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Abstract

The aim of the paper is to maximize a pseudoconcave function which
is the sum of a linear and a linear fractional function subject to linear
constraints. Theoretical properties of the problem are first established and
then a sequential method based on a simplex-like procedure is suggested.
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1 Introduction

Optimization of linear and nonlinear fractional functions has been widely
studied since the pioneering works of Charnes and Cooper [5] and Mar-
tos [13]. A particular attention is devoted to the sum of ratios fractional
programs as it is confirmed in the extensive survey (with twelve hundred
entries) appeared in [14]; another updated survey can be found in [7]. Some
sequential methods are suggested for maximizing the sum of two linear
fractional functions subject to linear constraints ([4, 6, 8, 9, 10, 11, 12]).
This kind of generalized fractional problem can be reduced, by means of
the Charnes-Cooper transformation, to maximize the sum of a linear and
a linear fractional function. In finding a global optimal solution for this
last class of problems, some difficulties arise since the function may have
local maxima which are not global. Obviously, the problem becomes easier
when the objective function verifies the local-global property; it is known
([2]) that this important property holds for the class of pseudoconcave func-
tions which contains, properly, the class of concave functions. In this paper,
firstly we will characterize in a simple way the pseudoconcavity of the sum
of a linear and a linear fractional function and, successively, we will establish
some theoretical results regarding the existence of optimal solutions. More
exactly, we will give necessary and sufficient conditions for the supremum
of the problem to be not finite or finite but not attained as maximum. The
given results allow us to suggest a simplex-like procedure for solving our
problem.



2 On the pseudoconcavity of a generalized
fractional function.

In this section we characterize the pseudoconcavity of the function

f(x) = hTx+
cTx+ c0
dTx+ d0

, x ∈ H = {x ∈ <n : dTx+ d0 > 0} (2.1)

where h, d, c ∈ <n, c0, d0 ∈ <; furthermore we assume d 6= 0 to avoid the
linearity of the function.
We recall that a differentiable function f defined on an open convex set
S ⊆ <n is pseudoconcave if the following logical implication holds:

x, y ∈ S, f(x) < f(y)⇒ (y − x)T∇f(x) > 0.

Although the class of pseudoconcave function is wider than the class of the
concave function, it still maintains some fundamental optimization prop-
erties such as “a critical point is a global maximum point”, and “a local
maximum point is also global”.
In general the function f is not pseudoconcave, since it may have local max-
imum points which are not global, as it is shown in the following example.

Example 2.1 Consider the function f(x1, x2) = x1−x2+ 2x1+7x2+6
x1+x2+1 defined

on the set S = {(x1, x2) ∈ <2 : x1 ≥ 0, 0 ≤ x2 ≤ 4, x1− x2 ≤ 4}. It is easy
to verify that (0, 0) is a local maximum while the global maximum is (8, 4).

Necessary and sufficient conditions for the pseudoconcavity of f can be
deduced from the results obtained in [3], where the pseudoconvexity of the
ratio between a quadratic function and an affine function is studied in the
framework of advanced linear algebra. In order to have a self-contained
paper, we will give a new simple proof which takes into account the special
structure of the function and which is based on the following characteriza-
tion of pseudoconcavity (see [1]):
f is pseudoconcave if and only if a critical point of a restriction of f on a
line segment is a local maximum point for the restriction.
Throughout the paper we will use the following notations. Let x0 ∈ H,
u ∈ <n and let x = x0 + tu be the equation of a line segment contained in
the half-space H. We have:

ϕ(t) = f(x0 + tu) = hTx0 + thTu+
tcTu+ c̄0
tdTu+ d̄0

(2.2)

ϕ′(t) = hTu+
cTu d̄0 − dTu c̄0

(tdTu+ d̄0)2
(2.3)

ϕ′′(t) =
−2dTu (cTu d̄0 − dTu c̄0)

(tdTu+ d̄0)3
(2.4)

where c̄0 = cTx0 + c0, d̄0 = dTx0 + d0.
The following theorem holds.



