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Abstract 

Variability in handwriting styles suggests that many letter recognition engines cannot correctly 

identify some hand-written letters of poor quality at reasonable computational cost.  Methods that are 

capable of searching the resulting sparse graph of letter candidates are therefore required.  The method 

presented here employs ‘wildcards’ to represent missing letter candidates.  Multiple experts are used to 

represent different aspects of handwriting.  Each expert evaluates closeness of match and indicates its 

confidence.  Explanation experts determine the degree to which the word alternative under 

consideration explains extraneous letter candidates.  Schemata for normalisation and combination of 

scores are investigated and their performance compared.  Hill climbing yields near-optimal combination 

weights that outperform comparable methods on identical dynamic handwriting data. 
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1 Introduction 

Recognition of unconstrained cursive handwriting has to deal with various problems on dif-

ferent levels.  When it comes to the on-line recognition of English words, two major strategies 

can be observed in the literature: Holistic methods and Segment-and-Recognise methods [1].  

Holistic methods extract a set of features that assumedly identify the written word as a whole.  

Features such as local extrema, loops or diacritical marks are chosen for ease of detection or 

for their stability over a variety of handwriting styles.  In 'poorer' writing, however, (i.e. writ-

ing that is more difficult to recognise for both humans and machines) most features become 

less stable.  Ascenders and descenders might become less prominent; i-dots might be mis-

placed, joined up or missing; or spurious loops might be introduced by overlapping letters.  

Comparison of the observed features with the entries of a database must therefore be tolerant.  

Tolerance, however, usually leads to recognition of a large number of additional words with 

similarly high scores.  This reduces the number of possible words out of the full lexicon effi-

ciently but often fails to identify the target word as top choice.  In poor writing, the size of the 

reduced set of possible words can reach half the original vocabulary and more. 

Segment-and-Recognise methods are based on the fact that words are constructed from single 

letters and the assumption that they can be recognised separately.  The word image is there-

fore segmented into smaller parts of approximately letter size.  Letter candidates are then rec-

ognised and represented as a letter graph, before a word combination procedure tries to 

construct words from the graph, see [2][3][4].  Combining the scores of the constituting letters 

can render these methods more discriminative than holistic approaches.  However, as they 

usually require all letters of the target word to be present in the letter graph (i.e. the graph 

must be non-sparse), the target may be missed easily.  To compensate, especially for poorer 

script, the aperture of the letter-recognition can be widened.  Apart from the increased compu-



tational demands, this usually results in a substantial increase in additional but incorrect (i.e. 

'surplus') letter candidates, rendering the letter graph more ambiguous.  Even then, it is likely 

that some letters will still be missed due to the variability of handwriting styles. 
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Fig. 1: Overview of the system architecture. 

Accepting that the production of non-sparse letter graphs can be prohibitively expensive, the 

wildcard word combination (WCC) Method focuses on a more flexible combination of letters 

into words.  Similar to [11],[10] and [13], multiple experts are used and their results combined 

to increase overall performance.  First, holistic methods are used to reduce the size of the dic-

tionary under investigation in serial result combination.  As a segmentational approach, a let-

ter-graph is produced by the Hierarchical Fuzzy Inference (HFI) method [5], a forward-

reasoning production rule system, which thereby also furnishes automatically obtained hy-

potheses of - usually overlapping - letter boundaries.  The second stage of the WCC then 

evaluates validity and quality of the constructed words.  Missing letter candidates in sparse 

graphs are represented by wildcards if and when they are required.  Holistic experts are 

named H1…Hi, segmentational experts Gi+1…Gn.  All experts then contribute to the parallel 

result combination, each representing a different aspect of a well-written word (Fig. 1) by a 

score Si,h (the score of the ith expert for the word hypothesis h). 

 — page 3 — 

   



 — page 4 — 

   

The handwriting data used for development and verification has been collected from 25 writ-

ers from various backgrounds, each donating 11 English sentences consisting of 150 words 

(119 thereof distinct) twice, for training and testing sets respectively.  Thus, two times 3750 

words have been collected on an NCR3125 pen-computer, showing a variety in styles and 

quality.  The average quality of handwriting is rather 'poor', judging by both human judge-

ment and the drop of an alternative method’s performance (Multiple Interactive Segmentor or 

MIS [2], normally 70%) to below 40% top-choice recognition rate.  The lexicon used to cre-

ate word hypotheses consists of 4126 words, the most frequent words in the English language 

plus those used in the sentences. The system thus attempts to recognise poor-quality, writer-

independent script based on a medium-size vocabulary.  More details about data sets, lexicon 

and the system can be found in [6]. 

The following sections describe the principles of wildcard-based word recognition (where 

missing letter candidates are replaced by transient pace-holders or ‘wildcards’), the holistic 

and segmentational experts employed, and the method of parallel combination experts, where 

the normalised results of the experts are combined with near-optimal weighting.  Finally, ex-

perimental results are presented and final conclusions are drawn.   

