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Abstract Over one billion people in the world live with some form of dis-
ability. This is incessantly increasing due to aging population and chronic dis-
eases. Among the emerging social needs, rehabilitation services are the most
required. However, they are scarce and expensive what considerably limits ac-
cess to them. In this paper, we propose EVA, an augmented reality platform
to engage and supervise rehabilitation sessions at home using low-cost sensors.
It also stores the user’s statistics and allows therapists to tailor the exercise
programs according to their performance. This system has been evaluated in
both qualitative and quantitative ways obtaining very promising results.

Keywords Rehabilitation Exercises - Deep Learning - Augmented Reality -
Human-Computer Interaction - 3D Visualization - Low-Cost Sensors

1 Introduction

According to the World Health Organization (WHO), about 15% of the world’s
population suffers some form of disability. In addition, this rate is continuously
increasing as a result of the society aging and the growth in the prevalence
of chronic diseases such as cancer or mental health disorders. This fact has
led to a social concern about their health care, especially those people with
significant difficulties in functioning.

In this regard, one of the most noteworthy shortcomings is the rehabilita-
tion services since they play a main role in the person’s autonomy reinforce-
ment, the decrease in their vulnerability and the improvement in their physical
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condition. Furthermore, a proper recovery prevents an early retirement from
work, a considerable decrease in accumulated wealth and/or a reduction of
social functions. However, the deficiencies in rehabilitation services, their cost
and their long duration demand the development of technology supporting
this process at home.

In this work, we propose an augmented reality system to perform and
evaluate rehabilitation exercises at home. This system is aimed at two kind
of people: patients who require rehabilitation at home after an injury, and
the elderly people. Therefore, our purpose is to help them to recover from
their affections and, consequently, to improve their quality of life. Our pro-
posal consists of spawning a personal trainer on the patient’s home by taking
advantage of the augmented reality methods. The user is able to watch the
personal trainer and carry out the exercises by imitating him in real time, just
like if they were in an actual gym. Upon the end of an exercise, the system
automatically grades the patient’s performance taking into account the sim-
ilarity between the trainer’s movements and the patient’s ones. The exercise
sessions are recorded such that the patient and the therapist could review them
anytime in order to improve their performance and know the patient’s health
status at any time. In addition, low-cost sensors like regular color cameras are
used, making the system easily affordable.

We conceived the approach as a cloud-based service. The heavy computa-
tion part of the system is carried out in remote servers that are maintained by
the entity that offers the service. Namely, the government, hospitals, clinics
or retirement homes for instance. The final user only needs a low-end termi-
nal like an embedded device or a tablet/smartphone. Despite the computation
power requirements are high in the server side, a single machine could render
service to several clients.

Summarizing, the main contributions of this work are:

— A low-cost AR rehabilitation app which successfully integrates different
deep learning methods

— Our system enables a remote rehabilitation, making therapy accessible to
users who would otherwise not have access. This feature is desirable as
stated by the WHO [World Health Organization, 2015]

— In contrast with other solutions, ours is non-intrusive. It relies only on
vision algorithms

— A system usability scale study that validates the benefits of the app

— Our system integrates a reference mat, who shows how to do any required
movement. This is crucial to guide the patient when at-home rehabilitation
takes place and the therapist is not present

The rest of the paper is organized as follows: First, the state-of the art
in the field is presented in Section 2. Next, Section 3 describes EVA work-
flow. Then, Section 4 explains the augmented reality application as well as
the user interface. The considered rehabilitation exercises are detailed in Sec-
tion 5. The procedures for testing the proposed approach and their results are
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presented in Section 6. Finally, Section 7 includes the discussion, conclusions
and limitations of the work.

2 Related Work

The increase of disabled people together with a growing demand for rehabil-
itation worldwide require new ways to reduce the cost of the rehabilitation
process while maintaining its quality. In this context, assistive technologies
play an important role in functioning and increasing independence and par-
ticipation [World Health Organization, 2010]. However, literature has mainly
focused on the physical therapy.

In this line, Robotics has been a very active research area, going from com-
panion robots for therapy to social assistive robots [Martinez-Martin and del
Pobil, 2017]. So, rehabilitation robots are designed to assist people recovery
in two different scenarios. On the one hand, robot systems can be used as a
support tool in the rehabilitation process. This is the case of the Lokomat [Ho-
coma, 2018], an exoskeletal robot for physiological gait rehabilitation; NeReBot
(NEuro REhabilitation roBOT) [Stefano et al., 2014], a cable-suspended device
for upper limb rehabilitation of post-stroke patients; or, AMADEO [Tyromo-
tion, 2018], a neurological rehabilitation device designed for the rehabilitation
of the hand, fingers and thumb.

