
User-Aware Dialogue Management Policies over Attributed
Bi-Automata

Abstract Designing dialogue policies that take user
behavior into account is complicated due to user vari-
ability and behavioral uncertainty. Attributed Prob-
abilistic Finite State Bi-Automata (A-PFSBA) have

proven to be a promising framework to develop dia-
logue managers that capture the users’ actions in its
structure and adapt to them online, yet developing poli-
cies robust to high user uncertainty is still challenging.

In this paper, the theoretical A-PFSBA dialogue man-
agement framework is augmented by formally defining
the notation of exploitation policies over its structure.

Under such definition, multiple path based policies are
implemented, those that take into account external in-
formation and those which do not. These policies are

evaluated on the Let’s Go corpus, before and after an
online learning process whose goal is to update the ini-
tial model through the interaction with end-users. In
these experiments the impact of user uncertainty and
the model structural learning is thoroughly analyzed.
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1 Introduction

Spoken Dialogue Systems (SDS) enable human-machine
interaction using spoken language in a natural way [5].
A key task that every SDS has to carry out is control-
ling the logic structure of the interaction, also known as
dialogue management. The Dialogue Manager (DM) is
the module responsible for controlling the dialogue flow,

using decision making strategies or policies. Several ap-
proaches have been proposed to model the DM sta-
tistically: Partially Observable Markov Decision Pro-

cesses (POMDP) [28], Deep Learning [25, 27, 29] and
Stochastic Finite-State models [8, 23]. When it comes
to decision making, POMDP approaches commonly use
Reinforcement Learning, applying both Monte Carlo Q-

Learning [28] or Gaussian Processes [3]. Deep learning
approaches, usually learn the exploitation policy with
respect to a loss function [20, 25, 18] while encoding
the dialogue interaction structure in a sequential fash-

ion. Recent proposals combine Reinforcement Learning
and Deep Learning, interacting with simulated users
to optimize the network policy [2, 10]. The Stochastic

Finite-State approach presented in [23] uses Probabilis-
tic Finite State Bi-Automata (PFSBA) to jointly model
the dialogue interaction between user and system ac-

tions. In order to encode the dialogue history through
the interaction, the PFSBA states can be augmented
with a discrete alphabet. This augmented model is also
known as Attributed PFSBA or A-PFSBA. The A-
PFSBA paradigm separates the structural learning of
the dialogue interaction and its exploitation, rendering
flexibility when it comes to decision making [4].

An initial exploration of the potential and flexibility
of A-PFSBA was done in [19], where the inclusion of
attributes in the PFSBA structure showed to improve
performance. In addition, an online learning method
based on successfully completed dialogues demonstrated
the capability of learning from user interactions, over-
coming the limitations of previously explored turn-by-

turn online learning procedures [13]. Although promis-
ing results were obtained, a local Maximum Likelihood
exploitation policy which did not take user behavior
into account was used and path based exploitation poli-
cies were not explored. Some policies that take user
behavior into account were presented in [4], but they
achieved lower results than local user agnostic policies.
The uncertainty of user behavior was hypothesized as
the main reason for these results. Although this hypoth-
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esis is rationale, it was not evaluated as inference and

decision making under uncertainty is a laborious task

[12, 11]. In addition, the lack of evaluation after user

adaptation renders it untested.

Extending the online learning approach of the A-PFSBA

framework presented in [19] to research in decision mak-

ing strategies started in [4], this paper presents the fol-

lowing theoretical and experimental contributions:

– A formal definition of dialogue management policies

over the A-PFSBA structure, extending the original

definition of the framework given in [23]. This pol-

icy definition is flexible enough to encode decision

making strategies both for system and user turns, as

well as allowing the encoding of domain knowledge.

– Implementation of multiple path based policies that

take user behavior into account. These policies are

based on: (1) the Maximum Probability path, (2)

a path that searches for new information slots to

complete, and (3) a path based policy that exploits

domain information in order to find the path that

maximizes task completion.

– A thorough analysis of the implemented path based

policies and user adaptation through the online learn-

ing method presented in [19]. Each policy is evalu-

ated performing a grid search over the path length

and the user-awareness ratio before and after the on-

line learning phase. This experimentation is carried

out in order to evaluate the hypothesis that policies

that take user behavior into account perform worse

due to user uncertainty [4].

Experiments are carried out on the Let’s Go corpus

[14], allowing direct comparison with previous work by

[13, 19].

