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Abstract
The visual exploration of retinal blood vessels assists ophthalmologists in the diagnoses of different abnormalities of the eyes 
such as diabetic retinopathy, glaucoma, cardiovascular ailment, high blood pressure, arteriosclerosis, and age-related macular 
degeneration. The manual inspection of retinal vasculature is an extremely challenging and tedious task for medical experts 
due to the complex structure of an eye, tiny blood vessels, and variation in vessels width. Several automatic retinal vessels 
extraction techniques have been proposed in contemporary literature, which assist ophthalmologists in the timely identifi-
cation of an eye disorders. However, due to the fast evolution of such techniques, a comprehensive survey is needed. This 
survey presents a comprehensive review of such techniques, strategies, and algorithms presented to date. The techniques are 
classified into logical groups based on the underlying methodology employed for retinal vessel extraction. The performance 
of existing techniques is reported on the publicly accessible datasets in term of various performance measures, providing a 
valuable comparison among the techniques. Thus, this survey presents a valuable resource for researchers working toward 
automatic extraction of retinal vessels.
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1  Introduction

The human fundus RGB photographs are the projection 
of the inner surface of an eye. Retinal images are widely 
used in a noninvasive way by medical experts in the analy-
sis of visual impairments [1]. In the early 1960s, optical 
photography made an important contribution in the medi-
cal prescription [2]. The first photographic retina images 

indicating blood vessels were discovered by German oph-
thalmologist, Gerloff in 1891. Gullstrand first developed the 
fundus camera in 1910 [3]. Herbert and Michael expressed 
that the advancement of ocular photographs and expanding 
research in fundus photograph examination may be because 
of the necessities of clinical procedure to discover better 
and less expensive methods of diagnosing, classifying, and 
screening fundus abnormalities [4].

The fundus image of the retina uncovers its structural 
format such as retinal vessels map, optic disk (OD), fovea, 
macula, and pathological structures such as microaneurysms 
(MAs), hemorrhages, exudates, cotton wool spots, if exist 
[5]. The optic nerve head begins from OD (observed as a 
bright oval shape) and is the passage point for major vessels 
to the eye. Macula (exposed as a dull zone without vessels) 
with the fovea at its middle is responsible for central and 
high-resolution eyesight. The blood vessel network has a 
high contrast due to high frequency stretched over the entire 
fundus image. The retinal veins provide blood supply to the 
retina and transmit the data signals from the retina to the 
brain [6].
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Retinal vessel extraction and characterization of mor-
phological attributes such as diameter, shape, tortuosity, 
and bifurcation can be utilized in screening, evaluation, 
and medication purposes of different eye abnormalities [7]. 
The retinal vasculature variation is used as an indication 
for detection of different abnormalities such as DR, hyper-
tensive retinopathy, retinal artery/vein occlusion, and other 
disorders, for example stroke, hypertension and diabetes, 
induced modifications in the structure of retinal vessels. 
Evaluation of retinal blood vessel attributes, for example 
variation in width, is utilized to analyze hypertension, while 
bifurcation points and tortuosity can help with the identifi-
cation of cardiovascular ailments and DR [8]. Most of the 
retinal diseases that produce alterations in the retinal vessel 
structure would cause visual impairments. Eyesight can be 
prevented largely by the detection of such pathologies at the 
initial stage [9].

Automatic precise identification and diagnoses of eye 
abnormalities and their timely medication are important in 
restraining blindness. However, any computerized examina-
tion of the retinal vessel structure needs its accurate extrac-
tion first. Traditionally, manual segmentation is performed 
by trained experts that is very hard and time-consuming task 
[10]. Moreover, the complexities in the imaging procedure, 
such as the lower contrast difference between vessel and 
non-vessel pixels, unbalanced background illumination and 
the vessel width variation, brightness and shape, reduce sig-
nificantly the coincidence among segmentations performed 
by various human graders [11]. These facts stimulate the 
advancement of automatic techniques for retinal vessel 
extraction without human interference.

Various retinal vessel segmentation techniques in the lit-
erature are summarized in different survey and reviews. For 
example, Mabrouk et al. [12] introduced a concise review of 
retinal detection and registration techniques, which restrict 
explanation to the detection of the centers and boundaries 
of retinal vessels. John et al. [13] and Oliver et al. [14] dis-
cussed different frameworks for screening of DR in fundus 
images. Fraz et al. [6] presented an extensive review of the 
different methods and algorithms for extraction of retinal 
vessels. They provide a comprehensive study of various 
retinal vessel detection algorithms; pros and cons of differ-
ent techniques; current patterns and future guidelines and 
outline the open issues. They discussed a limited number 
of retinal image datasets. The most recent survey discusses 
the techniques for retinal vessel detection and challenges 
associated with retina evaluation [7].

In this article, we have discussed the retinal image acqui-
sition and different abnormalities associated with it. Com-
parison tables of all openly accessible datasets are added. 
The target of this article is to inspect various retinal vessel 
detection schemes; to show a comparison of different tech-
niques utilized for retinal vessel extraction; to disclose the 

pros and cons of various methods; to discuss future guide-
lines and outline the open issues. We have covered a wide 
range of published papers from the beginning until now and 
also divide these articles into different logical categories 
based on the image processing techniques to make it easier 
for readers. All the retinal datasets developed until now are 
also summarized in this paper.

The following are the major contributions:

•	 Table 1 is added for comparison of all openly accessible 
retinal image datasets. In the literature, Fraz et al. [6] 
discussed only eight (8) datasets, while this article has 
compared thirteen (13) openly accessible datasets.

•	 We have classified the retinal vessels segmentation 
approaches into more logical groups than Fraz et al. [6] 
for the ease of readers.

•	 Fraz et al. [6] selected and compared only 69 papers from 
peer-reviewed publications, while we have compared and 
evaluated 149 papers from the peer-reviewed journals.

•	 In the 4th column of Table 3, we have summarized results 
for medical examination and applications.

•	 In Sect. 4, we have added Fig. 6 to show frequency of 
databases, which is frequently used for validation of dif-
ferent retinal vessel extraction algorithms.

This article consists of the following sections: retinal image 
analysis (Sect. 2), published literature that investigated reti-
nal vessels extraction techniques (Sect. 3), and discussion 
and the conclusion (Sect. 4).

2 � Retinal image analysis

This section discusses the acquisition and abnormalities of 
retinal images and the datasets used for validation of retinal 
vessels extraction techniques.

2.1 � Acquisition of retinal image

Retinal photographs are captured by a digital fundus cam-
era attached with a low-power microscope. Pupil of the 
human eye is used as entry/exit points for fundus camera 
illumination and imaging light beams on the inner surface 
of the eye called the retina. Visible landmarks of the retina 
are OD, blood vessels, macula, and fovea. The fundus cam-
era operates in different modes to scrutinize the human eye 
retina. In color mode, the retina is inspected in full color 
under the flashing of white light. In red-free mode, a filter 
is applied to improve the appearance of vessel network to 
observe vascular disorders within the retina. It is used to 
examine disorders such as hemorrhages, exudates, nerve 
fiber layer defects, and epiretinal membranes. In angiog-
raphy mode, fluorescent dye is vaccinated into the blood 
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stream to capture retina and surrounding tissue blood ves-
sel network for the analysis of various eye diseases. It is 
helpful for screening abnormal vessels and hyperperme-
able vessels leading to ocular tumors and central serous 

chorioretinopathy, respectively [6]. Figure 1 represents the 
anatomical structure of the retina, an image taken from the 
HRF dataset.

Table 1   An overview of freely accessible retinal databases with a semantic segmentation ground truth

Database Year Image resolution Total images Classification of images Fundus camera Format

STARE [26] 2000 605 × 700 20 10 normal
10 pathological

TopCon TRV-50 camera at 
35° FOV

PPM

DRIVE [185] 2004 768 × 584 40 20 test set images
20 training set images
Out of 40 images, 7 are 

pathological and 33 
normal

Canon CR5 non-mydriatic 
3-CCD camera with a 
45° FOV

JPEG

MESSIDOR [186] 2004 1440 × 960,
2240 × 1488,
2304 × 1536

1200 800 images with pupil 
dilation,

400 without dilation

Non-mydriatic 3CCD cam-
era (TopCon TRC NW6) 
at 45° FOV

TIFF

ARIA [187] 2006 768 × 576 212 92 photographs with AMD,
59 photographs with 

diabetes,
61 control group photo-

graphs

Zeiss FF450+camera at a 
50° FOV

TIFF

ImageRet [188, 189] 2008 1500 × 1152 219 DIARETDB0: Out of 130 
images, 20 are normal 
and 110 are abnormal 
images

DIARETDB1: 89 images
5 normal, 84 abnormal.

50° FOV fundus camera, 
with anonymous settings

PNG

REVIEW [190] 2008 3584 × 2438,
1360 × 1024,
2160 × 1440

16 8 high-resolution image 
set,

4 vascular disease image 
set,

2 central light reflex image 
set,

2 kickpoint image set.

Canon EOS D30 at a 50° 
FOV

BMP and JPEG

DRIONS-DB [191, 192] 2008 600 × 400 110 Not available (N/A) Color analogical fundus 
camera, digitized with 
HP-PhotoSmart-S20 
high-resolution scanner

JPEG

ROC Microaneurysms 
[193]

2010 768 × 576,
1058 × 1061,
1389 × 1383

100 50 test set images,
50 training set images

TopCon NW100 or a 
Canon CR5-45NM cam-
era at 45° FOV

JPEG

HRF [194] 2009 3504 × 2336 45 15 normal images,
15 DR patients and 15 

glaucomatous patients 
images

CANON CF-60UVi at a 
45° FOV

JPEG

VICAVR [195] 2010 768 × 584 58 N/A TopCon non-mydriatic 
camera NW-100 model

JPEG

HEI-MED [196] 2012 Not available 169 N/A Not available JPEG
DRiDB [197] 2013 720 × 576 N/A N/A Zeiss VISUCAM 200 

camera at a 45° FOV
BMP

RIM-ONE [184] 2011 Not available 169 118 healthy images divided 
into: 12 early glaucoma, 
14 moderate glaucoma, 
14 deep glaucoma and 
11 Ocular hypertension 
(OHT) images

Nidek AFC-210 with a 
body of a Canon EOS 5D 
Mark II, 21.1 megapixels

N/A
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2.2 � Retinal image abnormalities

Various crucial diseases that disturb the retinal vascular 
network appear in the eye, the cerebrum, or the cardiovas-
cular structure. The following is the outline of the most 
dominating sicknesses, which can be inspected through 
retina photograph.

2.2.1 � Diabetic retinopathy

Diabetes is a severe, fatal disorder that arises either when 
the pancreas does not generate sufficient insulin (a hor-
mone that controls glucose), or when the body cannot 
appropriately handle the insulin it generates [15]. Excess 
of glucose in blood, a common effect of uncontrolled dia-
betes, may after sometime lead to severe harm to the heart, 
eyes, kidneys, blood vessels, and nerves and outcomes in 
a retinal complication of diabetes called DR [16]. Type 1 
and type 2 diabetes are two types of diabetes categorized 
by the lack of insulin and ineffective use of insulin in the 
body, respectively. Type 1 diabetes is currently inevitable, 
and its cause is unknown. Indications of type 1 and type 
2 diabetes include constant hunger, vision impairments, 
excessive urination, weight reduction, tiredness, and thirst 
[17].

DR is a common complication of diabetes and dominant 
reason for visual impairments in the people of working age 
of western nations [18]. Analyzing retinal photographs for 
the existence of DR to a great extent is a pattern recognition 
task. The common attributes of DR are MAs, exudates and 
cotton wool spots, etc. The hyperglycemia in the eye harms 
the retinal vessel walls. Consequently, new tiny vessels are 
formed which eventually bleed and damage the retina, a 
condition called proliferative DR. The damage to the retinal 
vessel barrier causes fluid leakage, diabetic macular edema 
(DME) and harm to photoreceptors [13].

2.2.2 � Glaucoma

Glaucoma arises when the fluid called aqueous humor inside 
eye does not drain normally. This fluid piles up and increases 
pressure inside the eye, which harms the eye’s optic nerve 
that gets worse over time. This can result in visual impair-
ment and blindness [19]. Timely analysis and medication 
seem to reduce the uncertainty of visual impairment due 
to glaucoma [2]. Secondary glaucoma is a condition that 
occurs due to tumor, eye injury, retinal blood vessel block-
age, or leakage, swelling of the eye and the use of steroids. 
The major symptoms of glaucoma are blurred vision, sudden 
vision loss, and nausea along with extreme eye inflamma-
tion. In general, there is no treatment for glaucoma, yet it can 
be restricted. Eye drops, pills, laser techniques, and surgical 
operations are utilized to keep or moderate further harm 
from happening [20].

2.2.3 � Cardiovascular disease

Cardiovascular disorder appears in the retina in various 
ways. Hypertension and atherosclerosis produce variations 
in the proportion between the width of retinal arteries and 
veins, famous as the A/V ratio. Narrowing of the arteries and 
broadening of the veins can decrease A/V ratio and result in 
an increase in the risk of stroke and myocardial infarction 
[21]. Moreover, the systemic vascular disorder can lead to 
arterial/venous occlusions, known as central/branch arte-
rial occlusions (CRAO, BRAO) and central/branch venous 
occlusions (CRVA, BRVO) [2].

2.2.4 � Age‑related macular degeneration

AMD is a syndrome that influences individuals beyond 
50 years old and is the major source of inevitable vision 
loss in elderly individuals on the planet [22]. The systemic 
risk factors consist of male gender, hypertension, hyperlipi-
demia, chronic kidney disease (CKD), Hepatitis B surface 
antigen (HBsAg) positivity, liver cancer, coronary heart 
disease, and increased serum white blood cell levels, etc. 
[23]. The two noteworthy modes are dry and wet AMD, of 
which dry AMD ordinarily prompts slow loss of visual acu-
ity. Wet AMD is the most optically dangerous mode, classi-
fied by an increase of a choroidal vascular structure into the 
macula coupled with expanded vascular permeability. The 
expansion in vascular permeability prompts to unusual fluid 
collection inside or beneath the retina that result in visual 
impairments when it associates the middle of the macula [2].

2.3 � Openly accessible retinal image datasets

Image datasets possess significant importance in pattern 
recognition studies, as the developed techniques need to be 

Fig. 1   Anatomical structure of the retina
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validated on sample images. An overview of all the freely 
accessible retinal image datasets is presented in Table 1. The 
majority of retinal vessel extraction techniques are assessed 
on two openly available standard datasets, namely DRIVE 
and STARE.

3 � Categorization of retinal image vessel 
extraction algorithms

This survey classifies retinal vessel extraction techniques 
based on the image processing approaches applied and the 
systems utilized. The retinal vessel extraction methods are 
classified into five core classes: (I) pattern recognition (PR) 
approaches, (II) vessel tracking/tracing-based methodolo-
gies, (III) model-based techniques, (IV) hardware implemen-
tation-based approaches, and (V) hybrid approaches. Some 
of these classifications are further isolated into subsections. 
A graphical representation of the classification of retinal 
blood vessel extraction techniques is shown in Fig. 2.

