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Abstract
Since the emergence of COVID-19, thousands of people undergo chest X-ray and computed tomography scan for its screening 
on everyday basis. This has increased the workload on radiologists, and a number of cases are in backlog. This is not only 
the case for COVID-19, but for the other abnormalities needing radiological diagnosis as well. In this work, we present an 
automated technique for rapid diagnosis of COVID-19 on computed tomography images. The proposed technique consists 
of four primary steps: (1) data collection and normalization, (2) extraction of the relevant features, (3) selection of the most 
optimal features and (4) feature classification. In the data collection step, we collect data for several patients from a public 
domain website, and perform preprocessing, which includes image resizing. In the successive step, we apply discrete wave-
let transform and extended segmentation-based fractal texture analysis methods for extracting the relevant features. This is 
followed by application of an entropy controlled genetic algorithm for selection of the best features from each feature type, 
which are combined using a serial approach. In the final phase, the best features are subjected to various classifiers for the 
diagnosis. The proposed framework, when augmented with the Naive Bayes classifier, yields the best accuracy of 92.6%. 
The simulation results are supported by a detailed statistical analysis as a proof of concept.

Keywords  Covid19 · Features extraction · Features selection · Features classification

1  Introduction

Coronavirus Disease 2019 (COVID-19) is highly conta-
gious and has rapidly spread globally infecting almost all 
the countries with millions of positive cases and more than 
0.4 million deaths [1], and is continuously on the rise; see 
Table 1 and Figs. 1 and 2. The key factor to limit this pan-
demic situation is the early testing and diagnosis. However, 
due to its pandemic nature, quick collection and testing of 
samples from the suspected patients is a challenging issue 
for clinical management. Its early detection is possible 
with Nucleic Acid Amplification Tests (NAAT), such as 
reverse transcription polymerase chain reaction (RT-PCR) 
[2], which is required to be interpreted by trained clinical 
laboratory personnel [3]. The initial symptoms of COVID-
19 are fever, fatigue and dry cough, and it predominantly 
affects lungs. The affected lobes with ground glass changes 
and/or consolidations etc. can be recorded in chest radiol-
ogy images [4, 5]. This is why the clinicians worldwide are 
using chest X-rays (CXR) and computed tomography (CT) 
images as an alternative and fast method for the screening 
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and diagnosis of the COVID-19, especially supported by 
the fact that the RT-PCR method may take several hours to 
complete the process [6].

Now due to the rise of this pandemic situation, thousands 
of people daily undergo CXR and CT scan for screening of 
COVID-19. This has overburdened the radiologist leading 
to their decreased productivity [7] in the proper detection 
of suspicious abnormalities [8]. In the case of contagious 
diseases, this backlog of radiological studies cannot be 

afforded; however, in the case of chronic and slow diseases 
such studies may be delayed. For detailed analysis of the 
errors and discrepancies in radiology diagnosis, the inter-
ested readers are referred to [9–17]. Artificial intelligence 
(AI) and computer vision system play an important role in 
classifying different complex structures found in the medical 
images [18–21] and can be used in the computer aided diag-
nosis tools. Therefore, AI is being researched for radiologi-
cal diagnosis since long and has proven quite successful in 

Table 1   Covid-19 statistics: 
Retrieved on May 19, 2020 
from www.world​omete​r.info

Country Total cases Total deaths Total recovered Active cases Critical cases

USA 1,612,450 95,923 374,177 1,142,350 17,964
Russia 317,554 3099 92,681 221,774 2300
Spain 280,177 27,940 196,958 55,219 1152
Italy 228,006 32,486 134,560 60,960 640
France 181,826 28,215 63,858 89,753 1745
Germany 178,918 8282 158,000 12,636 1016
China 82,967 4634 78,249 84 8
Iran 129,341 7249 100,564 21,528 2655
India 118,226 3584 48,553 66,089
Pakistan 48,091 1017 14,155 32,919 111

Fig. 1   Confirmed COVID-19 
cases in 10 selected countries: 
Retrieved on May 19, 2020 
from www.world​omete​r.info

Fig. 2   Confirmed deaths in 10 
selected countries: Retrieved on 
May 19, 2020 from www.world​
omete​r.info

http://www.worldometer.info
http://www.worldometer.info
http://www.worldometer.info
http://www.worldometer.info
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the cases of breast screening [22], diagnosis and quantifica-
tion of emphysema severity [23], tuberculosis detection [24] 
and claims of detection of diagnosis idiopathic pulmonary 
fibrosis with similar accuracy to a human reader [25].

