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Abstract
People can understand how human interaction unfolds and can pinpoint social attitudes such as showing interest or social 
engagement with a conversational partner. However, summarising this with a set of rules is difficult, as our judgement is 
sometimes subtle and subconscious. Hence, it is challenging to program Non-Player Characters (NPCs) to react towards social 
signals appropriately, which is important for immersive narrative games in Virtual Reality (VR). We collaborated with two 
game studios to develop an immersive machine learning (ML) pipeline for detecting social engagement. We collected data 
from participants-NPC interaction in VR, which was then annotated in the same immersive environment. Game design is 
a creative process and it is vital to respect designer’s creative vision and judgement. We therefore view annotation as a key 
part of the creative process. We trained a reinforcement learning algorithm (PPO) with imitation learning rewards using raw 
data (e.g. head position) and socially meaningful derived data (e.g. proxemics); we compared different ML configurations 
including pre-training and a temporal memory (LSTM). The pre-training and LSTM configuration using derived data per-
formed the best (84% F1-score, 83% accuracy). The models using raw data did not generalise. Overall, this work introduces 
an immersive ML pipeline for detecting social engagement and demonstrates how creatives could use ML and VR to expand 
their ability to design more engaging experiences. Given the pipeline’s results for social engagement detection, we generalise 
it for detecting human-defined social attitudes.

Keywords  Artificial intelligence · Expressive body language · Gaming · Human–computer interaction · Virtual agents · 
Virtual reality

1  Introduction

Complex human behaviours exhibited in everyday social 
interaction are hard to recognise automatically and therefore 
to use as mechanics in videogames.

As a result, players often find themselves driving a social 
interaction in a videogame by choosing what to do from a 
menu (see Sect. 3.1 for examples). In Virtual Reality (VR), 
this could break the plausibility illusion (Slater 2009) and 
lead to break-in-presence (Slater and Steed 2000), which 
takes the players back to the real world and significantly 
reduces the level of immersion. In this work, we explore a 
novel pipeline in game design, combining Machine Learning 
(ML) and VR, with the aim to make social interactions in 

VR narrative games more engaging, immersive and inclusive 
(in the sense that it will appeal to a broader audience than 
current video games).

VR devices could enable richer input mechanisms than 
that of a traditional videogame. In non-VR games, often 
players are limited to 2D user interfaces (keyboards, 2D 
game-controllers). In VR, users can deploy a diverse range 
of motions in 3D: they can use their limbs, head, or their 
whole body as a form of input to drive the interaction, as 
they would do in their day-to-day life.

One of the most promising uses of body movement in VR 
is social interaction with Virtual Characters (VCs), or Non-
Player Characters (NPCs). In face-to-face interactions with 
people, we use our bodies extensively as non-verbal com-
munication (colloquially called ‘Body Language’), including 
actions such as gaze (eye contact), gestures, posture and the 
use of personal space. VR opens the possibility to use these 
social cues as first-class elements of gameplay and thus cre-
ating much richer social experiences in games.
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However, when the user input is more complex than but-
ton-pressing, it is a challenge to interpret its meaning in real 
time. Rule-based methods work well for detecting certain 
social behaviours when the hands and head need to be in a 
certain position and/or rotation (e.g. raising hands or look-
ing at something). On the other hand, more complex social 
behaviours are more difficult to detect using fixed rules, and 
we might even judge the same situation differently due to 
our personality and expectations. Examples of these social 
behaviours are social attitudes, which in this paper refers 
to a feeling towards another person expressed through ver-
bal and particularly non-verbal behaviours taking place in 
social interactions, such as sympathy, affection, aggression, 
or social engagement. These social attitudes are too complex 
to be identified using a set of rules; however, people can 
identify them in human–human (or human–VC) interactions.

Nevertheless, there are clear benefits to replace traditional 
explicit interactions (selecting an option by clicking a but-
ton) with implicit interactions (social attitudes expressed via 
body language), where the player’s non-deliberate, implicit 
actions are inputs for a game (Schmidt 2000). This is in 
particular important for maintaining the plausibility illusion 
in character-driven narrative games in VR where players 
could engage with NPCs naturally. Furthermore, being able 
to explore the use of social attitude with NPCs as a possible 
game mechanic (as opposed to, for instance, shooting NPCs 
with a gun) also makes games more inclusive and appealing 
to a wider demographic than current videogames.

In this work, we collaborated with two immersive game 
studios to create a pipeline for detecting the social attitude 
engagement that could be used as implicit interaction in a 
narrative VR game. The detected social engagement can 
then be used to trigger different behaviours in the NPC or 
in the game environment itself, influencing how the game 

continues. These triggers are to be decided by the game 
designers and game creators, based on how they envision the 
game and the gameplay. For instance, if a player is detected 
to be socially engaged with an NPC, they could gain higher 
trust score from this NPC and could display animations that 
reflect a higher level of social engagement in return. The 
developed pipeline is meant to be integrated in the game 
studio’s animation process in order to use the predictions 
to animate the NPC or the game environment. The pipeline 
is independent of any company-dedicated software as the 
set-up (Fig. 1 part A, B) can be recreated and the algorithms 
used are available for implementation in other software.

In this work, we focused on the social engagement detec-
tion part, the NPC’s response to the user’s social engagement 
in the game being out of our scope. We also argue that the 
pipeline used here to detect social engagement can be gen-
eralised and used for other social attitudes such as sympathy, 
affection or aggression.

Game design is a creative process that involves the design 
of mechanics that guide players into certain desired behav-
iour patterns. While it is important that these behaviours in 
some way reflect players’ natural inclinations, they are also 
defined by game designers who may want to guide players 
away from their more common patterns of behaviour. This 
is particularly true of the scenario we are studying in this 
paper, as there was an explicit desire to guide players away 
from traditionally anti-social behaviour in narrative games 
towards pro-social interaction. We therefore view the work 
on social engagement detection as a creative interaction 
design process. Game designers should be in control of how 
the game, and characters, in particular, respond to different 
actions in a player, just as, in traditional games, designers 
are in control of how the game responds to button presses. 
The definition of social engagement should not be viewed as 

Fig. 1   Pipeline for detecting human-defined social engagement, 
including immersive data collection (user interaction (A) and expert 
annotating (B)) for training the machine learning model. This takes 
place by pre-training the model, creating Generative Adversarial Imi-
tation Learning (GAIL) rewards for the reinforcement learning algo-

rithm Proximal Policy Optimisation (PPO) that also uses a temporal 
memory called Long Short-Term Memory (LSTM) algorithm (C). 
This process exports a trained ML model (D). In a user–VC interac-
tion (E), the trained model (F) detects in real time the human-defined 
social attitude (G) which could be used in different scenarios
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an attempt to capture some objective measure (as might be 
done in traditional machine learning) but as a reflection of 
the game designer’s creative judgement. The integration of 
machine learning into the creative process of game design 
and the foregrounding of creative judgement is one of the 
main contributions of this work.

The above-mentioned factors that social attitudes are 
largely subconscious, that the behaviour is implicit and 
that this forms part of a creative project (a game), create 
a situation that we believe is relatively little studied. We 
are attempting to recognise a concept with no clear explicit 
definition. Social engagement and certainly the behaviours 
associated with it are highly variable and contextual. If we 
were to attempt a definition it would be far higher level than 
the detail needed for computational implementation. There 
is also no ground truth. Biometric measures might be used 
in some emotional context, but can only really distinguish 
low-level physiological states such as arousal, not high-
level cognitive/emotional/social concepts like engagement. 
So we are dealing with a concept that can be defined only 
implicitly through human judgement. It might be possible 
to use player’s own judgement of their feelings while inter-
acting with a character, but these may well not correspond 
well to their outward behaviour, it is perfectly possible for 
a person to be interested in what another is saying without 
outwardly displaying it, or conversely to outwardly appear 
highly engagement while inwardly feeling bored and think-
ing of other things (a fairly common human behaviour pat-
tern). More importantly, the use of player’s own annotations 
would compromise the creative process. As described above 
how players interact with the game should be the result of a 
design process led by creative judgement. In this work we 
therefore treat the definition of social attitudes as a crea-
tive process driven by the judgement of a game designer. 
Social attitudes are, in this paper, therefore concepts with-
out explicit definition or ground truth and defined solely 
through expert creative judgement. This type of interaction 
design concept will be increasingly common as VR becomes 
a medium used by creative practitioners and which attempts 
to tap more complex and subtle aspects of human behaviour. 
Machine learning is particularly well suited to this task as 
it does not require an explicit definition at any point, simply 
a set of examples, which can be created through creative 
judgement. This is the key aim of this paper.

In the following, we underline our aim and contribu-
tions (Sect. 2). Then we review some of the related work 
around non-verbal behaviours for VCs/NPCs and attitudes 
detection with a focus on social engagement (Sect. 3). Next 
we describe how the pipeline is used for detecting social 
engagement in Sect. 4, where we also cover the experimental 
study with the data collection and the annotation process in 
VR. In Sect. 5 we describe how the model is trained, cover-
ing different input data and model configurations; then we 

present our results in Sect. 6. Section 7 explains how the 
pipeline could be generalised to be used as a detection tool 
for other social attitudes. We cover the limitations and dis-
cussion in Sect. 8 and conclude in Sect. 9.

