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Abstract
Extracting tree skeletons from 3D tree point clouds is challenged by noise and incomplete data. While our prior work (Dobbs 
et al., in: Iberian conference on pattern recognition and image analysis, Springer, Berlin, pp. 351–362, 2023) introduced a 
deep learning approach for approximating tree branch medial axes, its robustness against various types of noise has not been 
thoroughly evaluated. This paper addresses this gap. Specifically, we simulate real-world noise challenges by introducing 3D 
Perlin noise (to represent subtractive noise) and Gaussian noise (to mimic additive noise). To facilitate this evaluation, we 
introduce a new synthetic tree point cloud dataset, available at https://​github.​com/​uc-​vision/​synth​etic-​trees-​II. Our results 
indicate that our deep learning-based skeletonization method is tolerant to both additive and subtractive noise.

Keywords  Tree skeletonization · Point cloud · Metric extraction · Deep learning

1  Introduction

Extracting 3D skeletal structures from tree point clouds 
remains a significant challenge in computer graphics and 
computer vision. These skeletal structures are crucial for 
digital tree modelling, with diverse applications including 
biomass estimation [1–3], growth modelling [4–6], forestry 
management [7–9], urban microclimate simulations [10], 
and agri-tech applications, such as robotic pruning [11, 12] 
and fruit picking [13]. Cardenas et al. [14] recently surveyed 
existing 3D tree skeletonization methods, classifying them 
into three categories: thinning, clustering, and spanning tree 
refinement.

Thinning methods [15–20] operate by contracting the sur-
face points onto the medial axis. Following this contraction, 
a simplification procedure is applied to extract the skeletal 
structure. While thinning methods are effective when the 
input point cloud is adequately sampled, they struggle with 
noise and occlusion.

Clustering methods [21–23] seek to group points into bins 
that share the same branch cross-section. These groups are 
formed using a neighbourhood function, typically imple-
mented with k-nearest neighbours (KNN) within a speci-
fied search radius. However, clustering can introduce chal-
lenges when neighbouring branches get too close, potentially 
leading to erroneous connections due to clusters forming 
between neighbouring branches. Furthermore, if the value 
of K or the search radius is too small, the resulting skeleton 
can have multiple disconnects.

Spanning tree refinement methods [24–26] work by con-
necting neighbouring surface points and producing a span-
ning tree, which is then refined through global and local 
optimizations to remove noisy branches and refine existing 
estimates. Constructing a skeleton on the surface points 
leads to difficult optimizations to retrieve a geometrically 
accurate skeleton.

A deep-learning-based skeletonization was proposed in 
TreePartNet [27]. This method uses two networks, one to 
detect branching points and another to detect cylindrical rep-
resentations. It requires a sufficiently sampled point cloud 
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as it relies on the ability to detect junctions accurately and 
embed local point groups. In our prior work, we proposed 
Smart-Tree [28], which utilizes a sparse sub-manifold CNN 
[29–31] to predict the position of the medial axis accurately.

In tree point cloud skeletonization, challenges arise from 
subtractive and additive noise sources. Subtractive noise 
results from factors such as self-occlusions and reconstruc-
tion inaccuracies, while additive noise can be attributed to 
sensor inaccuracies, environmental conditions, and other 
factors like sensor noise, calibration errors, poor illumi-
nation, depth discontinuities, atmospheric conditions, and 
movement in the branches and leaves [32].

This research presents a method for evaluating skel-
etonization algorithms using synthetic point clouds. 3D 
Perlin noise is employed to simulate subtractive noise, 
while Gaussian noise is used to emulate additive noise. By 
applying noise to these synthetic point clouds, we offer a 
controlled environment for assessing the robustness of skel-
etonization algorithms. The primary contributions of this 
work include:

•	 The introduction of a labelled synthetic tree point cloud 
dataset.

•	 The development of a method to systematically evaluate 
skeletonization algorithms across distinct noise levels.

•	 An enhanced assessment for our Smart-Tree algorithm.
•	 Empirical evidence highlighting the efficacy of a learned 

approach in approximating the medial axis.