On the other hand, social autonomous robots could supervise the rehabil-
itation at home, a treatment appropriate for both people who cannot travel
easily and those who require less care. From this starting point, for instance,
Gomez-Donoso et al. [Gomez-Donoso et al., 2017] developed a multisensor
system for rehabilitation and interaction with persons with motor and cogni-
tive disabilities. More recently, Costa et al. [Costa et al.] proposed PHAROS,
an interactive robot system that recommends and monitors physical exercises
at home designed for staying active, an important part of rehabilitation for
chronic diseases.

Nonetheless, robotic solutions are far from being affordable, particularly in
some low- and middle- income countries. In this regard, a virtual environment
may be a reasonable substitute as shown in [Levy-Tzedek et al., 2017]. Actu-
ally, Virtual Reality (VR) has been used for evaluating and treating a number
of pathologies. We have to note that the term VR nowadays implies the use
of inmmersive technologies (like

So, Jack et al. presented a virtual reality system for rehabilitating hand
function in stroke patients [Jack et al., 2001]. Four rehabilitation routines for
hand recovery could be carried out: range, speed, fractionation or strength. For
that, two different input devices must be worn: a Cyber-Glove and a Rutgers
Master II-ND (RMII) force feedback glove.

Steffen et al. proposed a home-based platform for physical activity super-
vision and motivation [Steffen et al., 2013]. In particular, its system PAMAP
(Physical Activity Monitoring for Aging People) uses the television as an in-
terface for two applications: to set the exercises to be done (defined by a
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healthcare professional) and to provide feedback to the person. It is notewor-
thy that a group of sensors capturing person’s motion is required to be able
to provide any information about their performance. Given that those sensors
must be worn in strategic body positions, the person’s performance could not
be properly measured. In addition, a training phase is required to adjust the
exercise performance evaluation to the person’s physical limitations.

A more complex system is proposed by Toyra [Indra, 2019], a rehabili-
tation platform integrating healthcare information technology, virtual reality
and motion capture to develop tailored interactive therapy exercises for up-
per limb recovery. As previously, several sensors should be worn to properly
measure the patient’s motion.

Virtual games can also be used in this context. Among them, Wii Fit [Nin-
tendo, 2008] is highlighted since it has been applied in several scenarios such as
Parkinson’s disease [dos Santos Mendesa et al., 2012], knee replacement [Fung
et al., 2012], stroke rehabilitation [Barcala et al., 2013] or balance recov-
ery [Meldrum et al., 2012].

Another technology widely studied in the rehabilitation field is Augmented
Reality (AR). In fact, AR provides the user with a better sense of presence and
reality judgements of the environment as the interaction elements are real [Al-
Issa et al., 2013]. This is the underlying idea of NeuroR, [de Assis et al., 2014],
an AR system for motor rehabilitation of chronic stroke patients that replaces
the paralyzed arm in a virtual avatar. However, this kind of systems
rely on privative technologies, such as the devices Apple Iphone or
Apple Ipad that come with the Apple ARKit (Augmented Real-
ity Kit), specialized hardware like Simblee, bio-signal sensors such
as electrocardiography (ECG) or electromyography (EMG) or posi-
tional sensors such as inertial measurament unit (IMU). This is the
case of the AR systems for upper-limb rehabilitation presented by Aung et al.,
i.e. ARIS (Augmented Reality based Illusion System) [Aung et al., 2014] and
RehaBio [Aung and Al-Jumaily, 2014]. These systems combine a visual illu-
sory environment with EMG signal (electromyography signal) to monitor the
user’s performance. Similarly, [Gazzoni and Cerone, 2018] used AR together
with surface EMG (sEMG) detection/acquisition systems for physical reha-
bilitation. More recently, Monge & Postolache [Monge and Postolache, 2018]
combined AR serious games with a wearable sensor network based on Simblee,
an Arduino-based programmable board with a wearable design, for
physical rehabilitation of lower limb. Although the experimental results are
very promising, the system requires an IPhone, what is not affordable for all
the people.

Alternatively, SleeveAR [Sousa et al., 2016] is an AR system to perform
rehabilitation exercises at home to complement in-clinic physical therapy of an
injured arm. For that, three different stages take place: the Recording Stage,
involves the demonstration of the exercise being recorded by the therapist;
the Movement Guidance Stage, focuses on guiding the patient to recreate the
prescribed exercise as previously recorded; and, the Performance Review Stage,
provides the patient with an overview of their performance, by comparing
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with the original prescribed exercise. Note that this is a stationary system
that requires a special covering floor and a custom sleeve, what considerably
restricts its use. On its behalf, Desai et al. [Desai et al., 2016] used low-cost
RGB-D cameras (i.e. Microsoft Kinect) to place the user into an AR scene for
exercising by using Mirror therapy. Their pilot experiments result in a positive
reinforcement. However, the set of exercises is very reduced (only 4 exercises)
what considerably restricts its use. In a similar way, SilverFit [SilverFit, 2019]
employs a 3D camera to register the user’s movements and links them to a
game. At the end, the game progress and the final results are displayed on the
screen. It could be said that this system is the most similar to our approach
since visual data is used to analyze the user’s performance that can be recorded
and reviewed afterwards. Despite the user progress and score is shown, there
is no way to know the errors made except with a session with the therapist.