2 � Aim and contributions

As we are collaborating with two games companies, we aim 
to develop a workflow which supports the creative design 
process and can be implemented into a production-ready VR 
game for the consumer market. After several workshops with 
our creative partners, we identified our three key challenges 
at the beginning of the process: (1) Gamer Behaviour: this 
is part of a product which will be available on the market. 
Thus it has to work for most gamers (who will be paying for 
the game), which is very different from experimental stud-
ies with paid participants in the laboratory we were more 
accustomed to. (2) Creative Process: not only do we want to 
automatically detect a complex social attitude in real time, 
but the judgement also has to be part of the creative process. 
In the game industry, Creative Directors are the ‘superstars’ 
who define the artistic design of a game—we need to include 
them as much as possible in this process. (3) Market Reach: 
The game has to be accessible to as many players as pos-
sible, meaning it will be developed cross-platform, consid-
ering the most commercially available headsets. This also 
means we are limited to the consumer market VR Headsets 
inputs (i.e. no access to eye, mouth, or EEG trackers) and 
software platforms that are compatible with major games 
consoles.

In order to tackle the first challenge, we need to better 
understand the gamer behaviour. After several in-depth dis-
cussion we learnt from our industry partners that although 
players usually talk to other players in an online game, 
they almost never directly talk to NPCs. Thus, we needed 
to create a scenario where a specific social attitude (social 
engagement) could be present without the user speaking to 
the NPC. Through multiple brainstorming sessions (see sup-
plementary material Figure S2, we identified social engage-
ment as a suitable social attitude to detect, as it could be 
present merely as a listener behaviour. It is also suitable for 
their current game in production, where the player has to 
gain trust from various NPCs as part of their mission.

To address the challenge of detecting complex social 
behaviours and making it part of the creative process (in 
which the creative director could be involved as much as 
possible) we decided to explore the method of imitation 
learning where the ML algorithms could learn from their 
creative director. We taught an ML model to imitate how a 
human would judge the social interaction (Fig. 1). This is 
because as humans we can easily detect the level of social 
engagement without always being able to verbally describe 



1522	 Virtual Reality (2022) 26:1519–1538

1 3

it, and different people might make different judgements for 
the same setup of behaviours due to their individual experi-
ences. The ML model was trained on human annotations of 
the interaction between the user and the NPC in VR. The 
annotation also took place in VR, making it an immersive 
process (Fig. 3). This enhances the annotator’s capability of 
observing the interaction from multiple angles and moving 
around the scene freely in the recorded interaction.

To make the game accessible to a broad market, we were 
limited to develop the pipeline with data captured from the 
player’s headset and hand-controller. As we collaborated 
with two games companies, we were restricted by their game 
engine platform. We designed the data collection study and 
trained the ML model within the Unity3D game engine 
(www.unity.com), using Unity ML-Agents. Further, we 
needed to use less complex ML models to reduce the com-
putational cost, increasing the successful deployment and 
usage on all VR consumer devices (such as Oculus Quest, 
PSVR and PC-powered VR devices). This would allow the 
game to work real time while on these platforms, maintain-
ing frame rate required for running VR.

We chose an imitation learning approach, rather than, for 
example, supervised classification in order for the method 
to fit more broadly within the framework of virtual agent 
behaviour used in industry. While supervised learning 
focuses on learning direct mappings between an input and 
output, reinforcement and imitation learning methods learn 
policies: probability distributions on the actions agents take 
in particular circumstances. A policy determines which 
actions should be taken in a given state of the world and the 
agent and therefore is a direct driver of the agent’s behaviour. 
This focus on actions taken rather than mappings makes 
it well suited to modelling the behaviour of agents. Rein-
forcement learning is, for this reason, the most commonly 
used learning approach in the games industry. This makes it 
appealing in our context for two reasons (Shao et al. 2019). 
Firstly, it is the most familiar approach in the games industry 
and is therefore more likely to be adopted. Secondly, it is 
more readily extensible to more complex agent behaviour 
models, which might not be the case for supervised learn-
ing. However, reinforcement learning per se is not suitable 
for this application, since it requires a well-defined measure 
of success or failure to use as a reward signal. In a standard 
game the score or win/lose condition can be used; however, 
this does not apply to social interaction. Instead we use 
imitation learning in which the reward signal is determined 
based on how well the agent’s behaviour matches a human 
demonstration.

The main contribution of this work is the introduction of 
a creative director-focused pipeline for machine learning of 
social engagement detection that can be used for other social 
attitudes (see Sect. 7). This pipeline provides three principle 
novel contributions:

First, we designed and conducted an experimental study 
of an immersive data collection process in which partici-
pants listened to an NPC’s monologue (prepared by profes-
sional writers) in a VR environment closely resembling a 
real game social interaction.

In three different VR stages, we gave participants either 
no instructions (VR stage 1), instructions that would very 
likely lead to socially engaged (VR stage 2), or socially dis-
engaged behaviours (VR stage 3). Results from this experi-
ment not only gave us useful insights on how players could 
behave in a VR game but also provided data to train our 
ML algorithms. Participants without instructions did not 
normally engage in social interactions, showing the benefit 
of providing realistic game tasks to guide behaviour during 
data capture (see Sect. 4.3).

Secondly, we developed an immersive environment where 
game designers could annotate the captured data, identifying 
instances of the social engagement. This VR environment 
placed the annotator in the same virtual space as the partici-
pant and the VC, enabling them to watch the interaction as if 
it were a real-life conversation. This allows them to make the 
most effective use of their social cognition and also creates 
an artist-friendly environment for data annotation, which is 
close to real gameplay experiences. This latter turns data 
annotation from a technical task to one that benefits from 
an interaction design skill.

Finally, with our pipeline, we were able to train an ML 
model to detect implicit social engagement in VR interac-
tions with 83% accuracy. Specifically, we used a reinforce-
ment learning algorithm with imitation learning rewards 
from examples set by human experts.

We report our comparison between the model’s configu-
rations and features that worked well. Our results show that 
pre-training the ML model improved the performance as 
did the use of temporal memory via an LSTM network. In 
addition, we propose several psychologically derived data 
features as inputs to the training which we show generalise 
better than raw features.

3 � Related work

3.1 � Virtual characters in narrative games

Narrative or story-driven games are those with a clear sto-
ryline where the players’ actions are based on the story and 
can influence it (Ip 2011). In these type of games, the game 
mechanics are not only centred around actions performed 
in the game, but also in the story behind the gameplay. The 
narrative function in a game creates compelling and engag-
ing play as it borrows aspects from other forms of narrative 
media (such as film and literature), adding emotional depth 
to the player’s experience.
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In many narrative games, the VCs (or NPCs) are a core 
element. Often players can interact with them (fight/get 
help from) or even have a dialogue with them as part of 
the gameplay. The outcome of the interaction often leads 
directly on to the next actions available, making the interac-
tion itself part of the game mechanics. Hence, the narrative 
genre games are designed around the overall story and the 
player’s interaction with the NPCs. Examples of games that 
fall into this category include: The Walking Dead Series 
(https://​www.​skybo​und.​com/​tellt​ales-​the-​walki​ng-​dead-​the-​
defin​itive-​series), Heavy Rain (www.​quant​icdre​am.​com/​en/​
heavy-​rain), Mass Effect (www.​ea.​com/​en-​gb/​games/​mass-​
effect) or L.A. Noire (www.​rocks​targa​mes.​com/​lanoi​re). In 
most cases, these games are non-VR and dialogues with the 
NPCs involve players selecting phrases from a pre-defined 
list, using the buttons from mouse, keyboard, or joysticks.

Recent years have seen the rise of VR games which push 
the game engagement to the next level. Some of these games 
applied the classic game mechanics and interaction methods 
directly from non-VR games onto the VR ones (Hellblade: 
Senua’s Sacrifice VR www.​hellb​lade.​com/), others attempted 
to adapt some of the interactions to 3D controllers. For 
instance, in Moss (www.​plays​tation.​com/​en-​gb/​games/​moss-​
ps4/), players could use the PlayStation controllers to navi-
gate and interact and are directly involved in the narrative by 
controlling the main character (a young mouse called Quill) 
from a third-person perspective. Although these games are 
more immersive than non-VR games, using VR does not 
necessarily lead to improved user experience (e.g. simulation 
sickness in Christensen et al. 2018).

We argue that it is key to enable natural interaction uti-
lising the richer inputs VR offers. Because users can move 
freely in VR, the interaction in these games does not have 
to be restricted by the game controllers. The user’s large 
and diverse range of inputs can be manipulated to design 
interactions with VCs that are closer to the ones taking place 
in real life. This aspect helps maintain the user’s plausibility 
illusion, which means that the user’s experience of interact-
ing with a VC is similar to an interaction that happens face 
to face with a real person.

There are popular VR games that make good use of natu-
ral interactions, such as Beat Saber (https://​beats​aber.​com/) 
or SuperHot VR (https://​super​hotga​me.​com/​vr/). However, 
most of them are not centred on a story, nor the interaction 
with NPCs. Dance Central (http://​www.​dance​centr​al.​com/) 
is another popular VR game where players dance based on 
instructions, mimicking dance movements from VC instruc-
tors. Although there are many NPCs whom the users can 
interact with, the interaction itself is done through a virtual 
mobile phone.

It is more difficult to develop narrative games in VR with 
natural social interactions. This is because the natural inter-
actions with NPCs are more complex than the interactions 

in non-narrative settings (such as slicing cubes with light-
sabers—in Beat Saber). Other VR games, such as Half-Life 
Alyx (https://​www.​half-​life.​com/​en/​alyx/), implement ways 
of interacting with the environment that are very close to 
how people do in daily life. Being able to open doors by 
pushing them, manually reloading weapons, crawl and freely 
move around, enhances users’ feeling of presence. However, 
most of the games like this one, rely on core mechanics such 
as shooting or fighting, making them violent. Having these 
violent behaviours happen in VR can have a strong and pro-
found effect on the players’ emotion and behaviour (Wilson 
and McGill 2018; Bailenson 2018), thus excluding users less 
interested in violent or action-based games.

