
Vol.:(0123456789)

Pattern Analysis and Applications (2024) 27:28
https://doi.org/10.1007/s10044-024-01238-3

ORIGINAL ARTICLE

Quantifying robustness: 3D tree point cloud skeletonization
with smart‑tree in noisy domains

Harry Dobbs1 · Oliver Batchelor1 · Casey Peat1 · James Atlas1 · Richard Green1

Received: 29 October 2023 / Accepted: 31 January 2024 / Published online: 5 March 2024
© The Author(s) 2024

Abstract
Extracting tree skeletons from 3D tree point clouds is challenged by noise and incomplete data. While our prior work (Dobbs
et al., in: Iberian conference on pattern recognition and image analysis, Springer, Berlin, pp. 351–362, 2023) introduced a
deep learning approach for approximating tree branch medial axes, its robustness against various types of noise has not been
thoroughly evaluated. This paper addresses this gap. Specifically, we simulate real-world noise challenges by introducing 3D
Perlin noise (to represent subtractive noise) and Gaussian noise (to mimic additive noise). To facilitate this evaluation, we
introduce a new synthetic tree point cloud dataset, available at https://​github.​com/​uc-​vision/​synth​etic-​trees-​II. Our results
indicate that our deep learning-based skeletonization method is tolerant to both additive and subtractive noise.

Keywords  Tree skeletonization · Point cloud · Metric extraction · Deep learning

1  Introduction

Extracting 3D skeletal structures from tree point clouds
remains a significant challenge in computer graphics and
computer vision. These skeletal structures are crucial for
digital tree modelling, with diverse applications including
biomass estimation [1–3], growth modelling [4–6], forestry
management [7–9], urban microclimate simulations [10],
and agri-tech applications, such as robotic pruning [11, 12]
and fruit picking [13]. Cardenas et al. [14] recently surveyed
existing 3D tree skeletonization methods, classifying them
into three categories: thinning, clustering, and spanning tree
refinement.

Thinning methods [15–20] operate by contracting the sur-
face points onto the medial axis. Following this contraction,
a simplification procedure is applied to extract the skeletal
structure. While thinning methods are effective when the
input point cloud is adequately sampled, they struggle with
noise and occlusion.

Clustering methods [21–23] seek to group points into bins
that share the same branch cross-section. These groups are
formed using a neighbourhood function, typically imple-
mented with k-nearest neighbours (KNN) within a speci-
fied search radius. However, clustering can introduce chal-
lenges when neighbouring branches get too close, potentially
leading to erroneous connections due to clusters forming
between neighbouring branches. Furthermore, if the value
of K or the search radius is too small, the resulting skeleton
can have multiple disconnects.

Spanning tree refinement methods [24–26] work by con-
necting neighbouring surface points and producing a span-
ning tree, which is then refined through global and local
optimizations to remove noisy branches and refine existing
estimates. Constructing a skeleton on the surface points
leads to difficult optimizations to retrieve a geometrically
accurate skeleton.

A deep-learning-based skeletonization was proposed in
TreePartNet [27]. This method uses two networks, one to
detect branching points and another to detect cylindrical rep-
resentations. It requires a sufficiently sampled point cloud

 *	 Harry Dobbs
	 harry.dobbs@pg.canterbury.ac.nz

	 Oliver Batchelor
	 oliver.batchelor@canterbury.ac.nz

	 Casey Peat
	 casey.peat@pg.canterbury.ac.nz

	 James Atlas
	 james.atlas@canterbury.ac.nz

	 Richard Green
	 richard.green@canterbury.ac.nz

1	 Computer Science and Software Engineering, University
of Canterbury, Christchurch 8140, Canterbury, New Zealand

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-024-01238-3&domain=pdf
https://github.com/uc-vision/synthetic-trees-II

	 Pattern Analysis and Applications (2024) 27:2828  Page 2 of 17

as it relies on the ability to detect junctions accurately and
embed local point groups. In our prior work, we proposed
Smart-Tree [28], which utilizes a sparse sub-manifold CNN
[29–31] to predict the position of the medial axis accurately.

In tree point cloud skeletonization, challenges arise from
subtractive and additive noise sources. Subtractive noise
results from factors such as self-occlusions and reconstruc-
tion inaccuracies, while additive noise can be attributed to
sensor inaccuracies, environmental conditions, and other
factors like sensor noise, calibration errors, poor illumi-
nation, depth discontinuities, atmospheric conditions, and
movement in the branches and leaves [32].

This research presents a method for evaluating skel-
etonization algorithms using synthetic point clouds. 3D
Perlin noise is employed to simulate subtractive noise,
while Gaussian noise is used to emulate additive noise. By
applying noise to these synthetic point clouds, we offer a
controlled environment for assessing the robustness of skel-
etonization algorithms. The primary contributions of this
work include:

•	 The introduction of a labelled synthetic tree point cloud
dataset.