During the past year, several imaging-based diagnosis 
techniques of COVID-19 backed by AI and machine learn-
ing have been presented, along with their correlation with 
the RT-PCR [26, 27]. CT and CXR images are processed 
for the detection of pneumonia like imaging features using 
AI techniques. In [28], CXR images and deep convolutional 
neural networks (CNNs) are used to diagnose COVID-19. 
The models used are ResNet 50, Inception V3 and a hybrid 
approach based on Inception-ResNetV2, claiming accuracies 
of 98%, 97% and 87% , respectively. In another approach [29], 
COVID-19 and bacterial and viral pneumonia are diagnosed 
and classified into negative or positive by using X-ray radio-
graphs. The approach makes use of GoogleNet as a deep 
transfer model, claiming 100% accuracy. In another approach 
[30], the authors have claimed 86.7% accuracy in diagnos-
ing the early signs of COVID-19, using chest CT images 
with deep learning . Authors in [31] propose to use two-
dimensional (2D) and three-dimensional (3D) deep learn-
ing models combination and claim an accuracy of 98.2% 
and specificity of 92.2% with chest CT images. In [32], the 
authors combined the Inception CNN with Marine Predators 
algorithm to select the most relevant features from COVID-
19 X-ray images, achieving an accuracy of 98.7%. In another 
study, the deep learning methods are used to extract COVID-
19 graphical features and provide clinical diagnosis quite 
ahead of the pathogenic test helping in timely control of the 
spread. The authors claim a rather constrained accuracy of 
85.2% [10].

On the one hand, it is widely accepted that the diagnoses 
based on CXR are not as efficient as those based on the 
CT scans [11]; on the other hand, however, the accuracies 
reported in the literature for the former surprisingly exceed 
those for the CT scans. Furthermore, these systems normally 
give binary decision of either negative or positive, and do 
not incorporate any qualitative analyses based on the rec-
ommendations of Radiological Society of North America 
(RSNA) [33, 34]. Hence, it may be concluded that most of 
the available methods are either not sufficiently reliable, or 
achieve a constrained diagnosis efficiency. Especially for 
contagious diseases, such as COVID-19, there is still space 
for a thorough framework that could address the aforemen-
tioned discrepancies.

In this research work, the CT scan images and CXR 
images are processed for the detection of radiological signs 
of COVID-19 using computer vision and AI techniques and 
classified these images as per the RSNA recommendations 
using a novel machine learning approach. The proposed 
technique is capable of minimizing inter-observer variabil-
ity in image interpretation among the radiologists and hence 

subjectivity due to difference in experience by qualitative 
analysis. The system is also capable of picking up very sub-
tle or early findings that can be missed by a radiologist. The 
solution is a combination of preprocessing stages, especially 
designed to extract the information using a set of selected 
feature extraction techniques. The main contributions of the 
proposed framework are summarized as follows: 

1.	 A novel entropy-based fitness optimizer function is 
implemented, which selects the chromosomes with 
maximum information. The only chromosome with 
maximum fitness value is selected to get the sub-optimal 
solution in the minimum number of iterations.

2.	 To conserve maximum information and to obliterate 
the redundant features at the initial level, a preliminary 
selection process is initiated on each feature set using 
the entropy-controlled fitness optimizer.

3.	 To exploit the complementary strength of all features, a 
feature fusion approach is utilized which combines all 
the competing features to generate a resultant feature 
vector.

The rest of the manuscript is organized as follows: Sect. 2 
presents the two commonly used imaging analysis for 
COVID-19. Datasets and their collection are given in 
Sect. 3, followed by a detailed description of the proposed 
framework in Sect. 4. The results and statistical analysis are 
presented in Sects. 5 and 6, respectively. We conclude the 
manuscript in Sect. 7.