The games industry is trying to find other ways of design-
ing interaction and other game mechanics that would better 
fit the VR medium. Our collaboration aims to aid the crea-
tion of first-person VR narrative games that make use of the 
VR technology and that is not centred around traditional 
game actions but rather on social interactions.

3.2 � Modelling non‑verbal behaviour for VC

Literature suggests that in most cases, VCs’ non-verbal 
behaviour is generated through statistical modelling, rule-
based or by making use of ML models. These approaches 
lead to autonomous VCs or semi-autonomous ones (partly 
controlled by a human).

In statistical modelling, the VC’s behaviour is generated 
based on probabilities from human-to-human interactions 
such as gaze behaviour based on speaking or listening roles 
(Lee et al. 2002). Rule-based methods use simple hard-
coded algorithms: the non-verbal behaviour is often pre-
captured and played back based on a set of pre-defined rules 
(Marsella et al. 2013). This is sometimes incorporated with a 
Wizard-of-Oz setup, where an assistant steers the VC’s non-
verbal behaviour by using a predefined set of buttons (Pan 
and Hamilton 2018). Lastly, ML models learn non-verbal 
behaviours from a large amount of data and use them to 
drive different aspects of the VC’s non-verbal behaviour in 
social interactions (Ferstl and McDonnell 2018; Greenwood 
et al. 2017).

These methods perform differently based on the type of 
interaction they are applied to. In a structured task scenario 
(where the user’s actions are limited to specific ones), they 
tend to perform well. However, in free-flow scenarios, with 
no pre-defined structure or fixed actions, statistical model-
ling and rule-based models struggle, while ML methods tend 
to show better results (Forbes-Riley et al. 2012; Dermouche 
and Pelachaud 2019a; Jin et al. 2019).

The rapport between the user and VC is essential, espe-
cially when it comes to unstructured situations in social 
interactions. For instance, in a medical doctor training (Pan 
et al. 2018), the non-verbal behaviours link to the overall 
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rapport, while the doctors’ non-verbal behaviours influ-
ence the patients’ perception of their empathy (Brugel et al. 
2015). In social interactions, people adapt and adjust their 
verbal and non-verbal behaviours based on their partner’s 
behaviour and the overall social interaction (Burgoon et al. 
2006). Works such as Dermouche and Pelachaud (2019b), 
Ahuja et al. (2019) or Feng et al. (2017) take into account 
data from all participants in that interaction to detect or gen-
erate different aspects of a social interaction; however, social 
aspects (attitudes) between the user and the VC also influ-
ence the interaction dynamics.

Training an ML model with the data from all participants 
in a social interaction better illustrates it, leading to a more 
robust outcome when compared to data from only one par-
ticipant. This is because, during dyadic human-human social 
interactions, one person’s behaviour highly influences the 
behaviour of the other person (Steed and Schroeder 2015; 
Burgoon et al. 2006). Moreover, humans behave differently 
depending on whom they are interacting with, their culture 
or upbringing and whether they are by themselves or in 
someone else’s presence (Schilbach et al. 2013).

Taking into account this aspect in human–VC interactions 
makes the VC’s behaviour flexible and able to adapt to the 
scenario at hand. Being able to detect different interaction 
dynamics and attitudes between the user and VC could be 
used to develop behavioural models. These drive the VC in 
social interactions, its non-verbal behaviour being depend-
ant on the rapport/empathy between the user(s) and the VC 
(Cafaro et al. 2016).

3.3 � Detecting social attitudes

Detecting attitudes in social interactions could be a complex 
task for a machine to undertake with using only a set of 
rules. Rules are not able to cover the intricacy of interaction 
dynamics. However, it comes naturally to us, humans, to 
recognise and interpret complex non-verbal behaviours, even 
from a still image (Vinciarelli et al. 2011).

There is an increasing body of literature on detecting 
different social attitudes such as dominance, agreement, 
or engagement in interactions (Dermouche and Pelachaud 
2019a; Khaki et al. 2016; Bee et al. 2009). These tackle the 
interaction from video recordings and could be applicable 
to VCs on 2D displays. They make use of features such as 
prosodic information, gaze direction, turn-taking or facial 
expressions (action units). Though these studies are influen-
tial contributions to the field, they are not directly applicable 
in VR. This is because not all user’s features are traceable 
(e.g. facial expressions) and because the interaction in VR 
has more dimensions available (e.g. proximity) that are miss-
ing on a 2D screen.

Social engagement is an important aspect to consider dur-
ing user–VC interactions. As with other social attitudes, the 

VC should adapt its behaviour with a change in the engage-
ment level. This has been researched on many occasions, for 
instance in Gordon et al. (2016), Woolf et al. (2009), Bohus 
and Horvitz (2014), Dhamija and Boult (2017). They pro-
pose methods that tackle engagement in interactions; how-
ever, they disregard the user–VC interaction dynamics loop. 
Dermouche and Pelachaud (2019a) include this loop in their 
work, detecting the engagement from dialogue videos on a 
5-level engagement scale. They also assess the ML models 
that use only one person’s data; however, these models show 
lower performance than the one considering both people’s 
data. They trained the model on actions units (AUs), head 
rotation, gaze angle and the conversational state of the inter-
action. They report that the AUs feature has the highest con-
tribution to the model’s performance. When trained on this 
alone, the model’s performance is 98%, improving to 99% 
when all features are used.

The work proposed here is similar to Dermouche and 
Pelachaud (2019a) as the user–VC interaction dynamics loop 
is taken into account, as well as considering a temporal ML 
model (LSTM) to detect social engagement. However, our 
medium is different (VR vs. 2D screen), and we examine 
different features. The features in their work cannot be repro-
duced here because the user’s head is covered by the head-
mounted display. Thus, the feature with the highest contri-
butions (AUs) is not available in this setup. These studies 
define social engagement, usually in a different way from 
one another, as there are many engagement definitions (Glas 
and Pelachaud 2015). In this work, we do not use a specific 
definition of engagement, rather the annotator defines the 
social engagement behaviour through annotating the social 
interaction within the recording setup (in immersive VR).

To detect social engagement in social interactions, we 
propose a pipeline based on imitation learning. We intro-
duce a method to integrate natural social interaction aspects 
as game mechanics in narrative VR games. The method is 
based on synchronised data from both interaction partici-
pants (NPC and the user), as it would happen in the final 
game. Through this, the game can detect social engagement 
and trigger an action that would make the game progress 
without the user’s explicit input. We propose that the pipe-
line can be also generalised to social attitudes detection.

4 � Method: social engagement detection

Here, social engagement broadly refers to the social engage-
ment one shows in social interactions linking it to the action 
of paying attention and showing interest. However, social 
engagement is a complex and subjective social attitude that 
is difficult to be described using concrete rules. Humans, 
on the other hand, have the ability to easily identify when 
social engagement takes place. Since this understanding is 
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implicit, and we are designing a machine learning process 
based on creative judgements not on an objective definition, 
we do not formally define social engagement. Instead, the 
concept emerges implicitly from the annotator’s judgement 
of participants’ behaviour. In this section, we describe how 
to detect social engagement between a user and a VC in an 
immersive VR scenario using the ML pipeline from Fig. 1.

In the next part of this section, we detail how we used the 
pipeline to collect data for detecting social engagement. We 
collected the data from users and then from the annotator. 
These processes happened separately but both in VR.

We first describe the scenario we designed especially for 
this data collection process (Sect. 4.1), then data collection 
with participants (Sect. 4.2), followed by how the annota-
tion was done (Sect. 4.3). Finally, in Sect. 4.4 there is an 
overview of the human’s annotations and the questionnaire 
result (Sect. 4.5).

4.1 � The scenario for data collection

We created an immersive and interactive VR scenario where 
users’ behaviour can be recorded. Specifically, users can 
interact with a VC (See Fig. 2 and in supplementary mate-
rial, Figure S1) created using Adobe Fuse Software (www.​
adobe.​com/​uk/​produ​cts/​fuse.​html) and rigged & animated 
using Mixamo (www.​mixamo.​com). This interaction took 
place in a room that we designed to resemble a bedroom 
that will be used in the game, as suggested by the game com-
pany we were working with (see Figure S3 in supplementary 
material). The user can interact with, grab or change the 
location of the majority of objects in the room, for example 
vanity box, birdcage, pillow, flower and vase, books, bin or 

chair, but not others, such as picture frame, poster, candle, 
rug, room divider.

4.1.1 � Virtual Character Implementation

During the interaction, the VC carried out a monologue 
about her family and her life. We collaborated with a national 
centre for immersive storytelling where professional writers 
wrote a captivating script. The monologue was pre-recorded 
and played back for each VR stage. Table 1 illustrates part of 
the monologue. While performing the monologue, the VC 
carried out animations for different behaviours as described 
in the monologue script from the professional writers. The 
VC performed generic scripted animations (such as: look 
at bird cage, point to the door) using inverse kinematics to 
express specific behaviours. See supplementary videos for 
the monologue animation.