The paper is structured as follows: Section 2 explains

spoken dialogue interaction as an stochastic process and

describes the A-PFSBA formulation to model these in-

teractions. A formal definition of exploitation policies

over the A-PFSBA formulation is presented in Section

3. Section 4 introduces the experimental setup and the

implemented exploitation policies and metrics. Section

5 presents the results of the experiments and their anal-

ysis. Finally, the main conclusions are summarized in

Section 6, where future guidelines are also set.

2 Attributed Probabilistic Finite State

Bi-Automata for Dialogue Management

This section describes spoken dialogue interaction in

terms of a stochastic process that can be modeled by

a Probabilistic Finite State Bi-Automata. Under such

framework, a dialogue z can be viewed as a sequence of

system and user interactions z = (a0, f1, · · · , at, ft+1)

where a are the system actions and f the user responses.

As depicted in Fig. 2, each user response can be cor-
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Fig. 1 Dialogue interaction as a Stochastic Process where
the user response ft+1 is corrupted by the ASR to f̂t+1 and

estimated by the SLU in d̂t+1

rupted due to Automatic Speech Recognition (ASR)

errors, so it is common for DMs to work on a decoded

space Σ extracted from a Spoken Language Under-

standing (SLU) component, where each ft is mapped

to its corresponding decoding d̂t ∈ Σ:

d̂t = arg maxd∈ΣP (d | ft)

Then, the probability of a system action at given by the

DM can be defined as:

P (at | d̂t−1, at−2, · · · , d̂1, a0)

where d̂t−1 is the estimated decoding of the user re-

sponse ft−1. On the other hand, the probability of an

user response in a the dialogue can be defined as follows:

P (ft | dt)P (dt | at−1, dt−2, · · · , d1, a0)

where at−1 is the system action in the previous turn.

Note that there is no need to estimate the user action

ft, as it is not corrupted by any ASR error.

Instead of maintaining the whole sequence of system/user

interactions, it is usual to encode the history of the di-

alogue until time t − 1 in a state qt−1. This way, the

previous notations can be shortened to P (at|d̂t−1, qt−1)

for the system action probabilities and P (ft|at−1, qt−1)

for the user responses. Because the A-PFSBA frame-

work considers dialogue interaction an stochastic pro-

cess of bi-strings, it can model user-system action tu-

ples (at, d̂t+1) using an alphabet of bi-strings [23]. Their

structure is trained by maximizing the probability of

model M to generate a given sample of dialogues Z,

being z each one of the dialogues that compose the cor-

pus Z.

M̂ = arg maxM PM (Z) = arg maxM
∏
z∈Z

PM (z)

As described by [24] the A-PSFBA model can then be

defined as M̂ = (Σ,∆,Ω, Γ, δ, q0, Pf , P ) where
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Fig. 2 Smoothing procedure where the unknown system state q′ is approximated to the nearest state q′t+1 using the distance
function G

– Σ is the alphabet of the user’s decoded responses,

d ∈ Σ.

– ∆ is the alphabet of system actions, a ∈ ∆.

– Ω is the alphabet of attributes, ω ∈ Ω.

– Γ is an extended alphabet Γ ⊆ (Σ≥m ×∆≥n) that

contains the combinations of the user’s decoded re-

sponses and system actions.

– Q = QS∪QU is the set of states labeled by bi-strings

and attributes: [(d̃i : ãi), Ω] ∈ Γ ×Ω.

– QS are the system turn states.

– QU are the user turn states.

– δ ⊆ Q×Γ×Q is the union of two sets of transitions

δ = δS ∪ δU as follows:

– δS ⊆ QS×Γ ×QU is a set of system transitions

of the form (q, (ε : ãi), q
′) where q ∈ QS , q′ ∈ QU

and (ε : ãi) ∈ Γ .

– δU ⊆ QU ×Γ ×QS is a set of user transitions of

the form (q, (d̃i : ε), q′) where q ∈ QU , q′ ∈ QS
and (d̃i : ε) ∈ Γ .

– q0 ∈ QS is the unique initial state: (ε : ε) where ε is

the empty symbol.

– Pf : Q → [0, 1] is the final-state probability distri-

bution.