Note that all the proposed approaches have three main handicaps. The first
one is the used of worn devices, what may considerably affect the patient’s
evaluation apart from the inconvenience caused. The second one is their cost
what makes them unreachable for most of the disabled people. Thus, with
the aim of overcoming these issues, we present a low-cost augmented reality
system to monitor and evaluate physical rehabilitation at home. Finally, they
do not include any reference person showing them how to do a specific exercise
or a precise pose.

3 Proposal

In this work we propose an augmented reality system to perform and evaluate
at-home rehabilitation exercises. This system is aimed at two kinds of people:
patients requiring at-home rehabilitation after an injury, and elderly citizens.
Thus, our purpose is aiding them to recover the mobility of the affected limbs
and, consequently, to improve their quality of life.

With that aim, our system comprehends several rehabilitation exercises
that are displayed in a television, computer screen or projector. These exercises
are performed by a virtual personal trainer that appears in the patient’s room
through augmented reality. So, the display acts as the mirror in a gym: the
user is watching himself aside the virtual personal trainer. Then, the user
must choose an exercise and mimic the virtual trainer movements. After each
exercise, a score is given so that the patient has immediate feedback about
their performance.

In rough lines, the system’s workflow can be summarized as follows (see
Fig. 1): when an exercise is running, the system first takes an image of the
scene using a regular camera. Then, it looks for "the trainer’s mat”. This is
an object that is used to estimate the floor plane and to set a common 3D
reference frame. Once the floor plane is detected, a person detector is then
used to extract the person’s position within the image. The area of interest
corresponding to the person is sent to the human 3D pose estimator that
returns the 3D pose of the person. After that, the virtual trainer and the user
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Fig. 1: Flowchart of EVA system. Note that the cloud-based parts are shown
in a cloud shape.

interface are rendered over the image to be properly displayed on the screen.
When the exercise is completed, the stored 3D human poses and the virtual
trainer’s poses are used to measure the user’s performance. This measure is
displayed to the user together with their feedback, and is also stored for further
analysis.

It is worth noting that the virtual trainer performing the exercises has
been recorded beforehand and the corresponding 3D poses were also estimated
offline. The estimation of the trainer’s poses is computed following the same
method we used for the user’s ones. In this way, the system is only rendering
the trainer’s poses like a video.

As above mentioned, each exercise execution is stored allowing the user or
the therapists to replay their exercises to spot mistakes and further improve
their performance. By taking advantage of augmented reality, the user can
show the replays in the room’s floor or even in their desk. Furthermore, our
system EVA features a web service that accepts an image stream and renders
on it the replay of an exercise session. The web server follows the client-server
methodology to provide remote access to the capabilities of the system. This
option could be used to build a smartphone and/or tablet application to show
the replays anywhere and anytime by connecting with the system via WiFi
or even 4G. Note that the scores are also stored with the purpose to provide
user’s statistics to both users and therapists.

Additionally, EVA has an easy-to-use, friendly user interface based on vir-
tual touch buttons leveraging augmented reality.



An AR system to perform at-home rehab exercises with low-cost sensors 7

3.1 Common 3D Coordinate Frame Estimation

As above mentioned, the common 3D coordinate frame is estimated by detect-
ing “the trainer’s mat”. For that, a well-known chessboard pattern has been
used (see Fig. 2). It must be placed on the floor away from the user. In this
way, the common 3D coordinate frame allows EVA to accurately detect the
floor plane and properly render the avatar of the virtual personal trainer in
the scene. As a result, the user senses the virtual trainer next to them in the
room.

Fig. 2: A chessboard pattern is used as “the trainer’s mat”. It is a well-known
pattern that allows the system to estimate a common 3D coordinate frame.
The leftmost image depicts the pattern with the 3D axis superimposed. The
rightmost image depicts the personal trainer (skeleton in green) in augmented
reality in front of the patient who is imitating them. The personal trainer is
rendered in situ thanks to the pattern’s detection.

Although some state-of-the-art approaches are able to detect the floor plane
without placing any pattern within a scene (e.g. [Yang et al., 2016, Mur-
Artal and Tardos, 2017]), their lack of accuracy, the high complexity of their
calibration procedure or the need of non-static cameras make them unsuitable
for the problem at hand. In addition, the presence of a physical element in the
room prevents the user to inadvertently trespass the trainer personal space,
what would negatively affect the perception of the augmented reality.

With the aim to detect the floor plane and to set a common coordinate
frame, EVA firstly looks for the intersections between the pattern squares in
the image. As a result, a set of 2D points on the image plane is obtained. Then,
as the pattern is known, the corresponding 3D points can be easily stated. The
points lay in a plane so the Z-value is 0. Then, the length of each square side is
also known. Therefore, we can easily compute a set of corresponding 3D points
for each 2D point detected in the color image. Finally, we solve the Perspective-
n-Point problem. As a result, a transformation matrix is obtained. This matrix
transforms a point from the 3D world coordinate frame to the 2D coordinate
frame of the image.
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Finally, it is worth noting that the intrinsic camera parameters are required
to solve the Perspective-n-Point problem and, as a consequence, the camera
must be calibrated. This calibration process is carried out offline.

