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Abstract To detect and classify vehicles in omnidirectional

videos, we propose an approach based on the shape (silhou-

ette) of the moving object obtained by background subtrac-

tion. Different from other shape-based classification

techniques, we exploit the information available in multiple

frames of the video.We investigated two different approaches

for this purpose.One is combining silhouettes extracted froma

sequence of frames to create an average silhouette, the other is

making individual decisions for all frames and use consensus

of these decisions. Using multiple frames eliminates most of

the wrong decisions which are caused by a poorly extracted

silhouette from a single video frame. The vehicle types we

classify are motorcycle, car (sedan) and van (minibus). The

features extracted from the silhouettes are convexity, elon-

gation, rectangularity and Hu moments. We applied two

separate methods of classification. First one is a flowchart-

based method that we developed and the second is K-nearest

neighbour classification. 60% of the samples in the dataset are

used for training. To ensure randomization in the experiments,

threefold cross-validation is applied. The results indicate that

using multiple silhouettes increases the classification

performance.

Keywords Traffic surveillance � Omnidirectional camera �
Object detection � Vehicle detection � Vehicle classification

1 Introduction

Omnidirectional cameras provide 360� horizontal field of

view in a single image (vertical field of view varies). If a

convex mirror is placed in front of a conventional camera

for this purpose, then the imaging system is called a

catadioptric omnidirectional camera. Example images from

such a camera are given in Fig. 1. Despite its enlarged view

advantage, so far omnidirectional cameras have not been

widely used in object detection and also in traffic appli-

cations like vehicle classification.

Object detection and classification is an important

research area in surveillance applications. A diverse range

of approaches have been proposed for object detection. A

major group in these studies uses the sliding window

approach in which the detection task is performed via a

moving and gradually growing search window. Features

based on gradients, gradient magnitudes, colours, etc., can

be used for classification. A significant performance

improvement was obtained with this approach by

employing histogram of oriented gradients (HOG) features

[8]. Later on, this technique was enhanced with part-based

models [12].

Regarding HOG features, the sliding window approach

was applied to omnidirectional cameras as well [7], where

HOG computation was mathematically modified for cata-

dioptric omnidirectional camera geometry. With a similar

aim, [13] introduced distortion adaptive descriptors where

SIFT and HOG descriptors were computed directly on the

wide-angle image by compensating the effect of high

amount of radial distortion. Haar-like features were also
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used with omnidirectional cameras either by converting the

image to a panoramic one [17] or directly on the omnidi-

rectional image [10].

Traffic applications require processing of videos where

sliding windows in each frame is not feasible. In a recent

study [1], HOG features are extracted from the image

patches which were identified with a tracking module

based on template matching. After the dimension of feature

space is reduced, classes are modelled as Gaussian distri-

butions. Classification is performed by assigning samples

according to maximum a posteriori (MAP) criterion. In this

study, vehicles are classified into two classes; tall vehicles

(trucks, buses, etc.) and short vehicles (cars, vans, etc.).

Another major group for object detection uses shape-

based features after background subtraction step. For

instance, [23] created a feature vector consisting of area,

breadth, compactness, elongation, perimeter, convex hull

perimeter, length, axes of fitted ellipse, centroid and five

image moments of the foreground blobs. Linear discrimi-

nant analysis (LDA) is used to project the data to lower

dimensions. Classification is performed by weighted

K-nearest neighbour (kNN).

When we compare the approaches that use image-based

features (HOG or Haar-like features) with the approaches

that use shape features extracted from silhouettes,

extracting shape features is computationally cheaper.

Moreover, to decrease the computational load, one should

extract image-based features only for the region where the

moving object exists. Even in that case, fitting a single

window around the object is not an easy task especially for

omnidirectional cameras. For instance, in [14], where HOG

features are computed on virtual perspective views gener-

ated from omnidirectional images, object windows are

located manually. This makes the approaches using image-

based features unsuitable for most real-time applications.

Motivated by these facts, we decided to develop a shape-

based method for omnidirectional cameras. Before giving

the details of our method, let us present more related work

on shape-based methods for vehicle classification.

