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Abstract
Interval-valued data have been commonly encountered in practice, and Symbolic Data Analysis provides a solution to the 
statistical treatment of these data. Regression analysis for interval-valued symbolic data is a topic that has been widely 
investigated in the literature of symbolic data analysis, and several models from different paradigms have been proposed. 
There are basic regression assumptions, and it is essential to validate them. This paper introduces an approach to check 
interval regression model adequacy based on residual analysis. Concepts of ordinary and standardized interval residual are 
presented, and graphical analysis of these residuals is also proposed. To show the usefulness of the proposed approach, an 
application for estimating school dropout in the scenario of Brazilian municipalities is performed. We observed some outliers 
from the interval residuals analysis, and interval robust regression models are more suitable for estimating school dropout.

Keywords Symbolic data analysis · Educational data · Residual · Interval-valued symbolic data · Regression

1 Introduction

In many real experiences, data can have internal variation. 
These data can arise in two situations. First, the original 
data may be naturally collected as lists, intervals or histo-
grams. For example, by recording air temperature changes 
in meteorological stations throughout the day, the result is 
not a single value but a range of values, i.e., an interval. 

Second, original data can be processed, and lists, intervals 
or histograms can be produced. With the advent of modern 
computer science, the ability to generate, store and collect 
massive size data sets is expected in the most varied scenar-
ios. Often, the importance of analyze these massive data sets 
can require the use of specific methodologies. A example is 
to aggregate individual observations into groups of inter-
ests, especially when characteristics of groups are of higher 
interest to an analyst than those of individual observations. 
For example, data about scientific production for analyz-
ing research groups and not individual researchers [23]. The 
result is not a single value as mean or median but can also be 
an interval for each variable. To represent data taking into 
account internal variability within each observation, vari-
ables have allowed assuming new forms.

Symbolic data analysis (SDA) provides a framework 
where the variability observed may effectively be consid-
ered in the data representation, and methods that take it into 
account. Symbolic data values can be intervals, histograms, 
distributions, lists of values, taxonomies, etc. This kind of 
data is called symbolic because it is not purely numerical 
to express the internal variation of each concept. Symbolic 
data can be induced from classical data, and this type of 
data allows to take into account more complete and complex 
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information. SDA extends exploratory data analysis and data 
mining (regression, rule discovery, clustering, factor analy-
sis, discriminant analysis, decision trees, neural networks, 
etc.) from standard data to symbolic data. An extensive cov-
erage of symbolic data analysis methods can be found in 
Bock and Diday [7], Billard and Diday [4–6], Diday and 
Noirhomme-Fraiture [10], and Diday [9].

These symbolic variables can be obtained from classic 
variables to generate a symbolic data set. As an example, 
considering a data set with information on patients diag-
nosed with COVID-19 from different cities of a country. The 
classical variables include personal and demographics infor-
mation, clinical characteristics, laboratory results, treatment 
options, and outcomes. Thus, the individual entities in the 
classical data set are patients and cities can aggregate these 
in order to obtain a new data set regarding different symbolic 
variables (histogram, bar chart of categories, interval) as 
presented in Fig. 1. In this example, the cities are new units, 
called classes [9], and the variability between patients inside 
their cities (classes) is described by symbolic variables 
expressing the variability of the patients inside each city.

Since interval-valued data are by far the most popular 
symbolic data type in the literature and the most commonly 
encountered one in practice, this paper focuses applied 
statistics for interval-valued data inherently symbolic or 
become symbolic data after processing. There are at least 
three reasons for inducing interval-valued symbolic data. 

1. The variables take into account variability intrinsic to 
each unit.

2. Ensure the privacy of individuals: The original data 
contain information that explicitly classifies individuals. 
The generalization process by minimum and maximum 
values allows to ensure the confidentiality of the original 
data;

3. By using aggregated data, the number of individuals and 
the number of variables defined by the single value of 
each category are reduced. Moreover, the new data set 
can represent profiles.

In order to contribute to the practical and theoretical 
advances of statistical modelling for interval-valued sym-
bolic data, this work introduces residual analysis with an 
application to interval-valued symbolic educational data. 
Key aspects of this approach are highlighted as follows:

– In the theoretical context, this paper proposes a way for 
checking if a regression model for interval-valued sym-
bolic data works well for the data at hand. Thus, new 
concepts of interval residual and graphical tools are 
presented. These can be applied to any interval regres-
sion model of the SDA literature. Regression diagnostic 
is an important task for evaluating models. Moreover, 
descriptive measures such as skewness and kurtosis for 
interval-valued data are introduced, and a box plot for 
interval-valued symbolic data is also proposed based on 
lower and upper bounds. The approach is evaluated based 
on different linear models regarding an application with 
education data.

– In the practical context, a novel perspective of handling 
data in Brazilian educational data scenarios is pre-

Fig. 1  Classic COVID data set describes a set of individuals by a set of standard variables (x). Symbolic COVID data set describes a set of cities 
by a set of symbolic variables ( x′)



41Pattern Analysis and Applications (2023) 26:39–59 

1 3

sented to estimate school dropout in elementary educa-
tion. Here, it provides a guide for selecting variables, 
performing regression analysis, checking the quality of 
the built models and evaluating the prediction ability of 
these models based on interval-valued symbolic data and 
can be applied to estimate an index of the educational 
domain. The use of interval-valued symbolic data allows 
solving dimension problems, reducing and preserving 
their information privacy. Moreover, this process can 
also be used in any data application domain regarding 
interval-valued symbolic data and regression approaches.

The rest of the paper is organized as follows: Sect. 2 dis-
cusses related works for interval regression analysis. Sec-
tion  3 introduces residual analysis for interval-valued 
symbolic data. Section 4 relates the application with inter-
val-valued symbolic educational data, and Sects. 5 and 6 
show the potentiality of the proposed approach regarding 
different linear models of the SDA literature. Finally, Sect. 7 
gives the concluding remarks.