2 Using Wildcards 

Fig. 2 depicts a schematic view of concepts involved.  The target word ‘am’ has been written 

and is available as electronic signal.  The example word is of average quality with respect to 

the entire set, despite the overall downwards slant of the text and the grossly oversized up-

wards stroke in ´a´.  A letter recognizer produces a letter graph (the ‘graph’) of letter candi-

dates (‘candidates’ for short).  Letter candidates bear attributes provided by the HFI, notably 

the ink used, the rectangular bounding box encompassing the entire letter and a confidence 



score.  Word hypotheses (the ‘hypotheses’) are obtained from the reduced dictionary and 

evaluated with respect to the graph.  Knowing the average widths of candidates, the expected 

positions of constituent letters can be established from hypothesis and image.  We call a letter 

graph sparse with respect to a word hypothesis if one or more letters required for the hy-

pothesis are missing from the graph.  The graph in Fig. 2 for example is sparse with respect to 

the hypothesis ‘am’ as no letter candidate ‘m’ has been produced, but not with respect to ‘an’.  

A wildcard representing ‘m’ is therefore created while considering ‘am’.  The location of the 

wildcard is defined by the two considered neighbouring letter candidates, and consists of ink 

that is not unused by them.  The graph is thus been completed temporarily, the wildcard act-

ing as a letter candidate. 
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Fig. 2: A sparse letter graph for the target word ‘am’. 

If wildcards are produced without distinction, however, the number of constructible words 

increases dramatically, rendering the graph excessively ambiguous (e.g. allowing ‘as’ and 

even ‘at’ in Fig. 2).  This corresponds to an expensive low-sparseness, high-surplus recogni-

tion strategy.  To control wildcard creation, the following measurements have been defined.  

The likelihood pwc,l that a wildcard for a letter l is required is defined as 
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Where the number of missed letters indicates how many of the written letters in the raining 

set have not been produced by the HFI at their expected position.  In our data-set, the values 

of pwc,l have been observed to vary widely from pwc,’c’=5% for the letter ‘c’ up to pwc,’b’=63%.  

Using a wildcard for ‘c’ should thus be penalised more strongly than a ‘b’-wildcard, i.e. by a 

penalty ppen,l =1-pwc,l. 

The more surplus candidates are produced for a letter l, the less important is their presence in 

the graph.  The reliability prel,l  is therefore based on the average ‘correctness’ of letter candi-

dates produced:  

 
producedcandidateslettersNo
correct candidatesletterNo

p
l

l
lrel    .

  .
, =  . (2) 

The above measures are based on the known overall performance of the letter recognizer on 

the entire training set, i.e. without attempting to complete graphs with wildcards.  They can 

therefore only be used to penalise wildcards based on the general difficulty they pose for the 

recognizer (exploited in the ‘sparseness’ expert below) but not on their congruency with the 

word encountered.  The use of a wildcard ‘t’ in Fig. 2 for example, should be strongly penal-

ised independent of prel,’t’ or pwc,’t’ as the word does not contain a corresponding ascender or t-

bar.  This aspect is addressed in the ‘explanation’ expert described later. 

3 Holistic dictionary reduction 

The first stage uses physical features and supplementary 'sparseness' features to reduce the 

active dictionary.  Physical features include word length, diacritical marks, ascenders, de-

scenders, combined as/descenders, and segments crossing the word’s axis.  Approximating 
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spline functions [7] are used to represent the boundaries of handwriting zones (i.e. the zones 

containing ascenders, descenders and middle zone letters) for feature extraction and to define 

the word’s axis as the centre of the middle zone.  It is vital that the error introduced by each 

holistic expert is small, as their serial combination accumulates errors.  An error of 0.5% per 

expert was deemed acceptable and achieved by choosing appropriate tolerances. 

Although measuring the word length in letters is a highly discriminative and an intuitive 

feature, its correct extraction from cursive script is difficult as letters vary greatly in complex-

ity and length.  As letter length cannot be observed directly this is not a physical feature in the 

strict sense.  [8] and [2] both estimate the word length from the number of a word's axis cross-

ings divided by the average number of crossings per letter.  On our data set, this estimate was 

observed to err by up to 6.5 letters, 0.9 letters on average.  In order to achieve a - relatively 

high - error rate of 1%, a tolerance of ±3.8 letters had to be endorsed.  A high tolerance, how-

ever, results in a poorer dictionary reduction (quoted as the number of words that pass the 

filter, averaged over the entire set) in our case a reduction to only 71% (i.e. only 29% of hy-

potheses were eliminated due to incompatible length).  Alternatively, the word length in let-

ters can be estimated from the letter candidates produced by the HFI and the known 

distributions of the width of those candidates.  Based on the accumulated distributions, the 

expected word length in letters is described by a normal distribution (i.e. μlen and σlen).  The 