As the personal trainer poses are stated in the 3D space, they can be easily
translated into the image coordinate frame from the transformation matrix
computed in this stage. This helps to achieve the illusion of the personal trainer
being actually aside the user in their own living room. Furthermore, the trainer
is scaled according to the user’s size. This virtual scaled view is a useful feature
since it adjusts the taken video recordings to the chessboard pattern size. So,
for instance, the therapist could reproduce any exercise session by means of a
reduced chessboard pattern on its desk.

3.2 Human 3D Pose Estimation from Monocular Frames

With the aim to compare the user’s and the trainer’s movements in a robust
way, a 3D pose is mandatory. A solution could be the estimation of the 2D
human poses since low processing load techniques can be found in the liter-
ature [Cao et al., 2017]. However, the 2D poses may cause ambiguities and
singularities between two poses. This fact could lead to a bad similarity es-
timation. This is the case depicted in Fig. 3, where it is impossible to state
whether the user is rising his arm forward or backward.

Fig. 3: The 2D poses cannot be used for a robust pose comparison between
the user and the trainer because it may eventually fall into a singularity or
ambiguous poses such as the depicted in this figure. According to the 2D
pose, it is impossible to state whether the patient is rising his arm forward or
backward.

Due to the required accuracy in human pose comparison, a 3D pose estima-
tion approach has been used. Our 3D human pose estimation system is based
on the Human Mesh Recovery (HMR) approach [Kanazawa et al., 2018]. This
method consists of an end-to-end framework for reconstructing a full 3D mesh
of a human body from a monocular RGB image. So, a deep learning-based
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encoder is able to predict the camera pose, the person’s shape and the per-
son’s pose for each taken image. These predictions are used to render a model
which is then validated by a discriminator. The discriminator is able to state
if the predictions correspond to a real person or not. Given that this approach
does not use a 2D intermediate representation being able to make final pre-
dictions in one forward step, it is very fast. Note that EVA only works on the
inferred 3D human pose, discarding the camera pose and the person’s shape.
This 3D human pose is expressed as a list of 3D points in camera coordinates,
corresponding to 19 joints of the human body.

Fig. 4: . The 3D human pose estimation system is able to accurately estimate
the human pose even in difficult cases such as persons in wheelchair or scenarios
with high self-occlusion level caused by the exercises.

This approach for 3D human pose estimation is able to accurately estimate
the human pose even under different scenarios as illustrated in Fig. 4. For
instance, the system works well for persons sitting in wheelchairs. It can also
deal with high levels of self-occlusion. These cases play a main role when
working with physical injured people and elderly.

Nonetheless, this approach has an important issue to be pointed out. The
best human pose estimations are obtained when there is only one person in the
image. However, our system captures images that includes the trainer’s mat
and the room elements apart from the patient. For that reason, a person detec-
tion stage is needed. To carry out this process, we leveraged YOLOv3 [Redmon
and Farhadi, 2018]. It is a well-known method for object detection and recog-
nition, providing a decent accuracy while keeping the computation cost at bay.
This region convolutional neural network architecture is able to detect the po-
sition of the objects in the image plane, estimate the label of those objects
as well as their corresponding confidence score. This architecture achieved a
0.51 mAP (measured over the intersection over union) on the test set of the
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COCO MS dataset [Lin et al., 2014]. From this pretrained model, a wide range
of objects including persons, can be detected. Fig. 5 shows the performance of
this architecture for person detection.

Fig. 5: The person detector YOLOv3 [Redmon and Farhadi, 2018] is able to
accurately estimate the area of interest enclosing the patient.

So, the complete human 3D pose estimation pipeline can be described as
follows: first, an image is grabbed from the camera. Then, this image feeds the
YOLOvV3 detector, which provides the area of interest of several objects. From
them, the patient is identified as the area of interest with the best confidence
score for person. This area of interest is cropped from the original image and
forwarded to the HMR network. As a result, the 3D pose of the patient is
obtained. Fig. 6 shows the performance of the HMR network feeding it on
the whole image and on the person area detected by YOLOv3. As it can be
observed, the predictions are more precise when the network is fed with just
the person area. It is worth mentioning that we use the models released by
the original authors from both HMR and YOLOv3 methods.

Fig. 6: Performance of the Human Mesh Recovery network feeding it the whole
image (center) and the person area of interest detected by YOLOv3 (right-
most).
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3.3 Scoring the User’s Performance

With the purpose to evaluate the user’s performance during rehabilitation ex-
ercises, we propose to compare the user’s joints trajectory with the trainer’s
ones by using a Dynamic Time Warping (DTW) approach [Berndt and Clif-
ford, 1994]. This state-of-the-art method is aimed to find patterns in time
series. So, it finds a warping path to align the elements of two time sequences
such that the distance between them is minimized. This distance between two
elements must be defined, being the euclidean distance the most common. We
can see the dynamic time warping problem as a minimization of the cumulative
distance over the whole possible paths of two time series elements.