2 � Datasets

To facilitate quantitative evaluation, it is essential to have a 
point cloud dataset with ground truth skeletons. However, 
manual annotation is challenging and labour-intensive. To 
address this, we have developed a synthetic dataset featuring 
ten diverse tree species. This is an improvement over our ini-
tial dataset that only contained 6 species [28]. Additionally, 
we have conducted a qualitative assessment using real-world 
data. Our future work will prioritize efficient real-world data 
annotation.

2.1 � Real‑world dataset

We tested our method on a tree in the Christchurch Botanic 
Gardens, New Zealand. To generate our 3D reconstructions, 
we utilize a NeRF [33] framework that learns an implicit 
representation of a scene light field from a set of input views. 
For our objectives, we extend NeRF to produce explicit 3D 
point clouds. Notably, this NeRF reconstruction approach 
is an excellent choice for reconstructing tree structures, as it 
can effectively use many images. Consequently, it can pro-
duce accurate reconstructions without relying on commonly 

used constraints that are ill-fitted to retaining high-frequency 
structures. This provides an advantage over traditional multi-
view stereo approaches, which struggle with thin structures, 
such as twigs and leaves [34].

To get our method to work on this data, we train our net-
work to segment away leaves using our synthetic dataset. 
After that, we apply our skeletonization algorithm to the 
remaining points.

2.2 � Synthetic dataset

Our synthetic tree models were created using SpeedTree 
[35]. This dataset encompasses trees of diverse shapes, sizes, 
and complexities. It includes ten distinct tree species from 
the SpeedTree Cinema library, as shown in Fig. 1. There are 
twenty unique variations of each species, resulting in a total 
of 200 tree mesh models. Table 1 provides the statistics of 
the synthetic dataset. To transform the meshes into point 
clouds, the following steps are applied: 

1.	 Twigs and leaves are removed. Twigs are removed by 
eliminating branches with an initial radius smaller than 
2 cm or a length under 8 cm.

2.	 Branch meshes intersecting other branch meshes were 
removed, as well as the predecessors.

3.	 The mesh was point sampled at a rate of 1 point per 
square centimetre.

3 � Methods

Our skeletonization method comprises several stages as 
shown in Fig. 2. We use labelled synthetic point clouds to 
train a sparse convolutional neural network to predict each 
input point’s radius and direction toward the medial axis 
(ground truth skeleton). Using the radius and medial direc-
tion predictions, we map surface points to the estimated 
medial axis positions and construct a constrained neighbour-
hood graph. This frequently results in multiple connected 
subgraphs due to gaps from self-occlusion by branches and 
leaves. We process each sub-graph independently using our 
subgraph algorithm, which employs a greedy approach to 
find paths from the root to terminal points. The skeletal 
structures from each subgraph are combined to form the 
final skeleton.

The neural network predictions help to avoid ambiguities 
with unknown branch radii and separate points that would be 
close in proximity but from different branches.

3.1 � Neural network

Our network takes an input set of N arbitrary points 
{Pi|i = 1,… ,N} , where each point Pi is a vector of its 
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(x, y, z) coordinates plus additional features such as col-
our (r, g, b). Each point is voxelized at a resolution of 
1 cm. Our proposed network will then, for each voxelized 
point, learn an associated radius {Ri|i = 1,… ,N} where Ri 
is a vector of corresponding radii, and a direction vector; 
{Di|i = 1,… ,N} where Di is a normalized direction vector 
pointing towards the medial axis.

The network is implemented as a submanifold sparse 
CNN using SpConv [36] and PyTorch [37]. We use 
regular sparse convolutions on the encoder blocks for 
a wider exchange of features and submanifold convolu-
tions elsewhere for more efficient computation due to 

avoiding feature dilation. The encoder blocks use a stride 
of 2. The encoder and decoder blocks use a kernel size of 
2 × 2 × 2 whereas the other convolutions use a kernel size 
of 3 × 3 × 3 except for the first sub-manifold convolution, 
which uses a kernel size of 1 × 1 × 1.