Theorem 2.1 The function f is pseudoconcave on the half-space H if and
only if one of the following conditions holds:
i) there exists α ≤ 0 such that h = αd;
ii) there exists k ∈ < such that c = kd and c0 − kd0 ≤ 0.

Proof Assume that f is pseudoconcave on H and consider, first, the case
where the vector c is not proportional to d. We prove the existence of a real
number α ≤ 0 such that h = αd. Since c 6= kd, ∀k ∈ <, then there exist
β, γ ∈ <n such that βT c = 0, βT d > 0, γT d = 0, γT c > 0.
Let x0 = λγ + µβ, λ, µ ∈ <. We have c̄0 = λγT c+ c0, d̄0 = µβT d+ d0 and
thus, choosing µ > 0 such that d̄0 > 0, x0 becomes a feasible point.
Assume that h is not proportional to d or that h = αd with α > 0. Then,
there exists u ∈ <n such that hTu > 0, dTu > 0. Consider the feasible
half-line x = x0 + tu, t ≥ 0 and the restriction (2.2). We can choose
λ > 0 large enough such that ϕ′(0) = hTu d̄2

0+cTu d̄0−dTu c̄0
d̄2

0
< 0, so that

cTu d̄0− dTu c̄0 < −hTu d̄2
0 < 0 and consequently ϕ′′(t) > 0, ∀t ≥ 0. Since

limt→+∞ ϕ′(t) = hTu > 0, there exists t∗ > 0 such that ϕ′(t∗) = 0, ϕ′′(t∗) >
0, so that t∗ is a strict local minimum point for ϕ(t) and this contradicts
the pseudoconcavity of the function f . Consequently h is proportional to d
with α ≤ 0 and thus i) follows.
Consider now the case c = kd. We prove that if condition i) is not verified,
necessarily we have c0 − kd0 ≤ 0. Let u ∈ <n be such that hTu > 0 and
dTu > 0. Substituting c = kd in (2.3), (2.4), we have:

ϕ′(t) = hTu+
−dTu(c0 − kd0)

(tdTu+ d̄0)2
, ϕ′′(t) =

2(dTu)2(c0 − kd0)
(tdTu+ d̄0)3

(2.5)

If we have c0 − kd0 > 0, then

lim
t→(− d̄0

dT u
)+

ϕ′(t) = −∞, lim
t→+∞

ϕ′(t) = hTu > 0,

so that there exists t∗ such that ϕ′(t∗) = 0, ϕ′′(t∗) > 0; consequently the
restriction ϕ(t) has a feasible critical point which is a strict local minimum
and this is absurd. Then ii) holds.
Assume now that i) or ii) holds; we must prove that f is pseudoconcave on
H. Assume that i) holds. If there exists a critical point t∗ for a restriction
ϕ(t), then the real numbers hTu and cTu d̄0 − dTuc̄0 have opposite sign so
that ϕ′′(t∗) < 0; consequently t∗ is a local maximum point for ϕ and this
implies the pseudoconcavity of f .
If ii) holds, from (2.5) we have ϕ′′(t) ≤ 0 for every t such that tdTu+ d̄0 > 0,
so that every restriction of f is concave and, consequently, f is concave on
H and, in particular, it is pseudoconcave. The proof is complete.

Remark 2.1 The proof given in Theorem 2.1 points out that in the case
ii) the function is concave. This does not happen in the case i).
For instance, it can be verified that the restriction of the pseudoconcave



function f(x, y) = −x − y + 2x+y+3
x+y+1 on the half-line y = 0, x > −1 is not

concave.

Remark 2.2 If i) of Theorem 2.1 holds with α = 0, then the function
reduces to a linear fractional function which has been widely studied. Also
in the case ii), if c0 − kd0 = 0, the function reduces to a linear function.
For such reasons, in what follows we restrict our analysis to the cases α 6= 0
and c0 − kd0 6= 0.

The following theorem points out that a pseudoconcave function has
critical points (which are also global maximum points) only in a particular
case.