2 � CT and CXR imaging analysis for COVID‑19

COVID-19 can be detected with Nucleic Acid Amplifica-
tion Tests, such as RT-PCR at very early stage [3] which 
is the gold standard as yet. Some studies have shown that 
imaging should be discouraged as primary screening tool, 
because these may suffer from selection bias (from inter 
observer variability among radiologists) with the claims 
that it is ten times less sensitive and less specific as com-
pared to RT-PCR [35]. This implies that it can be negative 
in the early stages of the disease, and imaging features 
can overlap with many other infectious and noninfectious 
disease processes. However, in China, the chest CT has 
proven to have relatively higher sensitivity for COVID-19 
as compared to the initial RT-PCR from swab samples 
[27], possibly due to the high sensitivity of CT images to 
lung lesion even before RT-PCR [36, 37]. As the RT-PCR 
takes more time, that is at least 6 h, imaging was a much 
faster and readily available screening tool in the surge of 
patients during the pandemic situation especially where 
RT-PCR were not available; therefore, it has played an 
important role in the risk stratification and screening for 
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COVID -19. Chest radiographs are less sensitive as com-
pared to chest CT and can give negative diagnose in case 
of early or mild infection, but can be used as a first line 
imaging modality [38]. On CXR, the findings may be air-
space opacities or Ground Glass Opacities (GGO) mostly 
distributed in bilateral, peripheral and lower zone [38, 39]. 
In the early stages of disease, the CT images may be either 
negative or show GGO only, while at progressive stage 
increased GGO and crazy paving can appear [35]. The 
representative CXR and CT scan images of COVID-19 are 
shown in Fig. 3. In Fig. 3a, CXR shows Bilateral Ground 
Glass alveolar consolidation with peripheral distribution, 
which is very clear and can be seen easily, but this may 
not always be the case, specifically in the early stages of 
infection. In Fig. 3b, c, two CT images are given, show-
ing air space consolidation and GGO. The changes are 
much clearly visible in Fig. 3c, while in Fig. 3b the GGO 
can be misinterpreted with motion blur. This is important 
to note as it can affect the efficient implementation of an 
intelligent diagnosis system. It is important to note that 
many respiratory viruses, such as influenza, organizing 
pneumonia and connective tissue disorders, can cause 

pneumonia like changes on both chest radiograph and CT 
similar to that of COVID-19, and therefore, their proper 
interpretation and differentiation from COVID-19 is a 
challenging issue [40, 41]. In order to address such ambi-
guities, RSNA has recommended statements on reporting 
CXR and CT finding related to COVID-19 [33, 34]. It is 
important to follow these recommendations to avoid any 
misinterpretation.

3 � Dataset collection

We collected pneumonia chest CT scans of 35 subjects 
diagnosed positive of COVID-19 from RadioPaedia image 
database [2]. Links to some public domain websites are 
also given for verification as follows: 

1.	 Case 1—https​://radio​paedi​a.org/cases​/covid​-19-pneum​
onia-2

2.	 Case 3—https​://radio​paedi​a.org/cases​/covid​-19-pneum​
onia-3

Fig. 3   CXR and CT images of 
COVID-19 patients

https://radiopaedia.org/cases/covid-19-pneumonia-2
https://radiopaedia.org/cases/covid-19-pneumonia-2
https://radiopaedia.org/cases/covid-19-pneumonia-3
https://radiopaedia.org/cases/covid-19-pneumonia-3
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3.	 Case 4—https​://radio​paedi​a.org/cases​/covid​-19-pneum​
onia-4

4.	 Case 5—https​://radio​paedi​a.org/cases​/covid​-19-pneum​
onia-7

5.	 Case 8—https​://radio​paedi​a.org/cases​/covid​-19-pneum​
onia-8

6.	 Case 15—https​://radio​paedi​a.org/cases​/covid​-19-pneum​
onia-23

7.	 Case 18—https​://radio​paedi​a.org/cases​/covid​-19-pneum​
onia-10

8.	 Case 20—https​://radio​paedi​a.org/cases​/covid​-19-pneum​
onia-27

All the patients have their RT-PCR COVID-19 test posi-
tive and have COVID19-pneumonia. The patients’ history is 
also provided in the given website along with their detailed 
travel history. For the healthy scans, we approached [29], 
so that the model utilized is efficiently trained, Fig. 3a. This 
figure portrays healthy/normal scans in the top row, while 
the COVID-19 pneumonia scans are provided in the bottom 
row. To train the classifier, features extracted from a total 
of 3500 COVID19-pneumonia and 2400 normal chest CT 
scans are utilized from the provided link, and are resized into 
512 × 512 resolution.