This method provides a score quantifying the degree of adjustment of two
times series when stretching or compressing their elements along the time. Note
that this score stays in the range [0, 1] when comparing different series. For
that, the distance measurement is often modified to be relative to a baseline
distance.

Given that the time dimension is not considered, this method is appropriate
to compare two 3D human poses separated by a short period of time as it is
the case (i.e. the user may take time to imitate the trainer’s movements due
to their disability).

Assuming that different patients use different cameras at different places, it
is necessary to define a common reference frame to avoid the influence of these
factors in the comparison of the joint positions. We have to transform from
the camera frame, defined by 3 camera axis (¢) and the origin of coordinates
(Qo) in Equation 1, to a new invariant reference frame. This reference frame is
defined using the user’s body in a preset position. The reference point (FPy) of
this frame is the neck (joint 1 in the Fig. 7). Then, we build two perpendicular
vectors (vg and vy) from shoulder center to the head (joint 0) and to the right
shoulder (joint 2) respectively. The last axis vector (ve) is calculated applying
the cross product of the previous vectors, as shown in Equation 2.

Cameraframe : (co,c1,c2,Qo)

co = (0,0,1)
¢y =(0,1,0) (1)
co = (1,0,0)
Qo = (0,0,0)

Body frame : (vg,v1,v2, Pp)

vg = (j0.x — jl.z,j0.y — jl.y, 0.z — jl.2)

vy = (j2.x — jlix, 2.y — jluy, 52.2 — jl.2) (2)
vy = vg X U1

Py = (jl.x,jluy, jl.2)

Once we have defined the reference frame centered in the body, we have to
estimate the transformation matrix from the camera’s frame to this reference
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Fig. 7: Joint positions considered by the system as returned by the Human
3D Pose Estimation system and used to compare the human poses of the user
and the virtual trainer.

frame. The transformation matrix is estimated from the Equation 3, that
calculates the coefficients necessary to put the new basis vectors vy, v1 and v
as a linear combination of the camera axis cg, ¢; and ¢y and the new origin of
coordinates in terms of these vectors and the camera’s origin of coordinates.

Vo = 11Co + a12€1 + Q13C2
V1 = a21Co + Q22€1 + a23C2
V2 = a31Co + a3z2C1 + aszca
Py = ag1¢o + as2¢1 + agzea + Qo (3)

a1 a2 a1z 0
as1 G2 a3 0
azy azz azz 0
(41 Q42 43 1

M =

With the transformation matrix between the camera and the body refer-
ence frames, we can simply transform the points multiplying this matrix with
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the column vector of homogeneous coordinates of each point. Suppose that a
and b are the homogeneous representation of the same point on the camera
and the body reference frames respectively, so they satisfy the Equation 4.

a=MTh

b= (M) 'a @

Then, we transform the whole points into the body reference frame and
calculate the distance between two sequences of movements for every pair of
joints using FastDTW, an accurate and efficient DTW implementation pre-
sented in [Salvador and Chan, 2007]. So, the final distance is the average of
the accumulated distance of the joints.

Due to the fact that the final distance is estimated for every joint indi-
vidually, we can report to the user which are the joints they are performing
worse. In addition, the DTW is computed every 120 frames with an offset of
60 frames. In this way, we can even know which moment of the rehabilitation
session has been performed accurately and which has not.

Fig. 8 depicts a representation of joints in body coordinates for two dif-
ferent bodies. The left image shows the body joints without coordinate nor-
malization, while the right image illustrates both body joints after coordinate
normalization.

Y Label

600
700
X Labey 800 2650

Joints without normalization. Joints with normalization.

Fig. 8: Representation of joints in body coordinates for two different bodies.

4 Augmented Reality Application

The browsing within the menus of the developed application is made through
body motion. The user must lay the hand on a button to trigger the corre-
sponding action. For that, the Human 3D Pose Estimation pipeline described
in Section 3.2 has been used. So, the estimated 3D position of the right hand
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is translated into the image plane. If this point lays on a button, this button
is selected (see Fig. 9, where the user is selecting the Replay button in the
EVA’s main menu). Note that the user must lay the hand on a button for 5
seconds to trigger the corresponding action. This prevents from inadvertently
activating a button. In addition, the user interface distinguishing the two ac-
tions (i.e. selection and trigger) such that an arrow marks the selected button,
whilst a progress circle in the bottom left shows the time left to trigger the
corresponding action.

Additionally, a keyboard could be also used for browsing the menus. This
feature is useful when the user does not want to perform a rehabilitation
session but only replay it on their desktop, or review their statistics. In this
way, it is not mandatory to set up the big “trainer’s mat” nor to use the body
for browsing the application.

