborhood of its real valuej, is greater than
1-20.

For any actionaj, Figure 1 illustrates the relationships between the Begaidution of the Bayesian
estimate of the reward probability; (t), the reward probability estimatéj (t), the meand_j(t), and the real
reward probabilityd;. The basic idea of proving Eq. (4) consists of two steps.tlinse prove that for all
j, the meand_j(t), will be arbitrarily close to the real reward probability, if each action has been selected
an arbitrarily large number of times. Secondly, given tteatteaction has been selected an arbitrarily large
number of times, we prove that the quantii;;(t), i.e., the 95% percentile of the posterior Beta distributio

at timet, will be arbitrarily close to the meaud (t).

o
o

- &) N
T T T

Probability Density Function fj(v;t)

Figure 1: The relationships between the reward probald|ityhe meard_j, the 95% percentiléj.

1. We prove thad_j(t) —djforallj=1,...,r.

To achieve this, we firstly note that based on the result ofi@e®8.1, there exists a time instant,
denoted in this section ds, such that whei > t;, each action will be selected an arbitrarily large
number of times. Secondly, as the Beta distributifyit), is the posterior probability distribution
of dj, and d_j(t) is the mean of the Beta distribution, this mean (of the pastdeta distribution)
converges, in the limit to the ML estimate because of the viaalof large numbers, when the number
of samples goes to infinity. One should observe that for angefirme instant, the initial values of
a;(0) andb; (0) will lead to a term that contributes to the med_[(,t), but this contribution goes to zero

ast — oo, Therefore, provingi_j(t) — dj is equivalent to proving the convergence of the correspandi
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ML estimates which has been presented in f2@onsequently, when> t; andt — oo, d_j(t) — dj.
In other words, there exists a time instéank o, after which each action will have been selected an

arbitrarily large number of times, and
— W .
Pr{|dj(t)—dj|<z}>\/1—6. (5)
If we now considell the actions, the above implies that

— W
Pr{|d;(t) —dj| <

TVi=1..1}>1-8 (6)

. We prove thatl; (t) — d;(t) forall j = 1,...,r.

To do this, we defing € [0,1] as a random variable subject to the Beta distributig(t). Let o(t)
be the standard deviation tifis distribution at time.. Then according to Tchebychev’s inequality, for

any real numbek, we have

Pry—Gi(0) 2 o)} < (7 @
As dA,- (t) is the 95% percentile of the Beta distribution, we have
Pr{y>dj(t)} = 0.05.
If we define a quantity as
Pr{y >Y} <0.05, (8)
as per the definition of theercentile
Y > dj(t),
i.e.,Y is the 95% and above percentile.
We now fixk as
kz—i—l = 0.05. (9)

6We emphasize that proving the convergence in the case igingithe corresponding ML estimates is not merely a consece!
of the weak law of large numbers. Indeed, one has to also taeodnsideration the specific details of the LA updatingsulsing
which the actions are chosen for the estimation purposesafiguments to do this are quite intricate, and they have jpesented
in fine detail in [29]. This proof is not repeated here, but barincluded if requested by the Referees.

7In the interest of simplicity, at this juncture we have assdrthatd; are independent of each other. We believe that this
assumption can be easily relaxed by considering only thigitheal d;’s as in Eq. (5), and not all of them together, as in Eq. (6).
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In that case, by comparing Eq. (7) and Eg. (8), we have
Y =dj(t) +ko(t),

indicating that the distance betwe‘e!randd_j(t) isko(t). Askis fixed by Eqg. (9), anav(t) — O as
t — oo, there exists a time instaft < o, such that whet > t5, ko(t) < "‘Z’. Since the 95% percentile
value and the percentile values larger than 95% are witfnhneighborhood of the mean, the 95%

percentilecfj (t)rt, will certainly be within this neighborhood also.

Based on the proofs of the above two steps, if wéglet max{ty,t>}, we can assert that when- to:

=

Pr{|d;(t)—d;| < 2Vi=1..1}>1-8 and

di(t) — d;(t)] < VZV,Vj —1r
Therefore,
q(t) = Pr{d;(t) —dj| < =.Vj=1,...r} >1-8,
whence
qt) > q(t) > 1-3,
and the result is proven.