•	 The development of a method to systematically evaluate
skeletonization algorithms across distinct noise levels.

•	 An enhanced assessment for our Smart-Tree algorithm.
•	 Empirical evidence highlighting the efficacy of a learned

approach in approximating the medial axis.

2 � Datasets

To facilitate quantitative evaluation, it is essential to have a
point cloud dataset with ground truth skeletons. However,
manual annotation is challenging and labour-intensive. To
address this, we have developed a synthetic dataset featuring
ten diverse tree species. This is an improvement over our ini-
tial dataset that only contained 6 species [28]. Additionally,
we have conducted a qualitative assessment using real-world
data. Our future work will prioritize efficient real-world data
annotation.

2.1 � Real‑world dataset

We tested our method on a tree in the Christchurch Botanic
Gardens, New Zealand. To generate our 3D reconstructions,
we utilize a NeRF [33] framework that learns an implicit
representation of a scene light field from a set of input views.
For our objectives, we extend NeRF to produce explicit 3D
point clouds. Notably, this NeRF reconstruction approach
is an excellent choice for reconstructing tree structures, as it
can effectively use many images. Consequently, it can pro-
duce accurate reconstructions without relying on commonly

used constraints that are ill-fitted to retaining high-frequency
structures. This provides an advantage over traditional multi-
view stereo approaches, which struggle with thin structures,
such as twigs and leaves [34].

To get our method to work on this data, we train our net-
work to segment away leaves using our synthetic dataset.
After that, we apply our skeletonization algorithm to the
remaining points.

2.2 � Synthetic dataset

Our synthetic tree models were created using SpeedTree
[35]. This dataset encompasses trees of diverse shapes, sizes,
and complexities. It includes ten distinct tree species from
the SpeedTree Cinema library, as shown in Fig. 1. There are
twenty unique variations of each species, resulting in a total
of 200 tree mesh models. Table 1 provides the statistics of
the synthetic dataset. To transform the meshes into point
clouds, the following steps are applied:

1.	 Twigs and leaves are removed. Twigs are removed by
eliminating branches with an initial radius smaller than
2 cm or a length under 8 cm.

2.	 Branch meshes intersecting other branch meshes were
removed, as well as the predecessors.

3.	 The mesh was point sampled at a rate of 1 point per
square centimetre.

3 � Methods

Our skeletonization method comprises several stages as
shown in Fig. 2. We use labelled synthetic point clouds to
train a sparse convolutional neural network to predict each
input point’s radius and direction toward the medial axis
(ground truth skeleton). Using the radius and medial direc-
tion predictions, we map surface points to the estimated
medial axis positions and construct a constrained neighbour-
hood graph. This frequently results in multiple connected
subgraphs due to gaps from self-occlusion by branches and
leaves. We process each sub-graph independently using our
subgraph algorithm, which employs a greedy approach to
find paths from the root to terminal points. The skeletal
structures from each subgraph are combined to form the
final skeleton.

The neural network predictions help to avoid ambiguities
with unknown branch radii and separate points that would be
close in proximity but from different branches.

3.1 � Neural network

Our network takes an input set of N arbitrary points
{Pi|i = 1,… ,N} , where each point Pi is a vector of its

Pattern Analysis and Applications (2024) 27:28	 Page 3 of 17  28

(x, y, z) coordinates plus additional features such as col-
our (r, g, b). Each point is voxelized at a resolution of
1 cm. Our proposed network will then, for each voxelized
point, learn an associated radius {Ri|i = 1,… ,N} where Ri
is a vector of corresponding radii, and a direction vector;
{Di|i = 1,… ,N} where Di is a normalized direction vector
pointing towards the medial axis.

The network is implemented as a submanifold sparse
CNN using SpConv [36] and PyTorch [37]. We use
regular sparse convolutions on the encoder blocks for
a wider exchange of features and submanifold convolu-
tions elsewhere for more efficient computation due to

avoiding feature dilation. The encoder blocks use a stride
of 2. The encoder and decoder blocks use a kernel size of
2 × 2 × 2 whereas the other convolutions use a kernel size
of 3 × 3 × 3 except for the first sub-manifold convolution,
which uses a kernel size of 1 × 1 × 1.