4.1.2 � Study Design

The study took place in VR and contained three stages based 
on the user instructions, which aimed to trigger both high 
and low social engagement behaviours in users. In the first 
VR stage (S1) the user was told to interact with the environ-
ment and the VC as they would do in a gameplay, allowing 
us to study the range of different behaviours that partici-
pants would perform without prompting, gaining insights 
into the type of gameplay behaviours we could expect. In 
the second VR stage (S2), the user received instructions 
to try to gain the VC’s trust, representing the kind of task 
players would be given in the game. This VR stage aims to 
record mostly high social engagement data. For the third 
and final VR stage (S3), the user received instructions to 

Fig. 2   Example of users interacting with the VC. On the left, the 
user is listening while looking directly at the VC. In the middle, the 
user is patting the VC on the shoulder. Based on the user’s question-
naire after the session, the user is interacting with the VC by trying 

”[...]  to comfort her [the VC] by touching her shoulder when she was 
emotional [...]”. In the image on the right, the user is interacting with 
objects in the environment; in this case, the user is swinging a bird-
cage

http://www.adobe.com/uk/products/fuse.html
http://www.adobe.com/uk/products/fuse.html
http://www.mixamo.com
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explore the room, representing a typical task that players 
would be familiar with from other games. The interaction 
from S3 aimed to produce primarily low social engagement 
data. All tasks were designed based on feedback from our 
game developer partners to represent typical gameplay. For 
an example of the participants’ behaviour in each part, see 
video in supplementary material.

The three VR stages took place in the same order for all 
users: S1, S2 and then S3. Since we are not comparing differ-
ent stages, counterbalancing is not required. It was also not 
possible to counterbalance since doing Stages 2&3 before 
Stage 1 could prime participants to be either social or anti-
social and therefore affect their performance in Stage 1.

Ahead of S1, participants explored a training room that 
was similar to the room in the experiment, where they could 
interact with objects (open drawer/doors, grab objects) and 
move around the room. This extra step ensured the users 
were comfortable with the VR headset, navigation and VR 
interaction techniques. All three VR stages and the training 
step took place in VR with an Oculus Rift Headset. It took 
about 5 min for each VR stage, resulting in each participant 
spending about 20 min in VR, with a small break between 
each VR stage when they filled in questionnaires.

4.2 � User data collection in VR

There were in total 13 participants, 9 males and 4 females, 
aged between 20 and 46 years and an average of 32 years 
old. In terms of VR experience, 31% used VR less than 10 
times, 38% more than 10 times but less than 50 and 31% 
more than 50 times. All participants voluntarily agreed 
to take part in the experiment and signed a consent form. 
The whole process was approved by the University’s ethics 
board.

The data collection took place in two batches because of 
time and participants availability restrictions. The first batch 
was with 6 participants and the second with 7. The only 
difference between the first and second batch is in the VC’s 
location and gaze direction (see Figure S4 in supplementary 

documents). This difference was introduced to investigate 
the effect of the agents’ gaze at various key objects; however, 
this did not give significant results and will not be discussed 
in this paper. Nonetheless, this did allow for a more diverse 
dataset, where the VC had more than one location and vari-
able head and body orientations.

The term session refers to each time the participant took 
part in the virtual scenario (regardless of the VR stage), 
hence, there are three sessions for each participant. There 
is a missing session from S3 in the second batch due to a 
software error, resulting in a total of 38 sessions, with 18 
sessions from the first batch ( 6 × 3 ) and 20 from the second 
( 7 × 3 − 1 ). In total, the time spend in the VR environment 
by all participants is approximate 190 min (38 sessions × 
5 min per session).

The experiment run on Unity3D and we collected data 
from both users and the VC. As described in Table 2, 

Table 1   A snippet of VC’s monologue. The text in italic represents 
the scriptwriter’s indications. As an interactive monologue, the user 
was directly addressed to in sections such as Do you think they would 

have found a new home? For the monologue animation, see supple-
mentary videos

Wistful monologue spoken with a sombre tone
VC: That’s the only place we could laugh freely. The park with the rose finches. They’ve built 
apartments on it now. No longer can I ever go there. I wonder what happened to all the finches? 
Maybe they found a new home

VC stares directly at the player again, her brow slightly crumpled
VC: Do you think they would have found a new home?
VC shakes her head briefly and her shoulders slump over a little bit
VC: No, they’re like me, still looking for somewhere else to call home. I often imagine them 
happy[...]

Table 2   Data were recorded from participants and VC; the head and 
hands are relative to the corresponding root of each VC and the user; 
3D vectors represent the X, Y and Z components in a vector data 
structure; the Quaternion represents the X, Y, Z, W rotation compo-
nents

Information recorded Data type

User’s head position 3D Vector
User’s head rotation Quaternion
User’s left- and right-hand position 3D Vector
User’s left- and right-hand rotation Quaternion
User’s main head root position 3D Vector
User’s main head root rotation Quaternion
User’s left & right index and hand triggers Float
User’s headset velocity & angular velocity 3D Vector
VC’s head position 3D Vector
VC’s head rotation Quaternion
VC’s left- and right-hand position 3D Vector
VC’s left- and right-hand rotation Quaternion
VC’s main root (hip) & chest position 3D Vector
VC’s main root (hip) & chest rotation Quaternion
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we recorded head, hands and root positions and rotations 
from the VC and the user. The root for the VC was situ-
ated in the hip and in the head for the user. The root is 
not same for the user and VC because the character model 
used was structured differently. Apart from that, we also 
collected the user’s index and trigger buttons from the 
controller. They were using these buttons to grab objects 
in the scene. And lastly, we collected the user’s head-
set velocity and angular velocity to capture the user’s 
motion. We chose to collect the position and rotation 
data to record where the user and the VC are in the scene 
and where they are facing. The user’s and VC’s non-root 
(hands and head) information is relative to the root data 
as these elements are ”children” of the root element in the 
Unity hierarchy. These data are then mapped in between 
−1 and 1 to meet the Unity ML-Agents recommended 
best practice (see Sect. 5.3). Because we used these val-
ues straight from the trackers as they were available in 
Unity3D engine, we refer to this dataset as raw data. 
Although there is no clear definition of raw data in the 
literature, in this paper we use this notation to refer to the 
unaltered version of the data.

In total, over 108, 000 frames of multi-modal data were 
used to train and evaluate the ML model (see Sect. 5 and 
Table 4).

4.3 � Human annotations in VR

A human annotator watched a playback of the user interact-
ing with the VC and annotated their interaction.

As social engagement is a very subjective term and it 
has many definitions (Glas and Pelachaud 2015), a human 
annotator marked the data without directly defining social 
engagement. In this case, the annotator implicitly defined 
social engagement by annotating it during the user–VC 
interactions.

The annotator labelled the sessions’ playbacks in random 
order. They did not know which VR stage or which user they 
were annotating.

To assure the annotator had rich social interaction infor-
mation, they could access the user’s and the VC’s camera 
view (showing their current viewpoint). This allowed the 
human annotator to have access to exactly what they were 
viewing at any time while being in the same place as the 
user and the VC. An example of this is seen in Fig. 3A. Dif-
ferent hand controller buttons (‘A’ and ‘B’) switched on/off 
the user’s or the VC’s camera view. The annotator marked 
the beginning of the high or low social engagement period, 
using the other hand controller buttons (‘Y’ and ‘X’, respec-
tively, Fig. 3B). As they pressed ‘Y’ or ‘X’, the ‘−’ or ‘+’ 
signs coloured for 0.5 s with the correspondent colour (red 
or green). The ‘−’ or ‘+’ signs were on the annotator’s (vir-
tual) hand side.

Fig. 3   Expert’s annotations: A Controls mapping the camera view: 
the ‘A’ and ‘B’ buttons act as a switch to activate/deactivate the 
camera view from the user’s or VC’s perspective. B Controls map-
ping the social engagement level: ‘X’ and ‘Y’ record the current 
social engagement level rating, illustrated by colouring for 0.5 s the 
red ‘−’ or the green ‘+’ signs next to the (virtual) hand. C Engage-
ment marked by the human annotator: P1 shows the average (x) and 
median (line) percentage of all 38 sessions by the VR stage. These 

VR stages took place in the same chronological order (S1, S2, S3) for 
all participants. P2 illustrates the average percentage of all sessions 
by the VR stage and by participant. The back dotted line shows the 
50% threshold that delimits the high from low social engagement ses-
sions. Each other coloured line represents one participant. Sessions 
with a large mixture of low/high social engagement are positioned on 
a grey background and marked with a square



1528	 Virtual Reality (2022) 26:1519–1538

1 3

The participant’s avatar was represented in a simple 
way which showed only the head and hands in an abstract 
form (see Figs. 2 and 3A). This was important as it removes 
features that were not accessible by the ML algorithm. 
Instead, the playback displayed only representations recon-
structed from the data collected from the players. Therefore, 
it ensured that the annotator was not making judgements 
based on features that were inaccessible to the ML algo-
rithm and thus cannot be learned by it. Gillies et al. (2015) 
give examples of this problem. Annotators used video to 
annotate motion, but the learning algorithm used motion 
capture data. The result was that annotators (consciously 
or subconsciously) detected different behaviours based on 
features such as muscle tone or facial expression that were 
not available to the algorithm, which was therefore not able 
to learn to distinguish the movements. Although facial and 
eye information are relevant when it comes to social attitude 
detection (see Sect. 3), in this work we focused particularly 
on body gestures. This is because of the technical limitations 
imposed by the HMDs available in the current VR consumer 
market. We also decided not to include voice because each 
player could have very different background noise and differ-
ent accents (making recognition challenging and unreliable), 
and we were informed by our game industry collaborators 
that gamers do not normally talk to NPCs (see the Gamer 
Behaviour and the Market Reach challenges in Sect. 1). Fur-
thermore, the most important features from the literature 
(Sect. 3) such as gaze and body posture are strongly related 
to the feature we chose: head and body movements.