2  Related works for interval linear 
regression analysis

Linear regression based on the least squares approach for 
interval-valued symbolic data has been attracting increasing 
interest among researchers.

The first work in the regression model for interval-valued 
symbolic data can be found in Billard and Diday [2] and 
Billard and Diday [3]. Lima Neto and De Carvalho [18] 
considered a representation for interval based on center 
and range of the interval. Also, they developed a regres-
sion model based on a new representation. Lima Neto and 
De Carvalho [19] proposed a constrained linear regression 
model on the center and range representation to ensure 
mathematical coherence between the predicted values of 
the lower and upper boundaries of the intervals. Fagundes 
et al. [11] presented a robust prediction method for interval-
valued symbolic data based on the linear robust regression 
methodology.

Hao and Guo [13] presented constrained regression 
models for intervals based on ordinary least squares (OLS). 
Souza et al. [31] introduced the parametrized method, a lin-
ear regression model based on the lower-upper representa-
tion. Soares and Fagundes [30] proposed an interval quantile 
regression for interval-valued symbolic data represented by 
centers and ranges. Lima Neto and De Carvalho [20] intro-
duced a robust based on the weighted least squares model. 
Reyes et al. [25] proposed a linear model to estimate sys-
tematic risk in capital asset pricing in which daily high and 
low prices on Microsoft and the S & P500 index are used to 
show the capabilities of this model.

Although there are different regression approaches for 
interval-valued symbolic data in the SDA literature, it is 
important to check whether the model works well for the 
data at hand. For this, diagnostic measures and graphi-
cal tools based on residuals can be used. In this context, 
Lima Neto et al. [17] proposed the first concept of residuals 
for interval-valued symbolic data as a unique continuous 
value and considered this concept for calculating diagnostic 
measures. This concept was used regarding a model that the 
authors also introduced. This model assumed the interval-
valued symbolic response variable as a bivariate random 
vector having a bivariate Gaussian distribution. The residu-
als were used to make inferences about the response distri-
bution, identify outliers, among other aspects.

In this work, a new concept of residuals for interval-
valued symbolic data is introduced. This concept considers 
lower and upper boundaries of the residuals jointly, unlike 
definitions found in the literature [17, 32], which consider 
the interval residual based on statistical residuals for clas-
sical data. Our approach takes into account the variability 
intrinsic to each unit (class) to define the residuals (lower 
and upper boundaries). Thus, versions of these residuals are 
considered, and graphical tools are built in order to inves-
tigate the adequacy of regression models for the used data 
scenario. A descriptive analysis for interval residuals is per-
formed. Box plot for interval residuals is also introduced and 
is considered for analyzing the interval residuals. This new 
residual concept can be applied to any regression model for 
interval-valued symbolic data of the SDA literature.

As already mentioned, this paper applies its theoretical 
contributions to educational data. In the framework of SDA 
applications for the educational scenario, Silva et al. [28] 
introduced a toolbox for symbolic polygonal data that was 
applied to data of the Brazilian Basic Education Assessment 
System (SAEB). The authors performed this application to 
estimate the mathematical proficiency of Brazilian students 
in the final year of elementary education using a symbolic 
regression model. Symbolic polygonal data are a new type 
of symbolic data that were introduced by Silva et al. [27].

3  Interval residual analysis

In the classic literature of regression models, the basic 
regression assumptions are: (i) the relationship between 
response and regressors to be approximately linear, (ii) 
error with zero mean and constant variance, (iii) errors are 
uncorrelated and (iv) errors follow approximately normal 
distribution. This paper presents methods useful for check-
ing these assumptions based on interval residuals calculated 
from interval regression models.
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3.1  Interval residual

Interval-valued symbolic data resulting from the aggregation 
process applied to large data sets are descriptions associated 
with individuals’ subsets. These descriptions are defined by 
a generalization tool, for example, [min, max]. However, 
overgeneralization can happen when individuals’ classes are 
described by a numerical variable generalized by an interval 
containing smaller and greater values. Problems with choos-
ing [min, max] can arise when these extreme values are, in 
fact, outliers or when the set of individuals to generalize is 
composed of subsets of different distributions. Interval outli-
ers’ definition is presented in ref  [11].

Let � = 1,… , n be a data set of n objects each one 
described by an interval vector (xi, yi) where xi = (xi1,… , 
xip)

T  with xij = [aij, bij] ∈ ℑ = {[a, b] ∶ a, b ∈ ℜ, a ≤ b} 
(j = 1,… , p) and yi = [�i, �i] ∈ ℑ = {[�, �] ∶ �, � ∈ ℜ,

� ≤ �} . The objects are described by midpoint and range 
data of their intervals. Let Y = (yc

1
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n
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)
T 
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with xr
ij
= (bij − aij) (j = 1,… , p) , and �n and �n are zero and 

one vectors, respectively.
Regarding the vector Y and the matrix X , the regression 

equation can be written as follows:

� = (�c
0
, �c

1
,… , �c

p
, �r

0
, �r

1
, … , �r

p
)
T  is a parameter vector, 

� = (�c, �r) T is a vector of error with �c = (�c
1
,… , �c

n
)
T and 

�r = (�r
1
,… , �r

n
)
T .

Let the residuals for center and range of interval-valued 
symbolic data given as:

Definition 1 The ordinary interval residual ( �i ) is as:

Definition 2 A standardized version for �i can be defined as:

where

(1)� = �� + �,

rc
i
= yc

i
− ŷc

i
and rr

i
= yr

i
− ŷr

i
.