Theorem 2.2 Assume that the function f is pseudoconcave on the half-
space H. Then, f has critical points if and only if h = αd, c = kd, α < 0
and c0 − kd0 < 0. In such a case the set of all critical points is whose

equation is dTx+ d0 = δ, with δ =
√

c0−kd0
α .

Proof We have ∇f(x) = h + c(dT x+d0)−d(cT x+c0)
(dT x+d0)2 , so that the gradient

vanishes if and only if the vectors h, c, d are linearly dependent. Taking into
account Theorem 2.1, the pseudoconcavity of f implies that the vectors
h and c are proportional to vector d. Setting h = αd, c = kd, we have
f(x) = αdTx+ c0−kd0

dT x+d0
+k and thus ∇f(x) = αd− d(c0−kd0)

(dT x+d0)2 . Consequently
∇f(x0) = 0 if and only if there exists a feasible point x0 such that α =

(c0−kd0)
(dT x0+d0)2 , that is if and only if α and c0 − kd0 have the same sign which
is negative taking into account the pseudoconcavity of f .
The set of all critical points is {x ∈ H :

(
dTx+ d0

)2 = c0−kd0
α } and the

thesis follows.

3 A generalized fractional problem

In this section we consider the fractional problem

P : max f(x) = hTx+
cTx+ c0
dTx+ d0

, x ∈ S = {x ∈ <n : Ax ≤ b, x ≥ 0}

where h, d, c ∈ <n, d 6= 0, c0, d0 ∈ <, A is an m × n matrix, b ∈ <m and
dTx+ d0 > 0, ∀x ∈ S.
Firstly, we will establish a necessary condition for P to have a supremum
not attained as a maximum. Successively, we will prove that when the
problem has optimal solutions at least one belongs to an edge of S (in
particular it may be a vertex). At last, assuming the pseudoconcavity of
the objective function, we will establish necessary and sufficient conditions
for the supremum to be infinite or finite but not attained as a maximum.
With this aim we recall that a vector u ∈ <n is called a recession direction
of S if for every y ∈ S the half-line x = y + tu, t ≥ 0 is contained in S. A



recession direction u is said to be an extreme direction if it is not possible
to express u as a convex combination of two distinct recession directions.

Theorem 3.1 Let L be the supremum of problem P .
i) L is attained as a maximum if and only if there exists a feasible point x0

belonging to an edge of S such that f(x0) = L.
ii) If L is not attained as a maximum then there exist a feasible point x0

and an extreme direction u such that L = lim
t→+∞

f(x0 + tu).

Proof i) If the supremum L is attained as a maximum there exists a
feasible point x̄ such that L = f(x̄). Consider the problem

P̄ : max f(x), x ∈ S̄ = S ∩ {x ∈ <n : dTx+ d0 = dT x̄+ d0}.

Obviously x̄ is an optimal solution of P̄ and since P̄ is a linear problem the
maximum is reached also at a vertex x0 of S̄ which belongs to an edge of
S. The viceversa is obvious.
ii) Let {xn} ⊂ S be a sequence such that f (xn) converges to L and consider
the following sequence of problems

Pn : max
x∈Sn

(
f(x) = hTx+

cTx+ c0
dTx+ d0

)
where Sn = S ∩ {x ∈ <n : dTx+ d0 = dTxn + d0}.
For every fixed xn, the problem Pn is linear so that the following two ex-
haustive cases occur:
a) there exists n such that the supremum of Pn is +∞;
b) for every n the supremum of Pn is attained as a maximum.
a) It is well known that the supremum of the linear problem Pn is +∞ if
and only if there exist a feasible point x0 and an extreme direction u such
that limt→+∞ f(x0 + tu) = +∞. In such a case the supremum of problem
P is +∞ and ii) holds (note that the half-line x = x0 +tu, t ≥ 0 is contained
in Sn if and only if dTu = 0).
b) In such a case the supremum is attained at a vertex yn of Sn which
belongs to an edge of S. Taking into account that f(yn) ≥ f(xn) we have
limn→+∞ f(yn) = L. Since S has a finite number of edges (in particular
half-lines), there exists a subsequence {ŷn} of {yn} contained in an edge of
S. Since L is not attained as a maximum, the sequence {ŷn} is necessary
diverging in norm (if {ŷn} converges to an element y0, the continuity of f
implies f(y0) = L ) and f(ŷn) 6= L ∀n. It follows that {ŷn} is necessarily
contained in a half-line x = x0 + tu, t ≥ 0, where x0 is a vertex of S and
u is an extreme direction. Let tn be such that ŷn = x0 + tnu. We have
limn→+∞ f(ŷn) = limtn→+∞ f(x0 + tnu) = L and ii) holds.
The proof is complete.