length expert Hlen accepts hypotheses if 

 ( )⎣ ⎦ ( )⎡ ⎤[ ]lenlenlenlenlenlen ttlengthlenH σμσμ ,1max , ,1max  : +−∈  , (3) 

where the tolerance tlen has been experimentally determined as 1.0 to yields the desired error 

rate of 0.5%, which improved dictionary reduction to 56% on identical data. 
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Rather than defining the word length via the logical feature ‘letter’, the number of axis cross-

ings can be used directly.  For each character in various writing styles, the numbers of possi-

ble crossings are denoted by an interval [mncross,l , mxcross,l ] (i.e. the minimum/maximum of 

permissible crossings inside the letter l).  The hypothesis is accepted if its accumulated inter-

vals contain the number of observed crossings: 

  . (Hcross crossings t mn t mxcross cross l
letters l

cross cross l
letters l

: , ,   ,  
  

∈ − + +
⎡

⎣
⎢

⎤

⎦
⎥∑ ∑ 4) 

An additional tolerance tcross is employed to limit the reduction error.  With tcross=3, the dic-

tionary was reduced to 70%. 

Similarly, the number of occurrences of other physical features is evaluated, i.e. the number 

of diacritical marks, ascenders, descenders and combined as/descenders as in ‘f’.  Toler-

ances t are defined individually for each feature, intervals individually for each feature and 

letter.  Except for diacritical marks, features are extracted as certain and potential variations.  

The top of strokes are classified using fuzzy logic as top-zone points or half-zone points.  If 

the fuzzy classification as a top-zone point is ambiguous, the stroke is marked as a potential 

ascender.  If the classification is certain, the stroke is marked as both a certain and a potential 

ascender.  Likewise, certain descenders include potential descenders, and combined 

as/descenders include both ascenders and descenders.  This facilitates the matching process 

for script of less clear zoning.  In discrete script, combined as/descenders only occur in letters 

‘f’.  In cursive script, however, the ligature connecting letters ending in a descender and let-

ters starting with an ascender can form an additional full stroke, e.g. ‘g’ and ‘h’ as in .  

The maximum permissible number of full strokes is therefore increased if necessary, the 

minimum required number of ascenders and descenders is reduced.  It has been observed that 

the majority of letters with unexpected zoning occur either at the beginning of a word (par-
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ticularly letters ‘c’, ’s’, ’r’, ’j’ and ‘p’) or at its end (letters ‘r’ and ‘s’).  The ranges for hy-

potheses containing these cases are adjusted accordingly. The resulting in dictionary reduc-

tion ranged from 53% to 99%. 

The overall shape of the word with respect to ascenders and descenders is described by the 

word’s zoning.  The word image is divided horizontally into n blocks, each block being 

marked whether or not it contains certain or potential ascenders or descenders.  The image 

 (‘question’) for example is represented by ‘ ‘ for n=4.  A similar sequence is ob-

tained for each hypothesis, allowing for style and kerning variations.  Hypotheses are only 

accepted if all blocks correspond. 

The sparseness of a letter graph is expressed as the estimated number of required wildcards.  

A required letter is deemed present in the graph if a matching letter candidate overlaps the 

expected position.  If no matching candidates are found, a wildcard is required, i.e. the graph 

is sparse.  This heuristic disregards constraints of mutually exclusive candidates.  They are 

enforced in the second stage.  Hypotheses are accepted if more than half of the required letters 

seem to be present.  Very short words are always permitted, as the other holistic features are 

usually sufficiently discriminative.  The maximum number of permissible wildcards has been 

experimentally restricted to 7 in order to restrict the combinatorial explosion of possible 

words and thus computational demands: 

 ⎡ ⎤( ) 2or    7 , min .  :  2
1 ≤≤ wordlengthwordlengthwildcardsNosparseH  (5) 

This condition, however, is irrespective of the wildcards’ likelihoods.  The weighted sparse-

ness expert therefore evaluates by how much the accumulated reliability of used letter candi-

dates is surpassed by the accumulated penalty for used wildcards. 

 2or      : ,
   

, ≤≥− ∑∑ wordlengthtppwsparseH wsparse
l wildcards

lpen
graphinlletters

lrel  (6) 
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The tolerance twsparse has been experimentally chosen as -0.12, i.e. word hypotheses are ac-

cepted if wildcards not more than slightly outweigh letter candidates.  If both prel and ppen are 

neglected, i.e. prel,l = ppen,l =1, this is similar to the 50% rule of the unweighted sparseness ex-

pert. 

4 Combining letters from sparse graphs 

The holistic examination of the letter graph ignores whether or not candidates can actually be 

combined into a word.  The second pass therefore enforces constraints such as mutually ex-

clusive usage of ink and maximum ligature length and evaluates the correlation of constitut-

ing letters' heights or widths.  Valid combination of candidates and wildcards are searched 

using a recursive graph traversal.  The search is pruned by enforcing the two sparseness crite-

ria throughout.  Several experts assess the quality of a valid combination, each furnishing a 

fuzzy score Si,h∈[0,1].  Subsequently, the experts are described in the context of a given word 

hypothesis w.  Si,h is therefore abbreviated to Si or even to S, where the context provides the 

expert’s i.   