(2)
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− ŷc

i
) + (yr

i
− ŷr
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,
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,

where [ril, riu] = [(𝛼i − �̂�i), (𝜆i − �̂�i)] and SDR is the standard 
deviation for interval residual � . It follows according to the 
definition of standard deviation for interval-valued symbolic 
data presented in Bertrand and Goupil [1].

3.2  Residual analysis

Residual analysis is an essential step for identifying the 
effects of departures from assumptions of a regression 
model. The residual analysis for interval-valued symbolic 
data presented in this paper is based on residual analysis for 
classic data. Thus, to better understand this methodology’s 
use for interval-valued symbolic data, we exemplify two 
standard behaviors for interval residuals: when the assump-
tions of the linear model are satisfied and are not.

3.2.1  Situation when the assumptions of the interval linear 
model are satisfied

Initially, a Monte Carlo experiment was carried out using 
the interval regression model. The goal is to investigate the 
statistical properties of the proposed interval residuals in this 
paper. We generate a synthetic symbolic data set of size n = 
30, according to the structure below, and Fig. 2 shows the 
scattering of the rectangles of these synthetic interval-valued 

(4)
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√√√√√ 1

3n
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iu
+ riuril + r2
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Fig. 2  X versus Y in synthetic interval-valued symbolic data when 
assumptions of the interval linear model are satisfied
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symbolic data. Data were generated with the following 
configuration:

– The midpoint predictor xc
i
 is generated from an uniform 

distribution in the interval [20,40].
– The range predictor xr

i
 is generated from an uniform dis-

tribution in the interval [1,5].
– The midpoint response yc

i
= 1 + 2xc

i
+ �i , where �i ∼ N

(0,3).
– The range response yr

i
= 10 + xr

i
+ �i , where �i ∼ N(0,3).

In the following, we consider 1,000 replications of the 
Monte Carlo simulation. In each replication, an interval lin-
ear regression model is fitted and the ordinary and stand-
ardized interval residuals given by Eqs. (2) and (3), respec-
tively, are calculated. Tables 1 and 2 present descriptive 

statistics for both residuals. These measures are computed 
according to concepts described in Appendix A. We observe 
in these tables that the ordinary and standardized residuals 
have approximately zero interval mean and interval vari-
ances approximately 3 and 1, respectively. Moreover, both 
interval residuals have interval skewness close to zero and 
interval kurtosis close to 3.

Figures 3 and 4 are developed with the interval.histo-
gram.plot() function from the RSDA package [26] to gener-
ate histograms. We observe a good approximation of the 
normal distribution for interval residuals. Figure 5a and b 
suggest that the errors are homoscedastic and random for 
ordinary and standardized residuals, respectively. That is, 
the variance is constant and the assumption of linearity is 
satisfied in this scenario.

Table 1  Descriptive statistics for ordinary interval residual when 
assumptions of the interval linear model are satisfied

i Mean Standard Skewness Kurtosis
Deviation

1 0.0341 3.0689 −0.0019
2 0.0282 3.0725 0.0596 2.7851
3 −0.0220 2.9739 0.0881 2.9647
4 −0.0947 2.9635 −0.0240 3.0810
5 0.0180 3.1218 −0.0168 3.0486
6 −0.0860 2.9301 −0.0305 2.8569
7 0.0920 2.9714 −0.0561 2.9522
8 0.0918 2.9425 0.0196 3.1115
9 0.0321 3.0088 0.0913 3.0211
10 −0.0187 2.9318 0.0210 3.0215
11 0.1289 2.9941 0.0819 3.0499
12 −0.1036 2.8692 −0.0716 2.9559
13 −0.1589 3.0396 0.0034 3.0836
14 0.0336 3.0434 −0.0974 3.2109
15 0.0099 3.0438 0.0062 3.1218
16 −0.0444 2.9754 −0.1079 2.8265
17 −0.0596 2.9915 0.0849 3.0955
18 0.0527 3.1402 −0.0759 3.0201
19 −0.0794 2.9478 0.0286 3.0871
20 0.0690 2.9998 0.1876 3.0799
21 −0.0652 3.0617 0.0674 3.1612
22 −0.0766 3.0687 −0.0663 2.9854
23 −0.0584 3.0893 −0.0069 3.1285
24 0.1023 2.9639 −0.0350 2.9402
25 −0.0014 3.1457 0.1274 2.8466
26 0.0462 3.0207 0.0344 3.3147
27 0.0972 3.0024 0.0357 2.9513
28 0.1643 3.1306 −0.0139 3.1070
29 −0.1707 3.1497 −0.0486 3.1865
30 0.0393 2.9797 0.0017 3.1857

Table 2  Descriptive statistics for standardized interval residual when 
assumptions of the interval linear model are satisfied

i Mean Standard Skewness Kurtosis
Deviation

1 0.0124 1.0161 −0.0267 2.8795
2 0.0046 1.0156 −0.0179 2.6990
3 −0.0077 0.9849 0.1149 2.8401
4 −0.0326 0.9771 −0.0126 2.7881
5 −0.0008 1.0370 −0.0326 2.8656
6 −0.0187 0.9703 0.0103 2.7210
7 0.0333 0.9847 −0.0104 2.8160
8 0.0317 0.9784 0.0284 2.9434
9 0.0160 0.9908 0.1096 2.8340
10 −0.0050 0.9642 −0.0058 2.7743
11 0.0421 0.9939 0.0379 2.9301
12 −0.0348 0.9514 −0.0711 2.8007
13 −0.0520 1.0059 0.0118 2.9181
14 0.0134 1.0092 −0.0437 3.0497
15 0.0083 1.0112 0.0045 2.8783
16 −0.0114 0.9782 −0.0711 2.6675
17 −0.0252 0.9816 0.0418 2.7887
18 0.0199 1.0346 −0.0231 2.8953
19 −0.0340 0.9766 0.0259 2.9765
20 0.0205 0.9937 0.1300 2.8787
21 −0.0231 1.0134 0.0587 2.9187
22 −0.0218 1.0166 −0.0155 2.9066
23 −0.0187 1.0219 −0.0128 2.9272
24 0.0318 0.9875 −0.0889 2.8300
25 −0.0024 1.0436 0.1061 2.7394
26 0.0162 0.9897 0.0292 2.9411
27 0.0254 0.9925 −0.0088 2.7662
28 0.0508 1.0364 −0.0223 2.7810
29 −0.0496 1.0340 −0.0455 2.8863
30 0.0112 0.9887 −0.0454 3.0231
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3.2.2  Situation when assumptions of the interval linear 
model are not satisfied