This review consists of 149 articles considered from 
peer-reviewed journals. The articles categorized in each of 
the aforesaid classifications are outlined in Fig. 2 for refer-
ence. The categorization has been performed based on the 
image processing methodology utilized for retinal vessel 

extraction. The structure of retinal vessels provides impor-
tant information for ophthalmologists. Sections 3.1–3.5 
provide a detailed explanation of the techniques given in 
Fig. 2 alongside their analytical discussion.

Fig. 2   Classification of retinal vessel segmentation techniques

Fig. 3   Classification of papers based on techniques used for retinal 
vessel extraction
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Figure 3 indicates the number of the papers in each sub-
category of retinal vessel extraction techniques. The yearly 
decomposition of selected papers is shown in Fig. 4.

The performance metrics for retinal vessel detection tech-
niques is summarized in Table 2.

3.1 � Pattern recognition approaches

There are PR techniques to handle the identification of pat-
terns and consistency in data. In the vessel segmentation 
scenario, PR approaches handle the identification of retinal 
vasculature, vessel attributes, and other background seg-
ments. PR algorithms are distributed into two groups: super-
vised and unsupervised techniques. Supervised approaches 
exploit some prior marked statistics to isolate vessel and 
non-vessel pixels, while unsupervised approaches achieve 
the vessel extraction without any prior marking informa-
tion. PR unsupervised approaches for retinal vessel extrac-
tion are further classified into four groups: (1) multiscale-
based techniques, (2) mathematical morphological methods, 
(3) matched filtering approaches, and (4) region growing 
methods. Supervised approaches are further categorized into 
two classes: (1) neural network-based approaches and (2) 
ensemble classification.

3.1.1 � Unsupervised approaches

Multiscale‑based techniques  Multiscale techniques are 
based on the variation of image scales to perform vessel 
extraction. The fundamental point of interest of this pro-
cedure is to increase the execution speed. In multiscale 
approaches, a scale space is generated from the input image 
for extracting different structures. Major vessel structures are 

segmented from low-contrast photographs, while fine vascu-
latures are detected from high-contrast ones which increased 
robustness. Multiscale methods are frequently utilized in 
vessel extraction in order to address the issue of vessel width 
variation in fundus images. The articles categorized in the 
aforesaid classification are outlined in Table 3 for reference.

Frangi et al. [24] proposed vessel enhancement filtering pro-
cess based on geometrical attributes. The filtering process 
searches for geometrical attributes with elongated structure. 
Vessels contrast enhancement is achieved by computing all 
eigenvalues of the Hessian matrix of the image. A multiscale 
approach is used due to variation in vessel width. The ves-
selness measure can be utilized as a preliminary step for ves-
sel extraction of this type of photographs, which is further 
used for contrast enhancement and detection of tiny vessels 
[25]. This algorithm introduced a new LRV test in place 
of Hessian and MF, used in [26]. The LRV is constructed 
from a 6-D measurement array of MFR and edge responses 
and their associated confidences. A multiscale MFR are 
combined to segment vessels with varying size. The edge 
responses are helpful in differentiating between offset 

Fig. 4   The yearly distribution of 
the selected articles

Table 2   Performance metrics for retinal vessels extraction

Metrics Explanation

True positive rate (TPR) TP/Number of vessel pixel
False positive rate (FPR) FP/Number of background pixel
Sensitivity (Sn) TPR or TP/(TP + FN)
Specificity (Sp) 1-FPR or TN/(TN + FP)
Accuracy (Acc) (TP + TN)/(TP + FP + TN + FN)
Area under the ROC Curve (AUC) Sn + Sp/2
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boundaries near abnormalities and genuine vessels. The con-
fidence measures give priority to the contour of the intensity 
surface rather than the magnitude of the responses, improv-
ing the capacity of the LRV to distinguish low-resolution 
vessels. The six-component dimension arrays are recorded 
to compute the resultant LRV utilizing pdf’s learned from 
training information. Each component is intended to fix the 

issue of identifying tiny and low-resolution vessels, while 
preventing responses to other retinal photograph segments. 
Finally, the new LRV is utilized by vessel tracing scheme to 
extract a complete network of vessel centerline.

Martínez-Pérez et  al. [27] coupled processes of the 
scale-space representation, first and second derivatives 
of the intensity image and region growing technique. The 

Table 3   Multiscale-based retinal vessel segmentation approaches summarization

References Year Techniques Results for medical examination and applications

Frangi [24] 1998 Eigenvalues evaluation of the Hessian Vessel width estimation, suitable for noise and back-
ground suppression

Martínez-Pérez [27] 1999 Scale-space representation, first and second derivative 
and region growing (RG) procedure

Adjust contrast variations, applicable to hypertensive 
patients images

Sofka [25] 2006 Likelihood ratio vesselness (LRV) with matched filter 
responses (MFR), confidence and edge measures

Detection of narrow and low-contrast vessels, reduction 
in FPR

Martínez-Pérez [28] 2007 Multiscale feature extraction, RG procedure Adjust contrast variations, vessel width and branching 
angle measurement

Farnell [29] 2008 Multiscale line operators (MSLO) Suitable for diabetic and AMD patients images
Vlachos [30] 2010 Multiscale single channel line tracking algorithm 

(MSLTA)
Robust to normal and additive Salt and Pepper noise 

images
Li [31] 2012 Multiscale Production of the Matched Filter (MPMF) 

responses
Detection of small and weak vessels, vessels width 

estimation
Moghimirad [32] 2012 Weighted 2-D medialness function, vessel centerline 

extraction
Vessels radii estimation, robust to noisy and abnormal 

images
Yu [33] 2012 Second derivatives of Gaussian filtered image at numer-

ous scales, second-order local entropy thresholding
Lesion detection in DR screening, cardiovascular diseases 

prediction
Nguyen [35] 2013 Multiscale line detection Vessels widths computation, detect arteriovenous nicking 

for cardiovascular disease
Fathi [36] 2013 Complex continuous wavelet transform (CCWT), region 

growing, adaptive histogram-based thresholding
Vessel diameter approximation

Azzopardi [37] 2013 Trainable Combination Of Shifted FIlter REsponses 
(COSFIRE)

Applied to get information about texture, color, contours, 
and motion

Akram [38] 2013 Multilayered thresholding approach Identification of diabetic retinopathy
Wang [39] 2013 Matched filtering with multiwavelet kernels (MFMK) Accurate noise estimation
Ganjee [40] 2014 First-order Derivative of Gaussian (FoDoG) and multi-

scale matched filter
Microaneurysms detection in pathological images

Mapayi [42] 2014 Adaptive thresholding method based on local homoge-
neity information

Additive Gaussian noise removal, applicability to detect 
blood vessels

Ravichandran [43] 2014 CLAHE, 2-D Gabor filter response, local entropy-based 
thresholding

Fast contrast enhancement and applicability to detect 
blood vessels

Annunziata [44] 2015 Multiscale Hessian eigenvalue analysis, percentile-
based thresholding

Vessels detection in presence of exudates and other 
abnormalities

Fraz [46] 2015 QUARTZ (Quantitative Analysis of Retinal Vessel 
Topology and size)

Glaucoma and proliferative DR detection

Bao [47] 2015 Cake filter Detect low-contrast and tiny vessels
Kar [48] 2016 Curvelet transform and kernel-based FCM MFR, Lapla-

cian of Gaussian filter (LoG)
Vessels extraction from noisy and pathological retinal 

images
Emary [49] 2016 Flower pollination search algorithm (FPSA), pattern 

search (PS) method, possibilistic fuzzy C-means 
(PFCM)

Robust to healthy and pathological retina images

Al Shehhi [50] 2016 Black top hat (BTH), Graph cut and segmentation, 
Dijkstra shortest path and segmentation

Tolerant to noisy images, detect small and tinny vessels

Khan [51] 2016 Hessian matrix and eigenvalues approach, Otsu thresh-
olding

Robust to noisy and pathological images, detect tiny 
vessels
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scale-space representation provides detail about diameter, 
elongated structure, and directions of retinal vessels. Two 
significant statistical attributes of elongated structures 
depend on the first and second derivative data which pro-
vide weights to pixels with a high probability of relating 
to vessels. The region growing approach permits vessels to 
grow where the values of the maximum principal curvature 
lie within a wide interval, and the growth is restricted into 
segments with low gradients. This permits fast evolution of 
regions outside the boundaries. Finally, when the margins 
between clusters are defined, the technique grows vessel and 
non-vessel clusters at once without the gradient constraint. 
This technique is further extended using multiscale feature 
extraction [28]. They investigate the observations that the 
intensity of the photograph is relational to the volume of 
blood in the light track corresponding to that pixel.

The MSLO methodology is presented to segment digital 
fundus images and suppress noise [29]. This was pursued by 
thresholding to obtain an initial vessel extraction map that 
was further refined by utilizing a simple RG method. Results 
with the application of simple median filter are obtained for 
comparison with MSLO.

Vlachos et al. [30] presented a novel MSLTA and mor-
phological postprocessing steps for extraction of retinal 
vascular structure. An optimizing process begins with the 
approximation of a confidence matrix from a cluster of seeds 
which is obtained from the image’s histogram and proceeds 
to a particular state of the cross-sectional profile gets to be 
invalid. The multiscale photograph sketch is estimated after 
coupling the individual photograph sketches along scales, 
holding the confidence for each pixel to relate to a vessel. 
The combination of multiscale line tracking results produces 
a multiscale confidence image map. The preliminary vessel 
tree is extracted after map quantization of the multiscale 
confidence map. Map quantization and median filtering pro-
cedures remove noisy lines and connection breaches growing 
the accuracy of the confidence array. Finally, morphological 
postprocessing eliminates the residual artifacts.

Li et al. [31] proposed multiscale vessel detection approach 
by convolving the responses of MF at three different scales, 
which further enhances the vessels while suppressing the 
noise. MF exhibit strong responses at the vessels on multi-
ple scales, while the background noise does not show higher 
response and can be easily suppressed. Further, good width 
estimation can be easily achieved by suitable selection of scale 
parameters. The method is suitable for small and tiny vessels 
detection, concurrent extraction of vessels of variant widths, 
low computational complexity and easier to implement.

A multiscale weighted 2-D medialness function-based 
technique has been introduced for extraction of retinal ves-
sels in [32]. This approach consists of three noteworthy 
steps: vessel medialness detection, vessel midline recog-
nition, and vessel reconstruction. The outcomes of the 

medialness function are first convolved by the eigenvalues 
of the Hessian matrix of the photograph. Next, midlines of 
vessels are detected utilizing noise elimination and recon-
nection operations [25]. In conclusion, vessel diameter is 
computed and retinal vessels are extracted.

Yu et al. [33] introduced a multiscale enhancement and 
second-order local entropy-based technique for the extrac-
tion of retinal vessel tree. After preprocessing, vessel net-
work is produced by calculating the eigenvalues of the sec-
ond derivatives of Gaussian filtered photograph at different 
scales [24]. The second-order local entropy thresholding 
is utilized to extract the vessel tree. Finally, a rule-based 
decision step is used to compute the geometric shape vari-
ance between vessels and background to decrease FPR.

An automatic retinal vessel extraction framework based 
on multiscale line identification [34] was presented by 
Nguyen et al. [35]. This approach depends on the variation 
of the length of a basic line detector in order to achieve 
multiscale line detectors. Line responses at different scales 
are linearly coupled to eliminate the drawbacks of each 
individual line detector and to obtain a final binary image.

A novel multiscale vessel enhancement and segmenta-
tion technique using a complex continuous wavelet trans-
form (CCWT) is proposed by Fathi et al. [36]. The CCWT 
differentiates the elongated elements from the boundary 
structures utilizing real and imaginary parts of the applied 
wavelet. The resultant binary image is segmented by inte-
grating the modulus values of the wavelet coefficients in 
the appropriate scales and utilizing an adaptive threshold-
ing technique along with suitable length filtering.

Azzopardi and Petkov presented a trainable COSFIRE 
filters for detection of vascular junctions in the DRIVE 
dataset retinal photographs [37]. The setup of a COSFIRE 
filter relies upon the spatial procedure of contour measures 
that exists along concentric circles of given radii around a 
stated ROI. Gabor filters are used for the identification of 
elongated structures and boundaries. The weighted geo-
metric mean is utilized to combine responses of filters.

Akram and Shoab introduced a novel multilayered 
thresholding approach for detection of retinal vascular net-
work [38]. The vessels contrast is boosted by utilizing 2-D 
Gabor filter. The vessel extraction mask is produced utiliz-
ing multilayered thresholding approach which traces vessel 
boundaries and inspect their connectivity by using vari-
ous thresholds iteratively. Moreover, it removes all false 
boundaries and vessel segments prior to vessel tracking.

To enhance the vessels, MFMK algorithm is used [39]. 
A multiscale hierarchical decomposition is utilized on the 
normalized enhanced photograph to remove the noise and 
localize vessels. The final binary vessel tree is extracted 
by using local adaptive thresholding.

Ganjee et al. [40] proposed an enhanced retinal ves-
sel extraction technique depend on high level features 
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for abnormal photographs. The initial vessel network is 
detected based on low level features using multiscale MFR 
[41]. The final binary vessel map is obtained based on high 
level features.

A new adaptive thresholding method that depends on 
local homogeneity information for extraction of the retinal 
vascular network is presented in [42]. Image enhancement 
and sharpness is performed by using the Unsharp filter, 
which is pursued by an average filter for smoothening 
the image. The vessels are localized by utilizing adaptive 
thresholding depend on local homogeneity information. 
A combination of morphological postprocessing steps is 
used on the inverted thresholded photograph to remove the 
remaining misclassifications.

Ravichandran and Raja [43] proposed a local entropy-
based thresholding approach for identification of retinal 
vessel network. The retinal image is enhanced by applying 
CLAHE followed by wiener filtering to eliminate back-
ground noise. The 2-D Gabor filter is applied for further 
vessel enhancement. Finally, thresholding is applied to 
obtain a binary map.

A novel unsupervised retinal vasculature extraction 
technique that contains inpainting filter, called neigh-
borhood estimator before filling, is exhibited to inpaint 
exudates in a way that adjacent FPR are considerably 
decreased during vessel enhancement [44]. The preproc-
essing steps are adapted from [45]. Multiscale Hessian 
eigenvalue approach is used for retinal vascular enhance-
ment. Finally, percentile-based thresholding is used to 
obtain binary image.

Fraz et al. [46] designed a novel QUARTZ approach 
depending on multiscale line detector for handling and eval-
uating of retinal photographs. It contains sections for vessel 
extraction, diameter computation, and angular variation of 
the individual vessel midline pixel with sub-pixel accuracy, 
calculating local vessel direction, OD localization, arteriole/
venule categorization, tortuosity computation, and exporting 
the numerical estimations in different output file formats.

A novel approach based on cake filter for extraction of the 
retinal vascular network is presented in [47]. This technique 
first joins the real element of orientation score utilizing the 
cake filter and joins with the adaptive threshold value to get 
retinal vessel map.

