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Abstract
Face recognition is a well-researched domain however many issues for instance expression changes, illumination varia-
tions, and presence of occlusion in the face images seriously affect the performance of such systems. A recent survey shows 
that COVID-19 will also have a considerable and long-term impact on biometric face recognition systems. The work has 
presented two novel Savitzky–Golay differentiator (SGD) and gradient-based Savitzky–Golay differentiator (GSGD) feature 
extraction techniques to elevate issues related to face recognition systems. The SGD and GSGD feature descriptors are able 
to extract discriminative information present in different parts of the face image. In this paper, an efficient and robust person 
identification using symbolic data modeling approach and similarity analysis measure is devised and employed for feature 
representation and classification tasks to address the aforementioned issues of face recognition. Extensive experiments and 
comparisons of the proposed descriptors experimental results indicated that the proposed approaches can achieve optimal 
performance of 96–97, 92–96, 100, 84–93, and 87–96% on LFW, ORL, AR, IJB-A datasets, and newly devised VISA data-
base, respectively.
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1  Introduction

Face recognition is used as a key tool for early revealing, 
patient screening and monitoring, in an attempt to control 
the spread of COVID-19 disease. Border control, banking, 
mobile lock, security monitoring, and signing systems, quar-
antine, and healthcare and so on are the key applications 
introducing biometric technology into infectious disease 
monitoring and control protocols [1–3]. Recent application 
of face recognition systems includes, passenger can get on 
a plane with a simple smile, and the fight against COVID-
19 in blend with body temperature measurement devices [4]. 
Significant efforts have been made to devise new biometric 
systems for person identification using face trait and they 

have achieved substantial levels of identification accuracy. 
However, performances (recognition accuracy) of such bio-
metric systems are influenced by various problems related 
to variations in expression, pose, non-uniform illumination, 
and presence of occlusion in face images. Recent study 
also reveals that COVID-19 will also have a substantial and 
enduring impact on performance of biometric face recogni-
tion systems [1]. The key point of these systems/face rec-
ognition methods is how to deal with the high dimensional 
dataset to get stable and efficient facial features. Most of 
these techniques offer satisfactory results under controlled 
circumstances (restricted environment) over comprehensive 
face datasets. Conversely, face image samples acquired in 
uncontrolled conditions will affect the recognition accuracy 
of such approaches. Face recognition operations are being 
retrofitted with newly devised screening software to find per-
sons who are not wearing protective masks. In this context, 
new AI and ML face recognition algorithms are devel-
oped to handle any identification issues due to partial face 
disguise, which remains a major challenge for any face 
recognition system [1]. Current advancements in computer 
vision approaches show that deep learning-based techniques 
perform well for face recognition task [5, 6]. Several Deep 
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Neural Network (DNN) models such as AlexNet, VGGNet, 
ResNet, Inception-ResNet and SENet are developed to per-
form face recognition [7, 8].What leftovers to be seen is how 
existing face recognition systems will prove to be clinically 
useful in the current scenario, where complete information 
is not available for recognition (especially in COVID-19, the 
person wearing mask and face shield) [9].

In general, the problems associated with such biom-
etric recognition systems include non-uniform light con-
ditions, pose variations, expression changes, and presence 
of occlusion. To elevate these problems, the proposed face 
techniques employ Savitzky–Golay [10] spectral domain 
filter to compute face features under various imaging con-
ditions. The features required for person identification are 
estimated by employing a weighted Savitzky–Golay (SG) 
moving filter. SG filter was initially used to smooth the noisy 
information which is acquired from a chemical spectrum 
analyzer [10]. In which, for a given input data set, at each 
point, the smoothed coefficients are estimated [11]. The 
Savitzky–Golay filter uses a polynomial fitting method by 
employing least squares techniques for smoothing the given 
input signal (data) to reduce the mean square error [11]. 
The Savitzky–Golay filter preserves the peak shape prop-
erty and reduces the signal-to-noise ratio. Hence, to take 
advantage of this property, it has been employed in vari-
ous fields including the area of image processing for image 
enhancement [12] and enhancing the signal-to-noise ratio, 
video signals [13–16]. It has been devised to retain edge/
texture information, which is required in the classification 
stage [17]. The major benefits of the SG smoothing moving 
filter are its speed and its ability to establish higher-order 
derivatives namely edges for the given input image data at 
the same time [18]. Yanping Liu et al. (2016) show that 
the performance of SG moving filter is better over Wiener 
filter and wavelet denoising techniques [19]. The recent tech-
niques using SG filter for ECG signal denoising have shown 
impending results in comparison with other wavelet-based 
methods [20, 21]. By taking into account the edge/line pre-
serving property of Savitzky–Golay filter, in this paper, it is 
employed. Savitzky–Golay filter is used to obtain an optimal 
set of features, which will effectively handle various imaging 
conditions such as pose variations, expression changes, non-
uniform illumination and presence of occlusion present in 
the faces. Another issue for person identification using face 
trait is the representation of those estimated facial features 
in lower feature space to reduce the computation burden.

In the last recent years, much importance has been given 
to the development techniques that will reduce the dimen-
sionality of feature space. In this direction, the symbolic 
modeling approach [22] provides a formal methodology to 
represent the features. The symbolic modeling approach 
offers an alternative way of representing obtained feature 
value/information about a subject. The methodology is 

found to be good in different applications including Postal 
Address Representation and Address Validation [23–25], 
face recognition technique through symbolic modeling of 
face graphs and texture, face recognition techniques like 
symbolic PCA, symbolic KPCA and symbolic LDA and 
character recognition [25]. Hence, the symbolic data mod-
eling approach for person identification is introduced in this 
research work to investigate the flexibility and benefits of the 
modified form of symbolic similarity analysis approach. The 
proposed methods also explore the advantages of SG filter 
in feature extraction for a classification task.

Face image samples may be degraded partially or the 
complete face image may not be presented for person iden-
tification task due to variations in face images. There is also 
a need for artificial intelligence (AI)-based face recognition 
systems to facilitate COVID-19 preparedness and the track-
ing and monitoring of patient, and so the spread of COVID-
19 virus infection can be reduced [2, 26].

In order to handle such problems, the proposed 
research introduces two feature extraction techniques 
namely Savitzky–Golay differentiator (SGD) and Gradi-
ent-based Savitzky–Golay differentiator (GSGD). In the 
Savitzky–Golay differentiator (SGD) feature extraction 
approach, initially eye, mouth, and nose face parts are seg-
mented from a given image. Further, each segmented part 
is partitioned into four non-overlapping zones and from 
each zone, the edge/corner information is computed using 
Savitzky–Golay filter. The smoothing coefficient values of 
four zones are combined and are considered as facial SGEF 
feature values (Savitzky–Golay filter energy feature) for per-
son identification. Based on the proposed feature extraction 
technique, this paper explores different classifiers namely 
symbolic data modeling, NNC (Nearest Neighbor Classi-
fier), multiclass SVM (Support Vector Machine), and PNN 
(Probabilistic Neural Network).

The extracted SGEF (Savitzky–Golay filter energy fea-
ture) is represented in a lower dimension using symbolic 
modeling method. In this research, a symbolic data mod-
eling approach for face recognition is introduced which will 
explore the symbolic data modeling of face Savitzky–Golay 
filter energy features and symbolic similarity analysis tech-
nique. The proposed face recognition techniques with SGEF 
are evaluated on standard face datasets like AR, ORL, LFW, 
IJB-A [6], and the newly constructed VISA face dataset [27]. 
Symbolic modeling approach with SGEF feature achieves 
recognition rates of 95.75% (AR), 99.75% (ORL), 97.22% 
(LFW), and 96.34% (VISA Face). NN classifier with SGEF 
feature achieves recognition rates of 97.67% (AR), 100% 
(ORL), 98.06% (LFW), and 94.17% (VISA Face). Multi-
class SVM with SGEF feature achieves recognition rates of 
94.67% (AR), 89.65% (ORL), 92.30% (LFW), and 79.33% 
(VISA Face). PNN classifier with SGEF feature achieves 
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recognition rates of 92.92% (AR), 100% (ORL), 98.04% 
(LFW), and 89.28% (VISA Face).

In the Gradient-based Savitzky–Golay Differentiator 
(GSGD) feature extraction approach, initially, face parts 
such as mouth, eyes, and nose are extracted from the given 
face image. The gradient mean change in each face part 
in vertical and horizontal directions is determined and 
smoothing coefficient values are estimated independently 
by employing Savitzky–Golay filter. Based on the Gradi-
ent-based Savitzky–Golay filter energy feature (GSGEF) 
features, the current research work explores the advantage 
of gradient information along with Savitzky–Golay filter in 
person identification. The work also describes symbolic data 
modeling, NNC, multiclass SVM, and PNN classifiers for 
face recognition. The performance of proposed methods is 
evaluated on AR, ORL, LFW, and VISA Face databases. 
Symbolic modeling approach with GSGEF feature values 
achieves recognition rates of 92.34% (AR), 99.75% (ORL), 
96.20% (LFW), and 87.14% (VISA Face). NN classifier with 
SG smoothing coefficient values achieves recognition rates 
of 93.30% (AR), 100% (ORL), 98.03% (LFW), and 90.23% 
(VISA Face). Multiclass SVM with GSGEF achieves recog-
nition rates of 91.23% (AR), 88.25% (ORL), 91.60% (LFW), 
and 77.99% (VISA Face). PNN classifier with GSGEF fea-
ture values achieves recognition rates of 92.99% (AR), 100% 
(ORL), 98.04% (LFW), and 89.39% (VISA Face).