Here, we present two scenarios of interval synthetic data 
in which the assumptions of homoscedasticity and linearity 
are violated, respectively. In the first scenario (Fig. 6), data 
are generated with the configuration below. The idea is to 

show the behavior of the interval residuals when the homo-
scedasticity is violated. Figure 7a and b display an outward-
opening funnel pattern, indicating that the error variance is 
not constant.

– The midpoint predictor xc
i
 is generated from an uniform 

distribution in the interval [1,5].
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– The range predictor xr
i
 is generated from an uniform dis-

tribution in the interval [0.5,1].
– The midpoint response yc

i
= 1 + 3xc

i
+ �i , where �i ∼ N

(0,2xc
i
).

– The range response yr
i
= 1 + 1.3xr

i
+ �i , where �i ∼ N

(0,1).

The second scenario of interval-valued symbolic data is 
shown in Fig. 8. Here, we present an example in which the 
assumption of linearity for intervals is violated. The data 
scenario is generated with the configuration below. Figure 8 
shows a nonlinear relationship between independent and 
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Fig. 4  Histograms for standardized interval residual when assumptions of the interval linear model are satisfied
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dependent interval-valued symbolic variables, and Fig. 9a 
and b present the behavior of the interval residuals versus 
predicted intervals for this scenario violating the assumption 
of linearity.

– The midpoint predictor xc
i
 is generated from an uniform 

distribution in the interval [− 6,6].
– The range predictor xr

i
 is generated from an uniform dis-

tribution in the interval [1,3].
– The midpoint response yc

i
= 0.3 + xc

i
2
+ �i , where �i ∼ N

(0,2).
– The range response yr

i
= xr

i
+ �i , where �i ∼ N(0,2).

From Subsects. 3.2.1 and 3.2.2, we presented two situa-
tions of interval residual behaviors. In the first, Fig. 5 dis-
plays random and homogeneous behavior of the interval 
residuals around the horizontal axis satisfying the assump-
tions of adequacy of the regression models. In the second 
one, Figs. 7 and 9 show two scenarios where the assump-
tions of the linear interval model are violated: linearity and 
homoscedasticity, respectively. These experiments describe 
the importance of the residual analysis in the context of 
interval linear regression models.

3.3  Interval residual analysis with benchmark 
interval data sets

To evaluate the proposed methodology with real inter-
val data, we performed the interval residual analysis with 

Fig. 5  Predicted interval versus 
interval residuals when assump-
tions of the interval linear 
model are satisfied
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Fig. 6  X versus Y in synthetic interval-valued symbolic data when 
assumptions of homoscedasticity are violated

Fig. 7  Predicted interval versus 
interval residuals violating the 
assumption of homoscedasticity
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benchmark data sets in the SDA literature. The adequacy of 
the linear interval model was examined using the following 
databases:

– Soccer data set: it provides information about the pro-
fessional football players of 20 teams in France. Each 
player is described by two independent variables: height 
and age and a dependent variable: weight. This data set 
was obtained through the iRegression package [21]. Fig-
ure 10a, b shows the scatter plot of the predicted inter-
vals versus interval residuals. From this figure, we can 
observe that the interval residuals are randomly distrib-
uted around the zero mean. From Fig. 10c, d, we can 
observe that the interval residuals present an asymmetric 
behavior that violates the assumption of normality for 
errors.

– Cardiology data set: it consists of 59 patients described 
by three interval variables. Two independent interval 
variables are systolic blood pressure and diastolic blood 

pressure, and the dependent variable is pulse rate. This 
data set is obtained through the iRegression package 
[21]. Figure 11a, b shows the scatter plot of the depend-
ent variable versus interval residuals from the Cardiol-
ogy data set. We can see in this example that there is no 
pattern in the distribution of rectangles. Moreover, we 
can infer through Fig. 11c, d that the errors follow an 
approximately normal distribution. For this data set, the 
assumptions considered in this paper are satisfied.

– Airfares data set: it relates to quarterly average airfare 
and average weekly passengers in 2001 of the US Depart-
ment of Transportation obtained through the PSDA 
package [29]. Two variables describe the data set. The 
dependent variable is the price; the independent variable 
is distance. The original data set is aggregated by depar-
ture city, resulting in 90 classes. Figure 12a, b shows a 
heteroscedastic behavior, and Fig. 12 c, d displays that 
there is slight asymmetry.

4  Interval educational data

The increase in resources, educational software, the use of 
the Internet in education, and the establishment of state data 
sets of student information have created large repositories of 
data [15]. Kriegel et al. [16] point out that manual analysis 
of large volumes of data is impracticable, and there is an 
increasing need for data mining techniques that are capable 
of discovering new knowledge in these complex and volu-
minous data. Therefore, discovering new knowledge can be 
exploited to improve the quality of decisions in education 
and teaching–learning methods.