The architecture comprises a U-Net backbone [38] with 
residual connections [39], followed by two smaller fully 
connected networks to extract the radii and directions. The 
U-Net architecture, with its feature extraction and precise 
localization capabilities, is well-suited for predicting radius 
and direction. Its structure combines a contracting path for 
feature extraction and an expansive path for localization, 

Fig. 1   SpeedTree models: a 
Apple, b Tibetan Cherry, c Chi-
naberry, d Dracaena, e Ginkgo 
Biloba, f London Plane, g 
Japanese Maple, h Scots Pine, i 
Colorado Blue Spruce, j Walnut 
Sapling

Table 1   Summary of synthetic 
tree point cloud data-set

Heights and number of branches rounded to 2 decimal places. Points are rounded to whole numbers

Tree species Tree height (m) Num. points Num. branches Complexity

Mean SD Mean SD Mean SD

Apple 4.11 0.53 85,235 57,712 42.40 37.43 Low
Tibetan Cherry 7.06 0.79 95,524 19,713 36.55 9.20 Low
Chinaberry 7.45 0.27 395,446 138,044 163.40 66.16 Med
Dracaena 5.81 0.17 738,289 82,104 521.20 81.75 High
Ginkgo Biloba 13.5 2.17 492,980 57,318 52.30 21.72 Low
Japanese Maple 6.67 1.22 139,589 64,787 42.55 15.25 Med
London Plane 9.17 0.61 375,026 108,345 193.75 72.91 High
Scots Pine 16.77 1.08 518,386 157,686 390.60 114.26 High
Colorado Spruce 16.77 0.19 468,390 23,453 126.85 7.56 Low
Walnut 5.83 1.14 34,030 11,411 10.20 2.58 Low
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enhanced by skip connections that preserve detail. This 
makes U-Net highly effective for tasks requiring accurate 
interpretation of complex shapes. Its success in medical 
imaging [40] demonstrates its proficiency in accurately 
extracting spatial features, aligning with our project’s needs. 
The Residual Block in our network architecture consists of a 
convolutional branch with two submanifold convolution lay-
ers and an identity branch. The identity branch is activated 
when the input and output channels are the same, facilitat-
ing direct feature transfer. A ReLU activation function and 
batch normalization follow each convolutional layer. When 
branch-foliage segmentation is required, a fully connected 

class block is added, which has a final softmax activation 
layer.

A high-level overview of the network architecture is 
shown in Fig. 3.

A block sampling scheme ensures the network can pro-
cess larger trees. During training, for each point cloud, we 
randomly sample (at each epoch) a 4m3 block and mask the 
outer regions of the block to avoid inaccurate predictions 
from the edges. Apart from this, we also employ various 
other augmentations to improve the generalizability and 
robustness of the network. Specifically:

Fig. 2   Overall pipeline meth-
odology

Fig. 3   Network architecture 
diagram
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•	 Scale Augmentation: We randomly scale the input point 
cloud within the range of 0.9–1.1 to introduce variations 
in the size.

•	 Point Dropout: With a probability of 0.2 , certain points 
from the input are randomly dropped out. This introduces 
sparsity in the data and tests the resilience of the network.

•	 Gaussian Noise: Random Gaussian noise with a mean 
of 0.0 and a standard deviation of 1.0 is added to the 
input point cloud. The probability of this noise applica-
tion is 1.0 , and its magnitude is 0.01 . This improves the 
network’s ability to handle noisy inputs.

During inference, we tile the blocks, overlapping the masked 
regions to avoid inaccurate predictions from the edges.

To accommodate the variation in branch radii, which 
spans several orders of magnitude [41], we estimate a loga-
rithmic radius. This approach results in a relative error. Our 
loss function, as presented in Eq. 1, consists of two compo-
nents: the L1-loss for the radius and the cosine similarity for 
direction loss. We employ the Adam optimizer with a batch 
size of 8 and an initial learning rate of 0.01. If the validation 
loss fails to improve over 10 consecutive epochs, we reduce 
the learning rate by a factor of 10.