– P : δ → [0, 1] defines the transition probability

distributions P (q, b, q′) ≡ P (q′, b | q) ∀b ∈ Γ and

q, q′ ∈ Q such that:

Pf (q) +
∑

b∈Γ,q′∈Q

P (q, b, q′) = 1 ∀q ∈ Q

where transition (q, b, q′) is completely defined by

the initial state q and the transition state b. Thus,

∀q ∈ Q, ∀b ∈ Γ, |{q′ : {(q, b, q′)}| ≤ 1

2.1 Generalization to Unseen States

As field-deployed SDS have to deal with unseen situa-

tions, it is advisable to endow the dialogue system with

a backoff smoothing strategy [24], so that the system is

capable of continuing with the interaction each time the

user leads the dialogue to an unknown state, q′ 6∈ QS .

A common method is to use the nearest system state

q ∈ QS according to some distance function:

q =

{
q′, if q′ ∈ QS
minq∈QS G(q′, q), otherwise

(1)

where G is the distance function that defines the rela-

tionship between the A-PFSBA states. Fig. 2 shows the

previously described scenario: the user gives some un-

known response in the state q2t and the system is driven

into an unknown state q′ 6∈ QS . In this situation, the

system searches for the closest state q1t+1 according to

the distance function G and uses it to continue with the

dialogue.

2.2 Dialogue Manager

Given the A-PFSBA model M̂ , a DM can be defined

as a function whose goal is to return the best system

action given an user response decoding, the state at

the current turn under a policy ΠDM and a smoothing

strategy with a distance function G:

DMΠ : Q×Σ → ∆×Q

ΠDM (qt, dt, M̂ ,G)→ at+1, qt+1

Note that within the A-PFSBA paradigm, the struc-

tural learning of the model M̂ is independent of its

exploitation policy definition ΠDM or the smoothing

strategies defined.
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Fig. 3 Online Learning procedure where the initial model M̂ is augmented with the A-PFSBA inferred from the correct
dialogue z′

2.3 User Model

Simulating the behavior of the final users to augment

the dialogues available for training and evaluation of

Stochastic and Deep Learning-based DM is a common

practice. User Models (UM) interact with the DM, gen-

erating synthetic dialogues [15, 16]. Several statistical

and machine learning approaches have been proposed

to model the user [20, 17, 7] but, in this paper, the same

A-PFSBA paradigm is used to model the UM stochas-

tically, mirroring the structure of the DM.

The goal of the UM is to return some user feedback

given a system hypothesis and the current state under

a certain policy ΠUM :

UMΠ : Q×∆→ F ×Q

ΠUM (qt, at, Û , G)→ ft+1, qt+1

Where Û is the A-PFSBA structure of the UM and

a chosen policy ΠUM . When it comes to designing this

policy, stochastic policies are generally chosen over those

that maximize the likelihood/expected path-value in or-

der to generate synthetic dialogues with more variabil-

ity.

2.4 Online Learning

The ability to adapt and learn from unseen situations

on the run is a powerful property of the A-PFSBA

formulation. The online learning algorithm presented

in [19] employs a Quality Metric QM to determine

whether a new dialogue is suitable for learning or not.

Using this metric, the A-PFSBA model learns from

those dialogues rendered successful by the QM, aug-

menting the initial model by learning the new states

and transitions of the new dialogues. This approach

overcomes the drawbacks of previous turn-by-turn learn-

ing algorithms [13], that learned from both correct and

incorrect dialogues.

Figure 2 shows the previous scenario where an unseen

dialogue z′ is rendered valid by a given QM, so the ini-

tial A-PFSBA model of the DM is augmented with the

A-PFSBA model corresponding to z′.

Formally, let M̂ be the A-PFSBA model inferred from

Z dialogue samples, let z′ 6∈ Z be an unseen dialogue

sample and M̂z′ the A-PFSBA inferred from z′. If the

QM renders z′ valid for the learning process, M̂ is ex-

panded by merging it with M̂z′ . By doing so, the states

qx and the corresponding set of transitions δ[qx] =

{(q, (d̃i : ãi), q
′)|q = qx} of M̂z′ are added to M̂ . The

online learning pseudo-algorithm is defined as follows:

Algorithm 1 Online Learning
1: procedure A-PFSBAUpdate
2: M̂ ← A-PFSBA from samples Z
3: M̂z′ ← A-PFSBA from z′

4: if QM(z′) is True then
5: for qz ∈ Qz′ do:
6: M̂ ← merge(M̂, qz, δ[qz])

7: M̂ ← update edge count(M̂)

8: return M̂

3 Exploitation Policies in the A-PFSBA

Framework

The following section formally defines exploitation poli-

cies over the A-PFSBA framework and formulates both

local and path based policies. This formulation also

complies with the original PFSBA definition.