The architecture comprises a U-Net backbone [38] with
residual connections [39], followed by two smaller fully
connected networks to extract the radii and directions. The
U-Net architecture, with its feature extraction and precise
localization capabilities, is well-suited for predicting radius
and direction. Its structure combines a contracting path for
feature extraction and an expansive path for localization,

Fig. 1   SpeedTree models: a
Apple, b Tibetan Cherry, c Chi-
naberry, d Dracaena, e Ginkgo
Biloba, f London Plane, g
Japanese Maple, h Scots Pine, i
Colorado Blue Spruce, j Walnut
Sapling

Table 1   Summary of synthetic
tree point cloud data-set

Heights and number of branches rounded to 2 decimal places. Points are rounded to whole numbers

Tree species Tree height (m) Num. points Num. branches Complexity

Mean SD Mean SD Mean SD

Apple 4.11 0.53 85,235 57,712 42.40 37.43 Low
Tibetan Cherry 7.06 0.79 95,524 19,713 36.55 9.20 Low
Chinaberry 7.45 0.27 395,446 138,044 163.40 66.16 Med
Dracaena 5.81 0.17 738,289 82,104 521.20 81.75 High
Ginkgo Biloba 13.5 2.17 492,980 57,318 52.30 21.72 Low
Japanese Maple 6.67 1.22 139,589 64,787 42.55 15.25 Med
London Plane 9.17 0.61 375,026 108,345 193.75 72.91 High
Scots Pine 16.77 1.08 518,386 157,686 390.60 114.26 High
Colorado Spruce 16.77 0.19 468,390 23,453 126.85 7.56 Low
Walnut 5.83 1.14 34,030 11,411 10.20 2.58 Low

	 Pattern Analysis and Applications (2024) 27:2828  Page 4 of 17

enhanced by skip connections that preserve detail. This
makes U-Net highly effective for tasks requiring accurate
interpretation of complex shapes. Its success in medical
imaging [40] demonstrates its proficiency in accurately
extracting spatial features, aligning with our project’s needs.
The Residual Block in our network architecture consists of a
convolutional branch with two submanifold convolution lay-
ers and an identity branch. The identity branch is activated
when the input and output channels are the same, facilitat-
ing direct feature transfer. A ReLU activation function and
batch normalization follow each convolutional layer. When
branch-foliage segmentation is required, a fully connected

class block is added, which has a final softmax activation
layer.

A high-level overview of the network architecture is
shown in Fig. 3.

A block sampling scheme ensures the network can pro-
cess larger trees. During training, for each point cloud, we
randomly sample (at each epoch) a 4m3 block and mask the
outer regions of the block to avoid inaccurate predictions
from the edges. Apart from this, we also employ various
other augmentations to improve the generalizability and
robustness of the network. Specifically:

Fig. 2   Overall pipeline meth-
odology

Fig. 3   Network architecture
diagram

Pattern Analysis and Applications (2024) 27:28	 Page 5 of 17  28

•	 Scale Augmentation: We randomly scale the input point
cloud within the range of 0.9–1.1 to introduce variations
in the size.

•	 Point Dropout: With a probability of 0.2 , certain points
from the input are randomly dropped out. This introduces
sparsity in the data and tests the resilience of the network.

•	 Gaussian Noise: Random Gaussian noise with a mean
of 0.0 and a standard deviation of 1.0 is added to the
input point cloud. The probability of this noise applica-
tion is 1.0 , and its magnitude is 0.01 . This improves the
network’s ability to handle noisy inputs.

During inference, we tile the blocks, overlapping the masked
regions to avoid inaccurate predictions from the edges.

To accommodate the variation in branch radii, which
spans several orders of magnitude [41], we estimate a loga-
rithmic radius. This approach results in a relative error. Our
loss function, as presented in Eq. 1, consists of two compo-
nents: the L1-loss for the radius and the cosine similarity for
direction loss. We employ the Adam optimizer with a batch
size of 8 and an initial learning rate of 0.01. If the validation
loss fails to improve over 10 consecutive epochs, we reduce
the learning rate by a factor of 10.

(1)
Loss =

n∑

i=0

| ln(Ri) − R̂i|

�������������������
Radius Loss

+

n∑

i=0

Di ⋅ D̂i

||Di||2 ⋅ ||D̂i||2
�����������������������

Direction Loss

3.2 � Subgraph algorithm

Due to self-occlusion and noise inherent in the point cloud,
we often encounter multiple connected components, as
depicted in Fig. 2. We refer to each of these connected com-
ponents as a sub-graph. These sub-graphs are processed
sequentially. Figure 16 illustrates the output skeletons for
each sub-graph derived from real data. For each sub-graph:

1.	 A distance tree is created based on the distance from the
root node (the lowest point in each sub-graph—shown
in red in Fig. 4a) to each point in the sub-graph.

2.	 We assign each point a distance based on a Single
Source Shortest Path (SSSP) algorithm. A greedy algo-
rithm extracts paths individually until all points are
marked as allocated (steps a to f).

