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Abstract
This paper presents an augmented reality application to assist with myoelectric prostheses control for people with limb 
amputations. For that, we use the low-cost Myo armband coupled with low-level signal processing methods specifically built 
to control filters’ levels and processing chain. In particular, we use deep learning techniques to process the signals and to 
accurately identify seven different hand gestures. From that, we have built an augmented reality projection of a hand based 
on AprilTag markers that displays the gesture identified by the deep learning techniques. With the aim to properly train the 
gesture recognition system, we have built our own dataset with nine subjects. This dataset was combined with one publicly 
available to work with the data of 24 subjects in total. Finally, three different deep learning architectures have been compara-
tively studied, achieving high accuracy values (being 95.56% the best one). This validates our hypothesis that it is possible 
to have an adaptive platform able to fast learn personalized hand/arm gestures while projecting a virtual hand in real-time. 
This can reduce the adaptation time to myoelectric prostheses and improve the acceptance levels.

Keywords  Augmented reality · Deep learning · Electromyography signal processing · Virtual rehabilitation

1  Introduction

Upper limb amputation forces the individuals to adapt and 
overcome unexpected issues in normal daily activities, by 
forcing significant functional and social consequences. 
Recent studies Braza and Martin (2020) found that just in 
the USA 1.7 million people live with limb loss, or approxi-
mately 1 of every 200 people, and 57.7 million worldwide 
(McDonald et al. 2020). The etiologies for upper limb loss 
in adults is trauma, followed by cancer.

A study by Braza and Martin (2020) and Biddiss and 
Chau (2007) found that upper limb amputees present a high 
prosthetic rejection. The medical community finds that 

rehabilitation should be performed at a rehabilitation center 
with therapists, prosthetists, and physicians. Furthermore, 
the transition to normal life after an amputation usually takes 
several months to years, even with the help of long-term 
outpatient rehabilitation sessions and prosthetic programs. 
Notably, Yiğiter et al. (2002) have found that pre-training for 
prosthetic limb has resulted in a significant improvement in 
accepting and using them. This leads to the understanding 
that with specialized training, there could be a faster transi-
tion to prosthetics, reducing the post-prosthetics adaptation 
time.

The arrival of myoelectric prostheses, often called bionic 
prostheses, radically changed the way that people interact 
with the world, as the electrical impulses are translated to 
predetermined movements that have more amplitude and 
are more precise than the traditional ones. Furthermore, the 
costs’ reduction in recent years has allowed more people 
to use them. Nonetheless, this increase in popularity has 
evidenced problems in adaptation and operation of daily 
activities. These prostheses require very different adapta-
tion plans as they function very differently from traditional 
prosthetics and, consequently, the adaptation methods used 
bear almost no resemblance to the traditional ones. Fur-
thermore, the levels of dissatisfaction by its users are quite 
high (Franzke et al. 2019; Heerschop et al. 2021; Salminger 
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et al. 2020), showing that the current training programs do 
not yield improvement over the adaptation efforts, both in 
terms of time or easiness.

Another active area of research in terms of limb amputa-
tion is the usage of virtual reality (VR) to the treatment of 
phantom limb pain (PLP), as showed in this comprehensive 
review Dunn et al. (2017). Some recent papers show that 
there is a significant advancement in pain alleviation when 
using VR systems. Rutledge et al. (2019) have showed that 
people who have used VR have managed to significantly 
reduce PLP, by the means of specialized exercises. Ambron 
et al. (2018), using low-cost hardware, were able to greatly 
reduce the pain perceived by presenting several scenarios 
(games and web browsing) where the users could navigate 
using “digital” legs, capturing real muscular impulses from 
the legs extremities. The study was done with only two per-
sons, limiting greatly the scope of the results, so the conclu-
sions should be taken cautiously. The study has reported 
that, after using the system, the pain levels were almost zero 
with recursive reduction of their normal pain levels. Ambron 
et al. (2021) extended the previous article using more people 
and VR scenarios. Nonetheless, the method was the same. 
So, as only motion-based sensors, just simple movements 
can be reproduced, although muscular impulses would pro-
duce richer data and could be used for different actions and 
degrees of movement. The authors have reported a 10% PLP 
reduction when using the VR coupled with the leg move-
ments. Tong et al. (2020) have also conducted a study with 
five persons that suffer from PLP from arm amputation, find-
ing that using a VR system has reduced pain and improved 
anxiety and depression levels. The users were immersed in a 
VR environment and exposed to a basketball game and inter-
acted with the game using a hand controller on the intact 
hand. While the results presented may reveal that the users 
have improved their PLP, the method used, by mirroring the 
intact hand, depends on the cognitive acceptance of the mir-
rored movements. State-of-the-art approaches have mostly 
lean toward solutions that use in some degree the remaining 
parts of the amputated limb. Unfortunately, none of these 
projects addresses the inclusion of prosthetics limbs, so it 
is unknown if apart from reducing PLP, the users improve 
their prostheses’ usage.