It is also worth noting that the user interface was created considering acces-
sibility and usability. It features big and descriptive buttons with high contrast
colors so that the use of the application is intuitive and straightforward.

Statistics

Exit

Fig. 9: Screenshot of the main menu of the developed application. The user
can select the different options from the menus with its own body by placing
the hand behind the buttons during 5 seconds.

4.1 User Interface

The first button of the main menu is ”Start”. This option triggers a rehabilita-
tion exercise session as depicted in Fig. 10. So, after pushing the button, a list
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of exercises are shown where the user should choose the ones to be performed
in the same way as before. Once an exercise session is selected, a virtual per-
sonal trainer is rendered over the ”trainer’s mat”. The feed of the camera is
being displayed so that the user is watching the trainer besides him in an aug-
mented reality fashion. The user must imitate the movements of the virtual
trainer upon the completion of the session. A plot in the left corner of the
display is continuously showing the user’s update score. Finally, a summarized
score representing the patient’s performance over the whole exercise is shown.
In addition, a timeline of the session is also displayed so that the user can
review which part of the session they did better and which one needs more
work on.

Fig. 10: A sample of a patient performing a rehabilitation session. The virtual
trainer is being rendered using augmented reality methods.

The next button of the main menu is ”"Replay”. As above mentioned, this
option allows both patient and therapist to replay an exercise session. During
the replay, the app shows the positions where the patient stood rendered in
an augmented reality video-like way. The replay can be paused such that the
therapist or the patient could rotate or zoom in/out a certain pose. This can
be done by moving the 7trainer’s mat”. The avatar is customizable so that
it can render a person or a skeleton-like character. A score histogram is also
displayed in the bottom left corner. This histogram shows the DT'W score for
each instant of the rehabilitation session. Finally, a progress bar in the top
of the window shows how much of the replay is left. Fig. 11 depicts a still
of a replay being displayed. Note that, in this case, the therapist is using a
reduced size “trainer’s mat” allowing the app to render the augmented reality
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avatar right on their desk. The replay feature allows an easy analysis of the
rehabilitation sessions with the goal of evaluating the patients’ performance
and modifying the rehabilitation program if needed.

Fig. 11: The image depicts a replay being displayed. Note that, in this case, the
therapist is using a reduced size ”trainer’s mat” that allowed the application
to render the augmented reality avatar right on his desk.

The last entry of the main menu is ”Statistics”. This menu shows a new
window with the history of the past sessions performed by the user. This win-
dow displays a summary of the scores and plots the patient’s adherence and
performance. These metrics could be used for the patient and the therapist
for review and evaluation purposes.

Finally, a very early version of a web service was implemented. This web
service allows EVA to be offered as an external service. Therefore, patients
can benefit from EVA wherever through low computation powered machines
such as tablets, embedded computers and smartphones. In this way, the taken
images from the user’s terminal are sent to the remote server to be processed.
So, the user can get their performance score in real-time independent of the
computing power.

5 Rehabilitation Exercises

An important step in any rehabilitation treatment is the home exercise pro-
gram. This program consists in the patient’s performance of prescribed phys-
ical exercises at home. In this sense, there is a wide variety of exercises de-
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Table 1: Activities included in the KARD Gaglio et al. [2015].

ID | Activity ID | Activity ID Activity
1 Horizontal arm wave | 7 Draw tick 13 | Hand clap
2 High arm wave 8 Toss paper 14 | Walk

3 Two hand wave 9 Forward kick 15 Phone call
4 Catch cap 10 | Side kick 16 | Drink

5 High throw 11 | Take umbrella | 17 | Sit down
6 Draw X 12 | Bend 18 | Stand up

pending on the body part to be recovered and/or their goal. In particular,
a public exercise program suggested by the British National Health Security
(NHS) to improve elderly’s fitness and well-being has been considered in this
paper [British National Health Security (NHS), 2018]. This guide is composed
of twenty-three exercises divided into four groups: flexibility, strength, balance
and sitting. However, the therapist is who will decide the exercise program to
be followed by each patient. So, the virtual trainer reproduces the tailored set
of exercises while analyzes the patient’s evolution in their performance.

6 Experimentation and Results

With the aim to validate EVA, two kinds of experiments were carried out. On
the one hand, each subsystem has been individually evaluated in a qualitative
and quantitative way. On the other hand, the whole system was qualitatively
analyzed.

Firstly, the evaluation of the Human 3D Pose Estimation and the Dynamic
Time Warping Scoring subsystems were performed by using the Kinect Activ-
ity Recognition Dataset (KARD) [Gaglio et al., 2015]. This dataset contains 18
different short-time activities, summarized in Table 1, which overall match the
features of some rehabilitation exercises. It involved 10 individuals repeating 3
times each activity. The dataset provides the video of each person performing
an activity and the position of the body joints in both 2D and 3D coordinates
as captured by a Kinect device. In addition, it provides the corresponding
depth maps (discarded in our experiments).