3.1 Policy Definition

One key component in every DM is the policy Π, that

Sutton & Barto defined [21] as:

A policy defines the learning agent’s way of be-

having at a given time. Roughly speaking, a pol-

icy is a mapping from perceived states of the en-

vironment to action to be taken when in those

states.
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Table 1 Main features of the Let’s Go Corpus

Let’s Go Corpus Statistics
Dialogues 1840 System Turns 28141 System Dialogue Acts 49
Attributes 14 User Turns 28071 User Dialogue Acts 138

When it comes to spoken dialogue interaction, the agent

would be the DM, the perceived states would be the di-

alogue states Q and the actions would be the system

actions a ∈ ∆. Then, the policy Π corresponds to a

mapping from each system dialogue state q ∈ QS to

the set of system actions ∆.

The policy Π can be represented in multiple forms,

either deterministically from the current state [1] or

stochastically over the set of the possible actions [6, 28,

22]. More generally, it can be seen as a ranking problem,

where the policy Π associates a score to each action a ∈
∆ given the current dialogue state, as reinforcement-

learning methodologies do [9].

In the A-PFSBA framework, the policy corresponds to

a decision/ranking function that maps the current sys-

tem dialogue state q ∈ QS and the set of possible tran-

sitions ∆q = {aj | ∃ (q, (ε : aj), q
′)} ⊆ QS ×Γ ×QU ,

i.e. the alphabet of actions associated to the state q.

Because the A-PFSBA formulation captures the transi-

tions of both system and user actions, user information

can be exploited in an straightforward way to determine

path based policies when defining decisional strategies.

3.2 Path Based Policies

Path based policies can be defined as a scoring func-

tion over an A-PFSBA path of states with depth D
θ = (qs, q1, · · · , qD) where qi ∈ Q. The score associated

to a given path or path-value V (θ) needs to take into

account every taken step, the differences between the

departure and the final states (qs and qD), the length

of the path and the distance in time (as more distant ac-

tions should have lesser impact). These properties can

be summarized in the following path-value function:

V (θ) = ψ(qs, qD) · λ
|θ|

D∏
i=s

γi · φ(qi, qi+1) (2)

where the function ψ(qs, qD) is the endpoint-value func-

tion that evaluates the differences between the depar-

ture state qs and the final state qD of the path θ, λ

is the length normalization factor that determines the

penalization of the dialogue length, γ ≤ is the discount

factor that controls the temporal decay and φ is the

step-value function that associates the reward for tran-

sitioning from the state qi to qi+1. The step-value func-

tion can be defined separately for user-taken steps φU

or system-taken steps φS :

φ(qi, qi+1) =

{
φU (qi, qi+1), if qi ∈ QU and qi+1 ∈ QS
φS(qi, qi+1), if qi ∈ QS and qi+1 ∈ QU

Then, the system action a to perform in a departure

system state qs is the one that maximizes the expected

path-value of all the possible paths θ that depart from

qs and perform system action a.

a = argmaxa∈∆qs
1

|Θqs,a|
∑

θ∈Θqs,a

V (θ)

where Θqs,a is the set of paths θ that start in state qs
and perform system action a as the first action. The

search space is restricted by ∆qs , which corresponds to

the alphabet of system actions associated to the depar-

ture state:

∆qs = {aj | ∃ (qs, (ε : aj), q
′)} ⊆ QS × Γ ×QU

3.3 Local Policies

Previous experiments in [13, 19] employed local deci-

sional strategies over the bi-automata structure (i.e.

taking into account only the current state qs). Local

policies can be represented as a subset of path based

policies, i.e. those that are constrained to paths θ that

contain only the departure and final state.