Myoelectric prostheses could be the way to bridge full 
movement and fine motor skills, being the most similar to a 
real limb. Nonetheless, the adaptation to them is quite com-
plex, as studies find that pre-training is the key to a rapid 
adaptation to prostheses. Phelan et al. (2021) have imple-
mented a system that used VR and a myoelectric sensor sys-
tem to pre-train users for prostheses, in a fully immersive 
environment. This study relied on 7 persons with upper limb 
amputation and 6 medical experts to validate the experi-
ment. While this was a qualitative study, both users and 
experts have reacted positively and were keen to continue 
performing exercises with the system. Additionally,  Chau 
et al. (2017) have performed a similar experiment where the 
results were also promising, being the main achievement 
that the PLP was reduced permanently without requiring 
further sessions.

Therefore, given these findings, we propose to bring the 
success of VR to the myoelectric prostheses domain. Thus, 
the objective of our work is to pre-train the prostheses’ 
receivers in an augmented reality (AR) setting using low-
cost sensor systems in an effort to reduce the adaptation 
time and improve the acceptance levels of the receivers. To 
do this, we use an electromyographic armband in tandem 
with a deep leaning generated model to accurately detect 
and classify arm movements. We have achieved 95.65% of 
accuracy detecting 7 gestures, demonstrating the success of 
our model and research.

2 � Biosignal acquisition

Each body movement is a result of several parts (e.g., mus-
cles, bones, nerves, among other elements) working syn-
chronized and accurately. So, the energy of those elements 
changes during the movement and this change can be meas-
ured to obtain information about the function of the different 
body parts (see Table 1).

In the context of hand prothesis control, electromyogra-
phy (EMG) signals are used, since these signals measure 
the electrical activity produced by the skeletal muscles 
when contract or relax. In this regard, two kinds of control-
ling methods can be considered: invasive interfaces, which 

Table 1   Parameters and type of energy measured through body sensing. Adapted from  Semmlow and Griffel (2014)

Energy Changing parameter Measurement examples

Mechanical Position, force, torque, pressure Muscle contractions, cardiac pressure, muscle movement
Electrical Voltage, charge, current Electromyography (EMG), electrocardiography (ECG), electroen-

cephalography (EEG), electrodermal activity (EDA), electroocu-
lography (EOG)

Thermal Temperature Surface body temperature
Chemical Concentrations, exchanged energy pH, oxygen, hormonal concentrations
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are directly connected to the patient’s nerves by means of 
intrusive needle electrodes (intramuscular); and noninvasive 
interfaces, which are surface electrodes usually placed on 
the patient’s skin.

Keeping in mind an easy-to-use low-cost application, a 
noninvasive interface has been considered in this paper. In 
particular, the Myo armband was used. This gesture control 
device was released by Thalmic Labs (now discontinued) 
in 2013. As illustrated in Fig. 1, this armband consists of 
eight superficial electromyographic sensors and an iner-
tial measurement unit (IMU) that includes a gyroscope, an 
accelerometer, and a magnetometer. Placed on the forearm, 
its myoelectric sensors provide information about the electri-
cal activity in that area, which covers the movement of the 
arm and the fingers.

Gestural data are provided as the time representation of 
rapid voltage oscillations for the eight electromyographic 
sensors, with a normalized amplitude range going from 
− 128 to 127 mV (see Fig. 2). Note that, given that different 
active muscles contribute to the same signal, the sampling 

rate is of 200 Hz. Although this frequency does not guaran-
tee the tracking of all the relevant events at a muscular level, 
it is sensitive enough to properly perceive hand gestures.

It is worth noting that a noise filtering is required to 
accurately recognize hand gestures. With that aim, two pass 
filters were applied during data capture. Firstly, a low-pass 
filter with a threshold of 5 was applied to attenuate the sig-
nal, while suppressing sensor noise. Then, the lower signal 
values are smoothed, and even amplified, thanks to a high-
pass filter with a threshold of 3 (see Fig. 3).