However, exploiting this large mass of educational data 
is one of the significant challenges facing educational insti-
tutions. SDA provides tools that allow the processing and 
analyzing large volumes of educational data more efficiently 
than the original. Symbolic data can describe a group (class) 
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of individual records of an extensive data set, and the origi-
nal data set can be reduced to a smaller size. This data struc-
ture facilitates the use of the data set and generates new 
knowledge. Moreover, SDA promotes the confidentiality of 
information by increasing the granularity of the scenario in 
which the data are sensitive.

Educational indicators are essential tools for understand-
ing educational systems [22]. They attribute statistical value 
to the quality of teaching. This allows knowing not only 
the performance of the students but also the socioeconomic 
context and the conditions in which the teaching–learning 
process takes place [8]. They are useful for monitoring edu-
cational systems and contributing to creating public policies 
to improve the quality of education and services offered to 
society by the school. The educational indicators used in this 
study are made available openly by the National Institute of 
Educational Studies and Research Anísio Teixeira (INEP) 
[14] for the year 2018. These indicators were organized in a 
single data set and referred to all Brazilian cities’ elementary 
schools. They are:

– School dropout rate, the response variable (SDR).

– Adequacy of teacher refers to the percentage of teachers’ 
adequacy to the discipline they teach in schools. There 
are five levels of suitability and therefore five variables 
(ATT1 to ATT5).

– Students per class, average number of students per class 
in schools (SCL).

– The complexity of schools’ management is related to 
the following characteristics: school size, shift number, 
quantity, and complexity of modalities offered (CMA).

– Level-age distortion rate per school (DLA).
– Percentage of teacher with higher education in schools 

(THE).
– Average of the regularity of the teacher in school. For 

each teacher of the school, a score was assigned to the 
value: (a) of the total number of years that the teacher 
worked in the school in the last years; (b) the teacher’s 
performance in school in more recent years; and (c) the 
performance in consecutive years (RGT).

– Teacher effort, This measure reveals aspects of the teach-
er’s work that contributes to the overload in the exercise 
of the profession. The indicator presents the percentage 
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Fig. 10  Soccer data set: Predicted interval versus interval residuals (a), (b) and histograms for residuals (c), (d)
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of teachers at six levels, and higher levels indicate more 
significant effort (TEF1 to TEF6).

Each indicator was integrated into a single data set, resulting 
in 17 variables and 128,366 school occurrences. The follow-
ing subsection explains the transformation of the classic data 
set into interval-valued symbolic data.

4.1  Creation of the interval‑valued symbolic 
educational data set

Before obtaining the data set for interval-valued symbolic 
data, we performed treatment for the original data set. The 
idea of this step was to deal with the missing data present 
in the original data set although this does not interfere with 
the data aggregation. The median measure was used to fill 
in missing data. The original data set was aggregated by city 
and, considering each variable, and the missing values are 
filled by the median of the values corresponding to the city. 
The highest overall occurrence of missing value at the base 

was the variable SCL, with 2,174. Table 3 displays a small 
part of the original data set.

The next step was to identify the cities represented by 
a single school. In this case, the maximum and minimum 
values for each variable are identical. Thus, 80 cities are 
found, and we decided to exclude them from the study since 
these cities represent a minimum portion of the complete 
base records. Moreover, we kept only continuous variables 
in the study. After these steps, the aggregation process by 
city allowed to obtain 5,490 objects in which each instance 
represents a group of schools in a Brazilian city. We use 
the function classic_to_sym () from the RSDA package [26] 
which can be found in the R language [24]. The original data 
set has 128,366 school records, and the symbolic data set has 
5,490 city records. Given a city is obtained minimum and 
maximum values for each variable. Table 4 shows a small 
part of the interval-valued symbolic data set. We can clearly 
observe the variability inside each city represented by the 
minimum and maximum values in the class.
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Fig. 11  Cardiology data set: Predicted interval versus interval residuals (a), (b) and histograms for residuals (c), (d)
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Fig. 12  Airfares data set: Predicted interval versus interval residuals (a, b) and histograms for residuals (c, d)

Table 3  Educational indicators described by classic data

School TEF1 TEF2 … TEF6 ATT1 ATT2 … ATT5 SCL THE CMA RGT DLA SDR

1 50.0 0.0 … 0.0 54.4 0 … 0 12.6 100 3 3.1 23.8 6.6
2 33.2 0.0 … 6.7 72.6 0 … 8.4 20.5 93.3 3 2.5 18.5 3.6
3 30.8 23.1 … 3.8 91 0 … 3.5 26.9 96.2 3 3.2 14.1 0
… … … … … … … … … … … … … … …
128,364 42.4 53.8 … 0.0 96.6 0 … 3.4 25.2 96.2 3 2.5 18.1 5.4
128,365 0.0 0.0 … 0.0 79.3 0 … 5 36.9 97.1 3 2,1 34.7 10.4
128,366 15.8 84.2 … 0.0 90.2 0 … 0 27.9 100 3 3.0 10 9.6

Table 4  Educational indicators described by interval-valued symbolic data

City TEF1 ... TEF6 ATT1 ... ATT5 SCL THE RGT DLA SDR

1 [6.4, 100] ... [0, 19.4] [0, 91] ... [0, 100] [4, 26.9] [0, 100] [1.04, 5] [0, 54.7] [0, 7.1]
2 [0, 100] ... [0, 11.8] [41.2, 100] ... [0, 33.3] [10.3, 32.1] [66.7, 100] [2.08, 4.4] [0, 35.1] [0, 5]
3 [0, 100] ... [0, 20] [44.4, 100] ... [0, 4.1] [10.5, 22.2] [95.7, 100] [3.17, 4.31] [2.5, 18.1] [0, 0.4]
... ... ... ... ... ... ... ... ... ... ... ...
5,488 [0, 100] ... [0, 11.1] [0, 95.1] ... [0, 58.3] [10, 27.2] [55.6, 100] [1.32, 3.52] [0, 54.4] [0, 1.6]
5,489 [0, 100] ... [0, 20] [0, 70] ... [0, 87.4] [11, 28.7] [22.2, 100] [2.07, 3.08] [0, 23.9] [0, 1]
5,490 [0, 100] ... [0, 15.4] [0, 100] ... [0, 100] [1.8, 45.4] [0, 100] [1.14, 4.55] [0, 100] [0, 20]
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4.2  Exploratory analysis of interval‑valued 
symbolic educational data