(1)
Loss =

n∑

i=0

| ln(Ri) − R̂i|

�������������������
Radius Loss

+

n∑

i=0

Di ⋅ D̂i

||Di||2 ⋅ ||D̂i||2
�����������������������

Direction Loss

3.2 � Subgraph algorithm

Due to self-occlusion and noise inherent in the point cloud, 
we often encounter multiple connected components, as 
depicted in Fig. 2. We refer to each of these connected com-
ponents as a sub-graph. These sub-graphs are processed 
sequentially. Figure 16 illustrates the output skeletons for 
each sub-graph derived from real data. For each sub-graph: 

1.	 A distance tree is created based on the distance from the 
root node (the lowest point in each sub-graph—shown 
in red in Fig. 4a) to each point in the sub-graph.

2.	 We assign each point a distance based on a Single 
Source Shortest Path (SSSP) algorithm. A greedy algo-
rithm extracts paths individually until all points are 
marked as allocated (steps a to f).

3.	 We select a path to the furthest unallocated point and 
trace its path back to either the root (Fig. 4b) or an allo-
cated point (Fig. 4d).

4.	 We add this path to a skeleton tree (Fig. 4f).
5.	 We mark points as allocated that lie within the predicted 

radius of the path (Fig. 4c).
6.	 We repeat this process until all points are allocated 

(Fig. 4d, e)

Fig. 4   a B
0
 farthest point, b B

0
 

trace path, c B
0
 allocated points, 

d B
1
 farthest (unallocated) point, 

e B
1
 trace path and allocated 

points, f branch skeletons
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4 � Experiments

We assessed our method’s resilience to real-world tree 
point-cloud artefacts, like noise and missing points, using 
augmentations (see Sect. 4.1). We compared our approach 
with the semantic Laplacian-based algorithm by [20]. [20], 

measuring robustness via metrics in Sect. 4.2. Our tests 
involved 20 synthetic dataset trees. Furthermore, we tested 
our approach on real-world data.

Table 2   Noise generator 
configurations

Parameter Description Value

Subtractive (Perlin)
Noise Scale Scale of the noise 0.16
Octaves Base scale 8
Frequency Frequency 1.5
Dropout Proportion to dropout 0.1–0.5 (inc. of 0.1)
Perturb Proportion to perturb 0.0
Perturb Bias Variance of the noise 0.4
Perturb Dist Magnitude of perturbation 0.16
Additive (Gaussian)
Mean Mean 0.0
Std Standard deviation 0.5
Probability Probability of applying noise 1.0
Magnitude Amplitude of noise 0.005–0.025 (inc. of 0.005)

Fig. 5   Noise applied to syn-
thetic apple point clouds. Top: 
subtractive Perlin noise with 
magnitudes a 0.0, b 0.10, c 
0.30, d 0.50. Bottom: Additive 
Gaussian noise with magnitudes 
e 0.000, f 0.005, g 0.015, h 
0.025
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4.1 � Point cloud augmentations

To simulate real-world point cloud noise, we adopted two 
noise profiles: subtractive and additive. The subtractive pro-
file utilizes 3D Perlin noise [42] for its capacity to generate 
coherent, smooth patterns suitable for mimicking localized 
point dropouts. In contrast, the additive profile is based on 
Gaussian noise.

Using Taichi [43–45], we developed a GPU-accelerated 
Perlin noise generator, available at https://​github.​com/​uc-​
vision/​taichi_​perlin. Both profiles can be adjusted in inten-
sity for sensitivity analysis. In our experiments, for the addi-
tive profile, we varied the Gaussian noise magnitude. For the 
subtractive profile, we altered the point dropout percentages. 
Detailed specifications and visual outputs of these profiles 
can be found in Table 2 and Fig. 5.

4.2 � Metrics

In the field of tree point cloud skeletonization, one of the 
significant challenges identified in the literature is the selec-
tion of appropriate metrics for the quantitative evaluation 
[14]. In response to this, we propose an enhanced approach 
for evaluating the robustness of each method, incorporating 
a modified set of point cloud reconstruction metrics.

We use the following metrics to assess our approach: 
f-score, precision, recall, and AUC over a range of radius 
thresholds. For the following metrics, we consider p∗ ∈ S

∗ 
points along the ground truth skeleton and p ∈ S estimated 

medial axis points. pr is the radius at each point. We use a 
threshold variable t , which sets the distance points must be 
within based on a factor of the ground truth radius. We test this 
over the range of 0.0–1.0. The f-score is the harmonic mean of 
the precision and recall.