3.	 We select a path to the furthest unallocated point and
trace its path back to either the root (Fig. 4b) or an allo-
cated point (Fig. 4d).

4.	 We add this path to a skeleton tree (Fig. 4f).
5.	 We mark points as allocated that lie within the predicted

radius of the path (Fig. 4c).
6.	 We repeat this process until all points are allocated

(Fig. 4d, e)

Fig. 4   a B
0
 farthest point, b B

0

trace path, c B
0
 allocated points,

d B
1
 farthest (unallocated) point,

e B
1
 trace path and allocated

points, f branch skeletons

	 Pattern Analysis and Applications (2024) 27:2828  Page 6 of 17

4 � Experiments

We assessed our method’s resilience to real-world tree
point-cloud artefacts, like noise and missing points, using
augmentations (see Sect. 4.1). We compared our approach
with the semantic Laplacian-based algorithm by [20]. [20],

measuring robustness via metrics in Sect. 4.2. Our tests
involved 20 synthetic dataset trees. Furthermore, we tested
our approach on real-world data.

Table 2   Noise generator
configurations

Parameter Description Value

Subtractive (Perlin)
Noise Scale Scale of the noise 0.16
Octaves Base scale 8
Frequency Frequency 1.5
Dropout Proportion to dropout 0.1–0.5 (inc. of 0.1)
Perturb Proportion to perturb 0.0
Perturb Bias Variance of the noise 0.4
Perturb Dist Magnitude of perturbation 0.16
Additive (Gaussian)
Mean Mean 0.0
Std Standard deviation 0.5
Probability Probability of applying noise 1.0
Magnitude Amplitude of noise 0.005–0.025 (inc. of 0.005)

Fig. 5   Noise applied to syn-
thetic apple point clouds. Top:
subtractive Perlin noise with
magnitudes a 0.0, b 0.10, c
0.30, d 0.50. Bottom: Additive
Gaussian noise with magnitudes
e 0.000, f 0.005, g 0.015, h
0.025

Pattern Analysis and Applications (2024) 27:28	 Page 7 of 17  28

4.1 � Point cloud augmentations

To simulate real-world point cloud noise, we adopted two
noise profiles: subtractive and additive. The subtractive pro-
file utilizes 3D Perlin noise [42] for its capacity to generate
coherent, smooth patterns suitable for mimicking localized
point dropouts. In contrast, the additive profile is based on
Gaussian noise.

Using Taichi [43–45], we developed a GPU-accelerated
Perlin noise generator, available at https://​github.​com/​uc-​
vision/​taichi_​perlin. Both profiles can be adjusted in inten-
sity for sensitivity analysis. In our experiments, for the addi-
tive profile, we varied the Gaussian noise magnitude. For the
subtractive profile, we altered the point dropout percentages.
Detailed specifications and visual outputs of these profiles
can be found in Table 2 and Fig. 5.

4.2 � Metrics

In the field of tree point cloud skeletonization, one of the
significant challenges identified in the literature is the selec-
tion of appropriate metrics for the quantitative evaluation
[14]. In response to this, we propose an enhanced approach
for evaluating the robustness of each method, incorporating
a modified set of point cloud reconstruction metrics.

We use the following metrics to assess our approach:
f-score, precision, recall, and AUC over a range of radius
thresholds. For the following metrics, we consider p∗ ∈ S

∗
points along the ground truth skeleton and p ∈ S estimated

medial axis points. pr is the radius at each point. We use a
threshold variable t , which sets the distance points must be
within based on a factor of the ground truth radius. We test this
over the range of 0.0–1.0. The f-score is the harmonic mean of
the precision and recall.

Skeletonization Precision: To calculate the precision, we
first get the nearest points from the medial axis points pi ∈ S
to the ground truth skeleton p∗

j
∈ S

∗ , using a distance metric
of the euclidean distance relative to the ground truth radius r∗

j
 .

The operator [[.]] is the Iverson bracket, which evaluates to 1
when the condition is true; otherwise, 0.

Skeletonization Recall: To calculate the recall, we first get
the nearest points from the ground truth skeleton p∗

j
∈ S

∗ to
the output medial axis points pi ∈ S . We then calculate
which points fall inside the thresholded ground truth radius.
This gives us a measurement of the completeness of the out-
put skeleton.