Vlocal(θ) = ψ(qt, qt+1) · φ(qt, qt+1) (3)

4 Experimental Setup

The following section presents the experiments carried

out to validate and evaluate the implemented path based

policies on the Let’s Go Corpus [14]. The results of [19]

are replicated as a baseline and the online learning pro-

cedure is also replicated in order to measure the impact

of user uncertainty.
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Table 2 Let’s Go Dialogue Formatting Example in terms of A-PFSBA alphabets

q = [(d̃i : ãi), ω̃i] System Actions and User Feedbacks

q0 = [(ε : ε), ε] ∈ QS
S: Welcome to the CMU Let’s Go bus information system. To get help...
ã1 =inform welcome,inform get help,request query departure place

q1 = [(ã1 : ε), ε] ∈ QU
U: I’m leaving from CMU.

d̃1 =inform departure place, PlaceInformation registered stop
ω̃0 = {}

q2 = [(ã1 : d̃1), ω̃0] ∈ QS
S: Departing from <query.departureplace CMU>. Did I get that right?
ã2 =Explicit confirm, request query departure place
ω̃0 = {}

q3 = [(ã2 : d̃1), ω̃0] ∈ QU
U: Yes.

d̃2 = Generic yes
ω̃1 = {< query.departure.place > }

4.1 Corpus Description

The Let’s Go SDS developed by Carnegie Mellon Uni-

versity (CMU) exploits the Olympus architecture using

RavenClaw [1] as DM to provide schedule and route

information about the city of Pittsburgh bus service

to the general public. The corpus linked to such SDS

was collected from real user interactions during 2005,

so events such as unexpected dialogue closing, spon-

taneous talking, sudden noise, etc. are observed. Some

of the corpus statistics are shown in Table 1. In the

corpus, feedback decoding is done using the the CMU

Phoenix Parser [26], so each user state QU and system

state QS is represented by a string. The attributes are

discrete values related to bus schedule information. Ta-

ble 2 shows a dialogue example of the corpus, where

each state q is composed of a system action at∆, user

decoded feedback dt ∈ Γ and its attributes ω ∈ Ω that

encode the relevant information of the dialogue history
(e.g. that the user has already determined the place of

departure). The corpus was split in half to build two

A-PFSBA models, M̂ to be used as the DM and Û as

the UM.

4.2 Smoothing Distance and Evaluation Metrics

In this section, the smoothing distance used to gener-

alise to unseen states as described in Section 2.1 and

the metrics used to evaluate the success of a dialogue

are described in detail.

4.2.1 Smoothing Distance

The distance function (G) used in this work is the

attribute-weighted Levenshtein distance employed in [19]

and defined as follows:

G(q, q′) = dist((d̃q : ãq), (d̃q′ : ãq′))+λ(|ω̃q∩ω̃q′ |−|ω̃q∪ω̃q′ |)

where dist corresponds to the Levenshtein distance be-

tween the bi-string of system action and user action

decoding and λ is a parameter which penalizes the dis-

tance depending on the amount of attributes in which

the states differ. This distance is used for the smoothing

process of both the DM and the UM.

4.2.2 Evaluation Metrics

The evaluation metrics employed correspond to the Task

Completion rate (TC) and the Average Dialogue Length

(ADL). In the Let’s Go domain, the task is rendered

complete when the DM carries out a coherent query

to the database and retrieves the information asked by

the user. A query is determined coherent when the user

has given enough information to do a complete query

to the database, i.e. the departure place, arrival place

and time must be determined. The pseudo-code pre-

sented in Algorithm 2 describes the Task Completion

metric adapted for the Let’s Go scenario in the follow-

ing experiments, which returns a boolean value that

determines the success of the dialogue. The Average

Dialogue Length measures the number of turns that

the dialogue lasts on average, where each user/system

interaction counts as a turn.

Algorithm 2 Task Completion

1: procedure Task Completion(dialogue)
2: Departure info = check departure(dialogue)
3: Arrival info = check arrival(dialogue)
4: When info = check when time(dialogue)
5: Request Next Bus = check next(dialogue)
6: Is query to db = check query(dialogue)
7: Is Info = Departure info and Arrival info and

When info
8: if Is query to db is False then
9: return False

10: if (Is Info or Request Next Bus) is True then
11: return True
12: return False
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4.3 Local Policies

Two local policies have been implemented, a determin-

istic one based on the maximum transition probabil-

ity between the A-PFSBA states and a stochastic one

which samples the next action from the transition prob-

ability distribution.

– Maximum Probability (MP): the DM chooses

the action â from state qj that maximizes the tran-

sition probability

â = argmaxa∈∆qsP (qs , (ε : a ), q′ )

This policy is exclusive of the DM.