Corollary 3.1 Let L be the supremum of problem P . Then L = +∞ if
and only if there exists a feasible point x0 and an extreme direction u such
that limt→+∞ f(x0 + tu) = +∞.



Let us note that Theorem 3.1 does not require any assumption of pseu-
doconcavity. When f is pseudoconcave, it is possible to establish necessary
and sufficient conditions for the supremum to be not finite or to be finite
but not attained as a maximum, as it is stated in the following theorems.

Theorem 3.2 Consider problem P where f(x) = αdTx+ cT x+c0
dT x+d0

, α < 0.
Then the supremum of P is +∞ if and only if there exists an extreme
direction u such that dTu = 0, cTu > 0. In any other case the supremum is
attained as a maximum.

Proof Let u be an extreme direction and consider the restriction f(x0 +
tu) = αtdTu+αdTx0 + tcTu+cT x0+c0

tdTu+dT x0+d0
. Note that x = x0 + tu, x0 ∈ S, t ≥ 0

is feasible ∀t ≥ 0 since dTu ≥ 0. We have limt→+∞ f(x0 + tu) = −∞ if and
only if dTu > 0 or dTu = 0 and cTu < 0; the limit is +∞ if and only if
dTu = 0 and cTu > 0 and it is finite if and only if dTu = 0 and cTu = 0;
in this last case f(x0 + tu) = f(x0), ∀t ≥ 0. The thesis follows taking into
account Theorem 3.1 and Corollary 3.1.

Theorem 3.3 Consider problem P where f(x) = hTx+ kdT x+c0
dT x+d0

and k ∈ <
is such that c0 − kd0 < 0. Then:
i) the supremum of P is +∞ if and only if there exists an extreme direction
u such that hTu > 0;
ii) the supremum of P is finite and not attained as a maximum if and only
if there exists an extreme direction u such that hTu = 0, dTu > 0, and there
does not exist an extreme direction v such that hT v > 0.
In any other case, problem P has optimal solutions.

Proof Let u be an extreme direction and consider the restriction f(x0 +
tu) = thTu + hTx0 + c0−kd0

tdTu+dT x0+d0
+ k on the feasible half-line x = x0 +

tu, x0 ∈ S, t ≥ 0. We have limt→+∞ f(x0 + tu) = −∞ if and only if
hTu < 0; the limit is +∞ if and only if hTu > 0 and it is finite but different
from f(x0) if and only if hTu = 0 and dTu > 0. The thesis follows taking
into account Theorem 3.1 and Corollary 3.1.

Remark 3.1 From Theorem 3.2 and Theorem 3.3 we have that the supre-
mum of the pseudoconcave function f(x) = αdTx + cT x+c0

dT x+d0
, α < 0, is not

finite or it is attained as a maximum, while the supremum of the pseudo-
concave function f(x) = hTx + kdT x+c0

dT x+d0
, c0 − kd0 < 0, may be not finite,

finite and not attained, or finite and attained as a maximum.

4 Sequential methods

The pseudoconcavity of the function f implies that the rank of the set
{h, c, d} is at most 2, so that we have the following exhaustive subclasses of
pseudoconcave functions:
I) f(x) = αdTx+ γ

dT x+d0
, α < 0 and γ 6= 0 or α 6= 0 and γ < 0.