The curvelet transform and kernel-based FCM framework 
is suggested by Kar et al. [48] for retinal vessel segmentation 
and optic disk removal. Retinal vasculature enhancement 
and denoising is performed by applying curvelet transform. 
The kernel-based FCM approach is used to localize vessel 
structure. For pathological images, LoG filter along with 
matched filtering is also applied to differentiate the step and 
the ramp-like signal from that of vessel structure.

A new framework for multiobjective retinal vessel clas-
sification is a combination of FPSA and PFCM [49]. The 

FPSA is applied to localize the retinal vessel network utiliz-
ing PFCM fitness function. In the second level of optimiza-
tion, the attained cluster centers are much enhanced utilizing 
PS as local search, but now the goal is to find the tinny or 
vessels with small widths.

Al Shehhi et al. [50] suggested a graph-based method 
for extraction of retinal vasculature. Preprocessing steps are 
used to enhance contrast and to create essential features to 
enhance vessel structure due to the sensitivity of vessel pat-
terns to multiscale/multiorientation structure. Graph-based 
segmentation is used to reduce computational processing 
required for region of interest into most semantic objects.

Khan et al. [51] introduced morphological Hessian-based 
approach for retinal vasculature extraction utilizing region-
based Otsu thresholding. The preliminary process consists of 
CLAHE and morphological operations for contrast enrich-
ment and low frequency noise elimination, correspondingly 
[52]. The Hessian matrix and eigenvalues are utilized in a 
novel way utilizing multi scales to excerpt wide and thin 
vessel-enhanced photographs, separately. The modified 
form of Otsu thresholding is employed to segment vessel 
and background pixels from both enhanced photographs. In 
conclusion, length filtering is utilized to remove the undesir-
able region/segment, background pixels, disease aberrations, 
and noise, to acquire a final segmented photograph.

Table 4 shows the performance metrics stated by different 
multiscale techniques of retinal vessel extraction, with a high 
accuracy stated by Moghimirad [32] both on the DRIVE and 
STARE datasets.

Mathematical morphological (MM) approaches  The basic 
idea of morphological approaches is to probe a photograph 
with a small segment or template known as a structuring 
element (SE). The SE is placed at all probable positions in 
the photograph, and it is contrasted with the respective local 
pixels. A morphological filter will store shapes like its SE 
shape while modifying different shapes. A morphological 
filter will store shapes similar to its SE shape while modify-
ing dissimilar shapes. Most morphological filters are suc-
cessful at eliminating both linear and nonlinear noise forms. 
The MM-based techniques are summarized in Table 5.

Zana and Klein [53] proposed MM- and curvature eval-
uation-based scheme for extraction of vessel-like structure. 
Morphological operations are used to prominent vessels with 
respect to their morphological attributes, and then, cross-
curvature evaluation is utilized to distinguish vessel and 
background pixels. Ayala et al. [54] presented an average 
of fuzzy sets by utilizing the average distance of Badde-
ley–Molchanov and the mean of Vorob’ev. The coupling of 
Zana’s method and Baddeley–Molchanov average produced 
good results. The vessel extraction operations suggested 
by Zana and Klien have been reconsidered and revised 
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employing these new averages. All these operations generate 
grayscale photographs with improved vessels contrast after 
low level processing. A binary image is obtained by applying 
a threshold to this enhanced image. The authors preserve the 
image acquired before utilizing the final threshold which is 
assumed as a fuzzy set demonstrating the vessels.

Pixel processing-based technique is presented for reti-
nal vessel segmentation in [52]. This approach consists 
of three stages: preprocessing stage, vessel midline iden-
tification, and vessel extraction. In preprocessing stage, 
background is normalized and thin vessels are enhanced 
by utilizing a bank of line detection filters at different 

orientations. In second stage, a bank of DoOG filters is 
used for extraction of vessel centerline followed by an RG 
process for reconnection of vessel centerline. In the last 
stage, a modified top hat transform with different SEs is 
utilized to enhance vessels of variable widths, followed 
by morphological reconstruction to extract binary vessel 
map. A final binary photograph is acquired by an iterative 
seeded RG operation of the centerline photographs with 
the arrangement of four binary networks.

Yang et al. [55] presented a hybrid technique that con-
sists of combination of MM and a fuzzy clustering technique 
pursued by a purification process. Morphological top hat 

Table 4   Performance analysis 
of multiscale techniques

Method Dataset Accuracy Sensitivity Specificity AUC​

Martinez-Perez [28] DRIVE 0.9344 0.7246 0.9655 –
STARE 0.9410 0.7506 0.9569 –

Farnell [29] ARIA – – – 0.895
STARE – – – 0.940

Anzalone [87] DRIVE 0.9419 0.7286 0.981 –
Vlachos [30] DRIVE 0.929 0.747 0.955 –
Li [31] DRIVE 0.9496 – – –

STARE 0.9461 – – –
Moghimirad [32] DRIVE 0.9659 – – 0.9580

STARE 0.9756 – – 0.9678
Yu [33] DRIVE 0.9426 0.7233 – –

STARE 0.9463 0.7112 – –
HRF 0.9566 0.7938 – –

Nguyen [35] DRIVE 0.9407 – – –
STARE 0.9324 – – –
REVIEW – – – –

Fathi [36] DRIVE 0.9581 0.7768 0.9759 0.9516
STARE 0.9591 0.8061 0.9717 0.9680

Akram [38] DRIVE 0.9469 – – 0.9632
STARE 0.9502 – – 0.9706

Wang [39] DRIVE 0.9461 – – 0.9543
STARE 0.9521 – – 0.9682

Ganjee [40] STARE 0.9536 – – –
Mapayi [42] DRIVE 0.9469 0.7477 0.9679 –
Ravichandran [43] DRIVE 0.9574 0.7259 0.9799 –

STARE 0.9550 0.7693 0.9672 –
Annunziata [44] HRF 0.9581 0.7128 0.9836 − 0.9655

STARE 0.9562 0.7128 0.9836 –
Bao [47] STARE 0.9624 0.7812 – –
Kar [48] DRIVE 0.9616 0.7548 0.9792 –

STARE 0.9730 0.7577 0.9788 –
Emary [49] DRIVE 0.9368 0.9378 0.8994 –
Al Shehhi [50] DRIVE 0.934 0.850 0.944 0.893

STARE 0.924 0.633 0.950 0.800
ARIA 0.920 0.746 0.947 0.841

Khan [51] DRIVE 0.961 0.746 0.980 0.863
STARE 0.946 0.758 0.963 0.861
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operation is used for vessels enhancement and noise suppres-
sion. The binary vessel map is extracted by fuzzy clustering.

Fraz et al. [56] introduced a differential filtering and mor-
phological processing approach for detection of retinal ves-
sel. The FoDoG is used for detection of midlines. A multi-
directional morphological top hat operation is performed to 
acquire the structure and direction map of the vessel along 
with bit plane slicing of a vessel-enhanced grayscale photo-
graph. The final binary photograph is obtained by combina-
tion of midlines with these maps.

The FDCT and multistructure MM is applied for vessel 
extraction [57]. The vessel contrast is enhanced by using 
FDCT, and the boundaries of vessels are identified by utiliz-
ing a multistructure morphological operation. The wrongly 
detected boundaries are eliminated by morphological proce-
dure. Connected components analysis (CCA) is coupled with 
simple thresholding to obtain a final binary image.

Rossant et al. [58] proposed a morphological approach 
for quantitative analysis and extraction of retinal images. A 
morphological filter is used for vessel enhancement, and top 
hat transformation is utilized to extract two attribute images 
with prominent vessel contrast. Path opening is used for 
each attribute image so that the main elongated attributes 
are preserved, whereas the other ones are suppressed. The 
final segmentation photograph is achieved by thresholding 
and fusing the two resultant photographs.

The process of vessel midlines identification and mor-
phological bit plane slicing are coupled by Fraz et al. [59] 
to segment retinal vessels. The FoDoG filter is utilized for 
extraction of centerlines in four directions, and then, analy-
sis of derivative signs and derivative values are averaged 
out. The structure and direction map of vessels is acquired 

by using a multidirectional morphological top hat process 
pursued by bit plane slicing of the vessel-enhanced grayscale 
photograph. The midlines are coupled with these maps to 
attain the final binary image.

The modified form of [59] is presented for detection of 
retinal vessels in [60]. The DoOG filter is employed for ves-
sel centerlines identification, and top hat transformation is 
used for vessel enhancement. A retinal vessel binary image 
is produced by a bit plane slicing. An iterative RG algorithm 
fuses the main skeleton and the photographs acquired from 
bit plane slicing of vessel direction-dependent morphologi-
cal filters.

Xu et al. [61] designed a system for detection of retinal 
vessels that consists of two stages: shape-based morphology 
and a simplification of current tree-based connected pro-
cesses. The first stage is used to extract retinal vessels. The 
second stage is an extension of the constrained connectivity 
framework to non-increasing constraints.

Automatic retinal vascular segmentation method based on 
directional morphological operations and fuzzy categoriza-
tion is presented by Sigurðsson et al. [62]. The extraction 
of vessel attributes is achieved by applying path openings 
filter. The resulting attributes are utilized to perform a data 
fusion task depending on fuzzy set theory. Therefore, pixel 
categorization can be simply achieved to make a vessel tree.

Imani et al. [63] introduced a combination of MCA and 
MWT for extraction of retinal vascular network. This frame-
work supposes that individual signal is a linear mixture of 
many morphological significant elements. The MCA tech-
nique with suitable transforms is used to isolate vessel and 
non-vessel pixels. The MWT is utilized for retinal vessel 

Table 5   Summarization of Mathematical Morphological (MM) based retinal vessel segmentation methods

References Year Techniques Results for medical examination and applications

Ayala [54] 2005 Fuzzy MM Blood vessels detection
Mendonca [52] 2006 Difference of Offset Gaussian(DoOG) filter, multiscale 

MM
Tolerant to noisy images, detection of tiny and wide vessels

Yang [55] 2008 MM and fuzzy clustering Robust to normal and abnormal images
Fraz [56] 2011 Differential filtering and morphological processing Retinal vasculature extraction
Miri [57] 2011 Fast discrete curvelet transform (FDCT) and multistruc-

ture elements morphology by reconstruction
Detection of small and tiny vessels, robust to normal and 

noisy images
Rossant [58] 2011 Morphological approach, Image fusion Detection of branch retinal vein occlusions, robust to noisy 

images
Fraz [59] 2012 Vessel midline identification and morphological bit plane 

slicing
Tolerant to normal, pathological and central reflex images

Fraz [60] 2013 Morphological Bit Planes slicing and DoOG filter Retinal vascular map extraction
Xu [61] 2013 Shape-based morphology Elongation-based shape detection
Sigurðsson [62] 2014 Directional mathematical morphology and fuzzy clas-

sification
Isolation of major and minor vessels, robust to noisy images

Imani [63] 2015 Morphological component analysis (MCA) and Morlet 
wavelet transform (MWT)

Separation of lesions from vessels and handle noise



	 Pattern Analysis and Applications

1 3

enhancement. The final binary image is extracted by adap-
tive thresholding.

The performance evaluation of the methods based on the 
MF is shown in Table 6, where the maximum accuracy is 
shown by Imani et al. [63] for both the DRIVE and STARE 
databases utilizing MCA technique.

Matched filtering approaches  MF convolves a 2-D template 
with the retinal photograph for extraction of the vascular net-
work. The template is created to demonstrate an element in 
the photograph at some anonymous location and direction, 
and the MFR demonstrates the existence of the element. In 
order to create the template, the following vessel attributes 
are considered: vessel elongated structure, bifurcation and 
branching, crossover points and the vessel width variation. 
The large size and the utilization of the convolution kernel at 
various rotations cause a computational complexity. Moreo-
ver, the kernel reacts ideally to vessels when the vessel pro-
file matches to the kernel. The retinal background disparity 
and existence of abnormality in the retinal photograph also 
upturn the FPR because the abnormality can display the 
same neighborhood elements as the vessels. A MFR meth-
odology is discovered successful when utilized as a part of 
any other processing methods. The matched filtering-based 
algorithms are encapsulated in Table 7.

Chaudhuri et al. [64] extracted retinal vessel tree using a 
feature identification operator depending on the optical and 
spatial attributes of vessels. A Gaussian profile is utilized 
to estimate the shape of the cross section of a vein. The MF 
is applied to extract piecewise linear regions of retinal ves-
sels. Twelve diverse kernels in all possible orientations are 
employed to explore the vessel segments. The template is 
rotated in 15 degree additions to fit into vessels of various 
directions. The highest MFR is chosen for individual pixel 
and is thresholded to obtain a resultant vessel map. Finally, 
postprocessing steps are used to trim and classify the vessel 
regions.

Table 6   Performance metrics for Mathematical Morphology based 
methodologies

Method Dataset Accuracy Sensitivity Specificity AUC​

Zana [53] DRIVE 0.9377 0.6971 – 0.8984
Mendonca 

[52]
DRIVE 0.9452 0.7344 0.9764 –
STARE 0.9440 0.6996 0.9730 –

Fraz [56] DRIVE 0.9430 0.7152 0.9768 –
STARE 0.9442 0.7311 0.9680 –

Miri [57] DRIVE 0.9458 0.7352 0.9795 –
Rossant [58] DRIVE 0.9433 – 0.9788 –
Fraz [59] DRIVE 0.9430 0.7152 0.9769 –

STARE 0.9442 0.7311 0.9680 –
Fraz [60] DRIVE 0.9422 0.7302 0.9742 –

STARE 0.9423 0.7318 0.9660 –
Xu [61] DRIVE 0.9413 0.6924 0.9779 –

STARE 0.9471 0.7149 0.9749 –
Sigurðsson 

[62]
DRIVE 0.9455 – – 0.9373

Imani [63] DRIVE 0.9523 0.7524 0.9753 –
STARE 0.9590 0.7502 0.9745 –

Table 7   Summarization of vessel tracking methodologies

References Year Techniques Results for medical examination and applications

Chaudhuri [64] 1989 2-D Gaussian matched filter (GMF) Detection of blood vessels
Zhou [65] 1994 MF technique Vessels width estimation and tracking
Hoover [26] 2000 MF and threshold probing Classifications of retinal blood vessels
Gang [68] 2002 Amplitude-modified second-order Gaussian filter Vessel detection and its width estimation
Jiang [69] 2003 Verification-based multi threshold probing Robust to normal and abnormal images
Al-Rawi [66] 2007 Improved GMF Sorting of vessel and non-vessel pixels
Sukkaew [70] 2007 Statistically optimized LoG, skeletonization Detection of the skeletonized structure
Zhang [67] 2009 Modified MF with double-sided thresholding Screening of proliferative DR
Cinsdikici [71] 2009 MF and ANT colony method Extraction of retinal vessels & capillaries
Zhang [67] 2010 MF-first-order derivative of Gaussian (FDOG) Localization of thick and thin vessels
Amin [72] 2011 Phase concurrency and log-Gabor filter Real-time blood vessel identification
Kaba [73] 2013 MF and expectation maximisation (EM) scheme Segmentation of vessels in normal and pathological images
Chakraborti [74] 2015 Self-adaptive MF Extraction of retinal vessels network
Zhang [75] 2015 Modified MF based on second-order gaussian derivatives 

(SoGD)
Well-kept crossings and tiny vessels network

Singh [76] 2016 Modified MF using Gumbel probability distribution func-
tion (PDF) as its kernel

Tolerant to normal and pathological retinal images
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The approach depends on a MF technique combined with 
a preliminary information regarding retinal vessel attributes 
to extract the vessel edges, trace the centerline of the ves-
sel, and detect suitable characteristics of medical concern 
[65]. The computational efficiency in straight vessel clusters 
is achieved by an adaptive densitometric tracing approach 
depending on local neighborhood information.