– Random Sampling (RS): as the policy of the UM

ΠUM has to be non-deterministic in order to achieve

variance in the generated dialogues, the user action

to perform is randomly sampled from the distribu-

tion of user actions seen in the current state.

This policy is mainly used by the UM, the DM only

uses it during the online learning phase to create di-

alogues with more variability in order to learn new

strategies.

4.4 Path Based Policies

Three different path based policies exclusive of the DM

have been implemented following the path-value func-

tion of Equation 2.1 All the policies use the same step-

value function defined in the following equation:

φ(qi, qi+1) =

{
φU (qi, qi+1) = P ((qi,(ε: ak), qi+1) )

P ((qi,(ε: ak), qi+1) )1−β

φS(qi, qi+1) = P ((qi, (ε : ak), qi+1) )

(4)

where the β ∈ [0, 1] parameter is the user-awareness

rate. This parameter weights the user transition prob-

ability in the scoring function φ(qi, qi+1). When β = 0,

the user is ignored: every transition probability is equal

to 1 and the user transition probabilities are not taken

into account for the final score. On the other hand,

when β = 1 the user transition probability is taken

into account in the scoring function and more probable

user-actions achieve a higher score.

– Maximum Probability Path (MPP): chooses

the path of system actions with maximum probabil-

ity. The endpoint-value function used in the MPP

policy is:

ψ(q0, qD) = 1

1 In order to avoid numerical underflow, the logarithm is
applied to the product

– Attributed Path (AP): chooses the path with

highest probability that also searches to complete as

many dialogue attributes as possible. The endpoint-

value function is changed to:

ψ(q0, qD) =
1

1 + (|ωqD | − |ωq0 |)

where ωq0 and ωqD are the attributes of the initial

and the final state.

– Task Completion Path (TCP): chooses the path

with highest score according to the Task Completion

rate, i.e. the path that satisfies most constraints to

consider a dialogue successful. The endpoint-value

function is modified to:

ψ(q0, qD) =
1

1 + (TCS(q0, qD))

where TCS(q0, qD) is a scoring version of the Task

Completion metric shown in Algorithm 2. Instead of

using the boolean output of the TC rate, a constant

value λ is added 2 for each constraint satisfied (De-

parture info, Arrival info, ...) through the path. In

this policy, instead of guiding the dialogue to sim-

ply fulfill attributes, the dialogue manager selects

those actions that guide the interaction to satisfy

the constraints needed to complete the task.

As it is intractable to calculate every possible path in

the set of dialogue paths that start in the state qs and

perform a as the first action Θqs,a to estimate the best

action â for each system state, Monte Carlo sampling

is used to generate multiple paths from their transition

probabilities.

5 Policy Evaluation

In the following section, the implemented local and path

based policies are tested before and after an user adap-

tation phase carried out using the online learning pro-

cedure of Section 2.4 that updates the A-PFSBA struc-

ture in a dialogue-by-dialogue basis. In addition, each

path based policy is evaluated performing a grid search

over the path length or depth D and the user-awareness

rate β ∈ [0, 1] in order to evaluate the impact of the

user uncertainty and the structural learning of the A-

PFSBA. As this grid search is performed before and

after the online learning phase, the adaptation capac-

ity of the A-PFSBA is also evaluated.

Results achieved using the Maximum Probability local

policy explored in [19] are summarized in Table 3 and

2 λ = 0.25
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Table 3 Structural and Maximum Probability policy evaluation before and after online learning.

States-DM Transitions-DM States-UM Transitions-UM TC (%) ADL
CMU RavenClaw — — — — 54.0 32.33 ± 1.2
A-PFSBA MP 11005 14737 11058 14988 60.02 ± 1.36 30.98 ± 0.94
A-PFSBA After OL MP 14700 21952 11058 14988 69.39 ± 1.34 31.46 ± 0.69

set as baselines. The first row of Table 3 shows results

achieved by the RavenClaw DM. The second and third

rows show information regarding the structure of both

the DM and the UM together with the performance

of the DM in terms of TC and ADL metrics, before

and after user adaptation through online learning. The

learning curve shown in Figure 5 shows that the DM

reaches its saturation point at 50.000 dialogues.

Fig. 4 Smoothed learning curve of the TC rate during the
online learning procedure for user adaptation

5.1 Path Based Policy Behavior Before User

Adaptation

This section evaluates the performance of the imple-

mented path based policies and the impact of the path

length or depth D and the user-awareness rate β in the

TC and ADL metrics, before the user adaptation phase.