(2)dij =||pi − p∗
j
||

(3)P(t) =
100

|S|
∑

i∈S

[[dij < t r∗
j
∧ ∀

k∈S
dij ≤ dkj]]

(4)R(t) =
100

|S∗|
∑

j∈S∗

[[dij < t r∗
j
∧ ∀

k∈S∗
dij ≤ dik]]

Fig. 6   Examples of additive
noise outputs: a Noise applied
to Apple Tree@0.015, b SLBC
Output, c ST Output, d Noise
applied to Walnut Tree@0.025,
e SLBC Output, f ST Output, g
ground truth skeleton of Cherry
Tree, h SLBC Output—showing
a mal-contraction, i ST Output

https://github.com/uc-vision/taichi_perlin
https://github.com/uc-vision/taichi_perlin

	 Pattern Analysis and Applications (2024) 27:2828  Page 8 of 17

5 � Results

In this study, we conducted a comparative analysis of our
Smart-Tree (ST) method [28] against the Semantic Lapla-
cian-based Contraction (SLBC) algorithm [20]. Previously,

we had evaluated ST alongside the AdTree algorithm [26].
However, in the current analysis, we excluded AdTree due to
the SLBC algorithm’s distinct output format. Unlike AdTree,
which produces skeletal lines, SLBC outputs point data, pre-
senting challenges in applying the same evaluation metric.

Fig. 7   Macro precision at each
radius threshold for Gaussian
(additive) noise

Pattern Analysis and Applications (2024) 27:28	 Page 9 of 17  28

The choice to compare ST with SLBC was driven by their
methodological similarities, as both are contraction-based
approaches. This comparison aims to highlight the distinct
advantages and limitations of our ST method in relation to
SLBC.

Looking ahead, we plan to broaden our comparative
framework to encompass deep-learning-based methods. An
example of such an approach is TreePartNet [27]. However,
in this instance, a comparison with TreePartNet was not via-
ble due to its limitation in processing point clouds, specifi-
cally restricted to no more than 16K points. This constraint

Fig. 8   Macro recall at each
radius threshold for Gaussian
(additive) noise

	 Pattern Analysis and Applications (2024) 27:2828  Page 10 of 17

did not match the dataset parameters of our current study
and is less applicable to real-world data scenarios (Fig. 6).

5.1 � Gaussian (additive noise)

The SLBC method consistently outperforms the ST in
precision AUC at all noise levels, as depicted in Table 3

and visualized in Fig. 7. On the other hand, ST typically
exceeds SLBC in Recall AUC, with this advantage becom-
ing more pronounced as noise levels rise, shown in Fig. 8.
For F1 AUC, both methods show competitive results,
though SLBC has a marginal advantage in most cases,
as observed in Fig. 9. One reason for SLBC’s superior
precision is its iterative approach (Fig. 10). This method

Fig. 9   Macro F1 score at each
radius threshold for Gaussian
(additive) noise

Pattern Analysis and Applications (2024) 27:28	 Page 11 of 17  28

provides a more robust and adaptable mechanism, facili-
tating better convergence to the medial axis, as shown in
Fig. 6. While ST achieves a more consistent recall AUC
as noise intensifies, SLBC struggles to recover smaller
branches under increased noise conditions, and suffers
from mal-contraction as shown in Fig. 6h.

5.2 � Perlin (subtractive noise)

As the intensity of the Perlin subtractive noise rises, indi-
cating a greater likelihood of point dropouts, both the ST
and SLBC methods experience a decline in Precision,
Recall, and F1 score AUC values, as shown in Table 4
and observed in Figs. 11 and 13. The recall is especially

Table 3   AUC results for
additive noise

Magnitude Precision AUC​ Recall AUC​ F1 AUC​

ST SLBC ST SLBC ST SLBC

0.000 0.7932 0.8106 0.8559 0.7993 0.8186 0.8042
0.005 0.7732 0.8062 0.8469 0.7905 0.8025 0.7976
0.010 0.7303 0.7968 0.8304 0.7718 0.7688 0.7832
0.015 0.6740 0.7836 0.8113 0.7484 0.7246 0.7646
0.020 0.6069 0.7652 0.7891 0.7152 0.6704 0.7383
0.025 0.5352 0.7427 0.7621 0.6826 0.6096 0.7101

Table 4   AUC results for
subtractive noise

Dropout chance Precision AUC​ Recall AUC​ F1 AUC​

ST SLBC ST SLBC ST SLBC

0.0 0.7932 0.8088 0.8559 0.7944 0.8186 0.8008
0.1 0.7865 0.7774 0.8297 0.7246 0.8029 0.7489
0.2 0.7760 0.7281 0.7895 0.6377 0.7782 0.6778
0.3 0.7611 0.6997 0.7382 0.5669 0.7450 0.6234
0.4 0.7407 0.6771 0.6776 0.4946 0.7035 0.5690
0.5 0.7140 0.6460 0.6061 0.4146 0.6516 0.5022

Fig. 10   Examples of subtractive
noise outputs: a noise applied to
Chinaberry Tree@0.2, b SLBC
output, c ST output, d noise
applied to London Tree@0.5,
e SLBC Output, f ST Output. g
Ground truth skeleton of Cherry
Tree, h SLBC Output—showing
a mal-contraction, i ST output