All the proposed symbolic modeling, NNC, SVM, and 
PNN classifiers for face recognition are deployed using 
MATLAB R2017b in Intel(R) Pentium(R) i5-8250U 
CPU@1.60Ghz and 8 GB RAM Laptop machine. In gen-
eral, the main contributions of the anticipated research work 
are as follows:

•	 A new efficient and robust symbolic data modeling 
approach based on spectral domain feature extractors for 
person identification is devised and presented to address 
issues related to different light conditions, expression 
variations, and inclusion of occlusion during face recog-
nition.

•	 This is the first approach to use Savitzky–Golay low-pass 
filter to get facial features in different imaging conditions.

•	 Transformation of 1D-Savitzky–Golay filter to 2D, suit-
able for face recognition.

•	 Symbolic modeling and symbolic similarity analysis, 
nearest neighbor (NN) classifier, support vector machine 
(SVM), and probabilistic neural network (PNN) face rec-
ognition techniques have been implemented using PFFT, 
DGM, SGEF, and GSGEF features and evaluated on AR, 
ORL, LFW, IJB-A, and a newly devised VISA face data-
base.

The rest of the paper is divided into six sections as fol-
lows: The proposed Savitzky–Golay differentiator (SGD) 

and Gradient-based Savitzky–Golay differentiator (GSGD) 
feature extraction techniques are presented in Sect.  2. 
The symbolic data representation of the obtained features 
is described in Sect. 3. In Sect. 4, face recognition tech-
niques based on proposed feature extraction approaches 
are described. The experimental results are illustrated and 
described in Sect. 5. Conclusions are presented in Sect. 6.

2 � Savitzky–Golay Differentiator (SGD) 
and gradient‑based Savitzky–Golay 
Differentiator (GSGD) for person 
identification

The section describes the representation of face image fea-
tures and the methodology employed in the proposed face 
recognition works.

2.1 � Savitzky–Golay Differentiator (SGD) for Face 
Recognition

The Savitzky–Golay (SG) filter is a unique type of low-pass 
moving filter and is a technique for computing smoothing 
coefficients of a given input noisy data by using local least 
squares polynomial estimate technique [12]. It reduces the 
noise present in the given data, while retaining the original 
shape property and features of waveform peaks. SG filter is 
superior to average moving filters that is it tends to retain rel-
ative maxima, minima, and width properties of the distribu-
tion, which are generally overlooked by moving average fil-
ter techniques. Because of these properties, Savitzky–Golay 
filter has established substantial attention in various appli-
cations in the domain of digital image processing [28, 29]. 
In the proposed face recognition works, SG filter has been 
employed for feature extraction from face images which are 
affected by different light conditions, change of expressions, 
pose variations, and occlusion.

To a given f(x, y) (2D-image data) or f(i) (1D-data), the 
SG filter aims to smooth and compute its dnth order deriva-
tive by employing moving filter window of Tpoints size and 
an α degree polynomial. The least squares polynomial can 
be defined as:

where (xi, yi) represents the location of the gray level value 
in the given face image f.

In the SG filter, dn indicates a non-negative integer hav-
ing α < Tpoints. To estimate all smoothing coefficient values 
of an input face image f, the least squares polynomial equa-
tion can be rewritten in the form of a matrix as follows:

(1)f (i) = f (xi, yi) = a00 + a10xi + a01yi + a20x
2

i
+ a11xiyi + a02y

2

i
…+ a0ny

�
i

(2)Y = XA + �
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In Eq. (2), Y = [y1, y2,…,yTpoints]T is a column vector of 
computed coefficients in the filtering window, A = [a1,a2,…
,a�]T represents the column vector consisting of the coef-
ficient values of polynomial function and only depends on 
polynomial order and the number of points in the mask (filter 
window size), i.e., depends on α and Tpoints and is inde-
pendent of f (input data). Let ε represents the estimation 
error and X denotes an (Tpoints × (α + 1)) size Vandermonde 
matrix, which can be expressed as:

To reduce the sum of the squared errors that exist between 
given face image f and mask of Tpoints size, the least 
squared approximation technique is employed [28, 29]. In 
the proposed research work, to determine all the smoothing 
coefficient values of an input face image f, Eq. (2) can be 
rewritten and expressed as in Eq. (3).

In Eq. (3), A = (XT X)−1 XT Y and the matrix W represents 
the moving window’s (mask) coefficients and used to deter-
mine the smoothing coefficient values at the ith point in the 
mask window W. The nth order derivative of ith location in 
the given input face image data can be estimated as:

where Yn
i
 indicates the nth order derivative of the ith loca-

tion, vector Wn
i
 represents the moving window’s coefficient 

values of the nth order derivative and Xn
i
 is the coefficient 

value of the nth order derivative.
In general, integer-order form of the SG moving filter at 

ith location can be defined as:

X
T =

⎡
⎢⎢⎢⎢⎢⎢⎣

(−Tpoints)0 ... (−1)0 1 1
0 ... Tpoints0

(−Tpoints)1 ... (−1)1 0 1
1 ... Tpoints1

(−Tpoints)2 ... (−1)2 0 1
2 ... Tpoints2

... ........................................................

(−Tpoints)� ... (−1)� 0 1
� ... Tpoints�

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)Ŷ = XA = X(X
T X)

−1
X
T Y = WY

(4)Yn
i
= Xn

i
A = Wn

i
Y

The moving window W� which is employed to determine 
smoothing coefficient values of the input face image f can 
be expressed as:

where A =
(
XT X

)−1
XT Y .

The mathematical form expressed in Eq.  (5) will 
reduce the number of multipliers needed in computing 
the smoothing coefficients of an input face image. In gen-
eral, degree polynomial with αth to the filter window size 
of (2Tpoints + 1) is fitted and can be deployed with only 
Tpoints-α/2 multiplications (polynomial degree α) per out-
put value instead of 2Tpoints + 1 multiplication operations 
[14]. Demonstration of determining smoothing coefficient 
values of given input face image employing (5) is depicted 
in Fig. 1. In Fig. 1, the input face image is taken from the 
AR dataset [30].

In the proposed research work, moving window W� of 
Tpoints size with α order of the derivative is used as a fil-
ter mask. The size of SG moving filter is (2Tpoints + 1) 
which approximates the input image information between 
− Tpoints and  + Tpoints. In this technique, initially, each 
face image (face part such as mouth, nose, and eyes) is par-
titioned into four non-overlapping segments and SG filter 
is applied on each segment independently. Further, all the 
estimated smoothed coefficient values are pooled to obtain 
a complete set of smoothing coefficient values of an input 
face part data.

Finally, the smoothing coefficient values of size N × N 
are represented as 1D feature vector FV1 of size 1 × N2 and 
expressed as:

where values v1, v2, v3, …,vN×N represents smoothing coef-
ficients of an input face part.

(5)Y�

i
= X�

i
A = W�

i
Y

(6)

W�
i
=

[
1

Γ(1 − �)
i−� ,

1

Γ(2 − �)
i1−� ,… ,

n + 1

Γ(n + 1 − �)
in−�

]
A

FV1 = [v1, v2, v3, … , vN×N]

Fig.1   Computation of smooth-
ing coefficient values using 
SG filter (a) face image (b) 
estimated smoothing coefficient 
values vs noisy input face image 
data
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In general, the computed SG smoothing coefficient values 
of each face component are expressed as FV1 and used in 
NN, SVM, and PNN classifiers for classification.

Once the smoothing coefficient values of all the face 
parts are determined in xyth direction, Savitzky–Golay filter 
energy feature (SGEF) is computed using Eq. (7).

In summary, in the proposed Savitzky–Golay differentia-
tor (SGD) methodology, the four face parts from the given 
image are partitioned into four segments. The smoothing 
coefficient values of each segment are estimated by apply-
ing the SG filter W mask. The SG filter mask W is designed 
by defining the order of derivative α and window of size 
Tpoints. Smoothing coefficient values of all the segments 
are combined to get Savitzky–Golay filter energy feature 
Dxy (SGEF). The block diagram computing Savitzky–Golay 
filter energy feature is shown in Fig. 2.

Another gradient-based descriptor proposed in this paper 
for face recognition is presented in the next section.