Table 4 Best path based policy results before user adapta-
tion

TC (%) ADL
MP Local 60.02 ± 1.4 30.98 ± 0.9
MPP 59.3 ± 0.6 32.2 ± 0.3
AP 59.5 ± 0.6 32.8 ± 0.3
TCP 61.2 ± 0.6 32.5 ± 0.3

Table 4 shows the best results obtained for each path

based policy compared to the local MP policy set as

baseline. Overall differences in TC rate are not signifi-

cant, with TSP performing slightly better than MPP

and AP but without statistical significance with re-

spect to the local MP policy, as there is an overlap in

their confidence intervals3. The slight improvement over

the TC rate of TCP can be attributed to the inclusion

of external information in the dialogue policy.

Regarding the ADL metric, the local MP policy tends

to generate slightly shorter dialogues. This is usually

better than long dialogues4 in task-oriented dialogue

systems as is the case of Let’s Go scenario. Neverthe-

less, a difference of 1 turn can be considered negligible

from the point of view of the end users.

Path based policies depend on the path length or depth

D and the user-awareness rate β parameters, where the

depth determines how much future steps the policies

take into account and the user-awareness rate repre-

sents the relevance given to the user transition prob-

abilities in the scoring function of the policy. These

parameters have a direct impact on the performance

of path based policies. The user-awareness rate β mea-

sures the uncertainty of the user behavior in the mod-

eled scenario. Policies that perform worse when β is

set to 1 than when β = 0 indicate that the user tran-

sition probabilities are not correctly estimated. Also,

the variability of the Task Completion rate conditioned

over the path length or depth D indicates how well the

A-PFSBA model is fitted to the user. Long paths per-

forming worse than short paths signal that the model

is not taking into account paths that the user employs

commonly. To evaluate the impact of these parameters

in the implemented path based policies, Figure 5 shows

a spline-smoothed graph for each of the analysed poli-

cies.

Previous to the online learning phase, the relationship

between the path length and the user-awareness rate is

clear for the three policies: long and user-aware paths

perform worse. This conclusion validates the hypothesis

of [4] that path based policies perform worse than lo-

cal policies overall due to user uncertainty. In addition,

it is clear that the initial models are not fitted to the

3 95% confidence interval.
4 In social dialogue systems the longer the dialogue the bet-

ter, as their goal is to maximize the user engagement with the
system.



User-Aware Dialogue Management Policies over Attributed Bi-Automata 9

TCP Policy

MPP Policy

AP Policy

Fig. 5 Spline-smoothed plots of the TC rate of the path based policies before online learning with different perspectives of
the same plot. Left: front view, right: top view.
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TCP Policy

MPP Policy

AP Policy

Fig. 6 Spline-smoothed plots of the TC rate of the path based policies after online learning with different perspectives of the
same plot. Left: front view, right: top view.
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user, as the TC rate gets worse when the path length

is increased.

Also, it is interesting to note that the TCP policy has

a higher low-boundary. This can be attributed to the

inclusion of external information such as the Task Com-

pletion score, which reduces the amount of decay intro-

duced by the path length and the user uncertainty.

5.2 Path Based Policy Behavior After User Adaptation

The performance of the implemented path based poli-

cies and the impact of the path depth and the user-

awareness rate parameters on the TC rate and ADL

metrics is once again evaluated in this section, but af-

ter a user adaptation phase.

Table 5 Best path based policy results after user adaptation

TC (%) ADL
MP Local 69.4 ± 1.4 31.5 ± 1.0
MPP 73.8 ± 0.5 30.5 ± 0.3
AP 74.9 ± 0.5 29.9 ± 0.3
TCP 75.0 ± 0.5 31.6 ± 0.3

Table 5 shows the best results for each implemented

policy after the online learning phase. These results

demonstrate that once user behavior is fitted to the

A-PFSBA structure of the DM, path based policies

perform better than local policies and are the ones

that generate shorter dialogues. Nevertheless, dialogue

length differences are still negligible from the perspec-

tive of the end users. AP and TCP policies equally

outperform the other policies, since both use informa-

tion additional to the transition probabilities. Taking

into account the close performance of the MPP policy,

one might wonder whether including external informa-

tion such as dialogue attributes or the task completion

score is necessary. However, this is arguable because

task completion information is implicitly codified in the

online learning process: only those dialogues that qual-

ify according to the TC rate are included in the DM

A-PFSBA model and dialogues with missing attributes

will not be successful, since attributes are required to

query the database and render the task complete. Ad-

ditionally, the inclusion of external information makes

the TCP policy consistent in both scenarios, before and

after online learning.