A single value Si, however, is unable to model the appropriateness of an expert.  An expert 

using relative sizes of subsequent letters, for example, is inapplicable if the word consists of a 

single letter.  A single response Si, however, could only indicate that the word is a good match 

(if Si=1 is returned) or a bad match (if Si=0) or any value in-between.  Any score would, 

however, affect a combined score of all experts without grounds, as the expert should have 

been excluded entirely.  Similarly, the expert would be more applicable to longer words as 

more letter pairs can be evaluated, which does not imply that the match is better.  An inde-

pendent second response Ci,h is therefore returned by each expert describing the expert’s own 

opinion of its appropriateness (or its self-confidence).  The self-confidence can thus represent 



a binary decision of applicability ( { }1,0∈iC ) or a degree of applicability ( , ideally 

by , although a scaling factor wi will later obtained automatically and used in Eq. 14 

to scale Ci appropriately)  

0
, +ℜ∈hiC

[ 1,0∈iC ]

In order to utilise the criteria evaluated by the holistic experts, the difference of the underly-

ing measures (e.g. number of crossings in the script and the expected average number of 

crossings) are employed as scores Si.  The self-confidence values are defined by the size of 

the respective acceptancy intervals (e.g. the allowed variation in numbers of crossings) 

4.1 Spatial correlation experts 

The following experts assess the spatial arrangement of letter candidates according to various 

aspects.  The horizontal overlap between subsequent candidates is the ‘overlap’ of their 

bounding boxes.  If the boxes share a border the overlap is zero, intersecting boxes have a 

positive overlap, i.e. the width of intersection.  Isolated boxes have a negative overlap, i.e. the 

distance between them.  The overlap is normalised by the averaged width of the boxes in-

volved.  The score is derived from the observed overall distribution of normalised overlaps 

(μ=-0.11, σ=0.50, i.e. an 11%-wide gap).  The self-confidence is the number of observations, 

i.e. Coverlap =No.Letters-1.  A vertical overlap expert using the same principle is also em-

ployed, based on an average vertical overlap of 36% (σ=0.09). 

The horizontal distance between two centres of gravity is similar but ignores the width of 

letters, which can vary widely.  A slant corrected projection of the centroids to their average 

height yields the distance, which is on average 92% the averaged box width (μ=0.92,σ=0.48). 

The letter ratio experts exploit the extents of used candidates in relation to word image and 

hypothesis.  Extents used are width, height, aspect ratio, area and amount of ink both in origi-

nal ink-points and in number of segments.  The width-ratio expert Gwidth-ratio, for example, 
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uses the candidates’ actual widths wl and their known average width-factors μl to obtain the 

width wL of an imagined average letter candidate L in a word of width wword:  

 ∑=
lletters

lwordww
 

μL . (7) 

As the definition of expected width-factors μl thus recursively depends on wL, their values 

have been derived by successive approximated, based on correctly recognised letter candi-

dates in the training set of 3750 words as in [6]. They describe the average width of candi-

dates l relative to L, approximated by the Gaussian distributions ( )lll σμϕ , .  The highest 

observed value μ’m’=1.49 therefore indicates that ‘m’ is on average 1.49 times wider than L 

(Fig. 3).  The letter closest to L in term of width is ‘v’ (1.007), the narrowest is ‘c’ (0.71).   
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Fig. 3: Obtaining the width-likelihood of a letter ‘m’. 

For each letter, the observed width factors ml are then used to define the likelihood measure 

and the expert’s score.  Applying ‘better-than’ fuzzy normalisation as suggested in [9], the 
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likelihood is defined as the expected number of candidates that are worse than the current 

one: 

 
( )

LettersNoClikelihoodLettersNoSG

w
wmmlikelihood

lletters
lratiowidth

l
llllll

.=;.
1:

;2

 
∑⋅=

=−−Φ=

−

L
μμ

 . (8) 

The letter correlation experts assess the relation between the extents of subsequent candi-

dates, e.g. widths or heights of  and  in ‘me’.  The height ratio of letter candidates ‘m’ 

and ‘l’ should thus deviate further from their expected height ratio (~1.6) than candidates ‘m’ 

and ‘e’ (~1.0) .  Different from the ratio experts, extents are evaluated with respect to imme-

diate neighbours rather than the entire word, which should increase accuracy.  Obtaining sta-

tistics of all possible combinations, however, would require a vast training set.  Therefore, 

only combinations that occurred with a large enough frequency (nk,l ≥20, which are only 150 

combinations in our training set) are employed - the expert becomes inappropriate otherwise.  