3 � Hand gesture recognition

With the aim of obtaining an accurate hand recognition from 
EMG data, we have focused on Deep Learning techniques 
since they have been proven to be very successful at this 
kind of data processing (e.g., Rim et al. 2020; Xiong et al. 
2021; Buongiorno et al. 2019; Côté-Allard et al. 2019).

Fig. 1   Myo armband  (adafruit 
2016)

Fig. 2   Myo electromyography 
signals
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From this starting point, the first arisen issue is the data 
required to properly train the considered deep neural net-
work. In this regard, the main characteristics to be taken 
into account are the number of samples per class (i.e., 
hand gesture), the number of subjects involved in the data 
capture, the data goal since it should be as similar as possi-
ble to the real data to work with, and the quantity and type 
of sensors used for the capture. So, despite the existence 
of several public datasets in the literature, such as Myo-
Gym (Koskimäki et al. 2017), NinaPro (DB5) (Pizzolato 
et al. 2017), or CapgMyo (Du et al. 2017); they do not 
fulfill the requirements of this work. As a consequence, a 
new dataset was built.

3.1 � Our EMG dataset

Based on the Myo limitations, seven hand gestures were 
chosen for this work (see Fig. 4): rest position, closed hand, 
open hand, victory sign, wrist flexion, wrist extension, and 
tap action.

Nine healthy subjects of different gender, age and physi-
cal condition were recorded with one Myo armband, while 
repeatedly performed the above-mentioned hand gestures. 
Specifically, 6 men and 3 women in an age range between 
18 and 24 years old were firstly informed about the experi-
ment and its possible risks. Then, each participant took a 
few seconds to learn how to properly perform each hand 

Fig. 3   Signal noise suppression by applying two consecutive pass filters

Fig. 4   Considered hand gestures
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gesture, while getting used to the recording process. After 
that, each hand gesture was performed during 10 sec with-
out fully flexing the elbow and without supporting it, being 
followed by a few seconds of rest before starting the next 
gesture. With a 200-Hz frequency, this protocol resulted 
in a dataset of about 126,000 measurements, summarized 
in Table 2.

Each sample was grouped into sequences of 200 meas-
urements, the minimum number of measurements to cor-
rectly represent each gesture. This resulted in 626 sequences. 
However, this number of sequences could be insufficient to 
robustly train a deep neural architecture.

With the purpose of increasing the amount of data, two 
actions were performed. On the one hand, this data was com-
bined with a dataset of EMGs signals presented by  Nasri 
et al. (2020) and publicly available in http://​www.​rovit.​ua.​es/​
datas​et/​emgs/. This dataset contains 18,500 samples from 15 
healthy subjects (9 men and 6 women) with different physi-
cal conditions and in an age range between 20 and 35 years 

old, distributed into the 7 gestures considered in this paper, 
as summarized in Table 3.

It is worth noting that the new range of age introduces 
some important differences in the taken signals, as illus-
trated in Fig. 5. This difference can considerably influence 
the learning process. However, the double filter applied for 
noise suppression acts as a normalization process, reducing 
this difference to a great extent and, consequently, improving 
the learning accuracy (see Fig. 5).

On the other hand, the sliding window technique was 
used. Basically, this technique consists in defining overlap-
ping sequences, keeping the original sequence contiguity. 
That is, a window of measurements is defined. This window 
contains as many measurements as required by the system 
(200 in our case) and is moving through the data to pro-
vide the measurements it enclosed to the system. Note that 
the amount of measurements the window is moving deter-
mines the number of overlapping measurements between 
two sequences. Thus, in case of 150-measurement sequence, 

Table 2   Composition of our 
dataset in terms of participants

Closed hand Open hand Wrist flexion Wrist ext. Tap Victory Rest

Subject 1 2059 2035 2101 2079 2069 1989 2073
Subject 2 2059 2061 1963 2077 2137 2073 2059
Subject 3 2079 2047 2059 1991 2073 2021 2061
Subject 4 2079 2073 2057 2111 2043 2041 2067
Subject 5 2091 2059 2063 2059 2059 2075 2059
Subject 6 2059 2071 2133 2087 2041 1997 2051
Subject 7 2081 2019 2055 2075 2009 2025 2133
Subject 8 2087 2035 1991 2101 2067 1983 2027
Subject 9 2059 2019 1979 2017 2041 2015 2067
Total 18653 18419 18401 18597 18539 18219 18597