Al-Rawi et  al. [66] modified Chaudhuri et  al. [64] 
approach by utilizing a comprehensive search optimization 
process on the DRIVE dataset to search an optimal param-
eters for MF size, the standard deviation and threshold limit. 
This system beats the Chaudhuri et al. framework. Zhang 
et al. [67] also improved the Chaudhuri et al. [64] MF for 
retinal vessel segmentation that uses a local vessel cross 
section evaluation utilizing double-sided thresholding to 
decrease FPR to nonlinear boundaries.

Hoover et al. [26] designed a technique for the identi-
fication of retinal vessels based on local and region-based 
attributes of vessels utilizing a threshold probing method on 
an MFR photograph. The approach investigates the MFR 
photograph and uses thresholding with iterative probing for 
individual pixel as vessel or background [64]. Pixels that are 
not categorized as vessels from probes are reprocessed for 
further probing. The technique is validated utilizing ground 
truth photographs and evaluated against simple thresholding 
of the MFR. This approach achieved 15 times decrement of 
FPR over the simple MFR and up to 75% increment of TPR 
has been noticed.

The amplitude-modified second-order Gaussian filter is 
introduced by Gang et al. [68] for retinal vessel extraction. 
It evidences that the vessel diameter can be approximated in 
a linear connection with the spreading factor of the matched 
Gaussian filter when the magnitude coefficient of the Gauss-
ian filter is appropriately allocated. Not only the vessel diam-
eter computation gives the width of retinal vessel, but it is 
also beneficial for enhancing the MF to increase the TPR. 
An adaptive local thresholding technique based on a verifi-
cation-based multi threshold probing approach is designed 
for vessel extraction [69].

Sukkaew et al. [70] described an automatic process for 
retinal vessel detection in low-contrast and noisy retinal pho-
tographs of premature infants that uses a statistically opti-
mized LoG edge detection filter, Otsu thresholding, medial 
axis transform skeletonization followed by pruning, and 
edge thinning for vessel extraction.

Cinsdikici and Aydin [71] proposed a combination of 
MF and ANT colony technique for retinal vessel extraction. 
The MF and ANT algorithms are applied in parallel on the 
preprocessed photograph. The length filtering is used on the 
combined results to extract the complete vessel map. This 
approach did not produce fruitful results on the pathologi-
cal images. The methodology is evaluated on the DRIVE 
dataset.

The MF reacts not only to vessels but also to background 
boundaries which will result in an increase of FPR. A novel 
MF with FDOG is presented by Zhang et al. [41] to address 
this issue. The combination of the zero-mean Gaussian MF 
and the FDOG is applied to extract the vessels. The appli-
cation of different scales make it possible to segment both 
wide and small vessels, followed by a logical OR operation 
to fuse the outcomes in an effective manner. The MF-FDOG 
considerably decreases the FPR created by the MF and iden-
tifies many fine vessels overlooked by MF. The MF-FDOG 
has also the advantage of extraction the vessels in abnormal 
photographs.

Amin and Yan [72] presented a high-speed retinal vessel 
extraction technique based on phase congruency which is a 
soft categorization of vessels and constant to contrast vari-
ations. The phase congruency of a photograph is computed 
by utilizing a set of log-Gabor wavelets, and a final image is 
acquired by thresholding.

Kaba et al. [73] presented a combination of bias correc-
tion, MF and the EM retinal vessel extraction technique. 
The STARE dataset is utilized for evaluation of normal and 
abnormal retinal images. A new self-adaptive MF utilizing 
a nonlinear synergistic arrangement of the vesselness filter 
and the MF for the extraction of retinal vessel network are 
proposed in [74].

Zhang et al. [75] described an automatic retinal vessel 
extraction technique based on new MF using SoGD in so-
called orientation scores. By locally matching the multiscale 
SOGD filters with data in orientation scores, they are able 
to improve elongated structures positioned in various direc-
tion planes accordingly. Both junctions and thin vessels are 
well-maintained because of the suggested multiscale and 
multiorientation filtering technique.

A novel MF using Gumbel PDF as its kernel is designed 
by Singh and Srivastava [76]. The image contrast enchant-
ment is performed by using CLAHE. The MFR image is 
used as an input to entropy-based optimal thresholding. 
Length filtering is further used for removing artifacts to 
generate a final binary image.

Table  8 encapsulates the consequences of different 
morphological-based retinal vessel extraction methods. A 
highest accuracy is stated by Al-Rawi et al. [66] and Zhang 
et al. [75], when tested on the DRIVE and STARE datasets, 
respectively.

Region growing methods  The basic theory of the conven-
tional growth region is to collect pixels that have similar 
characteristics together to form a region. Its efficiency is 
based on the location of seed points and growth conditions. 
On the other hand, the traditional technique requires to 
select seed points manually in order to guarantee the stabil-
ity. Because the blood vessels have a very wide gray-level 
distribution, making the traditional region growing method 
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and binary extraction technique hard to precisely segment 
the vascular map, for the region growing conditions also, 
depends on range of the image gray level. If each seed point 
uses the same threshold value, the growth is easy to stop 
when the blood vessels become more slender. These cat-
egory methods are summarized in Table 9.

Ahmad Fadzil et al. [77] proposed a region growing 
approach using FoDoG to extract retinal blood vessel net-
work. The retinal vascular structure is extracted by using 
a number of processes containing mean filter, CLAHE, 
bottom-hat morphological operation, contrast stretching. 
A seed-based region growing (SRG) and gradient-based 

region growing (GRG) are applied for vessel reconstruc-
tion. The DRIVE dataset is used for the evaluation of this 
methodology.

A parallel application for the vasculature extraction 
of high-resolution retinal photographs is introduced by 
Palomera-Pérez et al. [78]. This approach depends on a 
data splitting, which permitted a faster handling of those 
photographs. Two approaches for data partitioning are pre-
sented and evaluated: a horizontal partitioning for attribute 
extraction, and a mixed (horizontal and vertical) parti-
tioning for region growing. ITK serial version is used for 
extraction high-resolution retinal images.

Jiang et  al. [79] suggested a region growing vessel 
extraction approach depends on spectrum information. 
This scheme used Fourier transform on the ROI consist-
ing pf vessel information to acquire its spectrum knowl-
edge, according to which its initial feature direction will be 
detected. Then, coupled boundary knowledge with initial 
feature direction records the vessel network middle points 
as the seed points of RG extraction. Finally, the advanced 
RG approach with branch-based growth scheme is utilized 
to extract the vessels. The framework is evaluated on dif-
ferent medical images along with standard retinal datasets 
the DRIVE and the STARE.

Zhao et al. [80] introduced retinal vasculature extrac-
tion depending on level set and RG process. The CLAHE 
and 2-D Gabor filters are used to improve the blood vessels 
contrast, and an anisotropic diffusion filter is utilized to 
eradicate the uneven illumination in the photograph and 
maintain vessel edges. At the end, the RG approach and a 
region-based ACM with a level set operation are utilized 
to identify retinal vessels, and their outcomes are super-
imposed to obtain the resultant binary image.

A structure-based level set technique with an automatic 
seed point nomination for detection of retinal vascular 
map is presented in [81]. Additionally, this approach pre-
sents an improved zero-level contour regularization term 
which is more suitable than the ones presented by other 
approaches for retinal vessel extraction. The model is 

Table 8   Performance metrics evaluation of techniques based on 
matched filtering

Method Dataset Accuracy Sensitivity Specificity AUC​

Chaudhuri 
[64]

DRIVE 0.8773 – – 0.7878

Hoover [26] STARE 0.9267 0.6751 0.9567 –
Jiang [69] DRIVE 0.9212 – – 0.9114

STARE 0.9337 – – 0.8906
Al-Rawi [66] DRIVE 0.9535 – – 0.9435
Zhang [67] STARE 0.9497 0.6611 – –
Cinsdikici 

[71]
DRIVE 0.9293 – – 0.9407

Zhang [41] DRIVE 0.9382 0.7120 0.9724 –
STARE 0.9484 0.7177 0.9753 –

Amin [72] DRIVE 0.9191 – – 0.9360
STARE 0.9081 – – 0.9199

Kaba [73] STARE 0.9450 0.6645 – –
Chakraborti 

[74]
DRIVE 0.9370 0.7205 0.9579 0.9419
STARE 0.9379 0.6786 0.9586 –
CHASE 0.9304 0.5372 0.9583 –

Zhang [75] DRIVE 0.9446 0.7744 0.9708 –
STARE 0.9511 0.7940 0.9707 –

Singh [76] DRIVE 0.9522 0.7594 – 0.9287
STARE 0.9270 0.7939 – 0.9140

Table 9   Region growing-based retinal vessel segmentation techniques summarization

References Year Techniques Results for medical examination and applications

Fadzil [77] 2007 RG technique based on FoDoG Detection and restoration of retinal vascular network
Palomera-Pérez [78] 2010 ITK serial implementation, RG technique Segmentation of high-resolution images
Jiang [79] 2013 RG approach based on spectrum information Retinal vascular map extraction
Zhao [80] 2014 RG approach and a region-based ACM with level set Suitable for thin and wide vessels extraction, robust 

to noisy images
Dizdaroğlu [81] 2014 Structure-based level set approach Retinal vasculature segmentation of pathological 

and non-pathological images
Panda [83] 2015 Binary Hausdorff Symmetry (BHS) and Edge Distance 

Seeded RG (EDSRG) method
Robust to normal and pathological images

Lázár [84] 2015 RG approach and a hysteresis thresholding technique Detection of retinal microaneurysms
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tested on their own dataset [82], as well as openly acces-
sible the DRIVE and the STARE datasets.

An automatic seed identification based on a novel BHS 
measure and a new EDSRG technique for extraction of the 
retinal vascular network are proposed by Panda et al. [83]. 
The BHS approach directly computes a binary symmetry 
decision at every pixel without the measurement of continu-
ous symmetry map and image thresholding. This framework 
contains four distinct steps: preprocessing, selection of seed 
(midline) pixels utilizing the BHS approach, postprocessing 
to remove false midline pixels, and vessel extraction utiliz-
ing EDSRG algorithm. The disadvantage of this approach 
is dependency on the edge.

Lázár and Hajdu introduced a unique RG technique which 
utilizes a hysteresis thresholding approach with the response 
vector similarity of contiguous pixels [84]. The performance 
comparison of different RG algorithms is summarized in 
Table 10. A maximum accuracy is reported on the DRIVE 
dataset by Panda et al. [83] and on the STARE dataset by 
Zhao et al. [80].

3.1.2 � Supervised classification

Supervised classification needs hand-marked best quality 
level photographs for training, and each pixel is depicted by 
a feature classifier based on neighborhood or global data of 
the photograph. The constraint for this approach is that an 
arrangement of main distinctive attributes must be identified 
for training and characterization techniques. This retinal vas-
cular map is accurately marked by an eye care experts. How-
ever, as mentioned in [26], there is noteworthy dissimilarity 
in the extraction of vessels even among professional graders. 
As supervised techniques are modeled depending on prior 
information, their efficiency is generally higher than that of 

unsupervised ones and can show superior consequences for 
normal fundus photographs. The supervised classification 
methods are listed in Table 11.

Niemeijer et al. [10] excerpt a feature array for every pixel 
that contains of the green channel of the color photograph 
and the reactions of a Gaussian MF and its first- and second-
order derivatives at multiple scales of pixels. Subsequently, 
the kNN technique is used to compute the probability of the 
pixel relating to a vessel [85]. The resultant vessel map is 
acquired by thresholding the probability map.

The 2-D Gabor wavelet technique for extraction of retinal 
vessel network is suggested by Soares et al. [86]. It utilizes a 
feature array made of the pixel’s magnitude, and 2-D Gabor 
wavelet transform responses are captured at various scales. 
A GMM classifier is utilized to isolate every pixel as either 
a foreground or background pixel.

Ricci and Perfetti [34] proposed segmentation of retinal 
vascular map by utilizing line operators and SVM. A line 
detector is used on the green plane of a color photograph, 
and the response is thresholded to acquire unsupervised 
pixel sorting. Additionally, two orthogonal line detectors 
are also used along with the gray level of the target pixel 
to extract a feature array for supervised sorting utilizing an 
SVM. Comparing with other supervised approaches, the 
methodology (1) needs less features, (2) feature localiza-
tion is computationally simpler, and (3) less samples are 
required for training.

Anzalone et al. [87] designed a modular system for the 
identification of retinal vessels. The vessel enhancement 
scheme is adopted from [28]. This method consists of 
two core blocks: The first block is responsible for contrast 
enhancement by applying CLAHE, while the second block 
performs thresholding and some cleaning steps to extract 
the binary image.

Table 10   Performance metrics 
for comparison of region 
growing algorithms

Method Dataset Accuracy Sensitivity Specificity AUC​

Ahmad Fadzil et al. [77] DRIVE 0.91–0.95 0.91–0.95 0.88–0.94 –
Palomera-Pérez et al. [78] DRIVE 0.924 0.779 – –

STARE 0.922 0.660 – –
Jiang et al. [79] DRIVE 0.9214 – – –
Zhao et al. [80] DRIVE 0.9477 0.7354 0.9789 –

STARE 0.9509 0.7187 0.9767 –
Dizdaroğlu et al. [81] DRIVE 0.9365 0.7704 0.9613 –

STARE 0.9441 0.6926 0.9726 –
Local 0.9567 0.5179 0.9810 –

Panda et al. [83] DRIVE 0.9539 0.7337 0.9752 –
STARE 0.9424 0.8403 0.9547 –
HRF 0.9420 0.8159 0.9525 –

Lázár and Hajdu [84] DRIVE 0.9458 0.7763 – –
STARE 0.9492 0.7248 – –
HRF 0.9572 0.7736 – –
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Osareh and Shadgar [88] utilized Gabor filters at different 
scales for vessel extraction, and the attributes are detected 
utilizing PCA. The elements for Gabor filters are excellently 
adjusted by conducting tests. The image components are cat-
egorized as vessels and background utilizing the correspond-
ing feature arrays by the GMM and SVM classifiers.

For vessels detection, an arrangement of different image 
processing methods with SVM classifier is presented by Xu 
and Luo [89]. After preprocessing, the input photograph is 
further handled by wavelets at different scales for feature 
abstraction. The line detectors are utilized to detect tiny ves-
sels. A 12-D feature array for individual residual pixel in 
the binary retinal photograph excluding large vessels is gen-
erated. SVM is utilized to differentiate thin vessel regions 
from the background. A tracing algorithm depends on the 
coupling of vessel orientation, and the eigenvector of the 
Hessian matrix is utilized for thin vessel growth to acquire 
a vessel map.