4 � Proposed methodology

Early methods of machine learning utilize either sole or hybrid 
approaches for feature extraction. Though both methods have 
their advantages and drawbacks, generally fused feature space 
has more capacity to retain the dexterous features. Due to this 
flexibility, the hybrid approaches have gained much popularity 
among the researchers working in the area of computer vision. 
However, selection of the most appropriate feature extraction 
technique is quite a sensitive task, which needs to be handled 
carefully, otherwise, it may result in feature redundancy and, 
therefore, increased correlation. In this work, we utilized four 
different techniques—belongs to two different categories, sta-
tistical and texture. Two feature families are not considered, 
color and shape, because of their limited impact and signifi-
cance in this application. The proposed framework, Fig. 4, is 
the subject of discussion in the following subsections.

4.1 � Discrete wavelet transform features

The rationale behind selecting the discrete wavelet transform 
(DWT) for texture feature extraction is its ability to be invari-
ant to translation, scaling and rotation. Further, in DWT, the 
contours can be requited from the coarsest to the finer scale, 
enabling the formulation to handle noise effectively. The 2D 
wavelet decomposition for images is similar to the 1D decom-
position, in which the 2D wavelets basis Ψl,m(t) and scaling 
basis �m(t) are obtained by taking the tensor products of 1D 
wavelets and scaling functions. For a 2D image, the DWT 

Fig. 4   Proposed framework of COVID19 prediction using CT scans

https://radiopaedia.org/cases/covid-19-pneumonia-4
https://radiopaedia.org/cases/covid-19-pneumonia-4
https://radiopaedia.org/cases/covid-19-pneumonia-7
https://radiopaedia.org/cases/covid-19-pneumonia-7
https://radiopaedia.org/cases/covid-19-pneumonia-8
https://radiopaedia.org/cases/covid-19-pneumonia-8
https://radiopaedia.org/cases/covid-19-pneumonia-23
https://radiopaedia.org/cases/covid-19-pneumonia-23
https://radiopaedia.org/cases/covid-19-pneumonia-10
https://radiopaedia.org/cases/covid-19-pneumonia-10
https://radiopaedia.org/cases/covid-19-pneumonia-27
https://radiopaedia.org/cases/covid-19-pneumonia-27
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performs critical subsampling along both rows and columns, 
and these subbands information is utilized in the next level 
decomposition. The followed approach utilizes filter banks, 
described as:

The lowpass or averaged coefficients �l(k) are created by 
half-band lowpass filter ho , whereas the highpass or detailed 
coefficients �l(k) are created by half-band highpass filter h1 . 
From the equations, it can be observed that filtering �l+1 with 
h0 and h1 produces �l(k) and �l(k) , followed by decimation 
by a factor of 2.

To compute DWT coefficients for two levels, two-stage 
filter banks are required. The initial scale, l + 1 , in terms of 
�l+1 is the original signal, which after one level of decom-
position produces highpass �l and lowpass coefficients �l . 
A batch of COVID-19 chest CT scans are represented by 
{x1, x2, x3,… , xn} ⊆ X(m, n) ∈ ℝ

{m,n} , where m and n are the 
rows and columns, respectively. Initially, both filters H0(�) 
and H1(�) are applied on x1m, n to generate a pair of images 
with both low and high frequencies. Afterward, the filtered 
images are sub-sampled by a factor of 2 and are forwarded to 
the next series of filters along the columns. The decimation 
by a factor of 2 is again carried out after filtration process in 
the columns. A single column decomposition generates four 
subband images, {LL, LH,HL,HH} of size M

2
,
N

2
 . The whole 

computation is performed to generate set of features:

(1)�l(k) =
∑

u

6h0(u − 2k)�l+1(u)

(2)�l(k) =
∑

u

h1(u − 2k)�l+1(u)

The lowpass L and highpass H filters are represented by the 
alphabet letters on the sub images.

4.2 � Extended segmentation‑based fractal texture 
analysis (ESFTA)

As discussed earlier, texture features play much more signifi-
cance role in the recognition process compared to other set up 
of features including shape and color. Therefore, in this work, 
we are employing our existing work [42] to extract the tex-
ture features of COVID-19 chest CT scans. In this technique, 
the fractal dimensions are computed from the stack of binary 
images. The technique works in two steps: (1) image partition-
ing into stack of binary images using pair threshold binary 
decomposition (PTBD), (2) fractal analysis of each binary 
image based on boundaries, pixel count, mean gray level. 