For these experiments the following hardware was used: an Intel Core i5-
3570 with 8 GiB of Kingston HyperX 1600 MHz and CL10 DDR3 RAM on
an Asus P8H77-M PRO motherboard (Intel H77 chipset). The system also
included an Nvidia GTX1080Ti. The framework of choice was Keras 1.2.0
with Tensor Flow 1.8 as the backbone, running on Ubuntu 16.04. CUDA 9.0
and cuDNN v7.1 were used to accelerate the computations.
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6.1 Human 3D Pose Estimation Experiments

The accuracy of the Human 3D Pose Estimation was evaluated through the
KARD dataset. Thus, it was required to divide the activity videos in still
frames. As described in Section 3.2, this process involves two different stages.
Firstly, each video frame is forwarded to the YOLO architecture which pro-
vides the area of interest of the patient within the scene. Then, this area is
cropped and used to perform the 3D pose estimation with the HMR approach.
As a result, the 3D position of the patient body joints is estimated. Then, the
3D points are projected to the image plane. Some results randomly chosen are
shown in Fig. 12. Note that the images were resized to 224 x 224 px since it is
the architecture’s input size.

Fig. 12: The top row depicts random samples extracted from the KARD and
the bottom row shows the estimated human 3D poses.

Fig. 13 illustrates the amount of samples per distance error threshold. Note
that the amount of joints are expressed in percentages. As it can be seen, 92%
of the joints yielded an error below 20 px, and 80% below 12 px. The mean
error averaged across the entire dataset is 9.58 px for an image of 224 x 224 px
resolution. As the results show, this approach is accurate enough to be used
for a successful human pose detection from a single RGB frame.

In addition, we also benchmarked the Human 3D Pose Estimation sys-
tem in the 3D space using the KARD. In this case, we also use YOLO to
detect the person in the scene and then forward only the area of interest to
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Fig. 13: The accumulated percentage of samples per error (px on a 224 x
224 image) threshold between the 2D points provided by KARD and those
estimated by our Human 3D Pose Estimation approach.

the pose estimator. As the 3D pose returned by the system yields no scale,
the tridimensional positions of the joints are arbitrary located in the space,
yet depicting the correct pose. To enable a fair comparison, we followed the
method described in Section 3.3. Thus, we express all the poses in a coordinate
frame local to the body pose. Then, as the scale is also different, we computed
a scale factor using the norm of the vector that goes from the neck to the right
shoulder. This process is applied to both ground truth and estimated poses. As
a result, both poses are in the same coordinate frame and yield the same scale.
Finally, we measure the mean euclidean distance between each joint averaged
across all the frames.

As shown in Fig. 14, the 70.66% of the samples are under the 150mm
threshold. Note that this threshold is the same as that used by the authors of
the HMR system to report the percentage of correct keypoints. In their pro-
posal, they achieved a 72.9% on the MMPI-INF-3DHP dataset. In addition,
we have obtained a mean error of 129.52mm.

These experiments demonstrate the accuracy of the system. Regarding the
2D pose estimation, it can be concluded that it is accurate enough to provide a
good representation on the screen, what is important to encourage both users
and therapists to use the application. Nonetheless, the 3D poses computed by
the system are approximated. Therefore, the obtained evaluation is a reference,
but not a medical diagnosis.
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Fig. 14: The accumulated percentage of samples per error (mm) threshold
between the 3D points provided by KARD and those estimated by our Human
3D Pose Estimation approach.

6.2 Dynamic Time Warping Scoring Experiments

The KARD has been also used to evaluate the effectiveness of the scoring
system. As above mentioned, this dataset contains 18 activities and each ac-
tivity is performed by 10 different subjects. We compare them to each other.
The effectiveness of the DTW is determined in the following way: the lower
the value obtained, the closer or similar the activity will be. Moreover, the
different score will be then compared against another activity. The obtained
results are shown in Table 2 where each value indicates the similarity between
the activity in the row with respect to that in the column. So, the value in
bold represents the closest similarity, while a higher value indicates a higher
difference between two activities. As it can be observed, the system is clearly
confused between the activity pairs 7 — 5, 11 — 8 and 16 — 5. This is due to
two main factors: (1) an overlap of movements (7 — 5, 16 — 5), and (2) the
similarity in the activity movements (an object is released in activity 8 whilst
an object is grabbed in activity 11).

6.3 Integrated System Experiments

The integrated system was qualitatively tested in a controlled environment.
Ten different individuals were involved. The experiment consisted in using
EVA to perform one exercise per individual and to provide feedback.

For the evaluation of the feedback, the System Usability Scale (SUS) ques-
tionnaire proposed by Brooke was used [Brooke, 1996]. This questionnaire is
composed of 10 items such that the odd items were written positively, while
the even ones were written negatively. So, the SUS questions are as follows:
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Table 2: Confusion matrix for the DTW Scoring experiments with the KARD.