	 Pattern Analysis and Applications (2024) 27:2828  Page 12 of 17

impacted due to the increased challenge of recovering
missing regions. Notably, the ST method displays greater
resilience to this noise type, as evidenced by its slower
degradation rate as observed in Fig. 12. The disparity

in recall, precision, and F1 performance becomes more
pronounced with increased noise, highlighting ST’s
robustness, especially at higher noise levels in Fig. 10b,
e, undesirable artifacts in the SLBC method are visible.
The points fail to contract to the medial axis, especially
on the larger branches, and the output shows more gaps
(Figs. 13, 14, 15).

Fig. 11   Macro precision at
each radius threshold for Perlin
(subtractive) noise

Pattern Analysis and Applications (2024) 27:28	 Page 13 of 17  28

5.3 � Real‑world data

To demonstrate our method’s ability to work on real-world
data. We test our method on a tree from the Christchurch
Botanic Gardens, New Zealand. As this tree has foliage, we

train our network to segment away the foliage points and
then run the skeletonization algorithm on the remaining
points. In Fig. 16, we can see that Smart-Tree can accurately
reconstruct the skeleton.

Fig. 12   Macro recall at each
radius threshold for Perlin (sub-
tractive) noise

	 Pattern Analysis and Applications (2024) 27:2828  Page 14 of 17

6 � Conclusion and future work

We proposed an enhanced method for evaluating the
skeletonization of point clouds, specifically focusing on

estimating the medial axis of tree point clouds. Our research
demonstrates the advantages of our previously developed
approach, which utilizes a learned method for medial axis
approximation. This approach exhibits robustness when

Fig. 13   Macro F1 score at each
radius threshold for Perlin (sub-
tractive) noise

Pattern Analysis and Applications (2024) 27:28	 Page 15 of 17  28

dealing with additive and subtractive noise in point cloud
data.

In the future, our aim is to further enhance the robust-
ness of our method by addressing gaps in the point cloud.
To achieve this, we plan to develop techniques for filling in
these gaps during the medial-axis estimation phase. Addi-
tionally, we intend to expand the scope of our research by
training our method on a more diverse range of synthetic and
real trees. To facilitate this expansion, we will enrich our
dataset with a wider variety of trees, including those with
foliage, and incorporate human annotations for real trees.
This will lead to improved performance on a wider range

of trees. Furthermore, we are actively working on refining
our error metrics to better capture topology-related errors
in our evaluations.

Author contributions  H.D. wrote the main manuscript and undertook
the experiments. O.B. edited the manuscript, developed the Taichi GPU
noise software and provided feedback and guidance for the research.
C.P. developed the pipeline for acquiring the point cloud data, and
wrote the paragraph about the real-world-data acquisition. J.A. and
R.G. provided feedback and guidance for the research.

Funding  Open Access funding enabled and organized by CAUL and its
Member Institutions. This work was funded by the New Zealand Minis-
try of Business, Innovation and Employment under contract C09X1923
(Catalyst: Strategic Fund).

Data availability  The code is available at https://​github.​com/​uc-​vision/​
smart-​tree. The dataset is available at https://​github.​com/​uc-​vision/​
synth​etic-​trees-​II.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Fig. 14   Point cloud

Fig. 15   Branch mesh

Fig. 16   Skeleton sub-graphs

https://github.com/uc-vision/smart-tree
https://github.com/uc-vision/smart-tree
https://github.com/uc-vision/synthetic-trees-II
https://github.com/uc-vision/synthetic-trees-II
http://creativecommons.org/licenses/by/4.0/

	 Pattern Analysis and Applications (2024) 27:2828  Page 16 of 17

References

	 1.	 Fan G, Nan L, Dong Y, Su X, Chen F (2020) Adqsm: a new
method for estimating above-ground biomass from tls point
clouds. Remote Sens 12(18):3089

	 2.	 Kankare V, Holopainen M, Vastaranta M, Puttonen E, Yu X,
Hyyppä J, Vaaja M, Hyyppä H, Alho P (2013) Individual tree
biomass estimation using terrestrial laser scanning. ISPRS J
Photogramm Remote Sens 75:64–75

	 3.	 Fan G, Nan L, Chen F, Dong Y, Wang Z, Li H, Chen D (2020)
A new quantitative approach to tree attributes estimation based
on lidar point clouds. Remote Sens 12(11):1779

	 4.	 Tompalski P, Coops NC, White JC, Goodbody TR, Henni-
gar CR, Wulder MA, Socha J, Woods ME (2021) Estimating
changes in forest attributes and enhancing growth projections:
a review of existing approaches and future directions using air-
borne 3d point cloud data. Curr For Rep 7:1–24