(3)LLl(u, v) =
∑

m

∑

n

h0(m − 2u) h0(n − 2v) . LLl+1(m, n),

(4)

HLl(u, v) =
∑

m

∑

n

h0(m − 2u) h1(n − 2v) . LLl+1(m, n),

(5)

LHl(u, v) =
∑

m

∑

n

h1(m − 2u) h0(n − 2v) . LLl+1(m, n),

(6)

HHl(u, v) =
∑

m

∑

n

h1(m − 2u) h1(n − 2v) . LLl+1(m, n),
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4.3 � Statistical features

Generally, data follow a normal distribution, which describes 
how the values of a variable are distributed. In case of nor-
mal distribution, it has two fundamental parameters; the 
mean and standard deviation. Observing a chest CT scan 
image under M modalities, with an assumption that all the 
images are spatially registered, i.e., healthy images are same 
and pixels correspond to the same location. From a pool of 
images, xi , where i = {1, 2,… , n} ∈ X , each of the healthy 
image follows a Gaussian distribution �(�, �) . One observes 
a noticeable change in the distribution when provided an 
infected COVID-19 chest CT scan image. By following the 
underlying concept, two statistical parameters, entropy and 
skewness, are selected based on their vast applications in the 
field of machine learning.

4.3.1 � Skewness

It measures asymmetry of the probability distribution about 
its mean. The skewness value can be negative, zero or 
positive. If the value is negative then the distribution curve 
spreads out more to the left of the mean, whereas, in case 
of positive value, it leans toward the right. The skewness 
distribution is described using the relation:

where � and � are the mean and standard deviation of a ran-
dom variable x, and E(t) denotes the expected value.

4.3.2 � Entropy

Entropy offers the information regarding randomness in 
a signal by cogitating the system’s disorder. Due to this 
potential, entropy, in the current perspective, offers a useful 
information that can be utilized in feature representation. 
In this framework, Shannon entropy is utilized, which sig-
nificantly improves the overall accuracy, by embedding the 
most relevant feature information. For both COVID-19 chest 
CT scans x1, x2,… , xN ⊆ X(m, n) ∈ ⋗,⋉ contains N samples. 
The image space has � measure with �(X) = 1 , the Shannon 
entropy is calculated as:

where �(xk) is observing probability for a particular pixel 
matrix/vector of X. This whole concept allows us to identify 
the most superior and dominant pixels with a better variation 
and with least correlation.

(7)� =
E(x − �)3

�3

(8)�(X) = −

N
∑

k=1

xk log �(xk)

4.4 � Feature selection framework

The genetic algorithm (GA) belongs to a class of stochastic 
search algorithms, which on the principle of survival of the 
fittest finds the sub optimal solution from a pool of solu-
tions. In the GA framework, the population is developed by 
combining a set of chromosomes, where each chromosome 
constitutes a possible solution. In the proposing scenario, 
the extracted set of features are independently plugged into 
the GA block. The most discriminant chromosome/solution 
is later selected using the proposed entropy-based fitness 
optimizer.

Both texture and statistical features are used to generate 
two pairs of chromosomes, where each chromosome repre-
sents a feature type.

ℤ = {1,… , 4} is the set of bounded integers, representing 
a feature chromosome. The entire population is generated 
from each set of chromosome c, continuous valued vector, 
having Gj genes. The continuous domain offers more con-
vergence possibilities and also minimizes the probability for 
a generation to be stuck in a local minima.

where k is the chromosome index in a population, and m is 
the length of a chromosome. In what follows, we present a 
genetic operators including proposed crossover, mutation 
and selection operators for a thorough technical analysis.