FABC-based approach is proposed for automatic detec-
tion of retinal vascular network [90]. They used a 41-D fea-
ture array utilizing statistics of the local intensity arrange-
ment, spatial attributes, and geometry at different measures. 
Categorization depends on the FABC trained on ground 
truth patterns of vessel and background pixels. This meth-
odology is validated on the DRIVE dataset.

You et al. [91] introduced an arrangement of the radial 
projection and the semi-supervised self-training technique 
utilizing SVM for vessel extraction. The radial projections 
are used for the localization of vessel midlines, the tiny and 

low-contrast vessels. The vessel contrast is enhanced by an 
improved steerable complex wavelet. The SVM classifier is 
utilized to detect the main attribute of vessels. The extracted 
vascular map is acquired by the combination of the two. 
The methodology is very efficient in extracting tinny and 
poor resolution vessels but prone to inaccuracies in case of 
abnormalities.

A new supervised technique to investigate the perfor-
mance of Leung–Malik filters in classifying retinal vessels is 
presented by Varnousfaderani et al. [92]. It consists of two-
level hierarchical learning framework to extract vessels in 
abnormal fundus photographs. The retinal disorders, vessels, 
and non-vessels are demonstrated by expert classifiers in the 
first level. The results of the expert classifiers are combined 
to identify vessels in the second level. Roychowdhury et al. 
[93] suggested a novel three-step retinal vessel extraction 
algorithm. In the first step, the green channel of a retinal 
photograph is preprocessed to segment a binary photograph 
after high-pass filtering, and other binary photograph from 
the morphologically reconstructed enhanced image for the 
vessel regions. Subsequently, the mutual segments of both 
binary photographs are considered as the major vessels. In 
the second step, all residual pixels in the two binary photo-
graphs are categorized by utilizing a GMM classifier. In the 
third postprocessing step, the major segments of the retinal 
vessels are coupled with the categorized vessel pixels.

Orlando et  al. [94] introduced a discriminatively 
trained FC-CRF model for extraction of retinal vessels. 
Attributes of this approach are trained without any human 

Table 11   Encapsulation of supervised retinal vessel segmentation techniques

References Year Techniques Results for medical examination and applications

Niemeijer [10] 2004 Gaussian derivative and k-nearest neighbor (kNN) 
classifier

Localization of blood vessels for retinal disease screen-
ing system

Staal [85] 2004 Image ridges and kNN classifier Automated screening for DR
Soares [86] 2006 Gabor filter and Gaussian mixture model (GMM) clas-

sifier
Detection of neovascularization

Ricci [34] 2007 Line operator and support vector machine (SVM) Robust to normal, noisy and central reflex images
Anzalone [87] 2008 Scale-space analysis and parameter search Detect vessels from normal and pathological images
Osareh [88] 2009 Multiscale Gabor filter and GMM classifier Consistent performance for healthy and unhealthy 

images, Screening of DR
Xu [89] 2010 Wavelets, Hessian matrix and SVM Detection of major and minor vessels
Lupaşcu [90] 2010 Feature-based AdaBoost Classifier (FABC) Vasculature structure suitable for clinical applications, 

robust to noisy images
You [91] 2011 Radial projection and semi-supervised scheme utilizing 

SVM
Detection of low-contrast and narrow vessels, false 

detection and overestimate
Varnousfaderani [92] 2015 Multiscale, multiorientation Leung–Malik filter bank Detection of retinal pathologies such as lesions and 

anatomical structures
Roychowdhury [93] 2015 Preprocessing, GMM classifier with 2-Gaussians Detection of intra-retinal micro-vascular abnormalities 

(IRMA) or vessel beading, neovascularization, and 
red lesions

Orlando [94] 2016 Discriminatively trained fully connected conditional 
random field (FC-CRF) model

Detection of DR, vessels width and caliber estimation
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intervention by utilizing a structured output SVM. This 
methodology is capable of reconstructing the retinal ves-
sel network very accurately than other conventional CRF 
by using features detected from the images and fully con-
nected pairwise potentials.

The performance comparison of supervised techniques 
of retinal vessels is demonstrated in Table 12, where an 
assessment according to accuracy, the Lupaşcu et al. [90] 
is exposed to beat the other compared techniques on the 
DRIVE dataset, while Ricci and Perfetti [34] achieved 
maximum accuracy on the STARE dataset. 

Neural network approaches  The benefit of utilizing CNN-
based approaches is that it reduces the computational cost 
due to massively parallel processing. It has also appropriate 
for hardware application on a chip-set architecture based on 
the CNN Universal Machine (CNNUM) paradigm. Table 13 
shows summary of the neural network-based methods.

ANNs have been widely inspected for extracting fundus 
images attributes such as the vessel structure and perform 
categorizations which depend on geometric probabilities 
rather than objective reasoning [95]. Sinthanayothin et al. 
[96] proposed MLP-NN for extraction of retinal vessels 
depends on the inputs from a PCA of the photograph and 
boundary recognition of the intensity. The results of this 
approach are compared with the manually labeled retinal 
components by an expert ophthalmologist.

A back propagation technique for the extraction of vessels 
in angiography is presented by Nekovei and Ying [97]. This 
approach uses NN directly to pixels without prior attributes 
extraction. The pixels of the small sub-window, which slides 
across the angiogram photograph, are directly fed as input to 
the network. The gold standard photographs of hand-marked 
angiograms are utilized as the training set to set the net-
work’s weights. An improved form of the common delta-rule 
is utilized to acquire these weights.

Yao and Chen [98] introduced a PCNN and fast 2-D 
Otsu approach for detection of retinal vascular network. 
The binary vessel map is acquired via evaluating region-
based attributes. The STARE dataset is used for performance 
evaluation of this method.

Lupaşcu and Tegolo [99] proposed an unsupervised neu-
ral network self-organizing map (SOM) and K-means clus-
tering approach for retinal vasculature extraction. AdaBoost 
classifier is used to divide map units into two groups [90]. 
SOM and K-means clustering produces good results on a 
small number of classes and is also very fast. This frame-
work is tested on the DRIVE dataset.

A new supervised scheme based on neural network (NN) 
is proposed by Marin et al. [45] for extraction of retinal 
vasculature. This technique utilizes a 7-D feature array that 
depends on gray-level and moment invariant-based attrib-
utes. A multilayer feed forward NN is used for training and 
categorization. The NN is trained on the DRIVE dataset 
only, but it shows robustness with various image settings 
and on different image datasets.

Table 12   Performance 
comparison for supervised 
approaches

Method Dataset Accuracy Sensitivity Specificity AUC​

Niemeijer [10] DRIVE 0.9416 0.7145 – 0.9294
Staal [85] DRIVE 0.9442 – – 0.952

STARE 0.9516 – – 0.9614
Soares [86] DRIVE 0.9466 – – 0.9614

STARE 0.9480 – – 0.9671
Ricci [34] DRIVE 0.9563 – – 0.9558

STARE 0.9584 – – 0.9602
Osareh [88] DRIVE – – – 0.9650
Xu [89] DRIVE 0.9328 0.7760 – –
Lupaşcu [90] DRIVE 0.9597 – – 0.9561
You [91] DRIVE 0.9434 0.7410 0.9751 –

STARE 0.9497 0.7260 0.9756 –
Varnousfaderani [92] DRIVE 0.903 – – 0.955

STARE 0.927 – – 0.971
Roychowdhury [93] DRIVE 0.952 0.725 0.983 0.962

STARE 0.951 0.772 0.973 0.969
Orlando [94] DRIVE – 0.7897 0.9684 –

STARE – 0.7680 0.9738 –
CHASEDB1 – 0.7277 0.9712 –
HRF 0.7874 0.9584
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A supervised framework based on different settings of 
NN known as LNNDP is suggested by Vega et al. [100]. Pre-
processing, feature extraction, classification, postprocessing 
are the major steps of this approach. The LNNDP approach 
is different from the conventional NN approaches in the 
computation executed by the single neuron. The STARE 
data are used for validation of this methodology. Vega el al. 
[101] proposed another adapted version of the hyperboxes 
partition technique [102] for detection of retinal vasculature. 
The LNNDP an advance version of [100] is used for extrac-
tion of retinal vessels.

Andersson et  al. [103] introduced modified gradient 
descent (MGD) search for level set-based detection of reti-
nal blood vessels. This approach used two MGD approaches: 
One utilizes a momentum term, and others depends on resil-
ient propagation (Rprop). The MGD approaches are utilized 
to train the learning systems based on ANNs. The frame-
work is validated on the real and synthetic data. The DRIVE 
dataset is used for retinal vessel extraction.

Anitha and Hemanth [104] suggested an EKFN-based 
automatic technique retinal detection of retinal vascular 
map. This automatic approach also contains hybrid feature 
detection methods which considerably enhance the compe-
tence of the proposed NN. This system is tested on their own 
collected datasets.

The ANN-based approach is proposed by Franklin and 
Rajan [105] to detect retinal vasculature. The MLP-NN is 
used for identification of retinal blood vessels, for which 

the inputs are obtained from Gabor and moment invariants-
based features. The disadvantage of this approach is missing 
of tiny blood vessels in some cases. The images from the 
DRIVE dataset are used for confirmation and evaluation of 
this methodology.

A novel supervised technique for retinal vasculature 
extraction is redesigned as a cross-modality data transforma-
tion problem [106]. A wide and deep NN with robust train-
ing aptitude is presented to model the transformation, and 
an efficient training tactic is used. The segmentation process 
does not require artificially designed features, reducing the 
influence of particular features. This approach is also robust 
to noisy and pathological images.

Sironi et al. [107] introduced a learning-based filtering 
system used for detection of curvilinear structures along 
with two learning-based approaches for acquiring separa-
ble filter banks. The first one directly learns separable filters 
by varying the regular objective function. The second one 
acquires a basis of separable filters to estimate an existing 
filter bank, and not only acquires the equivalent performance 
of the original, but also significantly decreases the quantity 
of filters, and thus convolutions, needed. The performance 
is evaluated on the DRIVE dataset. The comparison of 
different techniques based on neural network is shown in 
Table 14.

Ceylan and Yaşar [108] proposed a complex ripplet-I 
transform and complex valued ANN for detection of retinal 
vascular map. The ripplet-I transform estimates the features 

Table 13   Summarization of neural network-based retinal vessel segmentation methods

References Year Techniques Results for medical examination and applications

Akita [95] 1982 Artificial neural networks (ANNs) Highlighted ocular fundus images issues related to hyper-
tension and diabetes

Nekovei [97] 1995 Back propagation NN Detection of vascular map in angiograms
Sinthanayothin [96] 1999 Multilayer perceptron neural network (MLP-NN) Localization of the optic disk, blood vessels and the fovea
Yao [98] 2009 Pulse coupled neural network (PCNN) and fast 2-D 

Otsu
Blood vessel extraction in normal images

Marin [45] 2011 Neural network based on gray level and moment 
invariant-based features

Tolerant to different datasets, robust to normal and noisy 
images, detection of DR

Vega [100] 2013 Lattice neural networks with dendritic processing 
(LNNDP)

Remove noise and false positives

Andersson [103] 2013 Modified gradient decent based on artificial neural 
network (ANN)

Segmentation of blood vessels, tolerant to noisy images

Anitha [104] 2013 Efficient Kohonen fuzzy neural (EKFN) network Pathology detection in retinal images
Franklin [105] 2014 ANN approach based on Gabor and moment invariants-

based features
Screening of DR, localization of retinal vasculature

Vega [101] 2015 Modified LNNDP Robust to normal and pathological images
Li [106] 2015 Cross-modality learning algorithm Consistent to noisy and abnormal images, Analysis of 

ophthalmologic disorders
Sironi [107] 2015 Learning-based filtering Extraction of curvilinear structures
Ceylan [108] 2016 Complex ripplet-I transform and complex valued ANN Extraction of vascular network
Liskowski [109] 2016 Deep neural network approach Resistant to the phenomenon of central vessel reflex
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matrix from the retinal images of standard datasets, which 
is further used as an input to the complex valued ANN. The 
inverse transformation is applied to resize the output coef-
ficients of ANN.

A novel supervised DNN-based approach is presented for 
extraction of retinal vascular map [109]. The DNN is trained 
on a large (up to 400,000) sample of examples preprocessed 
with global contrast normalization, zero-phase whitening, 
and augmented using geometric transformations and gamma 
corrections.

Table 14 demonstrates the performance evaluation for the 
methodologies based on neural network. The Ceylan and 
Yaşar [108] reported the highest accuracy on the both stand-
ard datasets: DRIVE and STARE.

Ensemble classification approaches  Ensemble classification 
is the procedure by which various classifiers are strategically 
created and pooled to address a specific machine learning 

task. The ensemble classification approaches are listed in 
Table 15.

Fraz et al. [110] suggested a supervised classification 
approach utilizing an ensemble classifier of bagged decision 
trees for extraction of retinal vessels. They utilized decision 
trees as the categorization model and the outputs of these 
frail classifiers are pooled by means of bootstrap aggrega-
tion also known as Bagging. They utilized 8-D feature array 
containing the outputs from a filter set comprising the filter 
templates of dual-Gaussian and Gabor functions and the 
line strength computation, which deals the central vessel 
reflex successfully. This approach is further modified utiliz-
ing 9-D feature vector for detection of retinal vascular map 
[111]. The feature vector contains the vessel tree acquired 
from the orientation investigation of the gradient vector field 
(GVF), the morphological procedure, line strength computa-
tion and the Gabor filter response which translates data to 

Table 14   Performance metrics 
for neural network-based 
methodologies

Method Dataset Accuracy Sensitivity Specificity AUC​

Yao and Chen [98] STARE – 0.8035 0.972 –
Lupaşcu and Tegolo [99] DRIVE 0.9459 0.696 0.9702 –
Marin et al. [45] DRIVE 0.9452 0.7067 0.9801 0.9588

STARE 0.9526 0.6944 0.9819 0.9769
Vega et al. [101] DRIVE 0.9412 0.7444 0.9600 –

STARE 0.9483 0.7019 0.9671 –
Li et al. [106] DRIVE 0.9527 0.7569 0.9816 0.9738

STARE 0.9628 0.7726 0.9844 0.9879
CHASE_DB1 0.9581 0.7507 0.9793 0.9716

Sironi et al. [107] DRIVE – – – 0.962
Ceylan and Yaşar [108] DRIVE 0.9844 0.853 – –

STARE 0.9803 0.940 – –
Liskowski and Krawiec [109] DRIVE 0.9230 0.9241 0.9160 0.9738

STARE 0.9309 0.9307 0.9304 0.9820
CHASE_DB1 0.9577 0.8793 0.9668 0.9845

Table 15   Summarization of ensemble classification-based retinal vessel segmentation methods

References Year Techniques Results for medical examination and applications

Fraz [110] 2012 An ensemble classification system using 8-D feature vec-
tor

Resistant to the phenomenon of central vessel reflex and 
pathological images

Fraz [111] 2012 An ensemble classification system using 9-D feature vec-
tor

Robust to normal and pathological retinas, detect cardiovas-
cular risk factors

Fraz [112] 2014 An ensemble classification system using 13-D feature 
vector

Vessels extraction of pediatric retinal images from different 
ethnic origins

Wang [113] 2015 Feature and ensemble learning approach, convolutional 
neural network (CNN) and RF classifiers

Segmentation of retinal blood vessels

Welikala [114] 2016 SVM classifier and ensemble classifier of bagged decision 
trees.