Table 5 shows descriptive measures such as mean, stand-
ard deviation, and coefficient of variation for all interval-
valued symbolic variables of the interval-valued symbolic 
educational data set studied in this work. These measures 
are computed according to concepts described in Billard and 
Diday [2]. From the values in this table, we can see that the 
interval-valued symbolic variables have different behaviors. 
This table also presents that TEF6, ATT2, ATT4, and SDR 
variables have the highest values of coefficient of variation, 
all values greater than one.

In order to exhibit a summary of descriptive measures 
graphically, this work shows a new approach for building 
box plots for interval-valued symbolic data. The procedure 
is given as follows. 

1. Fixed an interval-valued symbolic variable Xj 
(j = 1,… , p) , let Sj be a list of all lower and upper values 
of the variable Xj such as Sj = {a

j

1
, b

j

1
,… , a

j
n, b

j
n}.

2. Compute the the minimum, the maximum, the sam-
ple median, and the first and third quartiles of Sj 
(j = 1,… , p).

3. Obtain the box plot regarding the list of values Sj 
(j = 1,… , p).

Figure 13 displays a box plot build from the bounds of 
interval-valued symbolic variables in the data set. Most of 
the variables have potential outliers, and two variables have 
a high interquartile range, such as TEF1 and ATT1. The 
variables ATT2 and RGT have an interquartile range close 
to zero. The response variable has a low interquartile range 
and many potential outliers.

4.3  Selecting independent variables for estimating 
school dropout

Table 6 shows the linear correlations between all interval-
valued symbolic variables present in the data set. The cor-
relations are obtained using the measure proposed by Billard 
and Diday [5] method. Initially, we selected the independent 
variables (in bold) with the highest correlation values with 
the interval-valued symbolic response variable (SDR). They 
are: DLA and THE.

Figure 14 shows the 3D scatter plot regarding SDR, THE, 
and DLA variables for center and range data. Moreover, this 
figure displays the corresponding 3D scatter plot interval-
valued symbolic data. In the three plots, we can note outli-
ers’ presence in the data set.

In addition, Fig. 15 presents the graphical representa-
tion of the distribution of selected interval-valued symbolic 
variables through histograms. The histograms were devel-
oped with the interval.histogram.plot() function from the 
RSDA package [26]. In general, the variables have different 
behaviors with strong positive asymmetry. For example, in 

Table 5  Descriptive statistics 
of interval-valued symbolic 
variables in data set

Variable Mean Standard
Deviation

TEF1 38.27 26.96
TEF2 21.24 20.65
TEF3 29.56 23.35
TEF4 35.67 22.04
TEF5 13.19 12.36
TEF6 7.28 9.02
SCL 19.06 7.31
THE 71.27 27.11
ATT1 51.63 25.74
ATT2 2.56 6.11
ATT3 33.94 24.12
ATT4 9.18 13.63
ATT5 29.17 27.38
DLA 19.78 16.29
RGT 3.04 0.78
SDR 3.75 6.73

Fig. 13  Box plots for interval-
valued symbolic variables
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Table 6  Correlations between the variables in the interval-valued symbolic data set

TEF1
0.41 TEF2
0.26 0.38 TEF3
0.03 0.14 0.20 TEF4
0.04 0.09 0.12 0.07 TEF5
0.07 0.17 0.20 0.12 0.29 TEF6
−0.61 −0.41 −0.33 −0.13 −0.06 −0.09 ATT1
0.15 0.16 0.16 0.05 0.18 0.15 −0.13 ATT2
0.41 0.30 0.28 0.19 0.11 0.13 −0.58 0.06 ATT3
0.27 0.31 0.28 0.18 0.17 0.20 −0.29 0.20 0.21 ATT4
0.59 0.51 0.45 0.15 0.11 0.18 −0.69 0.16 0.32 0.28 ATT5
−0.58 −0.51 −0.45 −0.15 −0.10 −0.16 0.70 −0.15 −0.33 −0.28 −0.96 THE
−0.02 0.19 0.11 0.04 0.08 0.16 0.08 0.11 −0.01 0.09 0.01 −0.01 SCL
−0.07 −0.09 −0.07 −0.08 −0.06 −0.07 0.09 −0.04 −0.08 −0.07 −0.14 0.13 −0.03 RGT 
0.00 0.08 0.12 0.06 0.16 0.15 0.01 0.15 0.01 0.15 0.06 −0.05 0.16 0.01 CMA
0.38 0.43 0.41 0.21 0.16 0.27 −0.43 0.12 0.28 0.28 0.52 −0.53 0.08 −0.06 0.12 DLA
0.34 0.39 0.36 0.19 0.12 0.21 −0.34 0.11 0.27 0.27  0.44 −0.45 0.08 −0.10 0.11 0.58 SDR
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Fig. 15c, the response variable SDR has one of the highest 
kurtosis values, and its histogram reflects the highest peak of 
the histogram is to the first range of values. We can evaluate 
that the distribution of the intervals for the school dropout 
rate is more frequent to the lowest maximum and minimum 
values.

5  Model adequacy checking for estimating 
interval school dropout

Four linear regression models for interval-valued data of the 
SDA literature are investigated in this application. They are: 
iLR [18], iRLR [11], iQR [12], and iETKKR [20]. These 
models have some common characteristics such as:

– Two independent regressions are considered for the mid-
point and range of the intervals, respectively.