4.5 � Median‑replacer crossover

S e l e c t i n g  a  p a i r  o f  c h r o m o s o m e , 
C1
j
= {(G1

1
,G1

2
,G1

3
,… ,G1

m
), (G2

1
,G2

2
,G2

3
,… ,G2

m
)} ,  where 

j = {1, 2,… ,m} , for an average-replacer crossover opera-
tion. Two offsprings, ( O1

l
 and O2

l
 ), are generated as: 

O1
l
= �C1

j
(1 − �)C2

J
 and O2

l
= �C2

j
(1 − �)C1

J
 . The median of 

both offsprings is later replaced using the min/max value 
extracted from the parent chromosomes. A max value is 
assigned 1 ( max → 1 ), whereas the min value is assigned 0 
( min → 1 ). A binary random sequence is generated to select 
min/max value from the first selected chromosome C1

j
 , and 

the same procedure applies to the second selected chromo-
some. Based on the generated binary rand sequence, median 
values of both offsprings are updated. An inversion mutation 
is applied on the selected number of chromosomes, whereas, 
for the selection, both healthy and non-healthy parents are 
selected for the next generation on the basis of entropy-based 
fitness optimizer [43].

(9)�k(𝕏) =
{

Ψ1
WL

(X),Ψ2
ESFA

(X),�3
�
(X),�4

𝔼
(X)

}

;k ∈ ℤ,

(10)Ck
j
=
{

Gk
1
,Gk

2
, ,Gk

3
, ,… ,Gk

m
,
}
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4.6 � Entropy‑based fitness optimizer

To select the next-generation offsprings, the fitness of each 
chromosome needs to be evaluated. In this work, we devel-
oped a novel entropy-based fitness optimizer. The whole 
idea revolves around the fundamental property of the feature 
randomness calculated by the entropy function. More the 
entropy value is, greater the chances of a healthy chromo-
some. Here, the entropy calculator identifies the maximum 
randomness by controlling the uncertainty. For a real-valued 
chromosome vector C1

j
= {(G1

1
,G1

2
,G1

3
,… ,G1

m
)} , the Shan-

non entropy is calculated using the relation:

where G1
q
 is the gene q of the first chromosome.

4.7 � Feature fusion

Features fusion is a robust strategy pursued by several 
researchers in the field of machine learning. The original fea-
ture space, in most of the cases, does not contain sufficient 

(11)�� = −

m−1
∑

q=0

(

G0
q
∕ΔG

)

log2 �
(

G0
q
∕ΔG

)

information compared to the fused feature space. Therefore, 
in this work, we opted feature fusion strategy to generate a 
resultant feature vector with enriched information. All the 
down-sampled features from GA block are later fused by fol-
lowing a cascaded design. These horizontally concatenated 
feature vectors is later forwarded to the classification block 
for final labeling using Naive Bayes classifier [44].

5 � Results and discussion

The proposed framework for COVID-19 pneumonia is 
evaluated in this section with both empirical and graphi-
cal results. For the validation, 35 subjects are considered 
with their Coronavirus test positive, with details provided 
in Sect. 3. A fair training/testing ratio of (70:30) is being 
followed with 70% as training data and the rest is treated 
as testing data. To generalize the empirical results and 
to recognize the precise stats, a tenfold cross-validation 
technique is exercised. For the final classification, a 
Naive Bayes classifier is selected based on its improved 
performance. A fair comparison is also provided with the 
existing state-of-the-art classifiers including fine KNN 
(F-KNN) [45], linear support vector machine (L-SVM) 

Fig. 5   Proposed prediction results. a Original images; b proposed predicted labeled image
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[46], ensemble bagged tree (EBT) [47] and fine tree 
(F-Tree) [48] classifiers. To authenticate the proposed 
method, several performance measures deem necessary 
are chosen including sensitivity (SEN), precision (PR), 
specificity (SPE), an area under the curve (AUC) and accu-
racy (ACC). The mathematical form of aforementioned 
measures is provided in the following equations.

where �TP represents true positive, �TN represents true nega-
tive, �FP denotes false positive rate, and �FN represents false 
negative rate. A few samples results are demonstrated in 
Fig. 5, where one can observe a binary labeling; corona posi-
tive and normal.

The results are compiled by taking into consideration 
three different scenarios; (1) accuracy achieved using inde-
pendent features, (2) accuracy achieved after employing GA 
for feature selection and (3) with proposed feature selection 
and fusion method.