(7)Dxy =
∑N

i=1

∑N

j=1
Z

2.2 � Gradient‑based Savitzky–Golay Differentiator 
(GSGD) for face recognition

Savitzky–Golay filter with image gradient information-
based feature extraction technique called Gradient-based 
Savitzky–Golay differentiator (GSGD) is explored in this 
section.

Savitzky–Golay filter is generally employed to fit 1D 
polynomial and estimate its numerical derivatives. On the 
other hand, given input face image is a function of two vari-
ables; as a result, 1D Savitzky–Golay filter differentiator is 
designed by using Eq. (1). The least squares technique is 
applied to determine the smoothing coefficient values of the 
face image precisely as expressed in Eq. (3). In this method, 
α = 2 as an order of the polynomial and the filter window of 
size 3 × 3 are employed (selection is empirical). In general, 
the procedure involved in obtaining the face part Dx and Dy 
features is demonstrated in Fig. 3.

In the proposed Gradient-based Savitzky–Golay Differ-
entiator (GSGD) approach, initially, face parts are obtained 
from a face image and mean gradient of each face part is 
calculated independently in vertical and horizontal direc-
tions. The mean gradient vector Iav_v(V) and Iav_h(H) of face 
component f(x, y) in vertical and horizontal directions is 
computed using Eqs. (8) and (9) as follows:

Fig.2   Estimation of Savitzky–
Golay filter energy feature of a 
face part

Fig.3   Computation of Dx and Dy features
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The moving filtering window W using Vandermonde 
matrix is computed as described in Sect. 2.1 and employed 
to find Dx and Dy features of a gray scale face part of size 
N × N.

Further, using 2D template W and Eq.  (3), the entire 
gradient-based smoothing coefficients are computed. The 
obtained features are referred to as GSGEF (Gradient-based 
Savitzky–Golay filter energy features). The GSGEF is com-
puted in vertical (x) and horizontal (y) directions in the filter 
window W and can be defined as:

and

In Eq. (10) and (11), t = N and α = 2.
In this paper, the smoothing coefficients obtained 

from Eqs.  (10) and (11) are referred as Gradient-based 
Savitzky–Golay filter energy features (GSGEF).

(8)Iav_v = mean(f )

(9)Iav_h = mean(f )

(10)

GSGEFdx = I�
av_bv

(p, q) =

N∑
s=−N

N∑
t=−N

W�(s, t)I
av_bv

(p − s, q − t)

(11)

GSGEFdy = I�
av_bh

(p, q) =

N∑
s=−N

N∑
t=−N

W�(s, t)I
av_bh

(p − s, q − t)

The smoothing coefficients of GSGEFdx of size 1 × N and 
GSGEFdy matrix of size 1 × N are concatenated to generate 
a single feature vector FV2 of size 1 × 2 N and expressed as:

In general, the computed mean gradient-based SG 
smoothing coefficient values of each face component is 
expressed as FV2 and used in NN, SVM, and PNN classi-
fiers for classification.

Further, for symbolic modeling of GSGEF features 
(obtained from Eq. (10)–(11)), Dx and Dy features are com-
puted using Eqs. (12)–(13) as follows:

The obtained Dx and Dy features of the face part are fur-
ther used for building the knowledge base required for sym-
bolic data modeling and symbolic similarity analysis. Sam-
ple cropped face parts images and their computed respective 
Dx and Dy feature values are depicted in Fig. 4.

The implementation of symbolic approach, NN, 
SVM, and PNN classifiers for person identification using 
SGEF/GSGEF feature values is described in subsequent 
sections.

FV2 = [GSGEFdxGSGEFdy]

(12)Dx =

N−1∑
i=0

Ir
av_bv

(p, q)

(13)Dy =

N−1∑
i=0

Ir
av_bh

(p, q)

Fig.4   AR database face sample 
a original image, b segmented 
face parts, c Dx and Dy feature 
values
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3 � Symbolic representation of SGEF 
and GSGEF features

The various operations performed in symbolic data modeling 
and symbolic similarity measure analysis for recognition are 
depicted in Fig. 5. In the proposed approach, initially, face 
parts such as eye, mouth, and nose are segmented using the 
Viola–Jones algorithm [31, 32] from original face images. 
To reduce the computation burden, all the cropped images 
are resized into grayscale images of 64 × 64 pixel. In the 
second stage, Savitzky–Golay filter is applied to obtain the 
optimal set of Savitzky–Golay filter energy feature (SGEF) 
values from each face part. Further, in the symbolic data 
modeling step, the obtained features of face parts are rep-
resented as symbolic data objects (Assertion Object). The 
features extracted from the set of face images belong to a 
class are represented by a Hoard symbolic object, which is 
composed of Assertion symbolic data objects of face parts, 
respectively. In the classification stage, content-based sym-
bolic similarity measure is devised and used to determine 
the utmost resemblance between trained and probe symbolic 
data objects. The index of the trained object class to which 
test Hoard symbolic data object belong yields the highest 
resemblance score and is considered as a known class.

Construction of knowledge base required for symbolic 
modeling of facial features is described in the next section.

Let N number of face image classes are used for train-
ing, let each class Ω = {Ѱ1,Ѱ2,Ѱ3 …. ѰM} composed of M 
number of training face images jth class that may vary in 
the pose, expression changes, presence of occlusion, and 
non-uniform light conditions. Then, U = {Ω1, Ω2,.., ΩN} 

represents the complete set of training face images of N 
classes.

Let Ѱmouth, Ѱnose, Ѱleft_eye, and Ѱright_eye denote the face 
part images of jth class of ith face Ѱ, i.e.,

In the proposed symbolic modeling approach, once nose, 
mouth, and eyes face parts are obtained from the face sam-
ple; by Eq. (7), Savitzky–Golay filter energy Dxy feature is 
computed from each part as shown in Fig. 6. The obtained 
features are represented as Assertion type of symbolic data 
objects as in Fig. 7a, i.e., four Assertion symbolic objects 
namely nose, mouth, and eyes of each image for M classes 
are created. Next, from M Assertion symbolic objects of 
each face piece, a Hoard symbolic object is created. In the 
symbolic modeling approach, each Hoard object is indi-
cated by minimum and maximum (Min–Max) values of M 
Assertion objects of a face part. In general, each face class 
is composed of four Hoard objects such as nose, mouth, 
left eye and right eye Hoard symbolic objects of each face 
part, respectively. Fig. 7b depicts Hoard symbolic objects 
of jth face class, ∀j = 1 to N . Finally, the whole face dataset 
is represented by a single synthetic symbolic object which 
composed of N Hoard symbolic objects and illustrated in 
Fig. 7c, ∀j = 1 to N.

Similarly, symbolic objects of probe face image Ѱ can 
be reprinted as:

(14)� i
j
=

{
� i
mouthj

, � i
nosej

, � i
left_eyej

, � i
right_eyej

}

Tob = {Tobnose, Tobmouth, Tobleye, Tobreye }

Fig.5   An illustration of proposed symbolic modeling with SGEF feature
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In Tob symbolic representation, Tobnose, Tobmouth, Tobleye,, 
and Tobreye indicate symbolic data objects of test face image 
(nose, mouth, and eyes parts), respectively.

In general, the entire face database is composed of C 
number of face classes and S number of images per class. In 
symbolic object modeling, each face part is represented as 
Assertion object AO = [Dxy] and the collection of such AO 
objects of a class constitutes the Hoard object HO. Synthetic 
object SO of each face component for entire face dataset 
is created. Synthetic objects consist of min and max value 
of Assertion objects (SVj) and Hoard objects of C classes. 
Figure 8 illustrates synthetic object creation of nose, where 
SOnose indicates synthetic object of nose, NAOi

j represents 
nose Assertion object of ith sample of jth class and NHOj is 
Hoard object of jth class.

Finally, the knowledge base of entire face dataset consists 
of synthetic object of nose (SOnose), mouth (SOmouth), left eye 
(SOleye), and right eye (SOreye). Hence, the knowledge base 
can be expressed as:

Fig.6   Estimation of Savitzky–
Golay filter energy feature Dxy 
(SGEF) of a face image

Fig.7   Creation of symbolic objects, a Assertion symbolic object 
(indicate a face sample) b Hoard symbolic object (denoted jth face 
class) c Synthetic symbolic object (indicate entire face database), 
∀ j = 1 to N

Fig.8   Synthetic object represen-
tation of SGEF features of face 
component
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he paper introduces a symbolic modelling approach for he papaa er introduces a symboyy lic modelling approaa ach foff r KnowledgeBase/Synthetic Object SO = { SOnose, SOmouth, SOleye, SOreye} 

Similarly, the paper introduces a symbolic modeling 
approach for person identification using GSGEF features, 
which are obtained by applying Savitzky–Golay moving 
filter. All the operations involved in the symbolic modeling 
of GSGEF features for face recognition are shown in Fig. 9.