3.3 Step3:{pm(t)i>t,} is @ Submartingale

Before we proceed with the proof of this assertion, we gfdtie basic definition of submartingales. Given a
sequence of random variablgsg X,, ..., X;, ..., if the sequence satisfies the condition that for any timins

tv

E[[X] <o, and
EP(H-].‘)(I’)(I—].’ "'7X1] 2 ><t7

then the sequence is a submartingale. We now prove thatcsubja specific condition, the sequence of
{pPm(t)t>1, }, I.€., the sequence ¢pm(t)} afterty, indeed is a submartingale.

Firstly, aspm(t) is a probability, 0< E[pm(t)] < 1 < o.

Secondly, the description of the algorithms tell us thahatiterationt, an action, sa;, is selected by

the LA. According to the updating rules of the ABPA and the BBPthe environment gives a penalty as a

12



Table 2: The various possibilities for updatipg for the next iteration under the ABPA (whenever gmyt) < T) and
the DBPA.

Algorithms | Responses The greatest element d | Updatingpn,
Om, (W.p.q(t)) (I—=A)pm(t) +A

Reward, (w.pd; L

ABPA (w.pd;) di,j#m w.p. 1-q)) | (1=A)pm(t)

Pm(t+1) Penalty, (w.p. 1-dj) Cdjj,_l =1.r,(1) Pm(t)
_ m, (W.p. q(t)) Pm(t) + A

Reward, (w.pd;) -

DBPA dj.j#m (wp. 1-q(t)) | pm(t)—
Penalty, (w.p. =-d;) | dj,j=1..r, (2) Pm(t)

response (with probability * d;), pm remains the same. But if the LA receives a reward (with proitab

d;), one of the following two possibilities follows:

1. If dn(t) is the largest element D(t), i.e., actionmis estimated as the best action at iteratiowhich
happens with probabilitg(t), then pm(t + 1) will be increased according to the linear rules with the
learning parameter beifgunder the ABPA, and witlh under the DBPA.

2. If d(t) is not the largest element B(t), which happens with probability - q(t), thenpm(t -+ 1) will

be decreased according to the corresponding linear rules.

Let us now proceed with computing the expectatiompagft + 1). To do this, we catalogue the details of
the respective updating possibilities in Table 2, based loichwwe can calculate the expectationpaf(t + 1)

explicitly for each scenario, as the following:

e Forthe ABPA:
Elpm(t+1)[P(t) Z P; (dj (A[(L=A)pm+A]+ (1= a)[(L—A)pm]) + (1 —d;j) Pm)
= Pm0mOA — A P2+ P+ A (A — Pm) ; p;d;
j#m

=Pm+A(d— Pm) Z p;id;.
j=L.r
e For the DBPA:

Elpm(t+1)[P(t) Z P; (dj (d(pm+&d) + (1 —a)(pm—A4)) + (1 —d;) pm)

= Z p;jdjqgl) — Z pjd;A+ Z p;d;oA + Z Pj Pm

=Pm+ g pidj (A(GA+4) - A).

In the interest of conciseness, in the above two equatiorsawe omitted the reference to the time index, ‘t’,

and hencepj(t), pm(t) andq(t) were written agj, pm andq, respectively. Given these explicit expressions
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of the expectation opny(t + 1), we see that for the ABPA,
Dif f1(t) = E[pm(t + 1)[P(H)] — pm(t) = A(q(t) — pm(t)) j:;r pj (t)d;. (10)
The corresponding expression for the DBPA is:
Dif f2(t) = E[pm(t + 1)[P(t)] — pm(t) = j:;r pj(t)d; (a(t)(cA+4) —A). (11)

Invoking the definition of a random variable being a submagile, we see that in order for the sequence
{Pm(t)i>t, } to be a submartingale, we neBif f1(t) andDif fa(t) to be greater than or equal to O aftgr
We shall examine both these individually.

With regard to Eq. (10), we invoke the terminating condition the continuous version of Pursuit
algorithms, in which we consider the learning process tel@anverged ipj(t) >T =1—¢,(j=1,2,....r).
Therefore, if we set the quantity {18) defined in Section 3.2 to be greater than the thresholas per the
result in Section 3.2, there exists a time instgrt o, such that wheh> to, q(t) > 1—-38> T > pn(t), which,
in turn, guarantees thatif f1(t)i~¢, > 0, proving that{ pm(t)i>, } iS @ submartingale under the ABPA.