4.4 � Annotations overview

We computed the percentage of high/low social engagement 
labels between the user and the VC from each session by 
each VR stage. We calculated it as a percentage of all high 
(respectively, low) social engagement frames over the total 
number of frames.

As expected, when the users received instructions to 
behave with high or low social engagement (S2, respec-
tively, S3), the users acted accordingly. For VR stage S2, 
the mean of high social engagement is 79%. Similarly, for 
VR stage S3 the mean percentage of high social engage-
ment is 6%. For the VR stage S1, however, the behaviour 
is mixed: most users showed low social engagement with 
some users displaying high social engagement. Figure 3C-
P1 shows these averaged levels over the three VR stages for 
all 38 sessions. In Fig. 3C-P2, these values are separated 
by each user, showing their behaviour in each session. The 
grey background colour highlights the sessions with a mix 
of high and low social engagement. Most of the sessions 
have the expected engagement level (most of S2 recording 
high social engagement and S3 low social engagement level) 
with two exceptions for S2. Many users showed low social 

engagement when not given an instruction (S1). Although 
most of the averaged session’s social engagement can be 
categorised as low or high, there are two sessions (from S1 
and S2) that are very close to the 50% threshold (marked 
with a black dotted line). These two sessions have a square 
marker in the Fig. 3C-P2.

4.5 � Questionnaire results

Participants answered a few questions after each VR stage. 
These questions were customised to the VR stage they just 
experienced. They could also leave some free comments 
about that stage.

4.5.1 � VR Stage 1

After S1 (where they would hear the monologue for the first 
time without any instructions), they were asked to answer 
questions about the VC, such as: to list the family members 
the VC was talking about, the relationship the VC has with 
her family and how they think the VC was feeling; they were 
also allowed to write any comments about this stage.

Three participants wrote that they did not listen to the 
VC and another six that they stopped listening after a while; 
these participants had an incomplete or wrong list of family 
members, or wrote that the VC’s relationship with her fam-
ily is ‘loving, good memories’ (the VC was talking about 
the affair her mother had with her uncle and how her father 
did not come to her mother’s funeral). Based on the anno-
tator’s marking, these participants had either a low social 
engagement score, less than 15% (the ones who said they 
did not listen) or between 19–26% and one score of 43% for 
those mentioning they stopped listening after a while. The 
remaining four participants were able to answer the ques-
tion about the family members correctly, or almost correctly 
(two of them missed the mother, and one even mentioned 
the finch—the bird that the VC was talking about). In the 
general comments part, those participants also wrote about 
the way they perceived the monologue and what they think 
of the VC. Based on the human annotator, these participants 
had over 97% social engagement score.

4.5.2 � VR Stage 2

Here, we instructed the participants to gain the VC trust. 
After this VR stage they were asked how well they per-
formed at gaining the trust and also to write any comments 
regarding this VR stage. The majority of them (11 out of 
13) described what they tried to do to gain the VC’s trust. 
They said they listened, tried to be empathetic, nod when 
appropriate and ‘stopped messing around’ because ‘If I 
start looking through drawers and cupboards, I think she 
would be more suspicious of me’. These participants got 
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over 76% high social engagement score based on the anno-
tator’s marking. One of the remaining two participants said 
they were ‘expecting some ”helpers” to point out what you 
can or can’t do to a character’ and that they could not earn 
her trust by themselves. This participant’s score of social 
engagement was 48% . The last participant wrote that they 
did not interact with the VC at all which reflects their low 
score of 20% given by the human’s annotations.

4.5.3 � VR Stage 3

After the last VR stage, where the instruction was to 
explore the room and remember as many objects as possi-
ble, the participants were asked to list all items they recall 
and to write any comments they have about this VR stage. 
All of them described how they explored the room and 
how that felt like: for some, it felt more immersive than 
the previous sessions, for others it was the opposite: ‘hav-
ing full control on exploring I lost a bit of immersion as I 
was behaving as I wouldn’t do in the real world’. Others 
mentioned that the VC did not comment on them explor-
ing the room (the VC having the same monologue as in 
the first sessions) or that they found ‘it more interesting 
to interact with the objects while she speaks about them, 
(looking at the birdcage when she talks about the finches)’. 
All participants reported a high number of items (from 
9 to 17, with an average of 14), while in the room there 
were 23 items. As expected, the annotator gave low social 
engagement scores to all participants in this VR stage, as 
it can be seen in Fig. 3C, P1 and P2.

In summary, the results for S1 show that participants 
had a range of different behaviours when they were not 
prompted with a particular task, but with the majority 
biased towards low engagement. S2 and S3 were success-
ful in generating the desired behaviour, using realistic 
gameplay tasks. This shows the benefit of giving partici-
pants tasks to implicitly guide their behaviour (though the 
inclusion of unprompted behaviour could still be useful to 
identify unexpected behaviour patterns).

5 � Training the detection component

We trained the model using imitation learning with the 
Unity ML-Agents platform (v0.11) and their main rein-
forcement learning algorithm Proximal Policy Optimiza-
tion (PPO). In this section we explain the algorithms used 
(Sect. 5.1), then in Sect. 5.2 we cover the ML configura-
tion, followed by what input data we considered (Sect. 5.3) 
and ending with Sect. 5.4, the ML implementation.

5.1 � ML algorithms

We proposed different model structures, including pre-
training with recorded data and adding temporal memory 
through a recurrent neural network (Long Short-Term 
Memory: LSTM). Below we present a brief description 
of each model.

PPO (Schulman et al. 2017) is a Reinforcement Learn-
ing algorithm and the idea behind these algorithms origi-
nated from behavioural psychology. It refers to an agent 
that changes its behaviour to maximise a reward func-
tion. The goal of a reinforcement learning algorithm is to 
develop a policy. This policy maps states to probabilities 
of selecting a certain action, with the aim of maximising 
the expected reward. More specifically, PPO trains a sto-
chastic control policy where the agent learns its behaviour 
from experience without prior information on the envi-
ronment or the task. Here, stochastic refers to having a 
probability distribution associated with all actions from 
each state.

To ensure that the model has a good starting point for 
optimisation, we pre-train the model using behaviour clon-
ing (a simpler imitation learning model than the Genera-
tive Adversarial Imitation Learning, described below). 
This uses the training examples to find a good initial set 
of weights for the neural network for the full training 
algorithm.

Generative Adversarial Imitation Learning (GAIL) 
(Ho and Ermon 2016) is an approach to imitation learn-
ing, learning to execute a task by imitating human perfor-
mance. It does this by generating reward signals from a 
human performance that are used to train the PPO reinforce-
ment learning algorithm. It relies on data usually provided 
via human (or expert) demonstrations to learn a policy that 
behaves similarly to the human. The algorithm compares 
state-action pairs (each input and current circumstance with 
the corresponding response) from expert data against state-
action pairs generated using the policy. In the same time, a 
classifier trains to differentiate expert data from the gener-
ated one. Thus, the policy develops to generate data that the 
classifier would mistake for the expert data.

Long Short-Term Memory (LSTM) (Hochreiter and 
Schmidhuber 1997) is a recurrent neural network. It learns 
a series of events with time order that have long time inter-
vals. Based on this, it automatically determines the opti-
mal time lags (time between 2 consecutive events), used for 
the next prediction. Its neural network is composed of one 
input layer, one output layer and one recurrent hidden layer. 
The recurrent layer contains a memory block structure that 
memorises the temporal state and controls the information 
flow. It learns how past actions unfolded, thus knowing when 
to incorporate or drop past events and take future decisions.
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5.2 � Proposed ML configurations

PPO provides positive rewards for performing the desired 
behaviour and negative ones for the non-desired behaviours. 
In this case, to mimic an imitation learning scenario, the 
rewards are calculated using GAIL. These rewards show 
the performance on the action the model took and influence 
future actions.

We hypothesise that both pre-training it and adding a tem-
poral memory (through LSTM) would improve the PPO’s 
performance. The behaviour learned from pre-training influ-
ences the action taken by PPO, at the same time, PPO’s 
policy attempting to maximise the reward. The temporal 
memory takes into account past actions; hence, the algo-
rithm considers past behaviour and current actions when 
deciding what to do next (what action to take). We hypoth-
esise this because the behaviour that needs to be learnt is 
complex and temporal. We compare these models with those 
without (using random initialisation instead of pre-training 
and a standard feedforward network instead of LSTM).

5.3 � Input data for proposed ML training

There is strong evidence in the literature that certain behav-
iour aspects (such as body posture or gaze) are linked to 
social engagement (Mota and Picard 2003; Sanghvi et al. 
2011). Based on this, we trained the model with psycho-
logically based features, such as the user’s facing direction, 
distance from the VC, interaction with other objects and 
their velocity and angular velocity (as shown in Table 3). 
Since these are calculated from the raw data we collected, 
we call them derived data.

The user’s distance from the VC is calculated based 
on Hall’s personal space (Hall 1966). We calibrate the 
virtual space units using the average human’s height of 
1.65 m (Max Roser and Ritchie 2013) and mapped it to 
the user’s height in the virtual space units from the VR 
headset. Hall’s personal space has three different space 
layers: intimate (0.4 m), personal (1.1 m) and social space 
(3.6 m). From these three, we use the intimate and social 
spaces as the lower and higher boundary. We calculate 
these thresholds from the VR headset height, which we 
assume it represents the average person’s height (1.65 m). 