II) f(x) = αdTx+ cT x+c0
dT x+d0

, α < 0 and c 6= kd ∀k ∈ <.
III) f(x) = hTx+ γ

dT x+d0
, γ < 0 and h 6= αd ∀α ∈ <.

The theoretical properties established in the previous sections allow us to
suggest a sequential method for each subclass.

4.1 Case I

Problem P reduces to the problem

P1 : max
(
αdTx+

γ

dTx+ d0

)
, x ∈ S, dTx+ d0 > 0 ∀x ∈ S

where α < 0 and γ 6= 0 or α 6= 0 and γ < 0.
Setting z = dTx+ d0, the function f is transformed into the function
ψ(z) = α(z − d0) + γ

z , z > 0, whose derivative is ψ′(z) = αz2−γ
z2 , z > 0.

If α < 0 and γ > 0, the function ψ(z) is decreasing so that solving P1 is
equivalent to solve the linear problem min(dTx+ d0), x ∈ S.
If α > 0 and γ < 0, the function ψ(z) is increasing so that solving P1 is
equivalent to solve the linear problem max(dTx+ d0), x ∈ S.
Taking into account the pseudoconcavity of f , it remains to consider the
case α < 0 and γ < 0. In such a case ψ(z) is increasing in the interval
(0,
√

γ
α = z∗] and decreasing in the half-line [z∗,+∞). If dTx + d0 = z∗ is

a feasible level, then any point of S ∩ {x : dTx + d0 = z∗} is an optimal
solution for problem P1. If z∗ does not correspond to a feasible level, let
δmin = min (dTx + d0), x ∈ S. If δmin > z∗, then δmin is the maximum
value of problem P1; if δmin < z∗, then solving problem P1 is equivalent to
solve the linear problem max (dTx+ d0), x ∈ S.
Consequently the problem can be easily solved by means of linear program-
ming.

4.2 Case II

Problem P reduces to the problem

P2 : max
(
αdTx+

cTx+ c0
dTx+ d0

)
, x ∈ S, dTx+ d0 > 0 ∀x ∈ S

where α < 0 and c 6= kd ∀k ∈ <.
Since the linear function dTx+d0 is lower bounded on S, the linear problem
Pd : min (dTx+ d0), x ∈ S has optimal solutions. Let δ0 be the minimum
value of problem Pd and consider the linear program
Pc : max (cTx+ c0), x ∈ S ∩ {x : dTx+ d0 = δ0}.
Taking into account Theorem 3.2, the supremum of problem P2 is +∞ if
and only if the supremum of problem Pc is +∞. If the supremum of Pc is
finite, let x0 be a vertex of S which is an optimal solution of Pc. Starting



from x0, we suggest an algorithm for solving problem P2.
Consider the linear parametric problem

P (θ) : ψ(θ) = max (cTx+ c0), x ∈ S(θ) = S ∩ {x : dTx = dTx0 + θ}

and set Θ = {θ : S(θ) 6= ∅} = [0, θmax], where θmax may be +∞.
We have

max
x∈S

f(x) = max
θ∈Θ

max
x∈S(θ)

f(x).

Setting z(θ) = max
x∈S(θ)

f(x), it results

max
x∈S

f(x) = max
θ∈Θ

z(θ), z(θ) = α(δ0 − d0 + θ) +
ψ(θ)
δ0 + θ

.

If z(θ) increases (decreases), then the function f(x) increases (decreases)
so that a local maximum of z(θ) corresponds to a local maximum of f(x),
which is also global for the pseudoconcavity of the function.
The idea of the algorithm that we are going to describe is the following:
corresponding to the vertex x0, which is an optimal solution of P (θ0), θ0 =
0, denote by B0 the set of indices associated with the basic variables and set
x0 = (xB0 , 0). Applying sensitivity analysis we find (xB0(θ), 0) = (xB0 +
θuB0 , 0) which is optimal for P (θ) for every θ belonging to the stability
interval [θ0, θ1] = {θ : xB0(θ) ≥ 0}. If z′(0) ≤ 0, then (xB0 , 0) is the
optimal solution of P2. If there exists θ̃ ∈ [θ0, θ1] such that z′(θ̃) = 0, then
(xB0(θ̃), 0) is the optimal solution of P2, otherwise for θ > θ1 the feasibility
is lost and it is restored applying the dual simplex algorithm. We find a
new stability interval and we repeat the analysis. Proceeding in this way
we develop a finite sequence of basis Bk, k = 0, 1, ... and a finite numbers of
stability intervals [θk, θk+1], k = 0, 1, ....
With the usual notations, corresponding to the basis Bk, we have:
(xBk