Extents used are width, height, used ink, area, overlap and the centroid distance.  The score is 

again derived from ‘better-than’ fuzzification; the confidence depends on the number of ex-

amples encountered: 
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, 
,

, 
,

,,,

1,01.0min=;.
1:

20 if ; ;2 μμ
 . (9) 

As the above experts all use similar features, they are expected to yield similar scores, i.e. to 

be strongly correlated.  While the group of highly specialised experts can render a more pre-

cise verdict, their applicability is reduced to fewer well-known cases. 
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4.2 Letter candidate experts 

The ink-usage provided as attribute of letter candidates denotes how important a segment of 

ink is to a candidate and if it can be shared between different candidates, e.g. a common t-bar.  

The ink-usage experts enforce mutual exclusion as described in [5] and evaluate how much 

of the word image is used by the candidates.  Every ink-segment pss can be used in one of 

four modes per candidate: core, shared, latent and unused.  Each mode has an importance fac-

tor assigned to it (e.g. imp(pss) = 1.0, 0.8, 0.5 and -0.05 res.).  Using a negative factor for un-

used segments penalises ligatures.  The segment-oriented expert does not discriminate 

between segments of different lengths, i.e. a long ligature would be penalised identically to a 

small hook.  The ink-oriented version therefore employs the number of ink-points per seg-

ment, i.e. its duration.  Although they depend on segmentation accuracy and writing speed 

respectively, it is assumed these influences remain consistent enough within a single word to 

obtain a meaningful comparison.  

 
SegmNoCinkPointspsimpinkPointsSG

SegmNoCpsimpSegmNoSG

ssegments
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s
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ssegments
ssegmentsink

.0.05=;)(1:

.0.05=;)(.
1:

int ∑∑

∑

=

=

−

−

(10) 

The degree of certainty to which a letter candidate has been recognised is provided as a fuzzy 

membership degree of the respective character class.  The degrees of all letter candidates used 

in the word hypothesis are averaged to obtain the score of the membership expert.  The con-

fidence Ci is the number of candidates, both without counting wildcards.  The expert also ig-

nores the many surplus letters, i.e. it ‘turns a blind eye’ to contradicting evidence.  If, for 

example, the target word contains ‘h’, the graph will most probably contain both ‘l’ and ‘h’ 

candidates at similar high degrees of membership, possibly resulting in confusion of words 
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like ‘hook’ and ‘look’.  This corresponds to forward reasoning, asking how good the hy-

pothesis is ‘explained’ by observations, i.e. by selected letter candidates (Fig. 4). 

4.3 Explanation experts 
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Fig. 4: Forward and backward explanation modes. 

The explanation-experts therefore evaluate contradicting candidates using backward reason-

ing, asking how well the entire graph is explained by the word hypothesis (Fig. 4).  As a basic 

rule, candidates used for the hypotheses support the hypotheses while the remaining candi-

dates contradict it.  Unused candidates representing the same letter at approximately the same 

position as a used one are the result of oversegmentation and multiple pattern templates per 

letter and are therefore not contradicting. 

In the hook/look example, the ‘h’ explains the ‘l’ completely, as ‘l’ is a sub-shape of most ‘h’, 

while the inverse is not true.  This differs from a cell in a confusion matrix, which would rep-

resent a statement like “an ‘h’ produces an erroneous ‘l’ in X% of the cases observed”.  Ex-

planation, in contrast, reasons that “if the word hypotheses contains an ‘h’, a corresponding 

surplus candidate ‘l’ is completely irrelevant”.  The first is a statement of frequency (X%), the 

second a statement of degree (“completely”).  In the example in Fig. 4, longer arrows repre-
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sent a higher degree of backward explanation.  The hypothesis ‘who’ is thus more likely than 

‘why’ as the candidates ‘o’ and ‘a’ are more easily explained by ‘o’ than by ‘y’. 

The explanation expert is implemented using a number of rules expRuler, each explaining an 

observation o from sub-hypotheses h to a degree ξ.  Sub-hypotheses are letters or groups of 

letters in the word hypotheses, observations are the letter candidates in the graph. 

 ( ) ]1,0[;, ,,,, ∈−= ohrohrohr nobservatiohypothesissubexpRule ξξ  (11) 

Applying all applicable rules yields the degree of the best available explanation for each ob-

servation: 

 ξ ξo rules r r h o= max , ,  . (12) 

The overall explanation score is derived from the ratio of unexplained and total observations, 

weighted by the observation reliability. 

 ( ) ∑∑ −=
onsobservatio

orel
onsobservatio

oreloexplain pCp
C

SG ,, =;11: ξ  (13) 

The granularity of both observation and hypothesis can vary in order to allow different modes 

of explanation (Fig. 5a): 1:1–Transposition (e.g. a used 'l' explains a surplus 'e' and vice versa 

as both look alike if written as , i.e. ξ1,’l’,’e’=1 and ξ2,’e’,’l’=1), 1:N–Splitting (e.g. a 'g' explains 

both a 'c' and a 'j', ξ3,’g’,’cj’=1) and its inverse, M:1–Merging (e.g. a used 'c' and 'l' explain a 

surplus 'd', ξ4,’cl’,’d’=1).  For reasons of computational complexity, the M:N explanation (e.g. 