In one of the earliest studies on vehicle classification

with shape-based features, authors first apply adaptive

background subtraction on the image to obtain foreground

objects [15]. Location, length, width and velocity of

vehicle fragments are used to classify vehicles into two

categories; cars and non-cars. In [20], position and velocity

in 2D, the major and minor axis of the ellipse modelling the

target and the aspect ratio of the ellipse are used as features

in a Bayesian network. In a ship classification study,

researchers use MPEG-7 region-based shape descriptor

which applies a complex angular radial transform to the

shape and classify ships to six types with kNN [21]. A 3D

vehicle detection and classification study which is based on

shape-based features uses the overlap of the object sil-

houette with region of interest mask which corresponds to

the region occupied by the projection of the 3D object

model on the image plane [4]. In [6], a similar 3D model-

based classification is compared with using 2D shape-based

features and SVM classifier. Later on, they concatenated

shape-based features and HOG features to create a com-

bined vector to represent each blob and used this method

for semi-automatic annotation of vehicles from videos [5].

Instead of standard video frames, [22] employs time-

spatial images which are formed by using a virtual detec-

tion line in a video sequence. Feature vector obtained from

the foreground mask includes width, area, compactness,

length-width ratio, major and minor axis ratio of fitted

ellipse and rectangularity. The samples are classified by

K-nearest neighbour algorithm.

Although not applied to vehicle classification, a radi-

cally different method using silhouettes was proposed by

[9]. They define ‘‘silhouette distance signal’’ which is the

sum of distances between centre of a silhouette and contour

Fig. 1 Two sample

omnidirectional images from

our dataset. a Image with a van.

b Image with a car
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points. A silhouette is classified by comparing its distance

signal with the ones in the template database. In [2], sil-

houettes are described with shape context descriptors and

these are used to align the shapes, i.e. to recover the geo-

metric transformation between the shape to be classified

and the ones in the training set. Classification step employs

blurred shape model descriptions [11] and K-nearest

neighbours (kNN).

Regarding the shape-based classification studies with

omnidirectional cameras, the only work that we found in

the literature [18] uses only the area of the blobs and

classifies them into two classes: small and large vehicles.

In our study, we detect each vehicle type separately using a

higher number of features.

Previous work, that employ cameras fixed to buildings,

use ‘‘area’’ as a feature to classify vehicles [4, 18, 22, 23].

Since that feature becomes invalid when the distance

between the camera and the scene objects changes, the area

of the silhouette (size of the vehicle) is not a feature in our

method which makes it suitable for portable image acqui-

sition platforms.

The main contribution in our study can be considered as

exploiting the information available in multiple frames of

the video for vehicle classification. The silhouettes

extracted from a sequence of frames are combined to create

an ‘‘average silhouette’’. This process is known as ‘‘tem-

poral averaging of images’’ in image processing commu-

nity and usually used to eliminate noise. We also

investigated the use of decision-level fusion, where the

classification is made for each video frame separately and

the ‘‘consensus’’ of these decisions is determined. When a

predefined percentage of samples make the same decision

that vehicle type is chosen. We experimentally show that

both of these multi-frame approaches perform better than

using a single frame. The classification performance of

consensus approach is not as good as that of averaging

silhouettes; however, its computation time is shorter. We

also present the results of the real-time implementation of

our method using consensus approach.

The vehicle types that we worked on are motorcycle, car

(sedan) and van (minibus). We applied two different

methods for vehicle classification. First one uses shape-

based features (such as convexity, elongation, etc.) one

after another in a flowchart (from now on will be referred

as ‘‘flowchart method’’). The second one is K-nearest

neighbour (kNN) classification. Vehicle classification with

kNN was used many times before (e.g. [21–23]). Although

they did not employ omnidirectional cameras, we can

consider kNN with single silhouettes as the benchmark

method and compare it with using multiple silhouettes for

kNN classification.

Our omnidirectional video dataset, together with binary

frames after background subtraction, can be downloaded

from our website.1 The organization of the paper is as

follows. In Sect. 2, we introduce the details of silhouette

averaging and consensus of silhouettes approaches. Vehi-

cle detector and classifier methods are described in Sect. 3.

Experiment results are presented in Sect. 4 and finally

conclusions are given in Sect. 5.

2 Using multiple silhouettes

The silhouettes are obtained after a background subtraction

step and a morphological operation step. For background

subtraction, the algorithm proposed in [28] is used, which

was one of the best performing algorithms in the review of

Sobral and Vacavant [25].