Table 3   Composition of the 
public dataset presented by 
Nasri et al. (2020)

Closed hand Open hand Wrist flexion Wrist ext. Tap Victory Rest

Subject 1 7444 7108 4436 3244 4752 6244 4134
Subject 2 3436 3380 2724 3446 3080 6988 4480
Subject 3 8044 7942 2876 3178 2446 7172 5128
Subject 4 3188 3194 2590 3666 2640 5686 6546
Subject 5 2648 2468 2766 2276 2054 4810 4484
Subject 6 2784 3228 2552 3252 2420 5758 4586
Subject 7 7314 6588 5310 4020 3280 5894 3204
Subject 8 2430 3842 2194 2938 2668 6450 3534
Subject 9 8324 2406 3628 4120 2934 6048 5534
Subject 10 7262 5264 5836 3800 3142 5206 5398
Subject 11 6590 7534 3438 3430 3622 5034 4802
Subject 12 6886 4982 2948 2420 2582 5868 2862
Subject 13 5584 4414 2434 2402 2092 5530 4602
Subject 14 2706 2922 4152 3660 3170 4400 4076
Subject 15 2852 2706 2588 2312 3076 5422 6958
Total 77492 67978 50472 48164 43958 86510 70328

http://www.rovit.ua.es/dataset/emgs/
http://www.rovit.ua.es/dataset/emgs/
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an overlap of 50 measurements means that two consecutive 
sequences share 100 measurements. For our experiments, 
an overlap of 20 measurements between 200-measurement 
sequences was proposed (see Fig. 6). In this way, 29, 591 
sequences were obtained.

3.2 � Deep learning architectures

EMG signals can be considered as time series data. For that 
reason, recurrent neural networks (RNNs) were considered 
for their classification, since they are able to learn the tem-
poral relationship between the input data. In this regard, the 
proposed architectures are focused on gated recurrent unit 
(GRU) (Cho et al. 2014) and long short-term memory units 
(LSTM) (Hochreiter and Schmidhuber 1997) since they can 
deal with the vanishing gradient problem by using mecha-
nisms called gates. These gates are different tensor opera-
tions that can learn what information is stored to properly 
identify long-term dependencies.

Three different architectures have been proposed. As 
illustrated in Fig. 7, the first proposed RNN architecture 
(HG-RNN1) is composed by three LSTM layers with 50 
units each and a fully connected layer for hand gesture clas-
sification. On the contrary, three GRU layers with 50 units 
each ended with a fully connected layer, form the HG-RNN2 

architecture. Finally, the HG-RNN3 architecture combines 
one LSTM layer with two GRU layers and a fully connected 
layer. In addition, a dropout of 0.2 and a recurrent drop-
out of 0.5 take place after each recurrent layer. In terms of 
network training, Adam optimizer with a constant learning 
rate of 0.001 and the cross-entropy categorical loss function 
were used. The batch size was set to 200, and the number 
of epochs was 100. Note that a dropout layer is used to ran-
domly deactivate neurons during training. This is used as 
a regularization method to reduce overfitting and improve 
generalization error in deep neural networks. In addition, it 
is worth noting that all the parameters were experimentally 
set. In particular, the number of epochs was set based on the 
training stabilization and the network overfitting. Finally, 
despite three architectures are presented here, some other 
architectures were implemented by changing the number 
of recurrent layers and their combinations. However, the 
accuracy was so low that they have not been included in 
this paper.

These architectures were trained by using 80% of the data 
(25% of that for validation) and tested with the remaining 20%. 
The experiment involved raw data (data directly coming from 
the Myo device without any processing and being grouped 
without using the windowing technique), raw data with sliding 
window (data directly coming from the Myo device without 

Fig. 5   Comparison between the EMG signals corresponding to an 18-year-old subject and a 34-year-old subject when they perform the same 
hand gesture
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any processing and being grouped by using the windowing 
technique), and filtered data with sliding window (double fil-
tered data grouped by using the windowing technique). The 
obtained results are summarized in Table 4. As shown, the 
sliding window technique increased the accuracy of all the 

architectures in both the raw and filtered data. On the con-
trary, the filtering for noise suppression improved the accu-
racy obtained with raw data, but not when the sliding window 
technique was used. Hence, the best accuracy (95.65%) cor-
responds to the HG-RNN3 architecture that combines LSTM 

Fig. 6   Generation of the EMG sequences by using the sliding window technique and without using it
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and GRU units, over raw data when the sliding window tech-
nique is applied.