'nun' explains 'mm') has not been implemented. 
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Fig. 5: Explanation modes: 1:1, 1:N, M:1, using a) letter candidates and b) shape features as ob-

servation. 

The shape explanation expert differs from the candidate explanation expert only in using 

shape features as observations, i.e. ascenders, descenders and diacritical marks.  The combi-

nation of ‘g’ and ‘h’ explains the observation of the descender, the combined as/descender 

and the ascender by applying rules ξ5,’g’,des=1, ξ6,’gh’,as/des=1, and ξ7,’h’,as=1. 

The wildcard explanation experts use the same set of rules in inverse direction of reasoning.  

If, for example, a wildcard ‘h’ is required for a word hypothesis ‘who’, the presence of letter 

candidates ‘l’ and ‘k’ suggest that the image might resemble an ‘h’ even though the letter rec-

ognizer failed to produce the candidate (Fig. 6a).  Similarly, the presence of descenders ex-

plains the need of a ‘y’-wildcard well in the shape wildcard explanation expert (Fig. 6b). 
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Fig. 6: Wildcards are explained by shape features or letter candidates (forward explanation). 

Further to the rules described, 50 more rules have been defined manually, which model the 

similarities of other common sequences of letter candidates.  Many of them use regular ex-

pressions as hypothesis or observation, e.g. the rule that any of ‘acdgoq’ explains ‘c’ fully is 

ξ8,[acdgoq],’c’=1. 

5 Optimised classifier combination 

Above considerations result in a total of n=40 experts, 6 of which are used first in the holistic 

and than in the segmentational stage.  As many of them exploit similar measures, it is hardly 

surprising that some are highly correlated (up to a Pearson coefficient of 0.79 for the horizon-

tal-overlap expert and the letter correlation experts using horizontal overlap).  The average 

absolute correlation of scores, however, is unexpectedly small (0.09).   

5.1 Normalisation methods 

Various implicit assumptions have been made about the scores Si: a) range, i.e. Si∈[0,1]; 

b) monotonicity, i.e. a higher score means a better match; c) linearity, i.e. a double score 

means twice as good a match.  Apart from the range, none can be determined directly.  For 
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illustration, frequency histograms of all word hypotheses (light grey area, vertical axis “fre-

quency”) and of correct ones only (dark grey) are shown in Fig. 7 against the scores furnished 

by one exemplary expert (the membership expert) on the horizontal 

Assuming that the individual experts yield consistent scores for the target words, however, 

their cumulative histogram can be used to normalise the scores with respect to b) and c).  The 

cumulative histogram is also shown in Fig. 7 which corresponds to the better-than normali-

sation (denoted by bt
iS~ , i.e. the normalised score S~  of expert i, using better-than bt) normal-

ising Si (horizontal) into bt
iS~  (vertical axis “normalised Si“). 

With bt
iS~ , a score of zero is assigned to the worst target word match, one is assigned to the 

best.  Wrong hypotheses, however, might be rated worse than the worst target word, but 

would also be normalised to zero.  To maintain the distinction, the modified better-than 

normalisation function for +bt
iS~ has been modified to start from an intuitively chosen 10%.  

This violates the linearity assumption, but only for very poor hypotheses.   
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Fig. 7: Better-than and probabilistic normalisation functions based on hypothesis histograms. 

Furthermore, probabilistic normalisation as employed in [10] has been investigated, replac-

ing scores with the conditional probability ( ) ( )ii
p

i SpSpS , targetis word~ = .  Determining an 

apt bin size to extract p(Si) from the histogram, however, is subjective and can influence the 

normalisation function substantially.  It also discards the monotonicity characteristics that 

have been carefully designed into the individual experts and thus depends on the data set be-

ing highly representative.  In some cases, correct word alternatives with higher scores Si can 

thus be rated lower solely because they had to compete with more invalid hypotheses in the 

training set (e.g. Fig. 7, near mark ). 