– The prediction of an interval is based on a linear com-
bination regarding the fitted values for the midpoint and 
range of the intervals.

In this context, the coefficient vectors �c = (�c
0
, �c

1
, ..., �c

p
)
T 

and �r = (�r
0
, �r

1
, ..., �c

p
)
T of these interval regression models 

are estimated minimizing different criterion functions.
In the iLR model defined in Lima Neto and De Carvalho 

[18], the sum of squares of deviations is given by the sum of 
the midpoint square error plus the sum of the range square 
error, considering independent vectors of parameters to pre-
dict the midpoint and the range of the intervals. However, it 
is well known in the literature that a least squares model is 
sensitive to outliers.
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Fig. 15  Histograms of interval-valued symbolic variables
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In the iRLR model defined in Fagundes et al. [11], the fit-
ting criterion for each regression is based on a class of robust 
estimators that minimizes a function � of the residuals. The 
robust procedure replaces the sum of squared residuals of the 
least square method with some other function that is being 
less influenced by the unusual observations. The coefficients 
of the models are estimated by the iteratively reweighted 
least squares.

In the iQR method proposed in Fagundes et al. [12] each 
regression provides estimates based on �-th quantile of the 
conditional distribution of the dependent variable, using for 
this, the minimization of the weighted absolute errors. It 
allows to model different quantities of the target variable. 
The advantages of quantile regression over least squares 
regression are its flexibility for modeling data with hetero-
geneous conditional distributions. We considered � = 0.5 
for this application.

In the iETKRR method defined in Lima Neto and De Car-
valho [20], the parameter estimation is guided by the mini-
mization of an objective function that penalizes the pres-
ence of outliers through the use of exponential-type kernel 
functions. This function is not defined in the original space 
but in a high-dimensional space through nonlinear mapping 
applied, respectively, on the midpoint and range response 
variables and its corresponding mean values.

Interval residual analysis for each model is performed to 
investigate possible problems in these models. This analysis 
involves descriptive statistics, scatter plot, and histograms 
for ordinary and standardized interval residuals. Table 7 
presents the parameter estimates obtained from the interval 
regression models. Each model considers two regressions for 
the midpoint and range of the intervals, respectively.

Table 8 shows the descriptive statistics for ordinary and 
standardized interval residuals. As expected, both models’ 
standardized interval residuals have a mean close to zero and 
a standard deviation equal to 1. Regarding standard devia-
tion, asymmetry, and kurtosis, the iLR and iQR models pre-
sented high values. This indicates that the interval errors for 
these models are highly skewed and distribution with shape 
leptokurtic. However, iRLR and iETKKR models presented 
that the errors are fairly symmetrical and distribution with 
fairly mesokurtic shape.

Figure 16 shows the histogram of interval residuals. The 
residual interval histograms from the fitted iLR and iQR 
models show a small positive skew, while iRLR and iET-
KKR are approximately symmetric. Figure 17 represents the 
scatter plots of the predicted versus interval residuals, from 
ordinary ( � ) and standardized ( �S ) for models. The dark part 
means that the data have been randomly overlaid, consider-
ing the amount of records present in the data set.

From these plots, we can extract some highlights: 

1. There are interval outliers for fitted iLR and iQR (see 
Figs. 16a–d and 17a–d). The fitted iRLR and iETKKR 
do not present interval outliers (there are no interval 
outliers for iRLR (see Figs. 16 e–h and 17e–h).

2. For both fitted models, the interval residuals versus pre-
dict intervals plot present non-constant variance suggest-
ing heteroscedasticity problem.

3. To finalize, we can say that the model diagnostic anal-
ysis was needed to assess a linear regression model’s 
appropriateness for interval-valued symbolic data. This 
study allowed to conclude that iRLR and iETKKR are 
appropriate models for estimating the school dropout 
rate regarding the interval-valued symbolic educational 
data set built in this work.

Table 7  Estimated models’ 
parameters

Model  Parameter estimates

Midpoint Range

Intercept THE_c DLA_c Intercept THE_r DLA_r

iLR 2.921 −0.054 0.236 −1.663 0.035 0.258
iRLR 2.807 −0.039 0.154 −0.708 0.023 0.182
iQR 2.536 −0.035 0.145 −0.639 0.019 0.175
iETKKR 3.170 −0.038 0.119 −0.371 0.027 0.143

Table 8  Descriptive statistics for interval residual

Model Mean Standard Skewness Kurtosis
Deviation

Ordinary �
 iLR −1.13×10−13 4.60 4.43 41.37
 iRLR −3.41×10−14 1.62 0.13 2.33
 iQR 8.99×10−1 4.78 5.30 51.01
 iETKKR −8.14×10−8 1.42 0.19 2.81

Standardized �S

 iLR −2.46×10−14 1.00 4.43 41.37
 iRLR −2.11×10−14 1.00 0.13 2.33
 iQR 1.88×10−1 1.00 5.30 51.01
 iETKKR −5.73×10−8 1.00 0.19 2.81
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Fig. 16  Histograms for ordinary 
and standardized interval 
residuals
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Fig. 17  Scatter plots of the pre-
dicted intervals versus interval 
residuals
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6  Model predictive power analysis

The predictive analysis is made to evaluate the performance 
of the model with new data. Test and training sets are ran-
domly selected from the interval-valued educational sym-
bolic data set. The training set corresponds to 75% of the 
original data set, and the test data set corresponds to 25%. 
The models’ accuracy prediction is measured by the mean 
magnitude of relative error (MMRE), as shown in Eq. 5. The 
estimated MMRE corresponds to the average of the metric 
found in a Monte Carlo simulation with 1000 replications 
and hold-out method, as in Algorithm 1. The MMRE is 
given as

Table 9 shows the mean and standard deviation values for the 
MMRE calculated from 1000 iterations. iETKKR has better 
performance than iRLR. We verified through the Student’s 
T-test, at 5% of significance level, for paired samples, the 
statistical difference between the iETKKR and iRLR. The 
test obtained p-value < 0.0001, and we can conclude that the 
iETKKR model is the best option for this application. The 
objective function found in iETKRR allows a combination 
of different hyper-parameter estimators on the center and on 
the range of the intervals, and thus, it provides more flex-
ibility and robustness to treat different outliers types present 
in interval-valued symbolic data sets.