Looking at its corresponding confusion matrix for the test 
evaluation (shown in Fig. 8), it can be observed that most of 
the data is on the main diagonal. However, some hand ges-
tures are better recognized than others. For instance, a small 
percentage of the samples belonging to the “wrist flexion” 
class is misclassified as “tap” or “victory”. Something similar 
happens with the “open-hand” class, where some samples are 
misclassified as “tap” or “victory”.

Fig. 7   Our RNN architectures for hand gesture recognition

Table 4   Test accuracy for the proposed RNN architectures with dif-
ferent data

Bold value shows the best test accuracy obtained when different tech-
niques are used

Architecture Test accuracy (%)

Raw data HG-RNN1 76.63
HG-RNN2 81.20
HG-RNN3 81.74

Raw data+sliding HG-RNN1 93.74
HG-RNN2 92.86
HG-RNN3 95.56

Filtered data+sliding HG-RNN1 82.93
HG-RNN2 86.49
HG-RNN3 88.80
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4 � Augmented reality

With the purpose of visualizing the performed hand gesture, 
augmented reality (AR) was used since it allows to overlap-
ping digital contents on the real world. Consequently, a vir-
tual myoelectric prosthesis will be brought into the physical 
space such that the user can see the hand gesture performed 
by their muscles in the live view captured by a camera. In 
this way, users can learn to use the prosthesis in a more 
efficient and fast way.

Despite AR is usually implemented from a combination 
of visual, auditory, and tactile/haptic interactions, this work 
is focused on the vision side due to the nature of our goal. 
In this sense, based on the relationship between the digital 
and the real worlds, AR can be classified into: marker-based, 
markerless and location. So, in the marker-based AR, the 
digital components are displayed and moved according to 
the real world, while the 3D augmented models are user-con-
trolled when the markerless AR is considered. Finally, when 
the augmented models are used to provide local information 
based on the user’s location such as walking directions or 
road signs, location-based AR is required.

Keeping in mind the assistance of users in prosthesis con-
trol, the digital prosthesis must be anchored to the user’s 
arm and, consequently, marker-based AR is used. In that 
way, the prosthesis animation will be displayed right onto 
the user’s arm.

To properly locate the user’s arm, a marker (i.e., a dis-
tinctive picture) is placed on the Myo bracelet such that the 
animation will start as soon as that marker is recognized, 
and it will be moved and oriented accordingly. In this regard, 
we have studied two of the most commonly used markers: 
ArUco and AprilTag.

In particular, ArUco (Romero-Ramirez et al. 2018; Gar-
rido-Jurado et al. 2016) is an OpenCV-based library aimed 
to accurately detect and recognize squared planar markers 
for AR applications. Note that the camera pose is estimated 
from the pose of the markers. As a consequence, the marker 
dictionary plays a main role, since its markers should be 
as different as possible to avoid confusions. In this work, 
the ArUco DICT_6X6_250 dictionary has been used (see 
Fig. 9).

As ArUco markers, AprilTags (Wang and Olson 2016; 
Olson 2011) consist of a black square with a white fore-
ground with a particular pattern. Although they are similar 
to QR codes in using 2D barcodes, AprilTags have been 
designed to encode far smaller data payloads (between 4 
and 12 bits), allowing them to be more easily detected, 
more robustly identified, and less difficult to detect at longer 
ranges. Despite the existence of several AprilTag families, 
in this work, the Tag36h11 family, illustrated in Fig. 10, has 
been used.

It is worth noting that a marker requires enough visual 
points to be uniquely recognized, and the pattern detail 

Fig. 8   Confusion matrix for HG-RNN3 architecture when raw data with sliding window was used
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visually changes based on the image resolution. Thus, an 
analysis of the recognition of both markers at different dis-
tances from the camera and with different orientations was 
carried out. For that, four markers of each type with a size 
of 7.5 × 7.5 cm were located on a rigid surface. This sur-
face was placed at three different distances from the camera: 
0.65, 1.65, and 2.5 meters. At each distance and with differ-
ent orientations, 100 images were taken and analyzed such 
that a success is when at least one of the four markers was 
correctly recognized. Based on that, Table 5 summarizes 
the success rate for both ArUco and AprilTag markers. As it 
can be observed, AprilTag provides a higher accuracy and, 
consequently, it was used in this work.