Skeletonization Precision: To calculate the precision, we 
first get the nearest points from the medial axis points pi ∈ S 
to the ground truth skeleton p∗

j
∈ S

∗ , using a distance metric 
of the euclidean distance relative to the ground truth radius r∗

j
 . 

The operator [[.]] is the Iverson bracket, which evaluates to 1 
when the condition is true; otherwise, 0.

Skeletonization Recall: To calculate the recall, we first get 
the nearest points from the ground truth skeleton p∗

j
∈ S

∗ to 
the output medial axis points pi ∈ S . We then calculate 
which points fall inside the thresholded ground truth radius. 
This gives us a measurement of the completeness of the out-
put skeleton.

(2)dij =||pi − p∗
j
||

(3)P(t) =
100

|S|
∑

i∈S

[[dij < t r∗
j
∧ ∀

k∈S
dij ≤ dkj]]

(4)R(t) =
100

|S∗|
∑

j∈S∗

[[dij < t r∗
j
∧ ∀

k∈S∗
dij ≤ dik]]

Fig. 6   Examples of additive 
noise outputs: a Noise applied 
to Apple Tree@0.015, b SLBC 
Output, c ST Output, d Noise 
applied to Walnut Tree@0.025, 
e SLBC Output, f ST Output, g 
ground truth skeleton of Cherry 
Tree, h SLBC Output—showing 
a mal-contraction, i ST Output

https://github.com/uc-vision/taichi_perlin
https://github.com/uc-vision/taichi_perlin
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5 � Results

In this study, we conducted a comparative analysis of our 
Smart-Tree (ST) method [28] against the Semantic Lapla-
cian-based Contraction (SLBC) algorithm [20]. Previously, 

we had evaluated ST alongside the AdTree algorithm [26]. 
However, in the current analysis, we excluded AdTree due to 
the SLBC algorithm’s distinct output format. Unlike AdTree, 
which produces skeletal lines, SLBC outputs point data, pre-
senting challenges in applying the same evaluation metric.

Fig. 7   Macro precision at each 
radius threshold for Gaussian 
(additive) noise
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The choice to compare ST with SLBC was driven by their 
methodological similarities, as both are contraction-based 
approaches. This comparison aims to highlight the distinct 
advantages and limitations of our ST method in relation to 
SLBC.

Looking ahead, we plan to broaden our comparative 
framework to encompass deep-learning-based methods. An 
example of such an approach is TreePartNet [27]. However, 
in this instance, a comparison with TreePartNet was not via-
ble due to its limitation in processing point clouds, specifi-
cally restricted to no more than 16K points. This constraint 

Fig. 8   Macro recall at each 
radius threshold for Gaussian 
(additive) noise
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did not match the dataset parameters of our current study 
and is less applicable to real-world data scenarios (Fig. 6).

5.1 � Gaussian (additive noise)

The SLBC method consistently outperforms the ST in 
precision AUC at all noise levels, as depicted in Table 3 

and visualized in Fig. 7. On the other hand, ST typically 
exceeds SLBC in Recall AUC, with this advantage becom-
ing more pronounced as noise levels rise, shown in Fig. 8. 
For F1 AUC, both methods show competitive results, 
though SLBC has a marginal advantage in most cases, 
as observed in Fig. 9. One reason for SLBC’s superior 
precision is its iterative approach (Fig. 10). This method 

Fig. 9   Macro F1 score at each 
radius threshold for Gaussian 
(additive) noise
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provides a more robust and adaptable mechanism, facili-
tating better convergence to the medial axis, as shown in 
Fig. 6. While ST achieves a more consistent recall AUC 
as noise intensifies, SLBC struggles to recover smaller 
branches under increased noise conditions, and suffers 
from mal-contraction as shown in Fig. 6h.