We use the silhouettes as they are extracted from

omnidirectional images. We also evaluated the approach

where the silhouettes are unwarped from omnidirectional

image sampling to perspective image sampling before

classification. However, it did not improve the accuracy.

We understand that the features we employ (elongation,

convexity, etc.) are not very sensitive to small amounts of

bending in the silhouettes. Thus, we decided not to increase

the computation time by unwarping.

In the literature, methods were proposed for using

omnidirectional images but computing image features

(HOG or SIFT) in the unwarped domain [7, 13]. In this

way, if the technique works better on unwarped images, the

cost of unwarping is avoided. In our study, since we did not

see any improvement by unwarping, any technique to

compute unwarped features does not bring any advantage.

2.1 Average silhouettes

To obtain an ‘‘average silhouette’’, we need to define which

frames are used and the silhouettes from these frames

should coincide spatially. If a silhouette is in range of a

previously specified angle (which we set as [-30�, 30�],
and 0� is assigned to the direction that camera is closest to

the road), then the silhouette is rotated with respect to the

centre of omnidirectional image so that the centre of the

silhouette is at the level of the image centre. This opera-

tion, also described in Fig. 2, is repeated until the object

leaves the angle range. Rotating the silhouettes as descri-

bed is enough to align them since the vehicles are supposed

to pass through the road, i.e. they can not have random

rotations and sizes. Therefore, our method does not require

a more complicated shape alignment process like the one

proposed in [2].

Silhouettes obtained in the previous step are added to

each other so that the centre of gravity of each blob

1 http://cvrg.iyte.edu.tr.
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coincides with others. The cumulative image is divided by

the number of frames which results in ‘‘average silhouette’’

(Fig. 3). We then apply an intensity threshold to convert

average silhouette to a binary image and also to eliminate

less significant parts which were supported by a lower

number of frames. Thus, we can work with more common

part rather than taking into account every detail around a

silhouette (Fig. 3g). The threshold we select here elimi-

nates the lowest 25% of grayscale levels.

2.2 Consensus of silhouettes

In addition to silhouette averaging, we present a second

way to merge information in multiple frames. The lar-

gest blob for each frame is considered as an input for the

single-frame classification method and a decision is

made for each. When a predefined percentage, for

instance 50%, of the samples make the same prediction,

we consider that there is a ‘‘consensus’’ among the

predictions of the frames and we call that prediction as

the vehicle type.

In our analysis, we have seen that silhouette extraction

for consensus of silhouettes is computationally cheaper

than the average silhouette method. For consensus of sil-

houettes, morphological operations and rotation of silhou-

ette with respect to omnidirectional image centre takes

15 ms per frame, although for average silhouette, extra two

operations, coinciding centres and addition to previous

silhouettes take 169 ms per frame.

3 Detection and classification

We compare three different approaches of using silhou-

ettes, namely single silhouette that is closest to 0�, aver-
aged silhouette and the consensus of multiple silhouettes.

Fig. 2 Top An example

omnidirectional video frame

containing a van. Bottom-left

The same frame after

background subtraction. Also

the angle range that we used,

namely [30�, -30�], is
superimposed on the image.

Centroid of the largest blob is at

29�. Bottom-right Rotated blob

after morphological operations
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We apply two methods of classification details of which are

given in the following.

3.1 Flowchart method

The steps of this method are summarized in Fig. 4. Firstly,

a convexity threshold is applied to a silhouette obtained

after morphological operations. If the silhouette averaging

approach is used, then the silhouette here is the one

obtained by the procedure described in Sect. 2.1. Other-

wise it is a single-frame silhouette.

The convexity (1) is used to eliminate detections that

may not belong to a vehicle class or poorly extracted sil-

houettes from vehicles.

Convexity ¼ Oconvexhull

O
ð1Þ

where Oconvexhull is the perimeter of the convex hull and O

is the perimeter of the original contour [27]. Convexity is

always � 1. Since we do not look for a jagged silhouette,

the set of detected silhouettes fDsg is filtered to obtain a set
of valid detections fDvg using the convexity threshold q.

fDvg ¼ fDsjConvexityDs
[ qg ð2Þ

We set q ¼ 0:75 for our experiments. Figure 5 shows an

example silhouette which is eliminated by convexity

threshold.