	 5.	 Spalding EP, Miller ND (2013) Image analysis is driving
a renaissance in growth measurement. Curr Opin Plant Biol
16(1):100–104

	 6.	 Chaudhury A, Ward C, Talasaz A, Ivanov AG, Brophy M,
Grodzinski B, Hüner NP, Patel RV, Barron JL (2018) Machine
vision system for 3d plant phenotyping. IEEE/ACM Trans Com-
put Biol Bioinf 16(6):2009–2022

	 7.	 White JC, Wulder MA, Vastaranta M, Coops NC, Pitt D, Woods
M (2013) The utility of image-based point clouds for forest
inventory: a comparison with airborne laser scanning. Forests
4(3):518–536

	 8.	 Molina-Valero JA, Martínez-Calvo A, Villamayor MJG, Pérez
MAN, Álvarez-González JG, Montes F, Pérez-Cruzado C
(2022) Operationalizing the use of tls in forest inventories: the
r package fortls. Environ Model Softw 150:105337

	 9.	 Calders K, Adams J, Armston J, Bartholomeus H, Bauwens S,
Bentley LP, Chave J, Danson FM, Demol M, Disney M et al
(2020) Terrestrial laser scanning in forest ecology: expanding
the horizon. Remote Sens Environ 251:112102

	10.	 Xu H, Wang CC, Shen X, Zlatanova S (2021) 3d tree reconstruc-
tion in support of urban microclimate simulation: a comprehen-
sive literature review. Buildings 11(9):417

	11.	 Zahid A, Mahmud MS, He L, Heinemann P, Choi D, Schupp
J (2021) Technological advancements towards developing a
robotic pruner for apple trees: a review. Comput Electron Agric
189:106383

	12.	 Botterill T, Paulin S, Green R, Williams S, Lin J, Saxton V,
Mills S, Chen X, Corbett-Davies S (2017) A robot system for
pruning grape vines. J Field Robot 34(6):1100–1122

	13.	 Arikapudi R, Vougioukas SG (2021) Robotic tree-fruit harvest-
ing with telescoping arms: a study of linear fruit reachability
under geometric constraints. IEEE Access 9:17114–17126

	14.	 Cárdenas-Donoso JL, Ogayar CJ, Feito FR, Jurado JM (2022)
Modeling of the 3d tree skeleton using real-world data: a survey.
IEEE Trans Vis Comput Graph 6:66

	15.	 Gorte B, Pfeifer N (2004) Structuring laser-scanned trees using
3d mathematical morphology. Int Arch Photogramm Remote Sens
35(B5):929–933

	16.	 Gorte B (2006) Skeletonization of laser-scanned trees in the 3d
raster domain. In: Innovations in 3D geo information systems.
Springer, Berlin, pp 371–380

	17.	 Bucksch A, Lindenbergh R (2008) Campino-a skeletonization
method for point cloud processing. ISPRS J Photogramm Remote
Sens 63(1):115–127

	18.	 Huang H, Wu S, Cohen-Or D, Gong M, Zhang H, Li G, Chen
B (2013) L1-medial skeleton of point cloud. ACM Trans Graph
32(4):65–71

	19.	 Cao J, Tagliasacchi A, Olson M, Zhang H, Su Z (2010) Point
cloud skeletons via Laplacian based contraction. In: 2010 Shape
modeling international conference. IEEE, pp 187–197

	20.	 Meyer L, Gilson A, Scholz O, Stamminger M (2023) CherryP-
icker: semantic skeletonization and topological reconstruction of
cherry trees

	21.	 Xu H, Gossett N, Chen B (2007) Knowledge and heuristic-based
modeling of laser-scanned trees. ACM Trans Graph 26(4):19

	22.	 Verroust A, Lazarus F (1999) Extracting skeletal curves from 3d
scattered data. In: Proceedings shape modeling international’99.
International conference on shape modeling and applications.
IEEE, pp 194–201

	23.	 Delagrange S, Jauvin C, Rochon P (2014) Pypetree: a tool for
reconstructing tree perennial tissues from point clouds. Sensors
14(3):4271–4289

	24.	 Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J (2010)
Automatic reconstruction of tree skeletal structures from point
clouds. In: ACM SIGGRAPH Asia 2010 Papers. SIGGRAPH
ASIA’10. Association for Computing Machinery, New York, NY,
USA. https://​doi.​org/​10.​1145/​18661​58.​18661​77

	25.	 Wang Z, Zhang L, Fang T, Mathiopoulos PT, Qu H, Chen D,
Wang Y (2014) A structure-aware global optimization method
for reconstructing 3-d tree models from terrestrial laser scanning
data. IEEE Trans Geosci Remote Sens 52(9):5653–5669