On the way to blend the virtual content into reality, the next 
step was to model the prosthesis. As no 3D prosthesis model 
was available, it was built from scratch. For that, Blender 

3D (https://​www.​blend​er.​org/) was used. This free and open 
3D tool provides a wide range of functionalities, from creating 
animated films or visual effects, to 3D print models, interactive 
3D apps and computer games. As a starting point, a 3D hand 
model was downloaded from Free3D (Dreamer https://​free3d.​
com/). After modeling the hand prosthesis, it was animated 
to obtain the considered hand gestures, as shown in Fig. 11.

The last step is the projection of the 3D virtual prosthesis 
on the AR environment. The open-source Panda3D frame-
work (https://​www.​panda​3d.​org/) was chosen for this task 
since it provides essential tools for 3D rendering among other 
developments.

Thus, a virtual environment where the 3D prosthesis model 
was projected depending on the Myo marker’s position and 
orientation was developed (see Fig. 12). This position adjust-
ment was obtained from the following equations:

where ( X
r
 , Y

r
 , Z

r
 ) represents the prosthesis coordinates in 

the virtual environment; ( X
Ctag

, Y
Ctag

 ) indicate the center 
coordinates of the AprilTag marker in image coordinates; 
and (640, 480) correspond to the dimensions of the input 
image.

In addition, the scale of the virtual prosthesis model is 
directly related to the distance between the upper corners of 
the AprilTag marker. As illustrated in Fig. 13, the greater the 
distance between the upper corners is, the higher the prosthesis 
scale is. Note that we have considered a maximum distance 
between corners of 60 pixels and a maximum scale factor of 
0.2.

5 � AR application

With the integration of the previous components, the 
AR application was developed. As shown in Fig. 14, the 
application workflow can be summarized as follows: the 

(1)X
r
=

X
Ctag

× 2

640
− 1

(2)Y
r
=0

(3)Z
r
=1 −

Y
Ctag

× 2

480

Fig. 9   DICT_6X6_250 dictionary of ArUco markers

Fig. 10   The AprilTag Tag36h11 family

Table 5   Recognition rate of AR markers at different distances and 
with different orientations

Marker 0.65 m 1.65 m 2.5 m

AprilTag 95% 70% 9%
ArUco 87% 55% 4%

https://www.blender.org/
https://free3d.com/
https://free3d.com/
https://www.panda3d.org/
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system starts capturing the user’s EMG signals until 200 
measurements are taken. That sequence of EMG readings 
is the input to the HG-RNN3 neural network that outputs 
the corresponding hand gesture. This together with the 
information relative to the Myo marker’s pose is sent to the 
application that translates it into the appropriate animation 
and projection of the 3D hand prosthesis model. It is worth 
noting that, given that parallel programming is used, the 
delay between the user’s gesture and the 3D prosthesis 

model animation is considerably reduced, and real-time 
execution is obtained (30 frames per second).

Some samples of the final AR application can be 
observed in Fig. 15 and in the video demo available in 
https://​youtu.​be/​c8E33​AWdRWM. Note that two differ-
ent versions were developed. On the one hand, the 3D 
prosthesis model is directly projected on the user’s arm. 
On the other hand, the application shows two different 
windows: one displaying the RGB camera capture, and 

(a) Rest (b) Closed hand (c) Open hand (d) Tap (e) Victory sign

(f) Wrist flexion (g) Wrist extension

Fig. 11   Animation of the 3D prosthesis model representing the considered hand gestures

Fig. 12   3D prosthesis model projection based on the Myo marker’s position

https://youtu.be/c8E33AWdRWM
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another showing the virtual prosthesis model on a homo-
geneous, gray background.

6 � Discussion

Our study starts with a comparative analysis of several 
recurrent neural architectures with 25 users under different 
conditions. So, different combinations of recurrent layers 
together with other learning parameters have been proposed 
and experimentally analyzed in order to properly recognize 
hand gestures from EMG signals. In addition, with the aim 
to be useful for any user, high variability has been included 
in the data. In particular, the 25 participants were in an age 

range between 18 and 35, of different gender and with dif-
ferent physical conditions. Additionally, the data were pro-
vided to the architectures in three different versions: raw 
data (200-measurement consecutive sequences taken directly 
from the sensor), raw data with sliding window (200-meas-
urement overlapping sequences taken directly from the sen-
sor), and processed data with sliding window (200-meas-
urement overlapping sequences from a double processed 
sensor data). Note that, although the double processing acts 
a data normalization method, the best accuracy results were 
obtained without using that. So, the experimental results 
revealed that an accuracy of 95.56% in hand gesture recogni-
tion has been obtained. This high accuracy hold promise as 
effective hand gesture recognition system from EMG signal 
for an AR application to pre-train prostheses’ reviewers.