Therefore, the 0.4 m intimate space threshold is calcu-
lated from height/4 = 0.4 m; and the 3.6 m social space 
threshold from height/0.45 = 3.6 m. The values are then 
mapped between 0 and 1. Thus, 0 is the most further 
away from the VC: the maximum and above of social 
space and 1 is the closest to the VC: minimum of inti-
mate space and below.

The use of derived data features inspired by the psy-
chology of social interaction has the potential to improve 
ML performance. However, recent trends in Deep Learn-
ing have shown that deep neural networks are able to learn 
effective representations directly from raw data (Bengio 
et al. 2013). In our evaluation, we, therefore, compare 
models trained on derived data with those trained directly 
on raw data. The raw data used here was pre-processed 
to comply with the Unity ML-Agents best practice. We 
mapped each element of the 3D vector raw values from 
the maximum and minimum positions possible to values 
between −1 and 1. This comparison was done by training 
the best performing model configuration on both raw data 
and derived data, detailed in Table 2.

Both models (derived and raw data) use the human’s 
annotations as ground truth data, and its output is a dis-
crete binary value. The discrete value shows the current 
user’s social engagement at each frame. It can have the 
value of 1, for the user’s high social engagement, or −1 , 
for the user’s low social engagement.

These two options aim to mimic the human’s ratings 
of low/high social engagement during the annotation. To 
label the data, the human presses buttons for high or low 
social engagement behaviour; the data in between the but-
ton-presses represent the most recent pressed value. For 
instance, if the annotator marks high at time ti , low and 
time ti+1 , and then high again at ti+2 , all timeframes from ti 
to ti+1 are labelled high social engagement, all timeframes 
from ti + 1 to ti+2 are low social engagement and everything 
from ti+2 until the next button pressed is high again. This 
way, the annotations are in the same format and frequency 
as the model’s output, generating a value for each frame. 
The data have a frequency of 9 to 10 frames per second. 
We decided on this frequency as it has been used in the 
literature for low-level and subtle behaviour such as fast 
head nods (Hale et al. 2020).

Table 3   Derived input data. These are calculated based on the raw data detailed in Sect. 4.2 Table 2

Description Data type

Distance between the user and VC, based on Hall’s personal space (Hall 1966), value mapped between 0 and 1 Float
User’s facing direction: the angle between VC’s head rotation and user’s head rotations divided by 180 Float
Interaction with objects: data from the controllers’ trigger (the trigger allows objects interaction) Float
User’s headset velocity 3D vector
User’s headset angular velocity 3D vector
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The dataset for training with both raw and derived input 
data is detailed in Table 4, also showing the percent of the 
annotated low and high social engagement for all three 
VR stages. There are fewer dataframes in the last VR 
stage (S3) as there is a missing session due to software 
error. The missing session does not unbalance the data-
set because the expected social engagement from that VR 
stage is low engagement, and there are already more than 
half low social engagement sessions from S1 (see Table 4 
and Fig. 3C-P2).

5.4 � Implementation

We analysed two additions to the PPO ML structure: pre-
training and a temporal memory via LSTM. Therefore, we 
compare the PPO algorithm implemented with different 
configurations: with and without pre-training it, and with 
and without LSTM.

We randomised the dataset sessions and divided it into 
three folds of 13, 13 and 12 sessions each, for a 3-fold 
cross-validation; the training data consists of two folds 
while the remaining one represents the evaluation data. 
The hyper-parameters are tuned for both models with 
derived and raw input data (see Table S1 in supplementary 
material). The hyper-parameters corresponding to LSTM 
and pre-training are dropped for the training configurations 
where these models are not used (in PPO+GAIL+LSTM, 
PPO+GAIL+PreTrain or PPO+GAIL).

6 � Results

In this section, we present the results of the presented 
pipeline. Section 6.1 covers how the model’s prediction 
data is post-processed to match the format of the ground 
truth data. In Sect. 6.2 we present the results of the models 
trained with derived features, while in Sect. 6.3 we provide 
the comparison of the model trained with derived features 
and the model that uses the raw dataset.

6.1 � Data post‑processing

We post-process the data in two different occasions: (1) we 
smoothed out the model’s predictions data to remove noise 
and (2) we averaged the model’s predictions and the ground 
truth data from a 1-s section. The latter process returns one 
value for each section, which will be used to compare the 
model’s predictions to the ground truth data. We detail the 
post-processing actions in the remaining of this section.

6.1.1 � First data post‑processing

We describe how the human annotates the ground truth data 
in Sect. 4.3. Briefly, the annotator marks only the change 
in the social engagement (from low to high or from high to 
low engagement); thus, the ground truth data contain large 
blocks of either low or high social engagement data. The ML 
model outputs the predictions in a different way: it predicts 
a social engagement value at each frame. In many cases, 
this can result in noisy output, with regions of low social 
engagement containing a few frames of high social engage-
ment (or vice versa). For instance, if we take a segment of 
length 10 dataframes (approx. 1 s), it can contain a majority 
of high engagement values, say 8, the remaining 2 being 
low engagement values. If we would compare frame-by-
frame, the 2 low social engagement values are in minority 
in that window, and they can be seen as noise. When evalu-
ated against the ground truth data, the 2 dataframes would 
appear as false negatives if the whole window would have 
high social engagement values.

Because of this difference between how the annotator cre-
ated the ground truth data and how the models output the 
predictions, we post-process only the model’s output data 
to remove the noise.

We smooth it out by applying a rolling window (with 
evenly weighted points) of 0.5 s on the model’s outcome 
(see Eq. 1). This results in a float value; because it is not 
compatible with the ground truth data (integer datatype), we 
average the result to 1 if the rolling window result is higher 
than 0 and to −1 otherwise (Eq. 4). The post-processing is 
further explained below:

Generically, a rolling window can be represented as:

The number of samples in Wj,h

i
 being: |Wj,h

i
| = j + h + 1 . The 

notations j and h refer to the number of items to consider 
for the window that appear on the left side, respectively, 
on the right side of i. For a 0.5s window size on a 10fps 
frequency, the number of samples is 5, hence the values for 
j and h could be 2 and 2, respectively, creating a symmetric 
window centred in xi.

(1)W
j,h

i
= {xi−j,… , xi,… , xi+h} j, h�ℕ.

Table 4   Proportions of High and Low social engagement annotated 
data used for all three VR stages for training the model. In this table, 
Ann. is short for Annotations and S1 − 3 for each VR stage

Sessions Data frames High ann. % Low ann. %

S1 13 37,226 37.1 62.9
S2 13 37,288 78.5 21.5
S3 12 33,931 6.1 93.9
Total 38 108,445 41.5 58.5
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Given X containing all dataframes from a session, such 
as:

a window can be represented as:

Then, the value for a dataframe ( xi ) from X is:

6.1.2 � Second data post‑processing

Although the ML model outputs a value at each time frame, 
the social engagement is very unlikely to switch from one 
state to another and then back to the initial state in a very 
short period of time (one-tenth of a second). Similarly, in 
other studies, the authors consider certain time sections. For 
instance, Yu et al. (2004) manually divide the conversation 
in utterances and use those for prediction and in Bohus and 
Horvitz (2014), they consider a 5-s section for forecasting 
disengagement.

We take a similar approach and average both ground-truth 
data and the predicted data over a time of 1 s. With this, we 
compare the model’s output to the ground-truth data and 
calculate the performance metrics.

We calculate the mean value from each time section, then 
we round the result to use: 1 if the mean is greater than 0.49; 
0 if the mean is in between −0.49 and 0.49; and −1 if the 
mean is smaller than −0.49 . Thus, given the time section St:

and T is the session length in seconds, then the value V of 
each section is:

The results have three categories: 1 for High social engage-
ment, 0 for Mix social engagement and −1 for Low social 
engagement. The Mix social engagement appears when a 
time section contains very similar numbers of High (1) and 
Low ( −1 ) datapoints, such that the average on that time sec-
tion is greater than −0.49 but lower than 0.49 (as in equa-
tion above). In the ground truth data, this tends to happen 
at transitions between low and high, but in the prediction 
data it can also happen when the model is not very stable, 
the output fluctuating from one social engagement rating to 

(2)X = {x1, x2,… , xn}

(3)W
2,2

i
= {xi−2, xi−1, xi, xi+1, xi+2}, i�[3, |X| − 2]

(4)xi =
1

|||W
2,2

i

|||

∑
xm𝜖W

2,2

i

xm

{
−1, xi ≤ 0

1, xi > 0

(5)St = (xt, xt+1], t�ℕ, t�[0, T]

(6)Vsection =
1

�St�
�
xm𝜖St

xm

⎧
⎪⎨⎪⎩

1, Vsection > 0.49

0, − 0.49 ≤ VSection ≤ 0.49

−1, Vsection < −0.49

another. These are the three categories for all model’s confu-
sion matrices as seen in Tables 5 and 6.