Creation of vessel morphometric data suitable for epidemio-
logical studies

Zhu [115] 2016 An ensemble classification approach using 36-D feature 
vector

Suitable for computer-aided diagnosis and disease screening
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deal with the both healthy and unhealthy fundus photographs 
successfully. This concept is further utilized by applying 
13-D feature vector containing of the responses from a fil-
ters set comprising the filter templates of dual-Gaussian, 
second-order derivative of Gaussian and Gabor functions, 
along with the line strength measures and morphological 
procedure, which deals with the central vessel reflex suc-
cessfully [112]. The CHASE_DB1 database is utilized for 
the performance validation of the proposed framework.

A feature and ensemble learning-based technique utiliz-
ing a combination of two classifier CNN and RF is proposed 
[113]. CNN works as a trainable hierarchical feature extrac-
tor, and ensemble RFs work as a trainable classifier.

Two different state-of-the-art classifiers SVM and ensem-
ble are explored by Welikala et al. [114]. Both delivered 
remarkable consequences; however, the SVM classifier is 
chosen as it marginally left behind the ensemble classifier 
of bagged decision trees.

Zhu et al. [115] proposed an ensemble approach utilizing 
36-D feature vector, consisting of local attributes, morpho-
logical procedure with multiscale and multiorientation and 
DVFs. Then, weak classifiers are trained by the classification 
and regression tree (CART) utilizing information of a feature 
array. Lastly, an FABC is created by iteratively training for 
the retinal vessel extraction.

The performance metrics used for analysis of the effi-
ciency of ensemble classification-based approaches of reti-
nal vessels segmentation are shown in Table 16, where Wang 
et al. [113] achieved a highest accuracy on the DRIVE and 
STARE datasets.

3.2 � Vessel tracking techniques

The tracking methodologies track the vessels based on man-
ual/automatic selection of some seed positions and subse-
quently the vessel midline detection steered by local data. 
The benefit of tracing-based techniques is its competence 
since only pixels near to the preliminary points are inspected 
and analyzed. Additionally, significant statistics (i.e., vessel 

width and bifurcations) are usually detected along with the 
vessel tree. However, a disadvantage of such techniques is 
that refined approaches have been introduced due to the 
complex intensity profile at branching or crossover posi-
tions. Since vessel bifurcation or boundary locations are 
not well modeled, this process often tends to end at these 
positions and this leads to incompletion in the extraction 
result. Table 17 shows the summary of all vessel tracking 
based frameworks. 

 Recursive tracking-based vasculature extraction in reti-
nal angiograms is presented in [116]. Initially, choosing the 
starting point and direction, a section within vessel map is 
identified. After identification of segment, it is discarded in 
the angiogram photograph. The recognition-elimination plan 
is utilized to overcome the issue of tracking-path re-entry in 
those zones where vessels crossover happens. This operation 
is executed repeatedly to excerpt the retinal vessel network. 
Human intervention is involved in this approach to identify 
vessel seed points. An automatic vessel tracking technique 
is proposed by Liang et al. [65] to detect vessel segment and 
tortuosity. The method depends on a MF technique along 
with a preliminary information about retinal vessel attrib-
utes to automatically extract the vessel edges, centerline, 
and other helpful information of clinical interest. However, 
this approach requires human interference for selection of 
direction, start and end points.

Chutatape et al. [117] utilizes a combination of Gauss-
ian and Kalman filters for retinal vessel extraction. The sec-
ond-order Gaussian MF is used to detect the vessel midline 
center point, and then, the tracing operation is performed, 
initializing from the boundary of the OD. The Kalman filter 
is utilized to detect the subsequent vessel segment position 
utilizing all the former and the current segment attributes.

Tolias and Panas [118] proposed a retinal vessel track-
ing framework based on the FCM clustering approach. The 
remarkable characteristics of this approach are that it does 
not use any boundary data to trace the precise position of the 
vessels and in result suppressed the noise. Also, the method 
utilizes only fuzzy image intensity data. Additionally, there 

Table 16   Performance 
comparison of the ensemble 
classification methods

Method Dataset Accuracy Sensitivity Specificity AUC​

Fraz et al. [110] CHASE_DB1 0.9473 0.7106 0.9729 0.9740
Fraz et al. [111] DRIVE 0.9480 0.7406 0.9807 0.9747

STARE 0.9534 0.7548 0.9763 0.9768
CHASE_DB1 0.9469 0.7224 0.9711 0.9712

Fraz et al. [112] CHASE_DB1 0.9524 0.7259 0.9770 0.9760
Wang et al. [113] DRIVE 0.9767 0.8173 0.9733 0.9475

STARE 0.9813 0.8104 0.9791 0.9751
Welikala et al. [114] UK Biobank – 0.9533 0.9113 0.9828
Zhu et al. [115] DRIVE 0.9618 0.7462 0.9838 –

RIS 0.9535 0.8319 0.9607 –
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is no setting of parameters and initialization required. The 
technique tracked the major vessels in the image very well 
and overlooked only tiny and low-contrast vessels.

Ali et al. [119] presented the recursive tracking depend on 
recursive tracking of the vessels using directional templates. 
This approach improves the previous work in different direc-
tions: (1) No human intervention is required, only few para-
metric tuning; (2) it is robust to image contrast variations, 
major and tiny vessels and artifact elimination, and (3) it 
does not need the vasculature to be linked. The technique is 
tested on normal and abnormal dilated retinal images.

Non-recursive paired tracking method is presented to 
trace the vessels in low-contrast retinal images utilizing their 
boundary network as calculated by the canny edge detec-
tor [120]. Tracing proceeds by subsequent edge line while 
observing the connectivity of its twin edge. Seed generation 
permits the approach to handle junctions (a main problem in 
vessel tracking) and jump over damaged edges. Five typical 
retinal images are used for the algorithm evaluation.

Quek and Kirbas [121] introduced retinal vascular 
map detection approach based on a wave propagation and 

trace-back scheme. Every vessel pixel is marked on the pho-
tograph with the likelihood by applying a dual-sigmoidal 
filter. The refractive index photograph is created by the com-
plement of this image, and then, a digital wave is circulated 
through the photograph from the base of the vascular map. 
The vascular map is acquired by tracking the wave along the 
neighborhood perpendicular to the waveform. This method-
ology allows the location of the particular vessels, as well as 
the vascular connecting morphology also.

A model-based tracking method for vessel extraction 
and width computation is proposed in [122]. The approach 
uses a parametric model of a vessel consisted of a ‘stripe’ 
which utilizes statistical attributes for parameter descrip-
tions. A measure of match (MoM) computes the resem-
blance between the model and the input photograph. The 
starting of seed pixels for vessel tracing is performed 
utilizing a multiscale filter and distributing the binary 
output in non-overlapping square chunks and selecting a 
random nonzero pixel as a seed [24]. This approach does 
not involve any human interference. The vessel width is 
additionally recuperated with the characterized model 

Table 17   Summarization of matched filtering-based retinal vessel segmentation methods

References Year Techniques Results for medical examination and applications

Liu [116] 1993 Recursive tracking Vascular map extraction in angiograms
Liang [65] 1994 MF-based iterative tracking with human interference Stenosis and occlusion detection of a vessel, diameter 

measurement
Chutatape [117] 1998 Gaussian and Kalman filters Detection of complete vessels network
Tolias [118] 1998 Fuzzy C-means (FCM) clustering Handles efficiently junctions and forks
Ali [119] 1999 Recursive tracking with directional templates Tracking of retinal vascular map and exploration of joints 

and crossovers
Lalonde [120] 2000 Non-recursive paired tracking Suitable for handling of bifurcations, broken edges and 

noise
Quek [121] 2001 Wave propagation and traceback Detection of vascular network from angiography images
Delibasis [122] 2010 Model-based tracking Extraction of entire vessel map, estimation of vessel’s width
Xu [123] 2011 Graph-based approach Identification of retinal and cardiovascular diseases
Huang [124] 2012 Modified exploratory algorithm and FCM Diagnoses of diabetes and hypertension
Yin [125] 2012 Probabilistic tracking approach Retinal vessels extraction, robust to noise
Nayebifar [126] 2013 Vessel tracking using particle filters Tracks the thin vessels, tolerant to noise
De [131] 2013 Probabilistic graphical models Tracking vessels network
Fraz [127] 2013 Model-based technique Cardiovascular disease detection, estimation of vessel 

caliber
Yin [128] 2013 Bayesian approach with maximum a posteriori (MAP) Vessels detection, width computation and vessel structure 

identification
Bekkers [130] 2014 Vessel Edges Through the Orientation Score (ETOS) and 

Centerline Tracking through a multiscale set of nonin-
vertible Orientation Scores (CTOS)

Retinal vasculature tracking, approximations of retinal ves-
sel’s width

De [132] 2014 Graph-based tracking approach Handle many crossover scenarios, vessel’s tracing
Poletti [133] 2014 Graph search-based vessel tracing Identification of retinal vascular map, vessel width evalu-

ation
Zhang [134] 2014 MAP criterion and multiscale line tracking Accurate vessel’s tracking
Cheng [135] 2014 Matrix-forest theorem of directed graphs Tracing vessel’s network in retina images
Chen [136] 2015 Anisotropic fast marching-based geodesic technique Tubular structure extraction
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using the strip width parameter in this way assuming direct 
reliance between vessel width and model width parameter. 
The DRIVE dataset as a training set is used for tuning of 
parameters.

Xu et al. [123] designed graph-based technique for track-
ing of vessel edges and widths in the retinal photographs. 
This framework is tested on the REVIEW dataset. This 
method depends on the initial vessel extraction of the image. 
FPR or disconnection in the vessels may result in an increase 
in falsification of edge detection and vessel width computa-
tion. This model does not deal with the crossing and branch-
ing points separately.

Huang et al. [124] suggested an automatic framework for 
tracking of retinal vascular network. The approach includes 
OD position, midline detection of the retinal vascular net-
work, individual network marking, and branch order evalu-
ation. The retinal vessel tree is detected by probing scheme 
without segmentation. Based on the marked terminal points 
and OD position, the preliminary position and termination 
positions for individual retinal vascular network are recog-
nized. In light of the results, morphological properties such 
as statistical and topological attributes are quantitatively 
computed, particularly depending on branch order evalua-
tion. The improvement is the identification of the neighbor-
hood statistics of a retinal vessel map. The DRIVE dataset 
is used for validation of this approach.

A probabilistic tracking framework [125] used Bayesian 
approach with the MAP criterion for extraction of vessel 
boundary. Bayesian approach with the MAP criterion is used 
for extraction of vessel boundary. This approach extracted 
the vessels efficiently on both synthetic and real retinal pho-
tographs and outperforms many conventional vessel extrac-
tion techniques. The REVIEW dataset is used for validation 
of this approach.

The novel technique that depends on particle filtering is 
presented to track the vessel trajectories in fundus image 
[126]. The tracking process starts by selecting some pre-
liminary positions within a vessel and remains until the end 
of the vessel or a branching. In bifurcation, relative to the 
quantity of branches, the new routes are advised by new 
preliminary positions. Hence, the methodology contains 
two stages. In the initial step, the OD position is identified 
and its nearby impact on biasing gray-level distribution is 
diminished. At that point, using the distinguished OD, some 
underlying positions are characterized for the vessel trac-
ing method. In the second step, the tracing is implemented 
to detect the vessel trajectory utilizing the particle filtering 
technique.

Fraz et al. [127] designed a model-based approach for 
computation of vessel caliber from fundus photographs. The 
initial vascular network is extracted from the vessel prob-
ability map photograph. The vessel centerline is detected by 
using the scale-space skeletonization technique on the binary 

extracted image. The 2-D model is used for the measure-
ments of vessel widths. The CHASE DB1 dataset is used 
for validation of this algorithm.

A probabilistic tracking-based technique for automatic 
detection of retinal blood vessels is presented in [128]. 
This is a tracking based-method using a Bayesian technique 
with MAP as criterion to extract vessel edge points. This 
method is tested on the STARE and DRIVE datasets. The 
REVIEW database is utilized for diameter computation of 
retinal vessels.

A minimal path-based technique is proposed for retinal 
vessel extraction and A/V classification [129]. It contains 
two major stages: a local classification of vessel segments 
utilizing the color data and a tracking process depends on 
the minimal path technique which links vessel segments in 
succeeding circumferences. Finally, the classification results 
of all connected vessels are combined with a voting sys-
tem. Thus, the local clustering scheme permits to eliminate 
the influence of the irregular brightness in the clustering, 
whereas the tracking process gives a way to confirm the 
growing of a vessel taking into account the color informa-
tion along the whole vessel. This approach is validated on 
the REVIEW dataset.

Bekkers et al. [130] introduced a novel framework for 
extraction of vessel edges through the orientation score 
(ETOS) of an image. The ETOS approach can generally be 
utilized with both invertible and noninvertible orientation 
scores (NIOS), which are constructed with cake wavelets 
and Gabor wavelets, respectively. The IOS produced good 
results. Another technique that depends on vessel centerline 
tracking through a multiscale set of noninvertible orientation 
scores (CTOS) is also presented. The CTOS method is very 
fast, and the multiscale technique makes the method less 
stable at critical vessel points compared to ETOS. The HRF 
and REVIEW datasets are used for the validation of COTS 
and ETOS approach, respectively.

De et al. [131] presented probabilistic graphical models 
for automatic tracking of retinal vasculature. This approach 
consists of two-phase processes: In first phase, vessel skel-
eton is extracted through segmentation followed by second 
stage to track the vessel trajectories and direction through 
graphical models. This model is tested on the DRIVE data-
set. The graph-based method to trace retinal vascular net-
work is extended in [132].

Poletti and Ruggeri [133] suggested a graph search-based 
retinal vessel extraction. Two different aspects are analyzed 
in this approach: In the first one, accuracy, sensitivity, and 
specificity of the retinal vessel extraction are computed on 
three different datasets: the DRIVE, STARE, and YARD. 
In the second analysis, diameter is computed using the 
REVIEW dataset.

Bayesian theory and multiscale line extraction-based 
approach is presented to track retinal vascular map [134]. 
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There is no human interference in the selection of initial 
tracking points and direction. The REVIEW dataset is used 
for validation of this approach. Matrix-forest theorem of 
directed graphs is presented for detection of retinal vascu-
lature [135].