5.2 Combination schemata 

Investigations into classifier combination (e.g. [11]) recommend a sum or median rather than 

a product combination strategy, as it restricts the effect of occasional complete failures of 

single experts.  The experts' scores are therefore combined using the average of all n experts 
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to produce the final score Sh of a word-hypothesis h.  As the experts differ in recognition per-

formance, the average is weighted by weights wi  (which also adjusts the scale of Ci if neces-

sary): 

 ( )∑∑ =

=
n

1
,...,

,

1
i

hihii
hii

h SfCw
CwS  . (14) 

The modifier functions f… allow to model different combination methods: a) sum combina-

tion:  and b) product combination: ( ) iisum SSf = ( ) ),10max(ln 50
iiprod SSf −= .  The total num-

ber of outvoted alternatives is used in the c) Borda count [12]: ( ) iworstiborda SSSf −= , 

expressed as the distance in ranking (denoted by ||..||) from the worst alternative.  The Borda 

count, however, requires identical numbers of alternatives per expert, i.e. it would not allow 

an expert to declare itself inappropriate.  The d) reverse Borda count is therefore based on the 

ranking distance from the best alternative: ( ) ibestibordarev SSSf −=_ .  Using ranking dis-

cards the actual value of Si, i.e. it ignores if two subsequently ranked alternatives have almost 

identical scores or not.  Borda count variations based on the measurement thus employ the 

distance from the score of the best/worst alternatives: e) ( ) worstiimb SSSf −=  and 

f) .  Rather than combining the scores, the e) ‘oracle’ (based on ( ) bestiimbrev SSSf −=_ [13] 

where it only applies to experts on abstract level, extended to include rank-level experts) se-

lects the expert that provides the best ranking for the correct hypothesis of the current word 

(tied ranks are broken randomly).  Although theoretical, the oracle yields the upper limit for 

dynamic expert selection strategies.  These combination methods have been chosen for their 

simplicity and widespread use respectively theoretical interest (oracle).  Normalised scores iS~  

have been investigated for all combination methods except the Borda counts, as ranking is 

mostly unaffected by normalisation. 
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The weighting factor wi serves two purposes: it models the importance of an expert and it 

scales the expert’s confidence values Ci, i.e. it will dampen overly self-confident experts.  

Obtaining optimal wi, however, is not trivial. 

5.3 Combination optimisation 

 — page 22 — 

   

]

The problem of obtaining optimal weights wi translates into finding the maximum of the func-

tion frtop(w1,w2,...wn) which yields the overall top-choice recognition rate for the entire data 

set.  Evaluation frtop using a full run of the recognizer, however, requires approximately 20hrs 

(on a Sun UltraSPARC).  The values Si and Ci have therefore been obtained for each word 

hypothesis considered and stored on file in reduced precision.  Evaluation time has thus been 

reduced to approximately 90 seconds.  Even then, the cost of evaluating all possible combina-

tions (e.g.  in – relatively coarse - steps of 0.01 for all n experts) is prohibitive.  In-

stead of searching the n-dimensional search space exhaustively, a simple hill climbing method 

based on random search has been employed (ref. 

[ 1,0∈iw

[6] for details).  As the solution is not neces-

sarily the global optimum, the process has been repeated from various starting positions.  The 

different near-optimal solutions obtained differed in their wi but yielded almost identical rec-

ognition rates.  This seems to suggest that a) the problem is well posed, i.e. the chance of ob-

taining substantially inferior solutions is reasonably small, and that b) some experts can be 

used interchangeably, which is a consequence of them being correlated.  Even if it cannot be 

guaranteed that the obtained solutions are acceptably close to the overall optimum, the gain of 

approx. 18% over a ‘naïve’ combination with all weights set to one is very satisfactory. 

6 Experimental Results 

In the training set, the average letter recognition rate of the MIS [2] was observed to be 89% 

(at any rank).  In order to achieve this high rate, the surplus factor (i.e. the ratio of incorrectly 
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produced letter candidates to written letters) was allowed to grow as big as 16.7 on average, 

reaching 68.6 for 'j', which renders the presence of a 'j' in the letter graph virtually meaning-

less.  As the average word length in the data set is 5.7 letters, one would expect to be able to 

construct only around 53% of all target words, in relation to which the top-choice word rec-

ognition rate of 38.5% is rather high. 

The HFI, on the other hand, had a poorer letter recognition rate of 69.8/66.2% (values from 

training/testing sets respectively) at a substantially lower surplus factor (5.2/5.5 on average, 

up to 21.1/21.3 for 'v').  The expected number of fully constructible words is thus only 

12.8/9.5%.  The performance of individual experts ranged from 1.8/1.6% to 27.5/24.5% top 

choice recognition rate, 6.9/6.4% on average.  The three most effective experts were holistic 

zoning (27.5/24.5%), letter-ratio using width (21.5/20.2.4%) and ink-usage (15.0/15.0%).  

Ties in the top-choice were broken randomly, with 8.0/7.9 top alternatives on average.  These 

rates, however, encompass all target words, and therefore also include cases where experts 

declared themselves inappropriate.  Excluding those, the rates increased up to 31.7/29.2%, 

8.1/7.8% on average, which demonstrates the influence and importance of self-confidence. 

Pass one reduced the 4k lexicon to an average of 110/103 words (i.e. by 97.3/97.5%).  It 

failed to include the target word in the reduced lexicon in 13.1/16% of the cases.  Incompati-

ble physical features caused 1.3/2% thereof, the remaining 11.6/14% were due to excessive 

wildcard requirements.  Top-choice ties have again been broken randomly, which happened 

only in 1.5% of all words.  Table 1 shows the combined and optimised top-choice recognition 

rates obtained.  Their comparison, however, assumes that the obtained near-optimal solutions 

are similarly close to the global optimum.   