In the proposed Gradient-based Savitzky–Golay Dif-
ferentiator feature (GSGEF) extraction technique, initially, 
images from various databases are taken and face parts are 
obtained by employing the Viola–Jones algorithm [31, 32]. 
The segmented face parts are rescaled to 64 × 64 pixel gray-
scale images. From each face part, a mean gradient of the 
face image is computed in vertical and horizontal directions, 
respectively. Finally, based on gradient mean information, 
GSGEF features are computed by deploying Savitzky–Golay 
filter. Next, obtained facial feature of eyes, nose, and mouth 
parts is expressed as independent symbolic data objects 
which constitutes knowledge base for classification. During 
the classification, the modified form of content-based sym-
bolic similarity measure presented in this paper is used to 
determine the symbolic similarity score between symbolic 

Fig.9   The process involved in the proposed symbolic modeling of GSGEF features

Fig.10   Synthetic object repre-
sentation of GSGEF features of 
face component

objects of knowledge base and test symbolic objects of an 
input test face image. The trained object class that has the 
utmost similarity score against probe symbolic objects is the 
recognized class of the test face image.

In general, the entire face dataset is composed of N face 
classes and M face images per class. In symbolic object 
modeling, each face part is represented as Assertion object 
AO = [Dx Dy] and collection of such AO objects of a class 
constitutes Hoard object HO. Gradient-based synthetic 
object GSO of each face component for entire face dataset 
is created. Synthetic objects consist of min and max value 
of Dx and Dy of Assertion objects (NSV) and Hoard objects 
of N classes. Figure 10 illustrates synthetic object creation 
of nose, where GSOnose indicates synthetic object of nose, 
Nose_AOi

j represents nose Assertion object of ith sample of 
jth class, and NHOj is Hoard object of jth class.

Finally, the knowledge base of entire face dataset contains 
synthetic symbolic object of nose (GSOnose), mouth (GSO-
mouth), left eye (GSOleye), and right eye (GSOreye). Hence, the 
knowledge base can be defined as:
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KnowledgeBase/Synthetic Object GSO = { GSOnose, GSOmouth, GSOleye, SOreye}

4 � Face recognition techniques

This section describes the proposed face recognition meth-
ods based on SGEF and GSGEF features.

4.1 � Symbolic similarity analysis

The symbolic similarity measure and analysis compute the 
maximum similarity score between probe symbolic object 
and trained symbolic objects. The symbolic similarity meas-
ure and analysis can be performed by considering content, 
span, and position as defined by Chidananda Gowda K. 
and Edwin Diday, 1992 [22]. In this section, the features 
extracted from the face images are represented as symbolic 
data objects having quantitative and interval type of val-
ues. During the symbolic similarity analysis, the content-
based symbolic similarity measurement is more appropriate 
because of the type of data and gives the similarity score of 
the probe symbolic object against all the trained symbolic 
data objects and is described in the following:

The symbolic similarity between Hoard objects H(j) of jth 
class and test object Htest is computed using Eq. (15):

where ls(j) = |max(H(j) upper, Tobtest_upper) −min(H(j) lower, Tob test_lower)|

H(j)upper and H(j)lower denote upper and lower limits 
of symbolic object H(j) (maximum and minimum val-
ues). Tobtest_upper and Tobtest_lower represent the upper and 
lower limits of test symbolic object Tob (In this work 
Tobtest_upper = Tobtest_lower), inters(j) is the number of common 
elements of Assertion object pertaining to ith face image 
of jth face class and probe symbolic data object Tob. ls(j) 
represents the span length of H(j) and Tob symbolic objects.

In Eq. (15), overlap measure technique was devised and 
employed to estimate inters(j). Since in the symbolic data 
modeling technique for face recognition, Hoard object H(j) 
is a collection of Assertion data objects namely mouth, nose, 
right eye, and nose eye Hoard data objects and probe sym-
bolic data object Tob is a set of Assertion objects such as 
mouth, nose, right eye, and nose eye Assertion data objects, 
thus the symbolic similarity measure score S(j)(H(j), Tob) of 
probe symbolic data object Tob and Hoard data object H(j) of 
jth face class can be determined using Eq. (16) by

(15)Sj(H(j), Tob) = inters(j)∕ls(j)

inters(j) =
∑M

i=1
�(Ai

j
, Tob) ∀i = 1 to M.

where

Further, computed similarity scores of all N trained and 
test symbolic objects can be expressed as:

The index of the highest similarity score of Netsim vec-
tor gives the class id to which probe symbolic data object 
belongs and it can be computed as in Eq. (18).

The experimentation results of proposed techniques are 
discussed in Sect. 5.

5 � Experimental results and discussion

The performance of the proposed face recognition methods is 
evaluated on publically available AR, ORL, LFW, IJB-A 
datasets, and the newly formed VISA Face database [27]. 
The VISA dataset is publically available for download using 
URL: https://​vtu.​ac.​in/​en/​visa-​multi​modal-​face-​and-​iris-​
biome​trics-​datab​ase/ [27]. The IJB-A dataset is publically 
available for download [6]. In the proposed works, face parts 
such as mouth, nose, and eyes are segmented from given face 
image using the Viola–Jones algorithm and are scaled down 
to 64 × 64 pixels grayscale face images. Further, using 
Savitzky–Golay filter, SGEF and GSGEF features of face 
image are computed and used for the classification tasks. 
The efficiency of the Savitzky–Golay smoothing filter is 
subjective to the choice of polynomial order and filter mask 
size factors. The detailed accomplishment of the projected 
face recognition algorithms with choice of polynomial order 
and filter mask size is discussed in Sect. 5.1.

5.1 � Selection of polynomial order and filter mask 
size

The face image may vary due to illumination changes (non-
uniform light condition) and expression change with light 
variations produce low quality /low contrast face samples. 

(16)S(j)(O(j), Tob) = Net_inters(j)∕Net_ls(j)

Net_inters(j) = (inters(j)nose + inters(j)mouth
+ inters(j)right_eye ) and

Net_ls(j) = (ls(j)nose + ls(j)mouth
+ ls(j)left_eye + ls(j)right_eye)

(17)Netsim = [S(j)],∀j = 1 to N

(18)Class_label(�) = max(Netsim)

https://vtu.ac.in/en/visa-multimodal-face-and-iris-biometrics-database/
https://vtu.ac.in/en/visa-multimodal-face-and-iris-biometrics-database/
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Due to the presence of occlusion (mask, scarf, and sunglass), 
the face sample appears to be dark (partially). The suitable 
choice of order of the derivative is significant while estimat-
ing smoothing coefficients from such face samples. For the 
dark face samples, choose the order of derivative as α < 0 
and α > 0 for low contrast face samples [28, 32–34]. In the 
proposed works, several experiments were conducted for the 
selection of integer-order and fraction-order derivative val-
ues of α, among those, integer-order derivative value α = 2 
and fraction-order derivative values of α = 0.3 result the best 
recognition accuracy rate. Hence, for the experimentation 
and comparative analysis, α = 2 and α = 0.3 are empirically 
considered.

The efficiency of the proposed face recognition meth-
odologies also depends on the choice of polynomial order 
and mask window size when SG moving filter is used for 
smoothing and determining higher-order derivatives. Experi-
ment results on AR, ORL, LFW datasets, and the new VISA 
Face database by considering the different combinations of 
polynomial order types (integer and fraction polynomial 

order types) and filter mask sizes are given in Tables 1, 2, 3. 
The computation times required by the proposed methods 
are listed in Tables 1, 2, 3. The proposed face recognition 
techniques are tested and evaluated for higher size masks 
like 3 × 3, 5 × 5, 7 × 7, and 11 × 11 along with integer poly-
nomial order, and obtained results are illustrated in Tables 1 
and 2.

Tables 1 and 2 show that 3 × 3 mask is found to produce 
good results as compared to 5 × 5, 7 × 7, and 11 × 11; in most 
of the cases, as the computation time increases, the mask 
length is also increased. In this research work, to decrease 
the time needed for estimating smoothing coefficient val-
ues and to obtain finer details from each face part of the 
face sample, each face part is partitioned into four segments 
and from each segment, smoothing values are determined 
independently. The ROC curve analysis with different mask 
window size and polynomial order α = 2 on reported face 
datasets is illustrated in Fig. 11.