To compute the performance, we compare each rounded 
window value from the true data to the corresponding time 
window in the predicted dataset. We evaluate all trained 
models based on accuracy and F1-score metrics. Accuracy 
is a measure that shows how often the model’s output is cor-
rect. F1-score (Chinchor 1992) measures how well a model 
performs, combining precision and recall by their harmonic 
mean (Eq. 7). Precision is the number of true positives (true 
data that is predicted as being true) divided by the number 
of true positives plus the number of false positives (true data 
that is predicted as being false), while recall is the number of 
true positives divided by the number of true positives plus 
the number of false negatives (true data that is predicted as 
being false):

6.2 � Model configurations

We consider different model configuration for training the 
model with the derived data (Table 3). We compare these 
configurations to test our assumption that the temporal 
model (LSTM) and/or pre-training improve the performance 
of detecting social engagement. We performed these tests 
using derived input data related to social engagement, as 
described in Sect. 5. The results for each configuration are 
calculated using a 3-fold cross-validation method (two folds 
for training, one fold for testing).

A repeated two-way ANOVA conducted in SPSS (ver-
sion 24) indicated both LSTM and pre-training had a 
significant effect on the accuracy and F1-score (accu-
racy -  LSTM: F(1,37) = 58.52, p < 0.001, 𝜂2 = 0.613,  
p r e - t r a i n i n g :  F(1,37) = 386.12, p < 0.001, 𝜂2 = 0.913; 
F1-score - LSTM: F(1,37) = 14.83, p < 0.001, 𝜂2 = 0.286, 
pre-training F(1,37) = 412.74, p < 0.001, 𝜂2 = 0.918 ), there 
is also an interaction effect LSTM x pre-training (accu-
racy  F(1,37) = 11.13, p = 0.002, �2 = 0.231 ,  F1-score 
F(1,37) = 7.57, p = 0.009, �2 = 0.170 ). This means both 
LSTM and pre-training have significantly improved the 
result, and both should be used at the same time to get the 
best results.

Figure 4A shows the variance of accuracy and F1-score 
metrics on different model configurations trained on derived 
data; the numbers on the figure represents the averages of 
these. As hypothesised, the configuration with both LSTM 
and pre-training performs the best in terms of accuracy 
and F1-score average (83.4% and 84.1%). The second best 
is the configuration where the model is pre-trained but 

(7)F1 =
2 × precision × recall

precision + recall
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does not have a temporal memory (LSTM). Although its 
average accuracy and F1-score are considerably higher 
than the other two configurations, the model results show 
a high variance compared to the best performing one 
(PPO+GAIL+LSTM+PreTrain), see Fig. 4A. Without con-
sidering the outliers, it registers values as low as 9.9% for 
F1-score and 27.4% for accuracy.

The remaining two models show a low performance: 
31.8% accuracy, 40% F1-score for PPO+GAIL+LSTM 
configuration and 34.2% accuracy, 45.2% F1-score for the 
PPO+GAIL configuration. This indicates that pre-training 

has a significant contribution to the model configuration. 
However, pre-training and LSTM together with PPO and 
GAIL performs the best across all tested data.

The confusion matrices for all configurations are shown 
in Table 5. The three categories (Low, Mix and High) are 
a result of the second data post-processing (see Eq. 6). 
Unlike PPO+GAIL+LSTM+PreTrain, model configura-
tions PPO+GAIL+PreTrain, PPO+GAIL+LSTM and 
PPO+GAIL have a high values in the Mix category: 60, 110 
and 102 compared to the actual amount of the Mix category: 
3. The Mix category represents roughly equal amounts of 
high and low social engagement values (1 and −1 ). High 
proportions of Mix is therefore likely to indicate a noisy 
model, the prediction fluctuating from one social engage-
ment rating to another.

6.3 � Derived versus raw features

Based on results in deep representation learning (Bengio 
et al. 2013), we hypothesise that the model trained with raw 
input data might yield similar results as the models trained 
with the derived data. The raw features are the base of the 
derived features. Therefore, an ML model with a complex 
configuration such as (PPO+GAIL+LSTM+PreTrain), 
which performed best with derived data, could be able to 
infer from the raw data and generalise to detect the engage-
ment level in a social interaction (Bengio et al. 2013).

Therefore, we train the best performing configuration 
with raw data, following the same procedure to calculate 
the accuracy and F1-score. The mean values of these met-
rics are not too low, with 60% accuracy and 63% F1-score; 
however, there is a very high variance in the model’s pre-
dictions (Fig. 4B -combined dataset). We collected the 
data used for training both types of models (with raw 
and derived data) in two slightly different setups (see 

Fig. 4   A Accuracy and F1 score for all model configurations on 
38 sessions. PreT stands for pre-training. B Accuracy values for 
PPO+GAIL+LSTM+PreTrain model configurations trained with 
derived and raw input data on 38 sessions. The high eng and low 
eng refers to high, respectively, low engagement data based on the 
human’s annotations. The (b1) and (b2) represents the first or second 
batch in which the data were recorded. Finally, combined refers to the 

dataset that puts together all the high, low and average engagement 
data. The average engagement data are omitted as there are only 2 
sessions, one in each batch. The accuracy for these are: from batch 1, 
54.9% and 58.0% for the model with derived, respectively, raw data; 
from batch 2, 51.7% and 37.0% for the model with derived, respec-
tively, raw data

Table 5   Confusion matrices for each model configuration. The con-
fusion matrix for each configuration is an averaged confusion matrix 
from all 38 sessions. The Low, Mix, High are the categories, denot-
ing high social engagement, mix social engagement and low social 
engagement. The rows show the actual (Act.) data (from the ground 
truth), the columns show the predicted (Pred.) data (the model’s out-
come)

The algorithms in bold are additions to the base mode

Pred.

Act. Low Mix High

PPO+GAIL+LSTM +PreT Low 145 2 21
Mix 2 0 2
High 21 1 97

PPO+GAIL+PreT Low 136 19 14
Mix 2 0 1
High 32 41 47

PPO+GAIL+LSTM Low 77 65 26
Mix 2 1 0
High 60 43 14

PPO+GAIL Low 44 61 63
Mix 1 1 1
High 25 40 54
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Sect. 4.2). Briefly, the first setup (batch 1) has the VC in a 
different location than in the second setup (batch 2); apart 
from that, the VC’s gaze behaviour is triggered at objects 
at the exact same time in both batches; however, the VC is 
gazing at different objects in batch 1 compared to batch 2.

We suspected that the VC’s new position (in batch 2) 
might have influenced the model trained with raw data. This 
is because the model performs well on the sessions from batch 
1 (for both high and low social engagement), but very low on 
the sessions from batch 2, especially when trying to detect high 
social engagement. The difference between the two batches 
is in the VC’s location. Since the input for training the model 
includes the VC’s location, we consider this a potential reason.

To test this, we separate the results into each of two 
batches and into the engagement categories (low and high). 
Figure 4B shows a comparison of the two models’ accuracy: 
one model trained on derived data and the other on raw data. 
The F1-score values have a very similar trajectory, hence 
they are omitted from the figure to not clutter it (see Fig. 
S5 in the supplementary documents for the F1-score val-
ues). Figure 4B explains the reason why the raw model has 
such a large accuracy (and F1-score) variance over these 38 
sessions. The high engagement data from the second data 
recording batch register very low accuracy and F1-score 
values compared to the high engagement data from the first 
batch. There is no significant difference between the low 
engagement data from the first and second batch.

We ran a 2 × 3 Mixed ANOVA analysis (within-group 
factor treatment: raw input data, derived input data; 
between-group factor VR stage: S1, S2, S3). This reveals 
that the derived data performed significantly better than raw 
(p < 0.001), and that there is a significant VR stage effect(p 
= 0.045), but no interaction effect was found (p = 0.172). 
Post hoc Tukey test reveals that the model performed signifi-
cantly better for VR stage S3, as compared to VR stage S2(p 
= 0.035). No other effects were found between VR stages.

Table 6 contains the confusion matrices for models 
significant effect on the accuracy and trained on derived 
and raw data split based on the data collection batch. The 
model trained on raw data fails to detect a large proportion 
of the High social engagement parts, mostly miss-predict-
ing them as low social engagement. This model also shows 
a much higher fluctuation of social engagement rating per 
1-s window. This is illustrated in the high amount of pre-
dictions for the Mix social engagement, 40 ( 20 + 1 + 19 in 
Batch 1) and 45 ( 26 + 1 + 18 in Batch 2) compared to the 
actual value of 4 ( 2 + 1 + 1 in Batch 1) and 3 ( 2 + 1 + 0 
in Batch 2).

The model trained with raw data might have learned 
very specific features, for example, the exact position of 
the VC. If that condition is not fulfilled (the VC is not 
positioned on the same location or has a changing posi-
tion), then the raw data model incorrectly predicts the 
engagement level. This is a problem as it is very common 
in games to have VCs that would move in the environment.

There could be a possible solution to improve the raw 
model’s performance while keeping the VC active in 
the scene. To do this, more data needs to be collected 
with the VC in different locations and using more par-
ticipants to interact with the VC. This might decrease the 
variance in accuracy for the raw model. However, the pro-
cess of recording the data and training the model is very 
expensive and time-consuming, making it unfeasible for 
a game production process. The use of psychologically 
inspired derived features is therefore a better approach 
within the practical time and budget constraints of game 
development.

Table 6   Confusion matrices for the model configuration 
PPO+GAIL+LSTM+PreTrain, with derived and raw data. The con-
fusion matrix for each model is an averaged confusion matrix sepa-
rated in two data collection batches: first batch (with 18 sessions) and 

second batch (with 20 sessions). The Low, Mix, High are the catego-
ries, denoting High, Mix and Low social engagement. The rows show 
the actual (Act.) data (the ground truth), and the columns shows the 
predicted (Pred.) data (the model’s outcome)

 Bold  is the confusion matrix showing the low performance of the model trained with raw data on 2nd batch data

Derived data Raw data

Pred. Low Mix High Low Mix High

Act.