The set of valid detections fDvg is passed to the clas-

sification step. The features we employ for classification

are: elongation, rectangularity and Hu moments. Elonga-

tion (3) is computed as follows

Elongation ¼ 1�W=L ð3Þ

whereW is the short and L is the long edge of the minimum

bounding rectangle (Fig. 3g) which is the smallest rectan-

gle that contains every point in the shape [27].

We observed that the elongation is able to discriminate

motorcycles from other vehicle types with a threshold.

Then, the set of detected motorcycles fDmg is given by

fDmg ¼ fDvjElongationDv
\sg ð4Þ

where s is the elongation threshold. s is determined using

the samples in the training set.

Fig. 3 Example binary images when the centroid of the object is at a 29� b 26� c 0� d -11� e -29� f Resultant ‘‘average silhouette’’ obtained by

the largest blobs in the binary images. g Thresholded silhouette and the minimum bounding rectangle
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Rectangularity (5) measures how much a shape fills its

minimum bounding rectangle [27]:

Rectangularity ¼ As=Al ð5Þ

where As represents area of a shape and Al represents area

of the bounding rectangle. Rectangularity is a meaningful

feature to distinguish between sedan cars and vans since

the silhouette of a van has a tendency to fill its minimum

bounding box. In our trials, however, we observed that

setting a threshold for rectangularity alone is not effective

enough to discriminate cars from vans. To discriminate the

cars and vans better, we defined an extra feature, named P1

(8), which is based on Hu moments and measures if an

extracted silhouette resembles the car silhouettes in the

training set more than it resembles the van silhouettes. P1

(8) is an exemplar-based feature rather than a rule-based

one and it is computed as follows:

C1 ¼
1

#cars

X#cars

i¼0

I2ðDs;CariÞ ð6Þ

V1 ¼
1

#vans

X#vans

i¼0

I2ðDs;VaniÞ ð7Þ

P1 ¼C1 � V1 ð8Þ

For a new sample, P1 corresponds to the difference

between the average I2 (9) distance to the cars in the

training set and the average I2 distance to the vans in the

training set. The mentioned I2 distance is based on 7 Hu

moments [16], used for computing the similarity of two

silhouettes:

I2ðA;BÞ ¼
X

i¼1:::7

mA
i � mB

i

�� �� ð9Þ

mA
i ¼signðhAi Þ � logðhAi Þ ð10Þ

mB
i ¼signðhBi Þ � logðhBi Þ ð11Þ

where hAi and hBi are the Hu moments of shapes A and B,

respectively, [3].

If a detection is not classified as a motorcycle, i.e.

Elongation[ s, then it can be either a car or a van. To

determine the decision boundary between car and van

classes, we trained a SVM classifier (given in Sect. 4.1)

with a linear kernel using the samples in the training set.

3.2 K-nearest neighbours

Without using classification scheme in Fig. 4, we applied

kNN classification on our dataset. Since vehicle classifi-

cation with kNN using features extracted from a single

silhouette can be considered as a benchmark method (e.g.

[21–23]), this way we can investigate the improvement

gained by using multiple frames.

kNN method is applied on average silhouette, con-

sensus of silhouettes and single-frame silhouette

approaches. On our dataset we used the features of

elongation, rectangularity, convexity. We also computed

solidity and ellipse axes ratio features. However,

increasing the number of features did not improve the

results.

Fig. 4 Block diagram of the detection and classification system. With

the proposed method, multiple frames are processed and the extracted

average silhouette is used instead of a silhouette from a single frame

Fig. 5 An extracted silhouette

and its convex hull. It is

extracted from a van example

using a single frame and its

convexity is computed as 0.73

which is lower than the

threshold. q ¼ 0:75
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4 Experimental results

4.1 Experiments with a catadioptric camera

Using a Canon 600D SLR camera and a mirror apparatus2

we obtained a catadioptric omnidirectional camera. We

constructed a dataset of 49 motorcycles, 124 cars and 104

vans totalling 277 vehicle instances. Dataset is divided into

training and test sets. Training set contains approximately

60% per cent of the total dataset corresponding to 29

motorcycles, 74 cars and 62 vans. The rest is used as test

set. To ensure the randomization of data samples, the

procedure is repeated three times with the dataset split

randomly into training and test samples. We summarize our

experiment results under two subsections belonging to the

flowchart method and kNN classification.