Chen and Cohen [136] designed anisotropic fast march-
ing-based geodesic approach for detection of midlines of 
retinal vessel segments and their edges. This approach is 
associated with geodesic or minimal path algorithm which 
is specifically capable of detecting an elongated profile, such 
as a blood vessel. The DRIVE dataset is used for confirma-
tion of this method. The performance results of the vessel 
tracking methods are shown in Table 18.

3.3 � Model‑based techniques

Vermeer et al. [137] designed a model-based approach for 
identification of retinal vessels. The performance of this 
framework is improved by using Laplace and thresholding 
segmentation step, pursued by a categorization step. The 
selection of different datasets affects the accuracy of the 
technique. The approach is evaluated on GDx generated 
photographs.

Mahadevan et  al. [138] suggested a combination of 
three systems: Huber’s censored likelihood ratio test, the 
rank-based algorithms [139] and the robust model selec-
tion [140], for vessel extraction in noisy photographs [141]. 
The approach is flexible to combine a range of vessel pro-
file models containing Gaussian, derivatives of Gaussian 
and dual-Gaussian and different noise types like Gaussian 
and Poisson noise. The model is validated on simulated and 
real data. The outcomes are contrasted with the MF and 
the direct exploratory vessel tracking approach [132]. An 
improved version of this vessel extraction model is also pre-
sented by the authors with the addition of a generalized dual-
Gaussian cross-sectional profile for better-quality extraction 
of vessels comprising a central vessel reflex [142]. The sum-
marization of model based techniques is shown in Table 19. 

The CNN approaches are a fast mechanism for extraction 
of retinal vasculature due to its massively parallel process-
ing [143]. The major steps consist of CNN-based histogram 

equalization and variation, simple adaptive thresholding, and 
morphological procedure. The MATCNN environment is 
used for simulation of this methodology. The drawback of 
this approach is the dependency on different design param-
eter for opening operator and the varying CNN kernels for 
the local approximation of the variance. These drawbacks 
are addressed by a novel CNN-based framework [144] uti-
lizing geometrical information instead of applying generic 
algorithms [143].This scheme is validated on the DRIVE 
dataset.

Extraction of retinal vessels by using multiresolution 
Hermite model (MHM) is presented by Li et al., which uti-
lizes a 2-D Hermite function intensity model in a quad-tree 
structure over a range of spatial resolutions [145]. The MHM 
depends on a Hermite polynomial rather than a combina-
tion of Gaussian to integrate the central light reflex [146]. A 
MHM is coupled with an expectation-maximization (EM) 
optimization approach and statistical associating technique 
for the modeling and evaluation of retinal vessel network.

Lam and Yan [147] described a new vessel extraction 
technique for abnormal fundus photographs that depends on 
the DVFs. In this approach, the midlines are extracted uti-
lizing the normalized GVF, and then, the elongated vessel-
like entities are extracted utilizing the Laplacian operator 
of a pixel. The false distinguished vessel-like elements are 
trimmed by separation from extracted midlines.

Alonso-Montes et al. [148] suggested a pixel-parallel 
methodology for detection of vascular network which is 
adapted from [149] in terms of neighborhood element con-
volutions and morphological processes coupled with arith-
metic and logical processes to be executed and verified in a 
fine-grain single instruction multiple data (SIMD) parallel 
processor array [150]. The outward of vessels is sought by 
parallel dynamic form, the PLS [151].

Lam et al. [152] presented a regularization-based mul-
ticoncavity modeling to deal simultaneously both with the 
healthy and abnormal retinas with bright and dark abra-
sions. The differentiable concavity measure is designed to 
deal with bright lesions. The line-shape concavity measure 
is presented to take out dim injuries which have a power 
structure disparate from the lengthened vessels in a retina. 

Table 18   Performance metrics 
analysis for the vessel tracking 
based approaches

Method Dataset Accuracy Sensitivity Specificity AUC​

Delibasis et al. [122] DRIVE 0.9311 0.7288 0.9505 –
Yin et al. [128] DRIVE 0.9267 0.6522 0.9710 –

STARE 0.9412 0.7248 0.9666 –
De et al. [131] DRIVE 0.9429 0.7602 – –
De et al. [132] DRIVE 0.9429 0.7602 – –
Poletti and Ruggeri [133] DRIVE 0.9356 0.7304 0.9662 –

STARE 0.9401 0.6923 0.9734 –
Local 0.9618 0.8258 0.9749 –
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The locally normalized concavity measure is suggested to 
handle the randomly scattered noise in a fundus photograph. 
These concavity measures are coupled together as indicated 
by their geometrical properties to extract vessels in fundus 
photographs.

The physical and functional attributes of double wave-
length retinal photographs captured at 570 and 600 nm 
are used for vessel extraction and classification as arteries 
and veins [146]. In this method, the dual-Gaussian model 

originally utilized in [153] is expanded to approximate the 
intensity profile of retinal vessels.

A general illustration for ascending and descending phys-
ical vessel profiles with variation in the acuity of edges is 
suggested by Zhu [154]. An input photograph is converted 
by 24 log-Gabor filters covering six orientations and four 
scales in symmetric and asymmetric couples. The equal-
ity and unevenness of nearby Fourier parts are figured uti-
lizing the scale-invariant trademark and the Kovesi phase 

Table 19   Summarization of model-based retinal vessel segmentation methods

References Year Techniques Results for medical examination and applications

Edge based models
Vermeer [137] 2004 Laplacian profile model Extraction of blood vessels, especially for images with 

specular reflection
Mahadevan [141] 2004 Robust vessel profile model Detection of vasculature in noisy retinal video images
Alonso [143] 2005 Cellular neural networks (CNN) Identification of retinal vascular map
Perfetti [144] 2007 CNN-based technique Segmentation of retinal blood vessels
Li [145] 2007 Multiresolution Hermite model Detection of vessel structure, robust to noisy and pathol-

ogy images
Narasimha-Iyer [146] 2007 Dual-Gaussian profile model Detection of BRVO disorder, estimate the tortuosity and 

diameter variations
Lam [147] 2008 Divergence of vector fields (DVFs) Robust to normal, noisy and pathological retina images
Alonso-Montes [148] 2008 Pixel level snakes (PLS), pixel-parallel technique Localization of retinal vessels network
Lam [152] 2010 Multiconcavity modeling Remove bright and dark lesions, Robust to normal, noisy 

and pathological images
Zhu [154] 2010 Log-Gabor filters, phase concurrency and Fourier 

domain
Retinal vasculature detection, tolerant to noisy retina 

images
Kovács [156] 2016 Template matching and contour reconstruction Measurements of vessel’s widths, vasculature detection, 

robust to pathological images
Region-based models
McInerney [158] 2000 Topology adaptive snakes Detection of tubular structures, or objects with bifurca-

tions
McInerney [159] 2002 Deformable organism’s Segmentation, labeling, and quantitative analysis of 

anatomical structures in image
Nain [160] 2004 Region-based active contour model (ACM) Robust to noisy images, segmentation of tubular struc-

tures
Espona [161] 2007 Snakes incorporated with blood vessel topological 

attributes
Detection of arteriovenous structures in retinal angiog-

raphies
Al-Diri [162] 2009 Ribbon of Twin ACM Computation of retinal vascular segment profiles and 

vasculature
Sum [164] 2008 Chan–Vese contour model Extraction of retinal blood vessels
Zhang [165] 2009 Nonlinear orthogonal projection Localization of retinal vascular network
Faraz [166] 2012 Parabolic modeling Detection of different stages of retinopathy of prematu-

rity (ROP)
Rouchdy [167] 2013 Geodesic voting approach Segmentation of complex tree structures in a noisy 

images, extraction of vessels
Guo [168] 2014 Binary level set based on Mumford–Shah model Robust to noisy images, vessels extraction
Lermé [169] 2014 Parallel ACM Robust to normal and pathological images
Zhao [170] 2015 Infinite Perimeter ACM (IPACM) Analysis of corneal neovascularization
Wang [171] 2015 ACM based on multifeature Gaussian distribution fit-

ting energy
Robust to the image with noises and intensity inhomo-

geneity
Rad [172] 2016 Morphological region-based initial contour (MRBIC) Robust to noisy and weak edges of image
Oliveira [173] 2016 Deformable models and the FCM Extraction of retinal vasculature
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congruency model [155]. The balanced and unbalanced 
photographs are binaries to get a preliminary segment and a 
group of edge positions isolating the vessel from non-vessel, 
respectively, which are further used in an RG procedure for 
vessel extraction. Kovács and Hajdu [156] proposed a tem-
plate matching and contour reconstruction for extraction of 
retinal vessels. It used a generalized Gabor function-based 
kernels to detect the midlines of vessels. The intensity fea-
tures of vessel shapes computed in training datasets are 
remodeled.

Snakes are known as active contour models [157]. A 
snake is an energy-minimizing spline guided by outward 
constraint forces and affected by photograph. They lock onto 
nearby boundaries, localizing them precisely. Several bene-
fits of snakes over traditional attribute extraction approaches 
are that they are independent and automatic in their find-
ing for a minimal energy state. They can also be simply 
deployed utilizing outward photograph forces. Snakes are 
able to trace vibrant elements in temporal as well as the 
spatial measurements. The key disadvantage of the snakes 
is that they generally just include boundary data, neglecting 
other image attributes. Due to this, they often neglect small 
structures in the procedure of reducing the energy along 
with the complete route of their contours. Their precision 
depends on the merging conditions utilized in the energy 
minimization method; greater precisions need tighter con-
vergence conditions and hence, the greater time complexity. 
Object tracing, shape identification, segmentation, boundary 
extraction, and stereo-matching are the major applications 
of snakes model. The different researchers have inspected 
the application of active contour models in retinal vessel 
extraction.

McInerney and Terzopoulos [158] proposed an affine cell 
image decomposition (ACID) model. The ‘active contour 
model in ACID’ approach specifically expands traditional 
snakes, empowering topological flexibility among other 
attributes. The subsequent topology adaptive snakes are 
able to fragment some of the most complex-shaped biologi-
cal features from clinical photographs in an effective and 
extremely robotic mode. The author has extended the same 
concept by using ‘deformable organisms’ for automatic 
vessel extraction, classification and quantitative investiga-
tions of physical structures in retina and MR angiograms 
[159]. Nain et al. [160] presented an implicit deformable 
model based on image attributes and shape data to develop 
a region-based active contour that extracts elongated features 
and penalizes outflows. The approach performed well than 
the flow based on image statistics only.

Espona et al. [161] utilized the conventional snake along 
with vessel topological attributes to detect the retinal vas-
cular map. The model is driven by a vessel wrinkle which 
is really the estimate of vessel midlines distinguished utiliz-
ing multilevel set extrinsic curvature based on the structure 

tensor. The snake is instated and twisted in view of the out-
side energy characterized by the vessel wrinkle.

The Ribbon of Twin ACM is proposed for detection of 
retinal vascular map and vessel width computation in [162]. 
It utilizes two couples of contours to detect every vessel 
boundary, while preserving diameter stability. The frame-
work precisely traces the vessel boundaries under challeng-
ing situations, light reflex phenomena, consisting of noisy 
fuzzy boundaries, closely parallel vessels and very fine 
vessels.

Sum and Cheung suggested an improvement in the Chan 
and Vese [163] approach by including the local photograph 
dissimilarity into a level set-based ACM to deal with une-
ven brightness [164]. The framework is confirmed with 
trials including both synthetic photographs and medical 
angiograms.

The nonlinear orthogonal projection-based model is 
presented to detect the properties of vessel map and devel-
ops a new local adaptive thresholding technique for vessel 
extraction [165]. This framework diverges from existing 
techniques in that it utilizes MF, vessel tracking, or super-
vised approaches.

Faraz et al. [166] designed a model for quantification 
and computation of openness of the major temporal arcade 
(MTA), including Gabor filters to extract retinal vessels and 
the Hough transform to identify and parameterize parabolic 
forms. Observing computations of the openness of the MTA 
and how they vary over time could assist better analysis and 
improved medication of retinal abnormalities. The model is 
tested on the DRIVE dataset.

A novel framework for extraction of vessel map that 
depends on geodesic voting is proposed by Rouchdy and 
Cohen [167]. The initial start point is selected manually to 
extract vessel map with no of any additional information 
is required. This framework uses fourth dimension or with 
region-based level sets utilizing shape priors to detect both 
the midlines and edges of the network. This geodesic voting 
scheme is tested on different biomedical images, including 
the DRIVE dataset retinal images to extract vessel map.

Guo et  al. [168] designed a retinal vessel detection 
approach utilizing the Mumford level set that depends on 
Mumford–Shah model. The matched filter function is used 
for the blood vessel enhancement followed by the binary 
level set technique and the Mumford–Shah model to perform 
segmentation.

The parallel active contour model along with alterations 
in the presegmentation step is presented for segmentation 
of retinal vessels in normal and abnormal optics images 
[169]. However, the presegmentation sometimes becomes 
inefficient to precisely mark the location of curves near the 
artery walls.

A novel IPACM with hybrid region forms for the reti-
nal vessel extraction is suggested by Zhao et al. [170]. This 
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framework takes the benefit of utilizing various kinds of 
region statistics, e.g., the intensity knowledge and local 
phase (LP)-based enhancement tree, which is utilized for 
its dominance in maintaining vessel boundaries while the 
particular photograph intensity knowledge will assure a 
precise attribute extraction. This is a first approach which 
is validated on fluorescein angiography photographs of the 
VAMPIRE dataset along with other standard DRIVE and 
STARE datasets.

Wang et al. [171] suggested region-based ACM, which 
considers picture intensities and ‘vesselness measures’ as 
two autonomous random variables with various means and 
variances, and afterward utilizes the two variables to build a 
multifeature Gaussian distribution fitting energy to enhance 
the extraction performance of the designed system.

The MRBIC model for vascular extraction of retinal ves-
sel is described by Rad et al. [172]. To avoid any human 
intervention and drawback of manual setting, statistical and 
morphological data of the image are used to select an appro-
priate IC for level set approaches. This model is evaluated 
on synthetic and real photographs.

In Oliveira et al. [173] approach, the matched filter, and 
Frangi’s and Gabor Wavelet filter are combined through 
weighted mean and median ranking and used to enhance 

the photographs. The deformable models and the FCM are 
used for extraction of the retinal vascular network.

The performance evaluation of model-based algorithms 
for extraction of retinal vessel is shown in Table 20, where 
the maximum accuracy is stated by Zhang et al. [165] and 
Kovács and Hajdu [156] on the DRIVE and STARE datasets, 
respectively.

3.4 � Hardware implementation‑based approaches

The hardware implementation-based approaches are sum-
marized in Table 21.

Nieto et al. [174] proposed a SIMD design implementa-
tion for fast detection of retinal vasculature. It is plotted onto 
a Spartan 3, amounting to 90 processing elements. The on-
chip memory employed was 1.4 MB and saves 8 gray photo-
graphs of 144 × 160 pixels. The operational rate is 53 MHz, 
sanctioning for a 3 × 3 convolution in less than 110 µs. The 
total time required for segmentation of retinal image having 
resolution 768 × 584 is 1.4 s.