Case 1 considers the features extracted independently 
from each technique for the classification; this is tabulated 
in Table 2. For a fair comparison, different classifiers are 
being tested and against each technique. The final results 
are as expected, and the Naive Bayes classifier outperforms 
other state-of-the-art with an average accuracy of 80.83%, 
while the second-best average accuracy achieved is with 
F-KNN (79.52%). The accuracy comparison of different 
feature extraction techniques with proposed is provided in 
Fig. 6. It is apparent from the bar plot that the independent 
features are of no match to the fused features for this applica-
tion. One can also observe, with DWT features, most of the 

(12)SEN =
�TP

�TP + �FN
× 100%

(13)SPE =
�TN

�TN + �FP
× 100%

(14)PR =
�TP

�TP + �FP
× 100%

(15)ACC =
�TP + �TN

�TP + �TN + �FP + �FN
× 100%Table 2   Accuracy calculated using different feature extraction tech-

niques

Classifier Entropy DWT Skewness SFTA Accuracy (%)

Naive Bayes ✓ 81.2
✓ 82.7

✓ 79.6
✓ 79.8

F-KNN ✓ 79.8
✓ 81.6

✓ 76.5
✓ 80.2

L-SVM ✓ 78.1
✓ 80.1

✓ 79.4
✓ 75.6

EBT ✓ 76.3
✓ 80.9

✓ 72.6
✓ 80.4

F-Tree ✓ 80.3
✓ 73.4

✓ 75.7
✓ 77.9

Fig. 6   Accuracy comparison 
of different feature extraction 
techniques using bar plots
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classifiers performed well compared to other features. This 
clearly shows, DWT features in this application, would be an 
appropriate choice compared to other features, either used 
solely or in the fused form.

In case 2, the selected features from GA are forwarded to 
the classifier for final labeling, Table 3. The same trend is 
being followed after feature selection step, and Naive Bayes 
classifier works exceptionally well almost for all kind fea-
tures by achieving an average accuracy of 85.55% . F-KNN 
worked second best by achieving an average accuracy of 
84% . One more time, with DWT features, classification 
results are exceptional with almost all the classifiers. The 
average classification accuracy achieved using GA-DWT 
features by all the selected classifiers are 84.86% compared 
to 83.85% using G-SFTA. Figure 7 demonstrates that the 
average accuracy achieved after GA increased compared to 
stand alone features. A vertical bar clearly indicates that 
the accuracy margin between the proposed and after GA 
selection is still comparable, which strengthens the positive 
significance of feature fusion.

Using the proposed framework, the achieved accu-
racy using the Naive Bayes classifier is 92.6% , whereas a 
few other classifiers (EBT, L-SVM and F-KNN) behave 
significantly better to achieving an average accuracy of 

Table 3   Accuracy comparison of different feature extraction tech-
niques after applying GA-based feature selection

Classifier G-Entropy G-DWT G-Skew-
ness

G-SFTA Accuracy 
(%)

Naive 
Bayes

✓ 86.7
✓ 87.4

✓ 80.4
✓ 87.7

F-KNN ✓ 84.6
✓ 85.9

✓ 80.1
✓ 85.4

L-SVM ✓ 84.2
✓ 85.4

✓ 78.6
✓ 82.9

EBT ✓ 82.3
✓ 81.8

✓ 76.3
✓ 84.6

F-Tree ✓ 81.7
✓ 83.8

✓ 79.2
✓ 78.6

Fig. 7   Accuracy comparison 
of different feature extraction 
techniques using bar plots after 
applying GA-based feature 
selection

Table 4   A comparison of 
state-of-the-art classifiers using 
proposed GA controlled feature 
selection and fusion method

Significant values are shwon in bold

Classifier Sensitivity (%) Precision (%) Specificity (%) AUC​ Accuracy (%)

Naive Bayes 92.5 92.5 92.0 0.99 92.6
F-KNN 92.0 92.0 91.0 0.96 92.0
L-SVM 91.7 92.0 91.0 0.96 92.1
EBT 92.2 92.3 94.0 0.98 92.2
F-Tree 91.5 91.5 93.0 0.98 91.6
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92.2%, 92.1% and 92.0% , respectively. The authenticity of 
proposed framework is further validated from the selected 
performance parameters including sensitivity ( 92.5% ), speci-
ficity ( 92.0% ), precision ( 92.5% ) and the AUC (0.99), see 
Table 4. From the sensitivity and specificity values, it is 
quite obvious that the proposed framework has successfully 
managed to achieve a high true positive and negative rates 
by correctly classifying the actual positive and actual nega-
tive samples. To further describe the performance of a clas-
sifier on a set of test data, a confusion matrix is provided, 
Table 5. From the stats, one can develop a clear understand-
ing, that out of total test samples, 93% are correctly labeled 
as COVID-19 infected, whereas around 7% are misclassified 
as normal.