4.1.1 Flowchart method experiments

We set q ¼ 0:75 and SVM (using linear kernel)’s param-

eter C ¼ 0:2 for our training set. The elongation threshold

is determined by choosing the highest elongation values

obtained from motorcycles in the training set since this

value easily discriminates motorcycles from other vehicles

(this fact can also be observed in Fig. 9b).

Regarding the training of car–van classifier, Fig. 6a, c

shows the SVM’s linear decision boundary, trained with

the average silhouette and single-frame silhouette,

respectively. Training the single-frame method with the

extracted single-frame silhouettes would not be fair since

they contain poorly extracted silhouettes. Therefore, sam-

ples are manually annotated to be used for the training of

single-frame method. The silhouette of the object to be

annotated is superimposed onto the original video frame

and manually corrected, i.e. all pixels that belong to the

object are turned on, and all others are turned off. Test

results with and without averaging silhouettes are shown in

Fig. 6b, d, respectively.

We report the average results in Table 1. Values in the

table correspond to what percentage of the samples of a

vehicle type is classified correctly. Not surprisingly,

exploiting the information in multiple frames by averaging

silhouettes has a better performance than using the sil-

houette in a single frame.

Tables 2 and 3 depict the number of correctly classified

(labelled) and misclassified samples for each class with the

average silhouette and single-frame silhouette methods,

respectively. Missed samples are the ones eliminated by

convexity threshold. Figure 7 shows an example where a2 http://www.gopano.com.

Fig. 6 a Training result of SVM using the average silhouette method. b Test result with the average silhouette method. c Training result of SVM

without averaging silhouettes (single-frame method). d Test result without averaging silhouettes, i.e. using single-frame silhouettes

Table 1 Average classification accuracies for each class when q ¼
0:75 and C ¼ 0:2 for the average silhouette method and for the single-

frame method

Motorcycle

(%)

Car

(%)

Van

(%)

Overall

(%)

Average silhouette method 95 98 83 92

Single-frame method 80 78 81 79
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car is correctly labelled using the average silhouette,

whereas it is misclassified using a single silhouette. Such

cases constitute the main performance difference between

the two compared methods.

Regarding the convexity threshold q, we also tested

values other than 0.75. For lower thresholds, less number

of samples are eliminated but those samples are not clas-

sified correctly. For instance, with q ¼ 0:6 out of 20 missed

van samples (given in Table 2), 17 were passed, but they all

were classified as cars. For q[ 0:75, number of missed

samples start to increase immediately some of which were

correctly classified with q ¼ 0:75. Therefore, accuracy

decreases.

Thanks to using an effective background subtraction

algorithm [28], our approach is robust to varying illumi-

nation and cases with shadows. Silhouettes are successfully

extracted for samples with shining (mostly due to the

windows of cars) and low contrast. Regarding shadows, in

most frames only a minor amount of shadow is attached to

the silhouette. For the frames that are severely affected by

the shadow, the main advantage of our method shows its

value. Effects of shadows are eliminated during silhouette

averaging and thresholding. An visual example is given in

Fig. 8.

We also examined the performance of ‘‘consensus of

silhouettes’’ with the flowchart method. Training set con-

sists of annotated silhouettes. Thresholds and SVM model

used in scheme (cf. Fig. 4) are obtained from the training

set. As mentioned before, in consensus approach we

require a predefined percentage of the samples make the

same prediction. Table 4 shows classification accuracies

when required consensus percentage changes from 70 to

34%. 34% is the lowest possible consensus percentage

since after this value, the chosen class is no longer becomes

the largest group. Samples having consensus value less

than the defined percentage are assumed to be misclassified

(i.e. false-negative). Table 5 shows the confusion matrix

for the consensus approach (34%). When we compare

Table 1 and Table 4, we observe that the average silhouette

approach has the highest performance. The overall per-

formance of consensus approach (34%) is slightly below

the single-frame silhouette approach. An important point is

the required time to compute the features in the

flowchart method. In our analysis, we saw that computing

P1 takes 5.46 seconds, while the rest of the features take

only 7 milliseconds.