(θ), 0) = (xBk
+θuBk

, 0), ψ(θ) = cTBk
xBk

+θcTBk
uBk

+c0, θ ∈ [θk, θk+1]
so that

z(θ) = α(δ0 − d0 + θ) +
cTBk

xBk
+ θcTBk

uBk
+ c0

δ0 + θ
, θ ∈ [θk, θk+1] (4.6)

z′(θ) = α+
ξBk

(δ0 + θ)2
, ξBk

= δ0c
T
Bk
uBk
− cTBk

xBk
− c0, θ ∈ [θk, θk+1] (4.7)

An algorithm for problem P2

Step 0 Solve problem Pd and let δ0 be its optimal value. Solve problem
Pc. If Pc has no solutions, STOP: sup f(x) = +∞; otherwise let x0 be an
optimal solution of Problem Pc which is also an optimal solution of Problem
P (θ0) with θ0 = 0. Set k = 0 and GO TO Step 1.
Step 1 Determine the stability interval [θk, θk+1] associated with the op-
timal solution (xBk

(θk), 0) = (xBk
+ θkuBk

, 0) of P (θk). Compute ξBk
=

δ0c
T
Bk
uBk
− cTBk

xBk
− c0. If ξBk

≤ 0, STOP: (xBk
+ θkuBk

, 0) is the optimal



solution of P2 otherwise GO TO Step 2.

Step 2 Compute θ̃ = −δ0+
√
− ξBk

α . If θ̃ ∈ [θk, θk+1], STOP:
(
xBk

+ θ̃uBk
, 0
)

is the optimal solution of P2, otherwise let i such that xBki
+ θk+1uBki

= 0.
Perform a pivot operation by means of the dual simplex algorithm, set
k = k + 1 and GO TO Step 1.

Example 4.1 Consider the following problem


max(−x1 − x2 + 80x1+60x2−1

x1+x2+1 )
x1 − 4x2 ≤ 2

x2 ≤ 2
x1, x2 ≥ 0

Step 0 (0, 0) is the unique solution of both problems min
(x1,x2)∈S

(x1 + x2 + 1)

and Pc; we have δ0 = 1 and we go to Step 1.
Step 1 We have xB0 (θ) = (x3 (θ) , x4 (θ) , x1 (θ))T = (2− θ, 2, θ)T , so that
the stability interval is [0, 2] and ξB0 = 81. Since ξB0 > 0, we go to Step 2.

Step 2 We have θ̃ = −δ0 +
√
− ξB0

α = −1 + 9 = 8. Since θ̃ > 2, we perform
a pivot operation according with the dual simplex algorithm. We obtain
xB1 (θ) = (x2 (θ) , x4 (θ) , x1 (θ))T = (− 2

5 + 1
5θ,

12
5 −

1
5θ,

2
5 + 4

5θ)
T , we go to

Step 1.
Step 1 The stability interval is [2, 12] and ξB1 = 69. Since ξB1 > 0, we go
to Step 2.

Step 2. We have θ̃ = −δ0+
√
− ξB1

α = −1+
√

69 ∈ [2, 12], so that (x1, x2) =
(− 2

5 + 4
5

√
69,− 1

5 + 1
5

√
69) is the optimal solution of the problem.

Remark 4.1 Deleting the constraint x2 ≤ 2 in Example 4.1, we obtain
a problem with an unbounded feasible region which have the same optimal
solution of the original problem.