In addition, we compare the proposed method results 
on different training and testing samples such as 70:30, 
60:40, 90:10 and so on. The results are plotted in Fig. 5. 
In this figure, it is shown that the 90:30 approach results 
are fine but if we consider the standard process of vali-
dation, then 70:30 approach results are more useful 
(Fig. 8).

6 � Statistical significance

The objective here in performing the statistical analysis is 
to gain a high level of confidence in the proposed method. 
The results are statistically significant, if they are likely not 
caused by chance. We employed the analysis of variance 

Table 5   Confusion matrix of Naive Bayes classifier after applying 
optimized GA for features selection

COVID-19 93% 7%

Normal 8% 92%
COVID-19 Normal

Fig. 8   Comparison of proposed results on different training and testing sets

Naive Bayes EBT L-SVM

91

91.5

92

92.5

93

93.5

94

Confidence Interval

Fig. 9   Box-plot of accuracy values on the selected classifiers (1: 
SVM-C, and 2: SVM-Q)

Table 6   ANOVA test on two selected classifiers based on the pro-
posed method

Variance source SS df MSE F-Statistics p value

Between 0.6212 1 0.313 0.431 0.667
Within 4.324 4 0.716 – –
Total 4.924 5 – – –
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(ANOVA) to demonstrate, that either the results are statisti-
cally significant or not. In this work, we consider the pro-
posed scenario for three different classifiers (Naive Bayes, 
EBT, L-SVM)—selected on the basis of their improved 
performance compared to the rest. A Shapiro–Wilk test 
is performed for assumption of normality, while Bartlett’s 
test—for homogeneity of variance with a significance level 
� = 0.01 . The means of our approach are x̄1 , x̄2 , and x̄3—
calculated from the overall accuracy of both classifiers. 
The null hypothesis H0 , given that x̄1 = x̄2 = x̄3 , while the 
alternative hypothesis Ha given that x̄1 ≠ x̄2 ≠ x̄3 . We com-
puted the p value and tested the null hypothesis, H0 , if it is 
rejected, p < 𝛼 , then we will be applying Bonferroni post 
hoc test.

For the proposed entropy controlled GA method 
(E-GA), and with selected classifiers (Naive Bayes, EBT 
and L-SVM), the Shapiro–Wilk test generated p value, 
pu = 0.8002 , pv = 0.9152 , and pl = 0.6878 . By following 
the Bartlett’s test, the associated Chi-squared probabilities 
are: pu = 0.371 , pv = 0.339 , and pl = 0.410 . From the cal-
culated p values of two different classifiers, which are sig-
nificantly greater than � . Therefore, from the test (normal-
ity and equality of variances), we failed to reject the null 
hypothesis H0 , and confirm that the data were distributed 
normally, and their variances are homogeneous. ANOVA 
test including five different parameters (degree of freedom 
(df), a sum of squared deviation (SS), mean squared error 
(MSE), F-statistics, and p value) is shown in Table 6. The 
performance range of three selected classifiers based on the 
proposed method is shown in Fig. 9.

The results are also validated by utilizing Bonferroni post 
hoc test, which is the most common approach to be applied 
whenever there exists a chance of a significant difference 
between the means of multiple distributions. It was certi-
fied that the proposed method performed better compared 
to several existing methods.

7 � Conclusion

A computerized technique is proposed in this work for the 
prediction of COVID-19 from the CT scans. Textural and 
statistical features are extracted from raw CT images, and 
then, only best features are selected based on optimized 
genetic algorithm. The selected features are serially con-
catenated and later classified using the Naive Bayes classi-
fier. The experimental process is performed on the collected 
COVID-19 positive and healthy samples and shows the pro-
posed method to be effective. The main contribution of this 
work is an optimized genetic algorithm for best selection. 
Using this algorithm, the accuracy of individual feature type 
is improved and when all selected features are combined, 

then a significant change has been observed in the accuracy. 
Based on the performance of this algorithm, we concluded 
that the selection of most relevant features improves the 
accuracy, but on the other side, it is a high chance that we 
miss the important features that play a contribution in the 
improvement of prediction accuracy. Also, this problem may 
occur when we have more patients data for final testing. 
Therefore, in the future studies, we will focus on the reduc-
tion of these features.
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