4.1.2 K-nearest neighbour experiments

As mentioned before, we also examined the classification

performance of kNN. Figure 9a shows the features of the

annotated silhouettes of all samples (using Euclidean dis-

tance) in 3D where dimensions are rectangularity, elon-

gation and convexity. Actual class labels are indicated with

different shapes and colours. Top view of Fig. 9a is shown

in Fig. 9b, where x and y axes refer to rectangularity and

elongation, respectively. It can be observed that elongation

plays a dominant role to discriminate motorcycle class

from others. Figure 9c shows the 2D space with dimensions

convexity and rectangularity. Rectangularity is not ade-

quate to discriminate cars from vans. With the help of

convexity and elongation, car/van classification becomes

more accurate.

By dividing the dataset as train and test parts randomly

and repeating the experiments three times, we computed

average accuracies for different K values. In our experi-

ments, K is selected 5, 10 and 15, and the results are quite

similar to each other. Table 6 shows the results for aver-

aged silhouettes, consensus of silhouettes and single-frame

silhouettes when K is selected 5. We again observe that the

average silhouette is the best performing approach. Per-

formance of consensus approach is not as good as average

silhouette, but it is considerably better than using single-

frame silhouettes.

Tables 7, 8 and 9 show the confusion matrices of

average silhouette, consensus and single-frame approaches,

respectively, to enable readers examine the number of true-

positives, false-positives and false-negatives rather than

only seeing the average accuracy.

Since P1 feature is not used in kNN classification,

calculation of features is much faster than the

Table 2 Confusion matrix for the approach of using average sil-

houettes as sum of threefold (For each fold, there are 20 motorcycles,

50 cars and 42 vans in test set)

Label Actual class

Motorcycle Car Van

Motorcycle 57 0 0

Car 2 146 2

Van 1 4 104

Missed 0 0 20

Table 3 Confusion matrix for single-frame method as sum of

threefold (For each fold, there are 20 motorcycles, 50 cars and 42

vans in test set)

Label Actual class

Motorcycle Car Van

Motorcycle 48 8 13

Car 0 118 2

Van 2 20 101

Missed 10 4 10
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flowchart method. Regarding the two multi-frame

approaches, although the performance of consensus

approach is lower than average silhouette approach, it is

more time efficient. Total time for consensus approach

with kNN classification is 250 ms including silhouette

and feature extraction (assuming 10 frames are used),

whereas average silhouette with kNN takes 1850 ms.

There is a trade-off between total computation time and

classification accuracy for these two multiple frame

methods. Computation time for the single-frame method

is 15 ms which is the shortest not surprisingly. However,

consensus approach is also fast enough to be employed in

a real-time implementation (an example is given in

Sect. 4.2).

4.2 Real-rime experiments with a fisheye camera

Our experience in Sect. 4.1 reveals that if we want to use

multiple silhouettes to increase the performance in a real-time

system, consensus approach and the kNN classification is our

only choice. Thus, we employed them in our real-time imple-

mentation. The overall classification accuracy was recorded as

80% for consensus ? kNN approach in Sect. 4.1. To validate

our results,we conduct another experiment.This timeweuseda

fisheye camera. In thisway,we can also investigatewhether the

performance depends on the camera type or not. Our fisheye

camera is Oncam Evolution 5MP 360-degree.3

Fig. 7 Example car silhouettes.

a Original frame. b Result of

using a single silhouette which

is misclassified with

rectangularity ¼ 0:56 and

P1 ¼ 3:381. c Average

silhouette. d Thresholded

average silhouette classified as

car rectangularity ¼ 0:68 and

P1 ¼ �1:602

3 http://www.oncamgrandeye.com/security-systems/.
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We again constructed a dataset with car, motorcycle and

van samples. Test set consists of 76 motorcycles, 126 cars

and 124 vans totalling 326 vehicle instances. Table 10

presents the classification results. Overall accuracy is

computed as 81% which is very close to the one obtained

with the consensus approach in the catadioptric omnidi-

rectional camera (Table 6).

Another important property of the experiment in this

subsection is that we added a tracking module to be able to

handle the cases where there are multiple moving objects in

the scene. The tracking module consists of tracking the

blobs with Kalman filter [26] and association between the

blobs in current frame and previously detected blobs by

using Hungarian Algorithm [19, 24]. 2D position (object

centroid) and velocity are predicted with Kalman Filter.

Hungarian Algorithm finds detection-track pairs with

minimum cost which is calculated as the Euclidean dis-

tance between the centroid of the detection and the asso-

ciated track.