The efficiency of the Savitzky–Golay smoothing filter 
with fractional order polynomial and different mask window 

Table 1   Performance 
comparison of the proposed 
symbolic modeling approach 
with SGEF in different mask 
window size and integer 
polynomial order on AR, ORL, 
LFW, and VISA Face datasets

Bold values represents the best recognition rate and computation time for 3 × 3 mask size

Mask size Computation time in seconds Recognition accuracy at α = 2 in %

AR ORL LFW VISA AR ORL LFW VISA Face

F = 3 × 3 0.035 0.389 0.224 0.619 95.75 99.75 97.22 96.39
F = 5 × 5 0.042 0.392 0.231 0.623 95.24 100 96.77 96.52
F = 7 × 7 0.044 0.411 0.248 0.629 93.00 100 96.13 96.19
F = 11 × 11 0.059 0.458 0.310 0.699 92.75 100 94.23 96.32
F = 13 × 13 0.075 0.460 0.323 0.734 92.83 100 94.55 96.23

Table 2   Recognition 
performance of symbolic 
modeling approach with 
GSGEF features in low 
resolution face images with 
different mask window size and 
integer polynomial order

Bold values represents the best recognition rate and computation time for 3 × 3 mask size

Mask size Computation time in seconds Recognition accuracy at α = 2 in %

AR ORL LFW VISA Face AR ORL LFW VISA Face

F = 3 × 3 0.004 0.004 0.006 0.004 92.34 99.75 96.20 87.14
F = 5 × 5 0.003 0.003 0.006 0.004 91.88 97.86 95.83 85.01
F = 7 × 7 0.003 0.004 0.006 0.004 97.45 98.56 97.02 85.83
F = 11 × 11 0.003 0.004 0.006 0.004 85.03 97.88 99.73 84.71
F = 13 × 13 0.003 0.004 0.006 0.004 85.97 98.12 99.13 84.58

Table 3   Performance 
comparison of the symbolic 
data modeling with SGEF with 
different mask window size 
and fractional order polynomial 
on AR, ORL, LFW, and VISA 
Face datasets

Bold values represents best recognition rate and computation for 3 × 3 mask size

Mask size Computation time in seconds Recognition accuracy at α = 0.3 in %

AR ORL LFW VISA AR ORL LFW VISA Face

F = 3 × 3 0.032 0.340 0.222 0.625 95.17 99.75 97.03 96.59
F = 5 × 5 0.035 0.356 0.224 0.626 95.08 100 96.90 96.52
F = 7 × 7 0.038 0.364 0.226 0.703 94.92 100 96.75 96.19
F = 11 × 11 0.045 0.451 0.239 0.734 94.83 100 94.00 96.59
F = 13 × 13 0.054 0.356 0.241 0.738 94.92 100 94.15 96.23
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size is evaluated using SGEF feature set and obtained results 
are recorded in Table 3. The ROC curve analysis with dif-
ferent mask window size and polynomial order α = 0.3 on 
reported face datasets is illustrated in Fig. 12.

From Tables 1, 2, 3, it is observed that in most of the 
cases, as the length of the mask increases, the recognition 
accuracy of the proposed techniques is also reduced. The 
face sample with Wα at α < 0 suffers from the above expo-
sition, which causes loss of information; hence, it is not 
appropriate in the presence of occlusion on face images. 
From Tables 1, 2, 3, it is seen that the efficiency of the 

proposed face recognition works has considerable excel-
lence when α > 0 polynomial order derivative of SG is used 
for estimating the smoothing coefficient values. Hence, in 
this paper, for demonstration of fractional order polyno-
mial with α = 0.3, and α = 2 integer-order polynomial with 
a mask window size 3 × 3 are empirically preferred on the 
computation of SGEF features. The experimentation results 
of Tables 1, 2, 3 also reveal that the mask Wα with integer 
polynomial order α produces superior efficiency than the 
fractional-order derivative and the same is chosen for com-
puting GSGEF features.

Fig. 11   ROC curve on AR, 
ORL, LFW, and VISA Face 
datasets based on SGEF features 
with different mask size at α = 2
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In this work, to test the robustness of the proposed tech-
niques under the varying image resolutions, we down-
sample all the segmented face parts images into 64 × 64, 
100 × 100, 125 × 125, 150 × 150, and 250 × 250 pixel 
dimensions and results obtained from the experiments on 
AR, ORL, LFW, and the new VISA Face databases with 
mask size 3 × 3 at α = 2 are given in Table 4 and ROC curve 
analysis is illustrated in Fig. 13. In Table 4, it is also noticed 
that the recognition accuracy of the proposed methods 
depends not only on mask size and polynomial order but also 
on image dimension. From Table 4, it may be understood 
that the face image resolution 64 × 64 and its correspond-
ing mask of size 3 × 3 with α = 2 outperform the different 

resolutions and mask sizes. Hence, we empirically choose 
3 × 3 mask size, α = 2, and 64 × 64 pixel dimensions for anal-
ysis of proposed works using SGEF and GSGEF features. To 
validate the performance of the proposed approach, K-Fold 
validation technique has been employed in this paper.

To investigate the efficiency of proposed face recogni-
tion techniques with SGEF and GSGEF features against 
non-uniform light conditions, expression, and occlusion 
on face images, AR dataset is considered for experimen-
tations. 1200 face images of 120  individuals of the AR 
database are divided into five categories. The experimental 
results obtained on all the listed cases are given in Tables 5 
and 6. The proposed methods can conquer the consequence 

Fig. 12   ROC curve on AR, 
ORL, LFW, and VISA Face 
datasets based on SGEF features 
with different mask size at 
α = 0.3
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of variations of face samples by segmenting the face into 
eyes, nose, and mouth face parts. The possible motive for 
such an observable fact is that the proposed approaches work 
well even if only a part of the face is obtainable in the rec-
ognition stage. Several experiments are conducted by tak-
ing into account different combinations of face parts, and 
results are shown in Tables 7 and 8.

Tables 7 and 8 show the recognition rate of the proposed 
methods with various combinations of segmented face parts 
are presented in recognition task and it is also noticed that 
when all the face parts are considered during the recognition 
process, the proposed approaches attain better recognition 
rate on AR, ORL, LFW, and the new VISA Face databases. 
The recognition accuracy of the proposed techniques is 
reduced when one or more of the face part features are not 
available for recognition.

In the proposed face recognition works, when individ-
ual face part or combination of segmented face parts is con-
sidered during the recognition process, the recognition rate 
of algorithms is unstable due to the useful regions such as 
eyes, nose, and mouth are affected by illumination varia-
tions, expression changes, and inclusion of occlusion on face 
images. Therefore, complete face sample representation for 
face recognition task is severely affected when these face 
parts vary and may not be obtainable during the recognition 
process. However, the biometric system based on the face, 
trait wishes to work fine even when part of the face sample is 
not accessible. The face parts representation-based approach 
can conquer the side effect of variations in face samples. 
To accomplish this objective, the proposed face recogni-
tion techniques cropped the face parts so that better details 
of face samples can be obtained using SG filter mask. The 
results of Tables 7 and 8 prove that the proposed techniques 
for face recognition achieve improved performance over 
some of the existing works even in the presence of variations 
in face images and if some part of the face image is not avail-
able. Tables 7and 8 show the implication of the left and right 
eye regions as they contain most of the valuable information 
required for recognition in comparison with nose and mouth 
regions. The performances of the anticipated works are also 
compared with some of the state-of-art works and are elabo-
rated in Sect. 5.2.

5.2 � Comparative analysis of face recognition 
techniques

The proposed approaches are evaluated for the performance 
analysis of face biometric techniques on freely available 
face datasets namely AR, ORL, LFW, IJB-A, and the newly 
constructed VISA Face dataset. The experimentation results 
obtained from SGEF and GSGEF features-based face rec-
ognition techniques are among the best and are comparable 
to some of the existing works such as symbolic modeling Ta
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Fig.13   ROC curve on AR, ORL, LFW, and VISA Face datasets based on SGEF features with different image sizes at α = 2

Table 5   Recognition accuracy (%) of proposed face recognition approaches with SGEF features on subsets of AR dataset

A: Number of samples recognized correctly, B: Number of samples misclassified, C: Accuracy (%)

Individuals/labels Total number 
samples used for 
testing

Symbolic 
modeling and 
similarity

Nearest neighbor Support vector 
machine

Probabilistic 
neural network

A B C A B C A B C A B C

Illumination variation(Subset 1) 480 463 17 96.46 469 11 97.71 458 22 95.42 449 31 93.54
Expression (Subset 2) 420 408 12 97.14 413 07 98.33 407 13 96.90 392 28 93.33
Occlusion(Scarves + Sunglasses) (Subset 3) (73 + 25) = 98 89 09 90.82 83 15 84.69 79 19 80.61 76 22 77.55
Scarves-Illumination (Subset 4) 244 231 13 94.67 239 05 97.95 226 18 92.62 224 20 91.80
Sunglasses-Illumination (Subset 5) 56 47 09 83.92 51 05 91.07 45 11 80.36 50 06 89.29
Total number of images (Subset 1 + Subset 

2 + Subset 4 + Subset 5)
1200 1149 51 95.75 1172 28 97.67 1136 64 94.67 1115 85 92.92



1466	 Pattern Analysis and Applications (2021) 24:1451–1473

1 3

approach with Polar FFT features [24] and DGM (Direc-
tional Gradient Magnitude) feature-based techniques [25]. 
In the current research, nearest neighbor (NN) classifier, 
multiclass support vector machine (SVM), and probabilistic 
neural network (PNN) techniques have been implemented 
using PFFT, DGM, SGEF,, and GSGEF features and used 
for experimentation analysis.