(5)MMRE =

n∑

i=1

1

2n

{
||||
𝛼i − �̂�i

𝛼i

||||
+

|||||

𝜆i − �̂�i

𝜆i

|||||

}
.

7  Conclusions

Interval-valued data are a type of symbolic data widely con-
sidered in the Symbolic Data Analysis (SDA) literature. Our 
paper presented a way to check regression model adequacy 
for interval-valued symbolic data. In this context, we intro-
duce concepts of ordinary and standardized interval residu-
als for regression models. In order to perform exploratory 
analysis for interval residuals, we present a way of build-
ing box plot and calculating descriptive measures such as 
skewness and kurtosis for interval-valued data. The residual 
analysis is based on plots and descriptive measures applied 
to interval residuals. Here, the use of interval for describing 
residuals allows to take into account the variability inherent 
to the residuals and consider measures and graphs defined 
for data type interval. Unlike of the approach presented in 
[17] that consider residuals as continuous values and the 
residual analysis is carried out investigating residuals for 
lower and upper bounds of the intervals separately. The 
framework proposed in this paper investigates residuals for 
lower and upper bounds of the intervals conjointly.

To show the usefulness of the proposed approach, an 
application for estimating school dropout in the scenario of 
Brazilian municipalities is performed. The data set was col-
lected from the year 2018 provided by the National Institute 
of Educational Studies and Research Anísio Teixeira (INEP). 
It is known that SDA provides a way to handle a large data 
set according to the granularity of interest. Thus, the schools 
were aggregated by cities. The focus of the analysis was to 
predict school dropout in Brazilian cities. School dropout 
is one of the biggest challenges of student institutions, and 
research that addresses techniques to deal with this theme 
contributes to the literature.

From the application, four interval regression models 
for predicting school dropout are built regarding a subset of 

Table 9  Average and standard 
deviation for MMRE of models

Model Mean SD

iRLR 0.5796 0.0083
iETKKR 0.5644 0.0074

Algorithm 1 Monte Carlo simulation for real data scenario
1: Require MC = 1000.
2: for i such that 1 ≤ g ≤ MC do
3: Define training set randomly (75 % of the original data)
4: Define test set randomly (25 % of the original data)
5: Build regression models for the center and range of the train data set.
6: Apply the prediction rule using the test set.
7: Compute MMRE using Equation (5).
8: end for
9: Compute the average and the standard deviation of the MMRE for models.
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independent interval-valued symbolic variables. This subset 
is selected using a correlation measure of the SDA literature, 
and it was the best option to explain the school dropout rate. 
The models are evaluated based on residual analysis regard-
ing descriptive measures and graphs. Least squares model 
is sensitive to outliers, and in this study, we identified that 
the iLM method had the worst results. The robust models 
were more suitable for modeling school dropout provided for 
the scenario studied since there are outliers in the interval 
data set. Between the robust models used to estimate school 
dropout, iETKKR presented more flexibility to treat interval-
valued outliers. It is worth mentioning that the data set has 
interval outliers. Therefore, it needs to use models that are 
less sensitive to outliers for this educational scenario.

This research opens the way for the application of new 
approaches in the educational area. SDA provides formula-
tions of data analysis, development of models, and evalua-
tion of results that allow applications in different domains. 
Dealing with large masses of data is necessary for the educa-
tional area due to technological advances in storage, interac-
tion, and content generation. SDA provides support on this 
issue. For example, it is possible to work on data groups such 
as classes, schools, and cities. Educational institutions and 
public initiatives can consider the factors related to school 
dropout presented and think of mechanisms to minimize this 
problem, such as helping professionals in their training and 
guaranteeing students’ access to school.

Appendix A concepts of empirical moments 
for interval‑valued symbolic data

The k-th moment and descriptive measures for interval-
valued symbolic data are based on a function of empirical 
density for the interval as found in Bock and Diday [2] and 
Billard and Diday [1].

Given a interval-valued symbolic variable Z measured by 
for each element of the random sample E = {1,… , n} . For 
each i ∈ E denote [ai, bi] an interval. An empirical distribu-
tion function of Z is a function of n uniform distributions. 
It is given by

According to Bertrand and Goupil [1], the empirical density 
function of Z based on Eq. (6) is defined as:

(6)FZ(�) =
1

n

{
∑

�∈Z(i)

(
� − ai

bi − ai

)
+

#{i| � ≥ bi}

n

}
.

(7)f (�) =
1

n

∑

i∶�∈Z(i)

1

bi − ai
.

Definition 3 The k-th moment for an interval-valued sym-
bolic variable Z is defined by:

where k = 0, 1, 2, 3, 4,….

The first and second empirical moments for interval-val-
ued symbolic data are given in Bertrand and Goupil [1], and 
they are defined by, respectively,

and

We develop the third and fourth empirical moments given, 
respectively, by

and

According to [1] and Eqs. (8) and (9), the empirical mean 
and empirical variance for interval-valued symbolic data are 
presented, respectively, as:

In this paper, the empirical skewness and empirical kurtosis 
for interval-valued symbolic are defined as follows.

Definition 4 The skewness for interval symbolic data can 
be defined by

Definition 5 The kurtosis for interval symbolic data can be 
defined by
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