Figure 10 shows an example of handling multiple

objects. While an object labelled as car leaving the scene,

another one is detected and labelled as unknown since its

classification is not started yet. Later on, its silhouettes are

classified frame by frame (Fig. 10c) and final class is

determined as car (Fig. 10d). This sequence is also a good

example of occlusion, since some of the silhouettes of the

cars are partially occluded by the steady white pickup on

the road. We see that remaining silhouettes are enough to

correctly classify the object as ‘‘car’’.

5 Conclusions

We proposed to use multiple frames of a video for shape-

based classification of vehicles. We applied two different

classification methods and compared the performance of

using a single silhouette with the performance of using

multiple frames. The first classification method is using

features one after another in a flowchart. The second one is

kNN classification. We decided to include kNN in our

experiments because using single-frame silhouette with

Fig. 8 Left One of the

silhouettes affected by shadow

(sharp extrusion at the bottom of

the silhouette). Right

Thresholded average silhouette

of the same sample (van)

Table 4 Classification accuracies for each class for consensus

approach

Threshold (%) Motorcycle (%) Car (%) Van (%) Overall (%)

70 83 50 40 52

60 87 63 55 64

50 90 71 67 73

40 93 73 67 74

34 95 73 67 75

Required consensus percentage changes from 70 to 34%

Table 5 Confusion matrix for consensus approach as sum of three-

fold (For each fold, there are 20 motorcycles, 50 cars and 42 vans in

test set)

Label Actual class

Motorcycle Car Van

Motorcycle 57 5 18

Car 0 109 6

Van 0 11 84

Missed 3 25 18
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Fig. 9 Extracted features of the annotated silhouettes. a All dimensions. b First two dimensions. c Last two dimensions

Table 6 Classification accuracies with kNN (K ¼ 5) for the average

silhouette, consensus of silhouettes and single-frame silhouette

approaches

Motorcycle

(%)

Car

(%)

Van

(%)

Overall

(%)

Average silhouette 97 98 99 98

Consensus of silhouettes 95 58 100 80

Single-frame silhouette 53 53 72 60

Table 7 Confusion matrix for the average silhouette approach clas-

sified with kNN (K ¼ 5) as sum of threefold

Label Actual class

Motorcycle Car Van

Motorcycle 58 0 0

Car 0 147 1

Van 2 3 125

Table 8 Confusion matrix for the consensus approach classified with

kNN (K ¼ 5) as sum of threefold

Label Actual class

Motorcycle Car Van

Motorcycle 57 28 0

Car 1 87 0

Van 2 35 126

Table 9 Confusion matrix for the single silhouette approach classi-

fied with kNN (K ¼ 5) as sum of threefold

Label Actual class

Motorcycle Car Van

Motorcycle 32 63 5

Car 5 80 30

Van 23 7 91
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kNN classification can be considered as the benchmark

method in shape-based vehicle classification. Results of the

experiments indicate a significant improvement in classi-

fication accuracy by using multiple frames.

When two alternative approaches of using multiple

frames are compared, average silhouette has a higher

performance than using consensus of decisions of multiple

frames. However, consensus approach has the advantage of

being computationally cheaper. In fact, we exploited this

advantage and implemented a real-time vehicle classifier

with consensus approach and kNN classification. We tested

its performance by experiments.

In essence, the advantage of the proposed approach is

utilizing the information available in a longer time interval

rather than a single frame. Therefore, the improvement can

be expected for other objects types and domains other than

traffic applications.

We use a portable image acquisition platform, and our

method is independent of the camera–object distance

which is more practical than the previously proposed

methods that fix the cameras to buildings and use the

object’s area as a feature since the distance to objects stays

same.

Table 10 Confusion matrix the fisheye camera experiment

Label Actual class

Motorcycle Car Van

Motorcycle 74 8 6

Car 2 95 23

Van 0 23 95

Class accuracy (%) 97.4 75.4 76.6

Fig. 10 Multiple object

classification with consensus of

silhouettes approach and kNN.

a A car moving to the right was

already classified and is about to

leave the scene. At the same

time, another car is entering the

scene from the right side,

detected as a moving object.

Both cars are tracked with

Kalman filter. b Recently

entered car is being tracked, and

its label is still ‘‘unknown’’

since classification is about to

start. c Classification has been

started, and silhouettes are

labelled frame by frame.

d Object exits the classification

range [-30�, 30�] and the final

class is determined as ‘‘car’’
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