A fully automatic framework that depends on the local 
radon transform and utilizes only techniques that are well 
parallelizable on GPUs by means of CUDA is presented for 
extraction of retinal vessels [175]. They allow the evaluation 

Table 20   Performance analysis 
for the model-based techniques

Method Dataset Accuracy Sensitivity Specificity AUC​

Vermeer [137] LOCAL 0.9287 0.924 0.921 0.9187
Perfetti [144] DRIVE 0.9261 – – 0.9348
Li [145] DRIVE – 0.780 0.978 –

STARE – 0.752 0.980 –
Lam [147] STARE 0.9474 – – 0.9392
Alonso-Montes [148] DRIVE 0.9185 – – 0.9011
Lam [152] DRIVE 0.9472 – – 0.9614

STARE 0.9567 – – 0.9739
Kovács [156] DRIVE 0.9494 0.7450 0.9793 0.9722

STARE 0.9610 0.8034 0.9786 0.9836
Espona [161] DRIVE 0.9316 0.6634 0.9682 –
Al-Diri [162] DRIVE – 0.7282 0.9551 –

STARE – 0.7521 0.9681 –
Zhang [165] DRIVE 0.9610 – 0.7373 0.9772 –

STARE 0.9087 0.9736 –
Guo [168] DRIVE 0.9512 0.784 0.980 –

STARE 0.9521 0.753 0.981 –
Zhao [165] DRIVE 0.954 0.742 0.982 0.862

STARE 0.956 0.780 0.978 0.874
VAMPIRE 0.977 0.729 0.985 0.857

Wang [171] STARE 0.944 0.758 0.965 0.862
Rad [172] DRIVE 0.9608 0.6965 0.9722 –

STARE 0.9289 0.7342 0.9608 –
Oliveira [173] DRIVE 0.9464 0.8644 – 0.9513

STARE 0.9532 0.8254 – 0.9544
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of huge datasets in a short time span. Preprocessing steps 
consist of a black top hat pursued by a Gaussian convo-
lution. It is possible to process photographs of resolution 
4288 × 2848 pixels in 1.2 s on an NVIDIA Geforce GTX680. 
The DRIVE dataset is used for performance evaluation of 
this approach. Its disadvantage is the high power consump-
tion (the GPU platform requires approximately 500 W) to 
execute the segmentation operation, which is not acceptable 
in embedded applications.

Koukounis et al. [176] suggested a VLSI implementation 
for extraction of retinal vascular tree while analyzing dif-
ferent attributes that affect the power utilization, precision 
and efficiency of the framework. This is an unsupervised 
approach which uses MF with signed integers to increase 
the variance between the vessel and background pixels. The 
system speeds up the operation of attaining a binary vessels 
map by utilizing parallel processing and efficient resource 
sharing, achieving real-time performance. The system is 
tested on a commercial FPGA design and shows distinct per-
formance enhancements when contested with current similar 
techniques. Additionally, the low power requirement of this 
design permits the suggested design to be utilized in port-
able frameworks, as it attains an efficient stability between 
execution, power utilization, and precision.

Another approach is modified from [176] and completely 
redefined to be implemented in CUDA-based GPUs [177]. 
This approach is assembled in a PC platform containing a 
four-core Intel Core i7 860 CPU with 8 GB of RAM, utiliz-
ing a 64-bit Linux GNU compiler and CUDA 5.0 with the 
-O3 and -sm_20 flags. This method is based on filtering and 
contour tracking algorithms. This algorithm contains five 
major steps: a quick approximation of the retinal vessel map 
and four steps related to contour tracing based on ACM and 
a final postprocessing step.

Figure  5 summarizes the performance measures for 
hardware-based implementation techniques of retinal ves-
sel extraction, where the maximum accuracy is obtained by 
Krause et al. [175] and Argüello et al. [177] on the DRIVE 
and STARE datasets, correspondingly.

3.5 � Hybrid approaches

Table 22 summarizes the hybrid methods, which use multi-
ple techniques or classifiers for extraction of retinal vessels.

Villalobos-Castaldi et al. [178] introduced a technique 
that depends on the second local entropy and on the GLCM 
for extraction of retinal vasculature. The most important fac-
tor is the thresholding value. This approach provides a pow-
erful tool to acquire an automatic threshold limit to extract 
the vessel and relies upon only on the knowledge enclosed 
in the evaluated photograph. The DRIVE dataset is used for 
the evaluation of this approach.

A model of hysteresis-classifier scheme for detection 
of retinal vascular map is used in [179]. It consists of two 
classifiers: The first one, called the pessimist, works with 
a practically zero FPR, which with overlapping classes 
indicates a high false-negative rate (FNR); the second one, 
called the optimist, works with a practically zero FNR and 
a high FPR. Then, utilizing the preceding information about 
the connectivity characteristic of vessels, the pessimist sort-
ing can be utilized to choose true vessels from among the 
optimist sorting.

Mudassar and Saira [180] suggested a combination of 
four different techniques; ILCS, EEED, MMF, and CA for 
extraction of retinal vessels. ILCS, EEED, and CA are new 
additions, whereas MMF is an enhanced and improved ver-
sion of the current MF approach. CA is a favorable method.

Saleh Shahbeig [181] presented a fast and automatic 
morphological-based retinal vessel segmentation system 
utilizing CT and PCA. CT is utilized to improve the con-
trast of retinal photographs by making prominent the bound-
ary of photographs in different measures and orientations. 
An enhanced morphology procedure with multidirectional 
structure components is utilized to detect the retinal vessel 
network. CCA and an adaptive filter are utilized to refine 
appeared frills with the size of smaller than arterioles in 
photographs.

A combination of HCF with a discriminative learning sys-
tem is proposed in [1]. The SWT and WLD both extract the 
curvilinear structures. The Gabor responses and vesselness 
filter are used for vessel detection. The new vessel attrib-
utes as well as conventional filter-based attributes segmented 

Table 21   Summarization of hardware implementation-based retinal vessel segmentation methods

References Year Techniques Results for medical examination and applications

Nieto [174] 2009 FPGA implementation with SIMD Real-time retinal vascular tree detection
Krause [175] 2013 CUDA-based implementation on general-purpose 

graphics processing units (GPUs)
High-speed extraction of retinal vessels

Koukounis [176] 2014 FPGA-based implementation, MFR, thresholding Low-power, real-time retinal vasculature extraction
Argüello [177] 2014 CUDA-based implementation on GPUs Extraction of the retinal vascular network
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from orientation invariant local context are used an input 
into an RF approach for pixel level vessel segmentation.

Salazar-Gonzalez et al. [181] introduced a graph cut 
method for detection of retinal vascular tree. Two differ-
ent approaches, MRF image reconstruction technique and 
compensation factor scheme are evaluated in this article 
for detection of retinal vessels and OD.

A combination of IUWT, texture entropy, and FCM 
classifier is proposed in [182]. IUWT is used on the pre-
processed photograph to denoise the retinal photograph 
in its frequency field. FCM on texture attributes based on 
local gray value entropy is used to extract retinal vessel 
network.

Dai et al. [183] proposed a gray-voting approach for seg-
mentation of retinal vasculature. The gray-voting technique 

Fig. 5   Performance metrics for hardware implementation-based approaches

Table 22   Summarization of hybrid approaches for retinal vessel segmentation

References Year Techniques Results for medical examination and applications

Villalobos [178] 2010 Second local entropy, GLCM, MF Detection of retinal vascular map
Condurache [179] 2012 Hysteresis binary-classification paradigm, pessimist 

and optimist classifiers
Tolerant to both normal and pathological images, 

extraction of retinal vessels
Mudassar [180] 2013 Image line cross-sections (ILCS), edge enhancement 

and edge detection (EEED), modified matched filter-
ing (MMF), and continuation algorithm (CA)

Localization of vascular network of pathological retina 
images

Saleh Shahbeig [198] 2013 Curvelet transform (CT) and principle component 
analysis (PCA), multidirectional morphology func-
tions, connected component analysis (CCA)

Robust to noisy and normal retinal images for vascula-
ture extraction

Cheng [1] 2014 Stroke width transform (SWT) and Weber’s local 
descriptors (WLD), Gabor responses and vesselness 
measurements, random forest (RF), hybrid context-
aware features (HCF)

Suitable for localization of blood vessels in normal and 
pathological retina images

Salazar-Gonzalez [181] 2014 Markov random field (MRF) and compensation factor 
into the graph cut approach, CLAHE, binary open-
ing and distance transform

Robust to normal and pathological retinal images for 
vascular network detection

Jiang [182] 2015 Isotropic undecimated wavelet transform (IUWT), 
texture entropy, and FCM classifier

Fast extraction of blood vessels from normal and patho-
logical retina images

Dai [183] 2015 Gray-voting approach, 2-D Gabor filter, GMM clas-
sifier

Segmentation of retinal vessels network
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is utilized to improve the contrast of tiny vessels, while a 
2-D Gabor wavelet is applied to segment the major vessels. 
The gray-voting outcomes are fused with the 2-D Gabor 
filter outcomes as preprocessing result. A GMM classifier is 
then applied to detect vessel segments from the preprocess-
ing result, while tiny vessel segments are acquired utilizing 
another gray-voting procedure, which counterparts the ves-
sel segment detection previously used.

The performance metrics for hybrid approaches of reti-
nal vessel extraction is shown in Table 23, where the high-
est accuracy is attained by Villalobos-Castaldi et al. [178] 
and Cheng et al. [1] on the DRIVE and STARE datasets, 
respectively.

4 � Discussion and conclusion

It is observed that the DRIVE and STARE databases are 
mostly utilized for validation of different retinal vessel 
extraction algorithms. Figure 6 displays the frequency of 
the distribution of datasets used by different retinal segmen-
tation techniques.

The supervised approaches show better performance 
than unsupervised approaches. However, the performance 
of supervised techniques reduces on the photographs with 
uneven brightness because of the increase in FPR in some 
photographs on the boundary of the OD, hemorrhages, and 
other kinds of disorders that exist in prominent contrast. The 
automatic vessel extraction of fundus images has been per-
formed by utilizing MF. Various enhancements and adapta-
tions techniques are suggested based on Gaussian MF by 
Chaudhuri et al. [64]. The MF alone cannot deal with the 
extraction of vessel in abnormal fundus photographs; there-
fore it is usually coupled with other techniques [71, 75]. The 
issue of the central vessel reflex is addressed by coupling 
the Gaussian model [142, 146] with ACM [162]. The Sofka 
and Stewart handle the issue of overlying of the background 

structures like the retinal edge and the OD in the vascular 
map detection [25]. The multi-concavity modeling [152] 
and the DVFs [147] are very effective in handling various 
retinal abnormalities. The union of radial projections with 
steerable wavelets and semi-supervised arrangement [184] 
produced efficient results in the extraction of tiny and poor 
resolution vessels, thus showing maximum sensitivity. The 
Gabor filters are very helpful in fundus photograph evalu-
ation. Moreover, along with vessel extraction [86, 88] the 
Gabor wavelet transform has also been used for the robust 
fractal exploration of the retinal vascular map.

It is noticed that few articles express the performance in 
terms of accuracy and AUC, whereas the other papers select 
sensitivity and specificity for evaluating the performance. 
The methodology having the highest accuracy of each cat-
egory on the DRIVE and STARE databases is depicted in 
Figs. 7 and 8, correspondingly. The highest AUC of each 
category of the both databases is represented in Figs. 9 and 
10, correspondingly.

Accurate detection of retinal veins is a fundamental step 
in computer-assisted diagnostic (CAD) analysis and medical 

Table 23   Performance metrics 
for hybrid methods

Method Dataset Accuracy Sensitivity Specificity AUC​

Villalobos-Castaldi et al. [178] DRIVE 0.9759 0.9648 0.9480 –
Condurache and Mertins [179] DRIVE 0.9516 0.9094 0.9591 0.9726

STARE 0.9595 0.8902 0.9673 0.9791
Saleh Shahbeig [198] DRIVE 0.9458 0.7612 – –
Cheng et al. [1] DRIVE 0.9474 0.7252 0.9798 0.9648

STARE 0.9633 0.7813 0.9843 0.9844
HRF 0.9647 0.7889 0.9865 –

Salazar-Gonzalez et al. [181] DRIVE 0.9412 0.7512 – –
STARE 0.9441 0.7887 – –

Jiang et al. [182] DRIVE – 0.8205 – 0.9375
Dai et al. [183] DRIVE 0.9418 0.7359 0.9720 –

STARE 0.9364 0.7769 0.9550 –

Fig. 6   The frequency of the distribution of datasets
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screening of retinopathy. Although high quality of fundus 
images is available, isolation of the veins and retinal back-
ground is still a challenging task. Moreover, pathological 
disorders of the retinal vessel structure can be seen in vari-
ous ailments, such as diabetes, hypertension, stroke, and 
glaucoma. Despite the development of different promising 
supervised and unsupervised techniques, there is still room 
for improvement. Table 2, summarizes algorithms developed 
for extraction of retinal vasculature till now. Some of the 
reviewed techniques handle both healthy and unhealthy reti-
nal images. Some of those are appropriate for investigation 
of noisy and central reflex images. Most of the published 
articles are validated on a limited range of databases which 
contain a small number of photographs. The performance 

metrics showed in a large portion of the articles are com-
puted on a limited number of photographs of specific mor-
phological attributes. The limited number of photographs 
in the DRIVE and STARE datasets do not accommodate 
for the image-associated attributes, for example inter-image 
and intra-image variation in luminance, uneven contrast and 
non-uniform background gray-level qualities. The expansion 
of approaches, valid for photographs obtained from vari-
ous imaging system, under diverse environmental situations 
is also an open range for exploration of vessel extraction 
methodologies.

Vessel extraction is the fundamental step for abnormality 
detection. There are large volume of photographs obtained 
from different kinds of fundus camera. Furthermore, the vast 

Fig. 7   Highest accuracy of the each category on the DRIVE dataset

Fig. 8   Highest accuracy of the each category on the STARE dataset
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majority of the published techniques are validated on the 
limited number databases, i.e., DRIVE and STARE. The 
quality of photographs from these databases is constrained to 
0.4 and 0.3 megapixels, correspondingly. This poor contrast 
is satisfactory for specific considerations like fractal dimen-
sion or tortuosity, and computing the vessel width usually 
needs greater resolution photographs to attain superior accu-
racy. An advancement in image acquisition brings it easy to 
collect a large number of patient photographs for analysis. 
Analysis of these photographs needs fast detection tech-
niques strong enough to execute the photographs obtained 
from different image capture equipments and imaging con-
ditions. The hardware-based implementations approaches 
suggest a solution providing high processing speed that is 
essential in real-time applications.

For accurate and efficient CAD system, precision and 
strength of the extraction method are important. This article 
offers an extensive report of existing retinal vessel extraction 
techniques. We have enclosed both initial and latest articles 
concentrating on extraction of retinal vasculature method-
ologies and approaches. Our objective is to present the exist-
ing extraction methods, provide the reader an outline for 
the current research, and to recommend the array of retinal 
vessel extraction techniques found in the literature. The pre-
sent drifts, the future guidelines, and the open hitches in the 
automated retinal vessel extraction are also debated.
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