Now with regard to Eq. (11), we see that we negd > ct%m for { pm(t)i>t, } to be a submartingale. As
per the action probability updating rules of the DBRA= 1,2,...,r — 1, implying thatz2 % = £, 5, .-, 3.
Therefore, if we set + &> 3, then as per the result in Section 3.2, there exists a tintaritts < «, such

that whert > to, q(t) > 13> 3 > 2. Consequently{ pm(t)it,} is a submartingale under the DBPA.
The Claim of Step 3 is thus proven for both the ABPA and the DBPA

3.4 Stepd :Pr{pm() =1} — 1 under the ABPA and the DBPA

Since {pm(t)i>t,} is @ submartingale for both the ABPA and the DBPA, accordimghe submartingale
convergence theory [5],

Pm(e) =0o0r 1

Denotinge; as the unit vector with th¢@" element being 1, then

(@) = 1 & p(e0) = .

If we define the convergence probability
Mm(P) = Pr{P() = em|P(0) = P},

our task is to prove:
Mm(P) — 1. (12)
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To prove Eq. (12), we shall use the theory of Regular funstiamd the arguments used follow the lines
of the arguments found in [5] for the convergence proofs addlbitely Expedient schemes.

Let d(P) as a function oP. We define an operattt as
U®d(P)=E[®(P(n+1))|P(n) =P].
If we repeatedly applyJ, we get the result of the-step invocation ob) as:
U"®d(P) = E[®(P(n))|P(0) = PJ.
The function®(P) is referred to as being:

e Superregular: If U®(P) < ®(P). Then applyindJ repeatedly yields:

®P) >UDP) > U2¢(P) >..>U%P(P). (13)
e Subregular: If UP(P) > ®(P). In this case, if we apply repeatedly, we have

®(P) <UD(P) <U?®(P) < ... <U“D(P). (14)
e Regular: If UP(P) = ®(P). In such a case, it follows that:

®(P) =UD(P) =U?®(P) =... = U*D(P). (15)
Moreover, if®(P) satisfies the boundary conditions

®(em) =1 andd(ej) =0, (for j #m), (16)

as per the definition of Regular functions and the submatingonvergence theory, we have

U™ ®(P) = E[®(P())|P(0) = P]

-

1¢(em)Pr{P(00) =¢j|P(0) =P}

Pr{P(c) = em|P(0) = P}
Fm(P).

(17)

Comparing Eq. (17) with Eqg. (15), we see thai(P) is exactly the functior®(P) upon which ifU is
applied an infinite number of times, the sequence of operaiiall lead to a function that equals the function
®(P) itself, because it would then beRegularfunction. This observation readily leads us to the conolusi

that " (P) can be indirectly obtained by investigating a Regular fiomcbf P. However, as in the case
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of Absolutely Expedient LA, a Regular function is not eadibyind, although itexistencds guaranteed.
Fortunately, Eq. (13) and Eq. (14) tell us that(P), i.e., the Regular function d?, can be bounded from
above (below) by the superregular (subregular) functioR.dfurthermore, as we are most interested in the
lower bound of (P), our goal is to find a propesubregularfunction of P, which also satisfies the boundary
conditions given by Eq. (16), which then will guarantee toal™ ,(P) from below.

Consider a specific instantiation @fto be the functionb,,, defined below as:
(Dm(P) = eﬁmem,

wherexq, is a positive constant. Then, under the ABPA,

U (®Pm(P)) — Pm(P) = E[®m(P(t +1))|P(n) = P| — ®m(P)
= E[e7Pn(t+D)|p(t) = P] — @ XmPm

= Z e*xm(pm(lf)\)Jr)‘) pj dj g+ Z e*Xm(pm(l*)\)) pj dj (l _ q)
i=L.r i=L.r
+ Z e*Xum p] (l _ dj) _ e*Xum
i=L.r
i=L.r
We are, first of all, to find a proper value faf, such thatd,(P) is superregular, i.e.,
U (®m(P)) — Pm(P) < 0.

We will see that by determining a suitable superregular tiang¢ the corresponding subregular function
which satisfies the boundary conditions, can be easily uhied.

Determining such ar, is equivalent to solving the following inequality:
qem(L=PmA 4 (1 _ g)gmPmt 1 <0, (18)

We know that wherp > 0 andx — O,

D=1+ (Inb)x+ 112552,

If we setb = e, whenA — 0, Eq. (18) can be re-written as

a(1+ i) pon+ 2 @ ) 1) (14 (nbjp + T A7) - 150

Substituteb with e *m, we see that

_ 2(q(1—pm)+Pm(1—9))
Xm (Xm Md—29pm+p3,) ) <0
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As xm, is defined as a positive constant, we have

2(q(1— pm) + pm(1—0q)) ‘

0< Xm < 19
S (A 20pn+ P2) (19)
Denoting
_ 2(9(1—pm)+Pm(1-9))
Xmo =~ X(q-2apntpz)

we havexny, > 0, implying that wher\ — 0, Xy, — .