The section describes the comparative investigation of 
the anticipated approaches with local approximation gradi-
ent descriptors and similar feature representation techniques 
proposed in [25, 35–37] on AR dataset because of their 
similarities with proposed methods. The proposed SGEF 
and GSGEF features-based face recognition techniques 

are compared with local gradient pattern descriptors [38], 
low rank feature representation techniques [39], and CNN 
approaches [40] on LFW public dataset. In this work, the 
efficiency of the proposed face recognition techniques is also 
evaluated and compared on the newly formed VISA Face 
dataset [27].

5.2.1 � Performance comparison on AR dataset

For evaluating the accuracy of proposed face recognition 
techniques in different environments such as non-uniform 
illumination, variations in expression and occlusion, the 
AR dataset has been chosen for the experimentation. The 

Table 6   Recognition accuracy (%) of proposed face recognition approaches with GSGEF features on various combinations of AR

A: Number of samples recognized correctly, B: Number of samples misclassified, C: Accuracy (%)

Individuals/labels Total number 
samples used for 
testing

Symbolic 
modeling and 
similarity

Nearest neighbor Support vector 
machine

Probabilistic 
neural network

A B C A B C A B C A B C

Illumination variation(Subset 1) 480 463 17 96.46 443 37 92.29 431 49 89.80 437 43 91.05
Expression (Subset 2) 420 401 19 95.48 396 24 94.29 390 30 92.86 394 26 93.81
Occlusion(Scarves + Sunglasses) (Subset 3) (73 + 25) = 98 87 11 88.78 75 23 76.53 79 19 80.61 81 17 82.65
Scarves-Illumination(Subset 4) 244 234 10 95.90 233 11 95.49 223 21 91.39 221 23 90.57
Sunglasses-Illumination(Subset 5) 56 49 07 87.50 41 15 73.21 39 17 69.64 45 11 80.36
Total number of images (Subset 1 + Subset 

2 + Subset 4 + Subset 5)
1200 1147 53 95.58 1113 87 92.75 1083 117 90.25 1097 103 91.42

Table 7   Recognition rate (%) of proposed symbolic approach + SGEF features on face parts

Bold values represent the best recognition rate

Database Face parts and recognition rate in %

Mouth, nose, 
and eyes

Eyes and mouth Eyes and nose Nose and mouth Only eyes Only mouth Only nose

AR 95.75 74.22 74.80 90.17 79.08 64.33 66.66
ORL 99.75 81.19 78.68 62.87 61.35 36.32 41.08
LFW 97.22 91.95 93.47 70.41 92.36 72.64 72.51
VISA 96.39 90.13 89.95 96.39 90.40 67.00 66.87

Table 8   Recognition rate (%) of symbolic modeling + GSGEF face features on different face parts

Bold values represent the best recognition rate

Database Face parts and recognition rate in %

Mouth, nose, 
and eyes

Eyes and mouth Eyes and nose Nose and mouth Only eyes Only mouth Only nose

AR 92.34 86.19 75.62 54.87 59.89 27.28 20.55
ORL 99.75 94.61 93.76 91.31 80.94 70.74 66.62
LFW 96.20 94.27 93.33 90.62 89.58 67.13 62.01
VISA 87.14 85.88 85.20 83.70 82.15 61.00 60.90
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experimentation results of the proposed methods are com-
pared with existing techniques on the AR dataset. The exper-
imentation results obtained from LAG–LDA, PFFT/DGM/
SGEF/GSGEF feature-based symbolic approach, NN, SVM, 
and PNN methods are given in Table 9.

Zhaokui Li. et al. (2015) proposed a local approximation 
gradient with LDA (LAG-LDA) approach for face recogni-
tion and evaluated using AR dataset referred to as exp1 to 
exp8 [24, 25, 35]. In LAG-LDA, experiments 1–4 use face 
samples number from 1–4 of session 1 and experiments 5–8 
use face samples number from 8–13 of session 1 for train-
ing. In testing, different combinations of AR dataset samples 
are used. LAG-LDA technique attains the best recognition 
accuracy of 93.25, 89.33, and 67 to 67.33% on expression 
changes, non-uniform light conditions, and inclusion of 
occlusion with illumination variations in experiments 1–4, 
respectively. For experiments from 5–8, LAG-LDA method 
attains best recognition accuracy of 75.25, 90.67, and 92 
to 73.33% on expression variations, illumination changes, 
and occlusion with different illumination conditions, respec-
tively. Table 9 shows the best recognition rate of the pro-
posed methods and LAG-LDA technique.

The results in Table 9 show the usefulness of PFFT/
DGM/SGEF/GSGEF feature-based face recognition tech-
niques. Most of the proposed face recognition techniques 
achieve superior performance than LAG–LDA technique 
on subsets of the AR dataset. The LAG operator computes 
more edge information by considering different gradient 

directions between 0° and 315°. Its performance reduces 
when non-uniform light conditions and presence of occlu-
sion on face images. The condition becomes worst when 
partial information available in particular direction (part of 
the face/complete edge information is not available). To han-
dle such issues, the proposed SGEF and GSGEF features-
based face recognition techniques acquire the features from 
individual part of the face image for recognition task and the 
methods work well even if the information of all the parts is 
not completely available for recognition. In this regard, pro-
posed SGEF and GSGEF feature-based techniques segment 
the face parts from the face sample. In the proposed feature 
extraction techniques, each segmented face part is parti-
tioned into four zones. Further, the smoothing coefficient 
values of each zone are estimated and integrate gradient 
edge data of all the zones. The resultant feature information 
is used for the classification tasks, whereas as in GSGEF fea-
ture-based techniques, smoothing coefficients are obtained 
from the gradient mean of each face part. As a result, the 
performance of the proposed SG filter-based works is bet-
ter compared to LAG-LDA operator, DGM features-based 
techniques methods in the cases of S1, S2, and S4 (except 
PFFT-based techniques). However, the performance of the 
proposed SG filter-based algorithms depends on the accu-
racy achieved during the segmentation of face parts. The 
Viola–Jones algorithm is sensitive to occlusion with lighting 
conditions, which leads to improper segmentation of face 
parts; hence, there is a large variation in accuracy on set S5. 

Table 9   Comparison of proposed works with LAG –LDA and other works on AR dataset

Bold values highlights the best recognition rate of proposed techniques compared to LAG-LDA

Method Illumination varia-
tion (S1)

Expression change (S2) Scarves-Illumination(S4) Sunglasses-
Illumination 
(S5)

LAG-LDA 90.67 (Exp 6) 93.25 (Exp 1) 73.33 (Exp 8) 92 (Exp 7)
Symbolic approach + PFFT 98.54 98.81 89.79 95.08
Symbolic approach + DGM 91.67 95.24 93.03 98.21
Symbolic approach + SGEF 96.46 97.14 94.67 83.92
Symbolic approach + GSGEF 96.46 95.48 95.90 87.50
NN + PFFT 100 100 98.98 85.25
NN + DG 91.88 96.91 94.26 42.86
NN + SGEF 97.71 98.33 97.95 91.07
NN + GSGEF 92.29 94.29 95.49 73.21
SVM + PFFT 99.58 99.52 90.82 94.67
SVM + DG 95.00 99.05 95.90 83.93
SVM + SGEF 95.42 96.90 92.62 80.36
SVM + GSGEF 89.90 92.86 91.39 69.64
PNN + PFFT 93.54 96.19 72.45 88.93
PNN + DG 96.04 95.00 93.44 55.35
PNN + SGEF 93.54 93.33 91.80 89.29
PNN + GSGEF 91.05 93.81 90.57 80.36
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When the face images are occluded by sunglasses (denser 
edge information present in eye regions), the proposed SG 
filter-based feature extraction technique determines more 
gradient edge data from the eye regions (overestimation of 
smoothing coefficient values). And the proposed SG filter-
based descriptors do underestimation of smoothing coeffi-
cient values of face images due to different light conditions 
(uneven edge information) at orientation angles in different 
directions (underestimation of smoothing coefficient values). 
Hence, the recognition accuracy of proposed SG filter-based 
face recognition techniques reduces against face images of 
set S5.

In Table 9, the recognition rate of the proposed face rec-
ognition techniques is better on subset 1 (illumination varia-
tions), subset 2 (expressions changes), and subset 4 (scarves 
with non-uniform illumination changes) over subset 5 (sun-
glass with illumination changes) of AR dataset, as most of 
the face parts namely nose, eye, and mouth features are avail-
able for feature extraction and classification (except in the 
case of scarves, mouth part is not available). Compared to 
other parts of the face image, left and right eye regions give 
most of the valuable information required for recognition. 
Due to sunglass and illumination changes, eye parts are not 
available from face images of subset 5 for feature extraction 
and classification tasks. The performance of NN, SVM and 
PNN classifiers is reduced when sunglasses with non-uni-
form light conditions on face images. It is also noticed that 
symbolic approach + PFFT and PNN + PFFT methods have 
reduced performance in case of occlusion along with illu-
mination variations (S4). MLGD technique can accumulate 

more gradient edge information, which attains more robust 
feature dissimilarity between the face images.