	26.	 Du S, Lindenbergh R, Ledoux H, Stoter J, Nan L (2019) Adtree:
accurate, detailed, and automatic modelling of laser-scanned trees.
Remote Sens 11(18):2074

	27.	 Liu Y, Guo J, Benes B, Deussen O, Zhang X, Huang H (2021)
Treepartnet: neural decomposition of point clouds for 3d tree
reconstruction. ACM Trans Graph 40(6):66

	28.	 Dobbs H, Batchelor O, Green R, Atlas J (2023) Smart-tree: neural
medial axis approximation of point clouds for 3d tree skeletoni-
zation. In: Iberian conference on pattern recognition and image
analysis. Springer, Berlin, pp 351–362

	29.	 Graham B, Maaten L (2017) Submanifold sparse convolutional
networks. arXiv preprint arXiv:​1706.​01307

	30.	 Tang H, Liu Z, Li X, Lin Y, Han S (2022) Torchsparse: efficient
point cloud inference engine. Proc Mach Learn Syst 4:302–315

	31.	 Choy C, Gwak J, Savarese S (2019) 4d spatio-temporal convnets:
Minkowski convolutional neural networks. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 3075–3084

	32.	 Iglhaut J, Cabo C, Puliti S, Piermattei L, O’Connor J, Rosette
J (2019) Structure from motion photogrammetry in forestry: a
review. Curr For Rep 5:155–168

	33.	 Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi
R, Ng R (2021) Nerf: representing scenes as neural radiance fields
for view synthesis. Commun ACM 65(1):99–106

	34.	 Condorelli F, Rinaudo F, Salvadore F, Tagliaventi S (2021) A
comparison between 3d reconstruction using nerf neural networks
and mvs algorithms on cultural heritage images. Int Arch Photo-
gramm Remote Sens Spat Inf Sci 43:565–570

	35.	 Interactive Data Visualization, I.: The standard for vegetation
modeling and Middleware. https://​store.​speed​tree.​com/

	36.	 Contributors S (2022) Spconv: spatially Sparse Convolution
Library. https://​github.​com/​trave​ller59/​spconv

	37.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch:
an imperative style, high-performance deep learning library. Adv
Neural Inf Process Syst 32:66

https://doi.org/10.1145/1866158.1866177
http://arxiv.org/abs/1706.01307
https://store.speedtree.com/
https://github.com/traveller59/spconv

Pattern Analysis and Applications (2024) 27:28	 Page 17 of 17  28

	38.	 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional
networks for biomedical image segmentation. In: International
conference on medical image computing and computer-assisted
intervention. Springer, Berlin, pp 234–241

	39.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 770–778

	40.	 Azad R, Aghdam EK, Rauland A, Jia Y, Avval AH, Bozorgpour
A, Karimijafarbigloo S, Cohen JP, Adeli E, Merhof D (2022)
Medical image segmentation review: the success of u-net. arXiv
preprint arXiv:​2211.​14830

	41.	 Dassot M, Fournier M, Deleuze C (2019) Assessing the scaling
of the tree branch diameters frequency distribution with terrestrial
laser scanning: methodological framework and issues. Ann For
Sci 76:1–10

	42.	 Perlin K (1985) An image synthesizer. ACM Siggraph Comput
Graph 19(3):287–296

	43.	 Hu Y, Li T-M, Anderson L, Ragan-Kelley J, Durand F (2019)
Taichi: a language for high-performance computation on spatially
sparse data structures. ACM Trans Graph 38(6):1–16

	44.	 Hu Y, Anderson L, Li T-M, Sun Q, Carr N, Ragan-Kelley J,
Durand F (2019) Difftaichi: differentiable programming for physi-
cal simulation. arXiv preprint arXiv:​1910.​00935

	45.	 Hu Y, Liu J, Yang X, Xu M, Kuang Y, Xu W, Dai Q, Freeman WT,
Durand F (2021) Quantaichi: a compiler for quantized simula-
tions. ACM Trans Graph 40(4):1–16

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2211.14830
http://arxiv.org/abs/1910.00935

	Quantifying robustness: 3D tree point cloud skeletonization with smart-tree in noisy domains
	Abstract
	1 Introduction
	2 Datasets
	2.1 Real-world dataset
	2.2 Synthetic dataset

	3 Methods
	3.1 Neural network
	3.2 Subgraph algorithm

	4 Experiments
	4.1 Point cloud augmentations
	4.2 Metrics

	5 Results
	5.1 Gaussian (additive noise)
	5.2 Perlin (subtractive noise)
	5.3 Real-world data

	6 Conclusion and future work
	References