We now introduce another function

1 XmPm

Mn(P) = >

wherexy, is the same as defined #,(P). Moreover, we observe the property thathf,(P) = e *mPm js

a superregular (subregular), then(P) = 1If;"xf,m is a subregular (superregular) [5]. Therefore, xheas

defined in Eq. (19), which rende#&,(P) to be superregular, forces tipg(P) to be subregular.

Obviously,@n(P) meets the boundary conditions, i.e.,

1 — @ *mPm 1 whenP = ©m,

n(P) = ————=
1-e 0, whenP =¢j.

Therefore, according to Eq. (14),

1 — @ XmPm

Fin(P) > @n(P) = S (20)

As Eq. (20) holds for everyy bounded by Eq. (19), we take the greatest valye Moreover, as\ — 0,
Xm, — %, whence m(P) — 1 under the ABPA, proving the-optimality of the ABPA.
We now consider the DBPA. For the same functibg(P) = e *Pm under the DBPA,

U(®Pm(P)) — Pm(P) = E[®n(P(t +1))|P(t) = P] — ®m(P)
= E[e”Pn(t+D)|p(t) = P] — @ XmPm

_ Z e*xm(pm+CtA)pjdjq+ Z efxmmm—A)pjdj(l_q)
ji=L.r i=L.r

+ Z e*XmFJmpj(l_dj)_e*mem
i=L.r

_ Z pjdje P (e maA — gnt) 4 (gh — 1)). (21)
i=L.r
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If we now follow the same algebraic steps as in the ABRAe determine the;, that renders) (P (P)) —
®dn(P) <O0as:

(e +1)-1
0<xm< 22
@@-1+1 22
Denoting
Xinp = 2(q ?11) 1

we see thaky, > 0 because; = 1,2,...,r — 1 andq(t) () > 2 Thus, whemd — 0, Xm, — . Substituting
Xm, iNto Eq. (20), we see that & — 0, Xy, — o, whencel' (P) — 1 under the DBPA, thus proving its
g-optimality.

We have hereby proved that both the ABPA and DBPAsaogtimal in all stationary environments.

4 Conclusions

Estimator Algorithms (EAs) which use Maximum Likelihood (Mestimates have been acclaimed to be the
fastest Learning Automata (LA). Discretized versions bttadse schemes have also been proposed. More
recently, we have further enhanced EAs by replacing the Mimeses with their corresponding Bayesian
counterparts that incorporate the properties of the cagugriors [1-3]. Further, since the Bayesian esti-
mates take into account the information in the higher ordements of the underlying distributions of the
estimates, they provide a more accurate estimation syraiteq the ML estimates — which only consider
the information contained in the first order moment, i.ee, tean. The consequent algorithms that we have
proposed are the Bayesian Pursuit Algorithm (BPA) [1], dm&l Discretized Bayesian Pursuit Algorithm
(DBPA) [2, 3]. Although these algorithms have been desigaed efficiently implemented, and are, ar-
guably, the fastest and most accurate LA reported in thetiiee, the proofs of theg-optimality have been
unsolved.

In this paper, we have formally proven, with a single unifiedgd, thee-optimality of both the Ab-
sorbing Continuous Bayesian Pursuit Algorithm and the @tsred Bayesian Pursuit Algorithm, where the
ABPA is the BPA with artificially rendered absorbing stat€som the perspective of the Martingale con-
vergence theory and the theory of Regular functions, thefpmich we have submitted is akin to the proof
for the convergence of the family of PAs [28-31]. Howeverlikenthe ML-based pursuit schemes, the
Bayesian schemes have to not only consider the estimateséhees but also thdistributional formsof
their conjugate posteriors and their higher order momeiatsaf which render the proofs to be particularly
challenging. The interesting feature of this current pfoothe family of Bayesian-based EAs is that it takes

into consideration both the means and the standard davsatibthe estimates.

8In order to not burden the reader with cumbersome algebraitipulations, we omit the straightforward steps.
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We believe that the present proof for the convergence acgwhthe family of BPAs will add more

insight into the mechanism by which EAs can be both improvetianalyzed.
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