Experimentation results of another similar face recog-
nition technique called extended collaborative neighbor 
representation (ECNR) [36] and other works are compared 
with proposed methods on AR dataset [24, 25]. ECNR tech-
nique attained the best efficiency of 98.75, 88.33, 92.50, and 
82.50% on face samples with non-uniform light conditions, 
change of expression, occlusion, and inclusion of occlusion 
with illumination variations, respectively. The experimental 
results of ECNR methods and proposed methods are given 
in Table 10.

From the study of Table 10, it can be concluded that the 
proposed face recognition methods give better results in 
case of expression changes (subset 2), presence of occlu-
sion with non-uniform light conditions (subset 4 + subset 5) 
and almost equal on subset 1(illumination changes). When 
the face image is occluded by sunglass, most of the required 
information present in eye part is not available for the recog-
nition (the information obtained from such occluded region 
is unwanted or irrelevant for classification task), as a result 
the performance of the proposed symbolic approach and 
PNN techniques is low on subset 3 compared to ECNR. As 
shown in Tables 9 and 10, the proposed symbolic similarity 
method with SGEF and GSGEF features for face recogni-
tion is an effective and more robust method to handle vari-
ations such as illumination, occlusion, and illumination and 
expression changes of face images and the proposed meth-
ods produce better results than the ECNR, LAG-LDA, and 
PFFT/DG/DGM/SGEF feature-based methods found in the 

Table 10   Comparison of 
proposed works with ECNR 
technique and other works on 
AR dataset

Method Illumination 
variation(S1)

Expression 
changes (S2)

Occlusion (S3) Occlusion and illu-
mination (S4 + S5)

ECNR 98.75 88.33 92.50 82.50
Symbolic approach + PFFT 98.54 98.81 89.79 95.67
Symbolic approach + DGM 91.67 95.24 96.94 94.00
Symbolic approach + SGEF 96.46 97.14 90.82 92.67
Symbolic approach + GSGEF 96.46 95.48 88.78 94.33
NN + PFFT 100 100 98.98 88.00
NN + DG 91.88 96.91 68.37 84.67
NN + SGEF 97.71 98.33 84.69 96.67
NN + GSGEF 92.29 94.29 76.53 91.33
SVM + PFFT 99.58 99.52 90.82 95.00
SVM + DG 95.00 99.05 90.82 93.67
SVM + SGEF 95.42 96.90 80.61 90.33
SVM + GSGEF 89.90 92.86 80.61 87.33
PNN + PFFT 93.54 96.19 72.45 87.33
PNN + DG 96.04 95.00 84.69 86.33
PNN + SGEF 93.54 93.33 77.55 91.33
PNN + GSGEF 91.05 93.81 82.65 88.67
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Table 11   Recognition rate 
(%) of proposed methods and 
state-of-the-art techniques on 
AR dataset

Sl. No Methods Recogni-
tion rate 
(%)

Sl. No Methods Recogni-
tion rate 
(%)

Sl. No Methods Recogni-
tion rate 
(%)

1 GMD 92.88 6 SA-PFFT 97.92 14 SA-SGEF 95.75
2 SVM(P) 38.30 7 NN-PFFT 96.92 15 NN-SGEF 97.67
3 SVM(R) 94.55 8 SVM-PFFT 98.42 16 SVM-SGEF 94.57
4 KNN(E) 95.64 9 PNN-PFFT 92.92 17 PNN-SGEF 92.92
5 KNN(C) 96.59 10 SA-DGM 97.50 18 SA-GSGEF 92.34

11 NN-DG 96.82 19 NN-GSGEF 93.30
12 SVM-DG 98.67 20 SVM-GSGEF 91.23
13 PNN-DG 93.25 21 PNN-GSGEF 92.99

Table 12   Comparison of recognition accuracy (%) of proposed methods over exiting techniques on LFW

Sl. No Methods Recognition rate (%) Sl. No Methods Recognition 
rate (%)

Sl. No Methods Recogni-
tion rate 
(%)

1 Xing 74.64—80.82 9 SA-PFFT 97.47 17 SA-SGEF 97.22
2 DML-eig 82.28—87.94 10 NN-PFFT 98.04 18 NN-SGEF 98.06
3 SILD 80.07—86.04 11 SVM-PFFT 94.18 19 SVM-SGEF 92.30
4 ITML 79.98—85.94 12 PNN-PFFT 98.04 20 PNN-SGEF 98.04
5 LDML 80.65—86.64 13 SA-DGM 97.25 21 SA-GSGEF 96.20
6 KISSME 83.37—88.92 14 NN-DG 98.06 22 NN-GSGEF 98.03
7 DLML 85.35—91.15 15 SVM-DG 97.63 23 SVM-GSGEF 91.60
8 FaceNet 99.63 ± 0.09 16 PNN-DG 97.76 24 PNN-GSGEF 98.04

SA(PFFT)- Symbolic Approach with PFFT SA (DGM)-Symbolic Approach with DGM
SA (SGEF)-Symbolic Approach with SGEF SA (GSGEF)-Symbolic Approach with GSGEF
NN(PFFT)-Nearest Neighbor with PFFT NN(DG)-Nearest Neighbor with DG
NN(SGEF)-Nearest Neighbor with SGEF NN(GSGEE)-Nearest Neighbor with GSGEF
SVM(PFFT)- Support Vector Machine with PFFT SVM(DG)- Support Vector Machine with DG
SVM(SGEF)- Support Vector Machine with SGEF SVM(GSGEF)- Support Vector Machine with GSGEF
PNN(PFFT)- Support Vector Machine with PFFT PNN(DG)- Support Vector Machine with DG
PNN(SGEF)- Support Vector Machine with SGEF PNN(GSGEF)- Support Vector Machine with GSGEF 
GMD-Generalized Multiplicative Distortion PNN(DG)-Probabilistic Neural Network with DG
SVM(P)-Support Vector Machine SVM(R)-SVM with kernels
KNN(C)-KNN with cosine distance KNN(E)- kernel K-Nearest Neighbor classifier with Euclidian distance

Legend

literature. Due to the unavailability of eye and mouth fea-
tures, the efficiency of the projected face recognition works 
is decreased on subset S3.

To compare and evaluate efficiency presented works over 
some of the supervised learning approaches, 25 men and 25 
women face samples of AR dataset are uniformly selected 
to create a image gallery [37]. All the samples are rescaled 
to 32 × 32 size. Tenfold cross validation technique is chosen 
as evaluation protocol. The experimental outcome obtained 
from the proposed methods and others existing methods [24, 
25, 37] are given in Table 11.

Table 11 shows that the MLGD-based face recognition 
approaches have achieved better average recognition rates in 
comparison with methods proposed by Qiang Cheng et al. 
2014 (GMD, SVM(P), SVM(R), KNN(E), and KNN(C)) and 
closer to SA-PFFT, NN-PFFT, SVM-PFFT, and PNN-PFFT 
methods [24, 25]. The experimental results of SGEF/GSGEF 
feature-based face recognition methods suggest the effective-
ness to solve most of the issues related to class of variations 
on face images. From Tables 9, 10, 11, it can be seen that the 
proposed face recognition techniques with SGEF/GSGEF 
feature yield better recognition accuracy compared to some 
of the similar existing techniques. It is also noticed that the 
presented face recognition approaches are more robust to 
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variations on face images (non-uniform illumination envi-
ronment, expression, pose, and occlusion).

5.2.2 � Performance comparison on LFW dataset

In this paper, more complex and publically available LFW 
dataset (evidently complex than AR database) is consid-
ered to evaluate the proposed techniques in unconstrained 
environment.

In order to prove the usefulness SGEF/GSGEF feature 
representation, the performances of proposed techniques are 
compared with low rank metric representation techniques 
called Discriminative Low-rank Metric Learning (DLML) 
over subset of LFW dataset [38]. The recognition accuracy 
of proposed works is also compared with CNN approach 
[39]. For evaluation, analogous experimental arrangements 
are made, i.e., segmented face images are down sampled 
to 120p × 120 size. The image restricted settings testing 
protocol is employed for validation. From 80 persons, 800 
samples were selected to create a subset of LFW dataset. 
For training, 9 samples are randomly selected and remain-
ing one for testing. The experimental outcome of proposed 
face recognition methods and some of the similar existing 
techniques [24, 25, 39] are recorded in Table12.