The top-choice performance generally declined by about 4% in Table 1 from training to test-

ing set.  This is mainly caused by the fact that the training set appears to be of better quality 



than the testing set, as it had been obtained first while the subjects wrote more carefully.  The 

decrease is thus more due to the 2.9% increase in pass 1-rejections together with the 3% de-

crease in the best expert’s recognition rate rather than overlearning effects during weight op-

timisation (which only affects 2*n=80 parameters). 

Table 1: Optimised recognition rates for different normalisation and combination methods 

n o r m a l i s
a t i o n iS  iS  +bt

iS~  +bt
iS~ , +bt

iC~  p
iS~  

fsum - 52.7/49.4% 54.1/50.1% 55.7/51.6% 51.6/46.4% 
fprod - 40.5/37.3% 55.2/50.9% 55.4/51.6% 34.3/31.1% 
fborda 53.7/48.2% 53.6/49.8% 54.5/51.0% 51.9/48.5% 48.9/43.4% 
frev_borda 53.5/48.0% 53.2/48.8% 55.4/50.6% 54.4/50.6% 50.7/46.1% 
oracle  22.9/21.8% 22.6/22.1% 25.8/24.6% 28.2/27.4% 

 

It can be observed that the modified better-than normalisation ( +bt
iS~ ) method yields highest 

recognition rates in all combination strategies.  The probabilistic normalisation p
iS~ clearly 

suffers from the quantisation problems described above. If the modified better-than normali-

sation is applied to self-confidences as well ( +bt
iC~ ), the overall recognition rate is increased 

further to 51.6%.  Using the Borda measure improved results over the mere Borda rank, par-

ticularly in its normalised variation. 

Despite its simplicity, the Borda and reverse Borda distances performed well and even outper-

formed several measurement-based methods.  Product combination of modified better-than 

normalised scores outperforms all other methods and significantly improves over un-

normalised product combination that were discussed (and discommended) in [11].  This ad-

verse finding probably derives from the minimum score of 0.1 for target words, which effec-

tively prevents single experts from rejecting correct hypotheses by assigning a score of zero. 
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All of the investigated combination schemata substantially outperformed individual experts, 

some more than doubled the best individual expert.  This represents an improvement of about 

factor ten over the average performance of all experts . 

The imagined optimal dynamic expert selection obtained from the oracle was also clearly 

outperformed.  This probably results from using only one expert, rather than exploiting agree-

ment and disagreement between different experts.  It also derives from the low recognition 

rates of the individual experts as the target word only rarely appears as top choice in any of 

them and the oracle is unable to improve beyond the best expert.  The rank of the combined 

score, however, can exceed the best individual rank, i.e. outperform the oracle.  This suggests 

that dynamic selection should only be applied if it can be assumed that at least one of the ex-

perts involved performs well. 

7 Conclusion 

A Wildcard Word Combination method has been presented that can deal with sparse letter 

graphs.  It exploits the concepts of wildcards, wildcard likelihoods, explanation of wildcards 

and surplus letters as well as the optimised combination of multiple experts.  It has shown an 

improved recognition rate against a comparable method (Powalka’s MIS, [2]) if applied to 

'poorer' handwriting (51.6% against 38.5%).  Although a general quantitative comparison is 

difficult due to the proprietary data sets used, the comparison with the MIS on identical data 

allows to draw the following conclusions.  Using wildcards reduces the number of correct 

word hypotheses that cannot be evaluated by the segmentational stage due to sparseness of 

the graph and therefore increases the overall performance even if only some of the additional 

target words are scored top.  Secondly, parallel combination of multiple experts can improve 

performance beyond the best individual expert, especially if optimised weighting is employed 
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rather than naïvely assuming all experts of equal importance.  Furthermore, it has been 

shown, that normalisation of scores allows to combine measurement-level experts based on 

different scoring mechanisms without resolving to the rank-level as in [8]. 

As most errors derived from excessively sparse letter graphs (particularly of letters 'b', 'k' and 

'x') a selective improvement in letter recognition rate is expected to improve performance fur-

ther.  Although the HFI currently uses on-line data, the principles of the WCC method should 

be applicable to recognition of static cursive handwriting as well.  Identifying and removing 

redundant experts could reduce computational demands and is therefore envisaged for further 

research although preliminary experiments indicate that removing several seemingly ‘unnec-

essary’ experts can impede overall performance and that some ‘redundant’ experts might still 

be important as a balance against distortion by spurious scoring of individual experts. Fur-

thermore, whilst use of empirically derived thresholds have provided a starting point it is ac-

knowledged that further work in developing a rigorous method which allows repeatability of 

the experiments is needed. This development also forms part of the ongoing research. 
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