5.2 � Perlin (subtractive noise)

As the intensity of the Perlin subtractive noise rises, indi-
cating a greater likelihood of point dropouts, both the ST 
and SLBC methods experience a decline in Precision, 
Recall, and F1 score AUC values, as shown in Table 4 
and observed in Figs. 11 and 13. The recall is especially 

Table 3   AUC results for 
additive noise

Magnitude Precision AUC​ Recall AUC​ F1 AUC​

ST SLBC ST SLBC ST SLBC

0.000 0.7932 0.8106 0.8559 0.7993 0.8186 0.8042
0.005 0.7732 0.8062 0.8469 0.7905 0.8025 0.7976
0.010 0.7303 0.7968 0.8304 0.7718 0.7688 0.7832
0.015 0.6740 0.7836 0.8113 0.7484 0.7246 0.7646
0.020 0.6069 0.7652 0.7891 0.7152 0.6704 0.7383
0.025 0.5352 0.7427 0.7621 0.6826 0.6096 0.7101

Table 4   AUC results for 
subtractive noise

Dropout chance Precision AUC​ Recall AUC​ F1 AUC​

ST SLBC ST SLBC ST SLBC

0.0 0.7932 0.8088 0.8559 0.7944 0.8186 0.8008
0.1 0.7865 0.7774 0.8297 0.7246 0.8029 0.7489
0.2 0.7760 0.7281 0.7895 0.6377 0.7782 0.6778
0.3 0.7611 0.6997 0.7382 0.5669 0.7450 0.6234
0.4 0.7407 0.6771 0.6776 0.4946 0.7035 0.5690
0.5 0.7140 0.6460 0.6061 0.4146 0.6516 0.5022

Fig. 10   Examples of subtractive 
noise outputs: a noise applied to 
Chinaberry Tree@0.2, b SLBC 
output, c ST output, d noise 
applied to London Tree@0.5, 
e SLBC Output, f ST Output. g 
Ground truth skeleton of Cherry 
Tree, h SLBC Output—showing 
a mal-contraction, i ST output
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impacted due to the increased challenge of recovering 
missing regions. Notably, the ST method displays greater 
resilience to this noise type, as evidenced by its slower 
degradation rate as observed in Fig. 12. The disparity 

in recall, precision, and F1 performance becomes more 
pronounced with increased noise, highlighting ST’s 
robustness, especially at higher noise levels in Fig. 10b, 
e, undesirable artifacts in the SLBC method are visible. 
The points fail to contract to the medial axis, especially 
on the larger branches, and the output shows more gaps 
(Figs. 13, 14, 15).

Fig. 11   Macro precision at 
each radius threshold for Perlin 
(subtractive) noise
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5.3 � Real‑world data

To demonstrate our method’s ability to work on real-world 
data. We test our method on a tree from the Christchurch 
Botanic Gardens, New Zealand. As this tree has foliage, we 

train our network to segment away the foliage points and 
then run the skeletonization algorithm on the remaining 
points. In Fig. 16, we can see that Smart-Tree can accurately 
reconstruct the skeleton.

Fig. 12   Macro recall at each 
radius threshold for Perlin (sub-
tractive) noise
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6 � Conclusion and future work

We proposed an enhanced method for evaluating the 
skeletonization of point clouds, specifically focusing on 

estimating the medial axis of tree point clouds. Our research 
demonstrates the advantages of our previously developed 
approach, which utilizes a learned method for medial axis 
approximation. This approach exhibits robustness when 

Fig. 13   Macro F1 score at each 
radius threshold for Perlin (sub-
tractive) noise
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dealing with additive and subtractive noise in point cloud 
data.

In the future, our aim is to further enhance the robust-
ness of our method by addressing gaps in the point cloud. 
To achieve this, we plan to develop techniques for filling in 
these gaps during the medial-axis estimation phase. Addi-
tionally, we intend to expand the scope of our research by 
training our method on a more diverse range of synthetic and 
real trees. To facilitate this expansion, we will enrich our 
dataset with a wider variety of trees, including those with 
foliage, and incorporate human annotations for real trees. 
This will lead to improved performance on a wider range 

of trees. Furthermore, we are actively working on refining 
our error metrics to better capture topology-related errors 
in our evaluations.
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