DLML- Discriminative Low-rank Metric Learning method
SILD-Side-Information based Linear Discriminant analysis 
ITML-Information Theoretic Metric Learning
LDML-Logistic Discriminant approach which learns the Metric from a set of Labelled image pairs
KISSME- Keep It Simple and Straight forward MEtric Learning
DML- Discriminative Metric Learning 

Legend

Table 14   Comparison of recognition rate (%) of proposed works on 
VISA Face dataset

Sl. No Methods Recogni-
tion rate 
(%)

Sl. No Methods Recogni-
tion rate 
(%)

1 SA-PFFT 96.66 9 SA-SGEF 96.39
2 NN-PFFT 94.73 10 NN-SGEF 94.17
3 SVM-PFFT 96.15 11 SVM-SGEF 79.33
4 PNN-PFFT 89.28 12 PNN-SGEF 89.28
5 SA-DGM 95.40 13 SA-GSGEF 87.14
6 NN-DG 93.89 14 NN-GSGEF 90.23
7 SVM-DG 91.83 15 SVM-GSGEF 77.99
8 PNN-DG 89.33 16 PNN-GSGEF 89.39

The experimentation results in Table  12 reveal that 
unconstrained conditions deteriorate the recognition rate of 
the reported works [39] compared to proposed face recogni-
tion techniques. It is also noticed that FaceNet deep learning 
technique achieves 99.63 ± 0.09% recognition rate by adopt-
ing standard testing protocol for unrestricted, labeled outside 
sample [39]. The face recognition techniques with DGM 
features meet nearly equal recognition rate to that of meth-
ods with PFFT features [24]. The experimentation outcomes 
also offer enough evidence that anticipated face recognition 
techniques-based SGEF/GSGEF features provide a robust 
system to address issues related to class of variation in an 
unconstrained environment (as LFW database represents).

In the experiments, the proposed methods are evaluated 
and compared with recent local pattern descriptors such as 
LVP, LBP, LDP, LTrP, LGHP, the methods proposed in [24, 
25, 40, 41], SGEF and GSGEF features-based methods (Sl. 
No. 18–25) on LFW dataset. The experimentation results 
obtained from proposed techniques and the works from lit-
erature are given in Table 13.

From Table 13, it is observed that the proposed tech-
niques with GSGEF feature values outperform almost all 
the local pattern descriptors [40, 41]. The experimentation 
outcomes in Tables 9, 10, 11, 12, 13 show that the presented 
face recognition approaches achieve better recognition rates 
compared to some of the existing methods under uncon-
trolled environment. However, their performance is inferior 
to other methods proposed in Sl. Nos from 10 to 17.

5.2.3 � Performance comparison on VISA face dataset

Further, to evaluate and investigate the effectiveness of pro-
posed face recognition techniques with SGEF and GSGEF 
features, several experiments were conducted on the newly 
formed VISA face dataset. The performances of proposed 
techniques namely SA-GSGEF, NN-GSGEF, SVM-GSGEF, 
and PNN-GSGEF are compared with other approaches [24, 
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25]. In this paper, the performance of proposed face recogni-
tion methods with GSGEF features is also compared against 
methods with SGEF features on new VISA Face database 
and experimental results obtained are recorded in Table 14.

From Table 14, it is noticed that recognition rate of pro-
posed techniques is encouraging; however, it is compara-
tively low to that of the methods (Sl. Nos 1–4), (Sl. Nos 
5–8), and (Sl. Nos 9–16). The new VISA Face dataset is 
more complex compared to AR, ORL, and LFW datasets. 
The anticipated face recognition approaches based on SGEF 
and GSGEF features are efficient and robust to illumina-
tion changes, expression, and pose variations. The proposed 
techniques maintain excellent performance on LFW dataset.

5.2.4 � Performance comparison on IJB‑A face dataset

Further to evaluate and investigate the effectiveness of the 
proposed symbolic modeling approach with SGEF and 
GSGEF features, several experiments were conducted on 
IJB-A database. In order to make a direct comparison of our 
face recognition techniques with state-of-the-art approaches 
[5], in this work, similar experimentation settings are made. 
The performances of proposed techniques are compared 
with deep learning-based techniques (Sl. Nos 9–11) and 
experimental results obtained are recorded in Table 15.

From Table 15, it is observed that proposed face recogni-
tion techniques achieved improvement in performance by 
using Savitzky–Golay filter-based features on IJB-A data-
set. The Savitzky–Golay filter-based methods on IJB-A [5] 
show low performance because the database is relatively 
larger and more challenging than other reported datasets 
(ref. Tables [9–15]). However, our experimental results on 
IJB-A database (Sl. Nos 12 and 16) in Table 15 show that 
symbolic modeling approach with SGEF/GSGEF-based face 
recognition techniques provides higher recognition rate. 
Compared to the state-of-the-art technique (Sl. No. 11) on 
IJB-A, the proposed SA-SGEF (Sl. No. 12) achieved 1.67% 
performance improvement.

From the experimentation outcomes and performance 
analysis, it is noticed that Polar FFT-based face recogni-
tion techniques do consistently better compared to SG filter-
based techniques. PFFT features of face images obtained 
using the PFFT algorithm are invariant to scale, and rota-
tion and insensitive to noise, expression change, pose 
variations, inconsistent light conditions, and occlusion, 
whereas Savitzky–Golay filter is unable to estimate suitable 
smoothing coefficients, when the face images covered by 
mask, accessories, sunglass, other subjects, etc. The condi-
tion becomes even worst in the presence of combination of 
occlusion and non-uniform light on face samples. Hence, 
the performance of Savitzky–Golay moving filter-based 

Table 13   Comparison of recognition rate (%) of proposed techniques over recent works on LFW dataset

Sl. No Methods Recognition rate (%) Sl. No Methods Recogni-
tion rate 
(%)

Sl. No Methods Recog-
nition 
rate (%)

1 LVP 82.96 10 SA-PFFT 97.47 18 SA-SGEF 97.22
2 LDP 76.88 11 NN-PFFT 98.04 19 NN-SGEF 98.06
3 LTrP 80.84 12 SVM-PFFT 94.18 20 SVM-SGEF 92.30
4 LBP 83.16 13 PNN-PFFT 98.04 21 PNN-SGEF 98.04
5 LGHP 87.71 14 SA-DGM 97.25 22 SA-GSGEF 96.20
6 MDML-DCPs + PLDA + Score averag-

ing
94.57 ± 0.30 15 NN-DG 98.06 23 NN-GSGEF 98.03

7 MDML-DCPs + PLDA + SVM 95.13 ± 0.33 16 SVM-DG 97.63 24 SVM-GSGEF 91.60
8 MDML-DCPs + JB + SVM 95.40 ± 0.33 17 PNN-DG 97.76 25 PNN-GSGEF 98.04
9 MDML-DCPs + PLDA + JB + SVM 95.58 ± 0.34

Table 15   Comparison of recognition rate (%) of proposed works on 
IJB-A Face dataset

Sl. No Methods Recogni-
tion rate 
(%)

Sl. No Methods Recog-
nition 
rate (%)

1 SA-PFFT 92.87 12 SA-SGEF 92.90
2 NN-PFFT 90.08 13 NN-SGEF 90.10
3 SVM-PFFT 88.10 14 SVM-SGEF 84.67
4 PNN-PFFT 89.20 15 PNN-SGEF 89.20
5 SA-DGM 90.17 16 SA-GSGEF 90.44
6 NN-DG 89.91 17 NN-GSGEF 87.17
7 SVM-DG 88.84 18 SVM-

GSGEF
84.34

8 PNN-DG 83.98 19 PNN-
GSGEF

89.18

9 DCNN 
matching

90.30

10 VGG Face 
DCNN

90.34

11 FM + DCNN 91.23
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face recognition techniques is reduced in the presence of 
illumination and occlusion on face samples. In AR dataset, 
face images are occluded by sunglass or masks and poses 
illumination variations. The VISA and IJB-A datasets face 
images are obtained from both indoor and outdoor condi-
tions of different sessions, different occasions, etc., and face 
images are complex in terms of illumination changes and 
occlusion compared to AR, LFW, and ORL datasets. Hence, 
the SG filter-based face recognition techniques underper-
form on IJB-A, AR, and VISA Face datasets compared to 
performance on LFW and ORL datasets.

6 � Conclusion

Efficient and robust face recognition techniques are pre-
sented based on Savitzky–Golay filter energy feature (SGEF) 
and Gradient-based Savitzky–Golay filter energy features 
(GSGEF) descriptors. In the proposed work, instead of con-
sidering complete face image, face parts are cropped from 
the given face image by employing Viola–Jones technique. 
From the cropped face parts set of feature, values are esti-
mated by applying Savitzky–Golay filter. Further, based 
on SGEF and GSGEF feature values, symbolic modeling 
classifiers are presented. In symbolic modeling approach, 
feature values of each face part are represented as independ-
ent symbolic data objects. The symbolic representation of 
obtained features uses exceptionally small dimensional 
feature space, which reduces the computational time. The 
performance of proposed techniques is evaluated on face 
databases namely AR, ORL, LFW, IJB-A, and the new VISA 
Face. From experimentation results, it has been found that 
the proposed face recognition methods offer high recogni-
tion accuracy under uncontrolled environments. It is hoped 
that the proposed partial face recognition methods using new 
texture descriptors can pave the way to design and develop a 
standard application to take into account of new challenges 
faced by facial recognition technology in COVID-19.
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