The relationship between the path length or depth D

and the user-awareness rate β changes drastically in ev-

ery path based policy after online learning as shown in

Figure 5. The penalization that both the path length

or depth D and the user-awareness rate β introduced

before online learning is drastically diminished, demon-

strating that the online learning algorithm proposed in

[19] is suitable to fit the A-PFSBA DM to the user. It

is interesting to note that the degradation of the TC

rate due to path length and user-awareness is higher

in the MPP policy, as it does not include neither dia-

logue attributes nor task completion information when

making decisions. Another pattern that repeats across

the three policies is that the equilibrium between both

the path length and the user-awareness rate parameters

yields consistent results, i.e. if one wants to use a longer

path, the user-awareness rate should be lower to com-

pensate. This trade-off is clearer in the TCP policy,

where the highest results can be observed in the center

of the plot. Once again, the TCP policy is the one that

has the highest low-boundary. This is another clear in-

dicator that the inclusion of external information can

improve the robustness and consistency of the exploita-

tion policies. The results shown in Table 5 and Figure

5 confirm the hypothesis raised in [4] that path based

policies perform worse when the DM is not adapted to

the user, as they also take into account user behavior.

In addition, the results obtained also demonstrate that

the A-PFSBA framework is capable of adapting to user

behavior on the run applying the online learning algo-

rithm proposed in [19]. Regarding the average dialogue

length of the generated interactions, there is no signifi-

cant difference between path based and local policies.

6 Conclusions and Future Work

In this paper, the Attributed Stochastic Finite State Bi-

Automata (A-PFSBA) paradigm is used to model dia-

logues as a stochastic process of user/system bi-string

interaction. This approach has the advantage that the

structural learning of the dialogues with the A-PFSBA

framework and its exploitation policy for dialogue man-

agement are independent of each other. In the paper,

the theoretical A-PFSBA framework is augmented by

introducing a formal definition of exploitation policies.

Under such definition, three path based policies are im-

plemented: (i) the classical Maximum Probability Path

policy; (ii) an Attributed Path policy, which searches

to complete dialogue attributes; and (iii) a Task Com-

pletion Path policy, which searches for those dialogue

interactions that maximize the chance of success using

external information. These policies are tested before

and after an online learning phase and are evaluated in

terms of Task Completion rate and Average Dialogue

Length, conditioned over the parameters of path length

or depth and user-awareness rate.
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Results empirically demonstrate that when external in-

formation such as the task completion is included in the

path based policies, these are able to achieve slightly

better results than local policies without user adap-

tation. In addition, the inclusion of external informa-

tion results in more robust policies after user adapta-

tion. The impact of the path length and user-awareness

rate parameters before and after online learning demon-

strates that the learning algorithm is valid when it

comes to fit the A-PFSBA DM model to new users on

the run.

After online user adaptation, the performance of path

based policies increases significantly in comparison to

the local policies. This demonstrates that once the un-

certainty of user behavior is reduced, path based ex-

ploitation policies can model the possible user actions

sensibly.

The paper consolidates the A-PFSBA framework for

dialogue management, demonstrating its flexibility to

adopt different exploitation policies. As future work,

we plan to research alternative ways to exploit external

information in dialogue policies and to develop methods

for inferring the optimal parameters to tackle user un-

certainty on the run. In addition, testing the A-PFSBA

framework on other dialogue corpora and tasks is also

intended.
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tistical dialog management methodologies for real

applications. In: Proceedings of the 11th Annual

Meeting of the Special Interest Group on Discourse

and Dialogue, Association for Computational Lin-

guistics, pp 269–272

7. Hurtado LF, Griol D, Sanchis E, Segarra E

(2007) A statistical user simulation technique for

the improvement of a spoken dialog system. In:

Iberoamerican Congress on Pattern Recognition,

Springer, pp 743–752

8. Hurtado LF, Planells J, Segarra E, Sanchis E, Griol

D (2010) A stochastic finite-state transducer ap-

proach to spoken dialog management. In: Eleventh

Annual Conference of the International Speech

Communication Association
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