After that, the interface of the AR application was 
designed. A virtual model of the prosthesis is used to illus-
trate the prosthesis to be received. To properly project it on 
the user’s arm, different markers were studied, in particular, 
ArUco and AprilTag markers. This study was based on the 
accuracy on the marker detection at different locations and 
distances from the camera by getting an accuracy of 95% of 
the detection at a distance of 0.65 meters. This low failure 
rate is imperceptible by the user since the system is continu-
ously taking images and recognizing the marker to properly 
update the model projection.

Although there is a growing interest in this research area, 
there is no previous work that actually measured quantita-
tively the hand gesture recognition and the prosthesis projec-
tion as in this work. So, a comparison with previous research 
is not possible. However, the literature has demonstrated a 
great success of VR to the myoelectric prostheses domain. 
Based on those findings, the proposed AR application is 

(a) Distance of 60 pixels

(b) Distance of 20 pixels

Fig. 13   3D prosthesis model projection based on the marker’s size

Fig. 14   Flowchart of the developed AR application
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very promising and can help in improving the prosthesis 
acceptance.

The main limitation of this study is the lack of a user 
test case on amputee subjects since all the participants were 
sane. In future studies, we plan to conduct new experiments 
by including amputee subjects and, although a high vari-
ability has been included in the data used to train the neu-
ral networks for hand gesture recognition, some data about 
amputee subjects will be also included in that data. We will 
also plan to qualitatively evaluate the user experience with 
the AR application and its design with the aim to improve 
it and make it a real-world application that can be used to 
improve the acceptance levels of the prostheses’ receivers.

7 � Conclusions

Amputation is one of the major reasons of disability since 
it can limit the daily life activity of a person. Focusing on 
upper limb loss, myoelectric prosthesis can restore the func-
tionality of their user’s hand in a noninvasive way. How-
ever, the prosthetic acceptance is still low due to the lack of 
dexterous control. Recent studies have demonstrated that a 
well-structured and tailored prosthetic training can improve 
its acceptance.

This paper presents a low-cost, easy-to-use AR applica-
tion aimed to help users acquire the necessary dexterity to 
control the prosthesis to avoid its rejection. Firstly, the EMG 
signals from the residual muscles are captured by using a 
Myo armband. Then, those signals are translated into the 
corresponding hand gesture. In this work, seven hand 

gestures were considered: rest, closed hand, open hand, vic-
tory sign, wrist flexion, wrist extension, and tap action. In 
regard to hand gesture recognition, a dataset was firstly cap-
tured such that a comparative study of different neural net-
works could be carried out. In addition, techniques for input 
improvement as well as data augmentation were also consid-
ered. Nine healthy individuals were recorded by obtaining a 
dataset of about 126,000 measurements. This data combined 
with a public dataset containing the EMG signals from 15 
subjects and the considered improvements in this paper fed 
the proposed neural architectures, by obtaining an accuracy 
of 95.56% as the best result. (The input data were the mixed 
dataset when the sliding window method was used.)

With respect to the AR implementation, two kinds of 
markers were studied: ArUco and AprilTags. An analysis 
of their visual recognition at different distances and with 
different orientations revealed that AprilTags resulted in a 
higher rate of success. Thus, some AprilTags were located 
on the Myo armband. Then, a 3D prosthesis model was cre-
ated and animated such that it was projected on the camera’s 
image (or on a virtual environment) based on the AprilTag 
pose and the recognized hand gesture. Note that the whole 
process works at 30 frames per second.

Despite the promising results, amputee subjects must be 
included in the study to properly validate it. For that reason, 
a user test case will be conducted as future work. Moreover, 
other EMG sensors will be studied with the aim to increase 
the number of hand gestures to be considered. In addition, 
the AR application functionality will be improved by includ-
ing tailored rehabilitation programs and game-based tasks.

Fig. 15   Samples of the final AR 
application execution
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