1st batch Low 137 2 15 112 20 21
Mix 2 0 2 2 1 1
High 26 1 103 30 19 82

2nd batch Low 152 3 27 148 26 8
Mix 1 0 2 2 1 0
High 16 1 90 82 18 6
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7 � Generalisation: ML pipeline for social 
attitude detection

In this section we go over the pipeline used to detect social 
engagement (Sect. 4), generalising it to be used for detect-
ing other social attitudes detection (such as sympathy, 
affection or aggression).

Both the data collection and the data annotation take 
place in VR. First, a user interacts with the VC and their 
behavioural data is collected (See Fig. 1A). Next (Fig. 1B), 
a human annotator labels the presence of a social attitude, 
while watching a playback of the user–VC interaction in 
VR.

The data from the user–VC interaction are the base data 
for training the ML model. It consists of data about the 
user’s and VC’s activity, such as the movement (head and 
hands position and rotation), interaction with other objects 
or with each other and so on. By performing this data col-
lection in VR, we are able to create a situation that is as 
close as possible to real gameplays and also to real social 
interactions. The data collected in this step can be different 
to the one we collected for social engagement detection 
(Sect. 4); it should contain relevant data for the specific 
social attitude (e.g. eye or pulse information).

These data are then played back in VR to be labelled for 
training the ML model. Because of this, it should contain 
instances of the social attitude’s presence (positive value) 
and its absence (negative value). Thus, the VR scenario 
needs to contain situations that allow both positive and 
negative examples of a participants’ social attitude.

The human annotator is a key figure in this pipeline. 
They have the ability to look at the behaviours from the 
interaction and choose the ones that resemble the com-
plex social attitude the ML model will learn to detect. In 
game development, a creative director could be the annota-
tor. They use their artistic vision on the final product and 
decide what social attitude is important to be detected in 
a particular scene in the game, while a user is socially 
interacting with a VC/NPC.

To decide this, instead of having to provide a concrete 
definition of the social attitude, the annotator labels it 
while observing the playback interaction.

In our social engagement example, they can perform 
this action by pressing a ‘plus’ button on the VR control-
ler when they see the attitude (social engagement) and 
a ‘minus’ button when there is the lack of it (Fig. 3B). 
This way, the annotations conceptualise the complex and 
abstract activity (social attitude). Then, the trained ML 
model will detect this activity during social interaction. 
Other features could be included in the labelling task in 
VR to ease and improve the outcome based on the social 
attitude (e.g. video feed overlay).

By annotating in VR, the annotator is able to make full 
use of their social cognition skills as they would do in a 
real-world social interaction. By performing it in a game 
environment, it can become a game design task, in which 
a designer can judge the interaction as it would fit into the 
real gameplay.

The ML model trains on the dataset: the user’s data and 
the annotator’s labels as ground truth data (Fig. 1C). The 
ML model replicates the human’s annotations by using an 
imitation learning algorithm approach, thus mimicking the 
human intuition of marking an attitude within a social inter-
action (Fig. 1D).

After training the model for detecting, for example, 
aggression, it can be applied to different scenarios. The 
model outputs whether aggression is present or absent based 
on the input data from the interaction (Fig. 1E–G). Finally, 
the output can be manipulated and used real time in applica-
tions (e.g. games) to trigger various actions or behaviours 
based on the designer’s vision. For instance, when the player 
is detected to be too aggressive, the NPC could stop talking 
being animated to reflect the behaviour received; when the 
player is showing empathy, the NPC will start talking again 
and their animation would change indicating that.

8 � Limitations and discussion

The exact results on the social engagement detection pre-
sented in the paper could be difficult to replicate without 
the same annotator. However, the aim of the project was 
not to create a general detection model for social engage-
ment (or other social attitudes) because individuals often 
have their own standards of what counts as engaged or not 
(Glas and Pelachaud 2015). In our case study of detecting 
social engagement using the proposed pipeline, instead of 
explicitly defining the present or absent criteria of a certain 
social attitude, we rely on the annotator’s ability to label it. 
In game companies, this annotator role should be taken by 
their creative director, making the labelling itself part of 
the creative process. In other words, we aim to detect the 
High/Low social engagements that are modelled based on 
the creative game designer (the annotator) markings. Dur-
ing the VR interaction playback, they would be labelling the 
behaviours identified in players which are related to the pres-
ence or absence of social engagement. Thus when real-life 
players exhibited those behaviours during gameplay, certain 
events (NPC behaviours, or change of game environment) 
could be then triggered.

For this work, the annotator marked the data in a binary 
way: either high or low social engagement data. This can 
be a limitation to our approach, since social attitudes are 
not necessary binary. We decided to go with this approach 
because the algorithms within the Unity ML agents have 
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the requirement of a binary input data hence we kept the 
annotations and the model’s predictions binary. However, 
the model predicts at a higher frequency (9 to 10 frames per 
second) compared to other work such as Yu et al. (2004) 
where predictions take place per each utterance, or Bohus 
and Horvitz (2014) where they use a 5-s window to fore-
cast disengagement. In this case, the game system can use 
the prediction model at finer level. For instance, the game 
designer can choose to calculate an averaged social engage-
ment over a time spam of 5 s (as in Bohus and Horvitz 
2014). For that time window there will be a total of 45–50 
( 5 × 9 , 5 × 10 ) predictions which can be used to calculate a 
fine-grained outcome, rather than a binary one.

We ensured the annotator was making judgements only 
on the data available to the ML model. If the annotator was 
making judgement using data inaccessible to the ML algo-
rithm, we argue that the algorithm cannot learn by it, as 
described in Gillies et al. (2015). However, we based this 
decision on prior literature and we did not attempt to anno-
tate the interactions on more data compared to the one used 
for training the models. For future work, we could rerun the 
annotation process on the user–VC interactions giving the 
annotator more data. Then we could train the ML models 
using these labels but with less data than the one used for 
labelling. We could then compare the results with the ones 
already reported in this paper.

We collected data from participants in a western city 
who volunteered to take part in the study hence they might 
have a interest in XR. For this reason, the behaviour and 
social attitude expression recorded are linked to the cultural 
background. As future work we plan to run studies with 
participants from other backgrounds to enrich and compare 
the dataset and the detection model. Even though we col-
lected data from 38 sessions and from 13 participants, the 
dataset was not very large. We also selected features that 
were readily available to train the ML model. It would be an 
interesting future work to consider different array of features 
available from more cutting edge hardware.

We run the data collection in two batches to investigate 
the effect of the agents’ gaze at various key objects. This 
aspect is out of scope for this paper; however, recording 
the data in two batches with a distinct VC location for each 
allowed for a more diverse dataset (see Sect. 4.2). As future 
work, we could diversify it even more by assigning a differ-
ent VC starting point for each participant.

Despite our limitations, we received very positive com-
ments from our industry collaborators. The industry col-
laborators helped to create the tool, and as a retrospective 
note, they commented on how non-verbal communication 
being in the centre of the tool, and that the use of non-verbal 
behaviour widens the applicability of this work for other 
types of games and application within the entertainment 
and games industries. During the collaboration we chose 

the social engagement case study; however, one of the game 
companies applied the pipeline for developing a VR kara-
oke-style application where the user would sing along an 
NPC singer, which will change their attitude depends on the 
social attitude of the player in real time. Likewise, they did 
not define the social attitude, but the annotation was based 
on the way the players sang, moved, performed, and how 
involved they were in the experience. The CEO of the game 
company commented on their experience of building the 
VR karaoke app using the immersive ML pipeline: ‘The ML 
project was very interesting to be a part of, seeing it grow 
from a very simple idea into something quite sophisticated. 
What impressed me the most was seeing the same principles 
used in a nineteenth century narrative game also applied to a 
modern karaoke game. This generalisation convinced me of 
the merit of the approach taken. From experience I think it 
is relatively straight forward to get a system working on one 
context, but to reapply the same principles in a fundamen-
tally different context proves it’s true worth.’

9 � Conclusion

In this paper, we present our collaborative work with two 
games companies to develop a pipeline with an immersive 
data collection and annotation in VR for training an ML 
model. We design the pipeline to support the games industry 
creative design process and to be integrated into production-
ready VR games for the consumer market.

The pipeline is used to train a ML model to detect social 
engagement using a reinforcement learning (PPO) approach 
with rewards based on an imitation learning algorithm 
(GAIL). We also presented the pipeline as a general tool 
to detect social attitudes, such as sympathy or aggression.

We consider different model configurations and input 
data for training the model: derived data and raw data. The 
model using derived data performs the best, while the model 
based on raw data is not able to generalise to different VC 
positions. The model configuration that yields the highest 
accuracy and F1-score ( 83.4% , 84.1% ) is based on a rein-
forcement learning algorithm (PPO) with imitation learning 
rewards (GAIL) implementing a temporal memory (through 
LSTM) and a pre-training algorithm. The other model 
configurations perform poorly, the outcome being a rapid 
change between high and low social engagement values in 
a short period of time.

The proposed work contributes to the field of socially 
responsive VCs, offering a design by example tool for 
immersive ML, to detect social engagement (and pos-
sibly abstract social attitudes) in VR social interactions. 
This could be useful in designing social interactions in 
VR games or in other immersive experiences (simulations, 
training, social platforms), where the user can interact with 
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the VC using their own bodies, as they do in everyday life. 
This opens opportunities for novel input interactions, game 
mechanics or VC’s behavioural models that are related to the 
rapport/empathy between the user(s) and the VC.
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