G2 G3 G10 G14 GI15
0,43 0,28 ,22 0,: 0, 0,81
0,78
0,9
b b 0,78
0,09 5 5 b 0,79
0 0,79
0,8
0,76
0,75
0,77
0,82
0,77
0,77
0,75
1
0,83

=

Activity 8 (Toss Paper)

Activity 5 (High throw)
F ﬁ |
!

Acfivity 7 (Draw Tick) Activity ‘11 (Take ﬁnibrella) Activity 176 (Driﬁk)
Fig. 15: The first row shows some sample activities from a certain class and
the second row depicts different samples from different classes that causes
confusion in the system. As the images depict, the confusion is expectable as
the classes are very similar despite being labeled as different.

— I think that I would like to use this system frequently.

— I found the system unnecessarily complex.

I thought the system was easy to use.

— I think that I would need the support of a technical person to be able to
use this system.

— I found the various functions in this system were well integrated.

— I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very

quickly.

I found the system very cumbersome to use.

I felt very confident using the system.

— I needed to learn a lot of things before I could get going with this system.
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To evaluate the results of the SUS test, we used the Adjectives method pro-
posed by Bangor et al. [Bangor et al., 2009]. This method is based on the
association of the SUS score with an adjective scale (i.e. worst, poor, ok, good,
excelent, best) as illustrated in Fig. 16.

\, s
\ﬁo‘(’ & o 6006 0_&\ &

Adjectives G L —
[ | | | | | | | | | |
0O 10 20 30 40 50 60 70 80 90 100

SUS Score

Fig. 16: Adjectives scale method to measure SUS.

As shown in Fig. 17, the total score obtained for each user was
positive, obtaining an average of 78.0 (good according to the ad-
jective scale method). This result is significant providing a level of
confidence in the use of the system.

100 |- -
80 80 85 825 825 grs oqps OO
g 57.5
A 50 N
0 T T T T T T T T T T

Fig. 17: Score per user obtained by SUS Evaluation.

In addition, some conclusions could be extracted from this study. Partic-
ipants felt comfortable using the system. Many users commented that the
application effectively encouraged them to complete the rehabilitation session
and thought that EVA would help improve adherence to these home reha-
bilitation sessions. Some of the users were reluctant with the presence of the
trainer’s carpet at first, but then got used to it.

A therapist from ADACEA (A Spanish foundation for the acquired brain
damaged) supervised the experiment. He praised EVA by highlighting its po-
tential to improve the adherence to the long-term rehabilitation programs,
which he admitted to be one of the weakest points in the patient’s rehabilita-
tion. He also found interesting the idea of replaying the exercising sessions in
his office or home with the use of augmented reality. Finally, the therapist felt
indifferent about the scoring system. He admitted to be an interesting feature
to encourage the patients, but he hesitated about the effectiveness to measure
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the actual patient’s performance. He also remarked that a professional review
is mandatory for the sake of ameliorating the patient’s health.

Table 3: Runtime for each piece of the proposed pipeline. The whole system
takes 45.7 ms for computing a frame, which means about 22 fps. The DTW
scoring could be performed offline and is independent of the rest of the pipeline.

Subsystem Time (ms)
Common 3D Coordinate Frame Estimation | 10.6
YOLO (person detection) 22.7
HMR (pose estimation) 10.2
Rendering Overhead 2.2
Global Runtime | 45.7
DTW Scoring 354.79

Regarding the computation time, EVA is currently able to run at about
22 fps, which is enough to provide real time output. More details about the
individual computation time of each piece of the pipeline could be seen in
Fig. 3.

7 Conclusions and Future Work

In the face of the relentless demand for rehabilitation services and the lack of
resources to access them, we propose EVA, an augmented reality application
for evaluating rehabilitation programs at home. This low-cost application only
requires a regular camera to capture and evaluate the 3D patient’s pose. So,
EVA stores the rehabilitation sessions such that patients and therapists could
review them and adjust the exercises accordingly. EVA was qualitative and
quantitative evaluated to show their suitability. For that, two different types of
experiments were carried out. Firstly, each integrating module was individually
tested and then a complete evaluation was performed.

Despite the promising results, the experiments brought to light an EVA
limitation in terms of human pose estimation. The human pose estimation
sometimes fails when people has an amputated limb since it assumes that the
images depict a canonical person and it tries to estimate the position of all
their joints. This fact will be pointed out in the future since a considerable
amount of EVA’s users may present this handicap.

Apart from that, we plan to further explore the web service potential and
the idea of a smartphone application. It would not be only able to show replays,
but also to provide statistics to the therapists and patients and act as a client
as well. We also plan to extend the amount of exercises and to add more
customization features to our proposal. For instance, more trainer avatars or
new user interface themes to help the visually impaired, will be added. The
possibility to add wearable sensors like smartbands will be also explored in
order to gather more information about the user’s health status (e.g. ECG or
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heart rate). In this way, the therapist could have more information to properly
adapt the rehabilitation process. Finally, a native VR/AR environment like
Vuforia [PTC, 2019] would be used to leverage and enhance the visualization
part.
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