4.3 Case III

Problem P reduces to the problem

P3 : max (hTx+
γ

dTx+ d0
), γ < 0, x ∈ S, dTx+ d0 > 0 ∀x ∈ S.

From a theoretical point of view, problem P3 differs from Problem P2 from
the fact that now we may have a finite supremum not attained as a max-
imum. Referring to case II, we determine the optimal value δ0 of problem
Pd and successively we consider the linear program
Ph : max hTx, x ∈ S ∩ {x : dTx+ d0 = δ0}.
If the supremum of Ph is +∞, then there exists an extreme direction u such
that dTu = 0, hTu > 0, so that from Theorem 3.3, the supremum of P3 is
+∞. If the supremum of Ph is finite, consider the linear parametric problem

P (θ) : φ(θ) = max hTx, x ∈ S(θ) = S ∩ {x : dTx = dTx0 + θ}.



Setting Θ = {θ : S(θ) 6= ∅}, we have

max
x∈S

f(x) = max
θ∈Θ

z(θ), z(θ) =
γ

δ0 + θ
+ φ(θ)

with φ(θ) = hTBk
xBk

+ θhTBk
uBk

, θ ∈ [θk, θk+1], so that

z′(θ) = hTBk
uBk
− γ

(δ0 + θ)2
, θ ∈ [θk, θk+1] (4.8)

Referring to the stability interval [θk, θk+1], we have:
if hTBk

uBk
> 0, then the supremum of P3 is +∞;

if hTBk
uBk

= 0 and θk+1 = +∞, then the supremum of P3 is hTBk
xBk

and it
is not attained as a maximum;
if hTBk

uBk
< 0, we have z′(θ̃) = 0 with θ̃ = −δ0 +

√
γ

hT
Bk
uBk

. If θ̃ < θk, then

(xBk
(θk), 0) is an optimal solution of P3; if θ̃ ∈ [θk, θk+1], then (xBk

(θ̃), 0) is
an optimal solution of P3, otherwise we consider the vertex (xBk

(θk+1), 0)
and we apply the dual simplex algorithm in order to find a new stability
interval; we repeat the analysis.

An algorithm for problem P3

Step 0 Solve problem Pd and let δ0 be its optimal value. Solve problem
Ph. If Ph has no solutions, STOP: sup f(x) = +∞. Otherwise let x0 be an
optimal solution of Problem Ph which is also an optimal solution of Problem
P (θ0) with θ0 = 0. Set k = 0 and GO TO Step 1.
Step 1 Determine the stability interval [θk, θk+1] associated with the opti-
mal solution (xBk

(θk), 0) = (xBk
+ θkuBk

, 0) of P (θk). Compute hTBk
uBk

.
If hTBk

uBk
> 0 and θk+1 = +∞, STOP: the supremum of P3 is +∞; if

hTBk
uBk

> 0 and θk+1 is finite, go to Step 2; if hTBk
uBk

= 0 and θk+1 = +∞,
STOP: the supremum of P3 is hTBk

xBk
and it is not attained as a maximum;

if hTBk
uBk

= 0 and θk+1 is finite, GO TO Step 2; if hTBk
uBk

< 0, GO TO
Step 3.
Step 2 Let i such that xBki

+ θk+1uBki
= 0. Perform a pivot operation by

means of the dual simplex algorithm, set k = k + 1 and GO TO Step 1.
Step 3 Compute θ̃ = −δ0 +

√
γ

hT
Bk
uBk

.

If θ̃ ∈ [θk, θk+1], STOP:
(
xBk

+ θ̃uBk
, 0
)

is the optimal solution of P3; if

θ̃ < θk, STOP: (xBk
+ θkuBk

, 0) is the optimal solution of P3; if θ̃ > θk+1,
let i such that xBki

+ θk+1uBki
= 0. Perform a pivot operation by means

of the dual simplex algorithm, set k = k + 1 and GO TO Step 1.

Example 4.2 (The supremum is finite but not attained).
Consider the following problem


max(3x1 − 4x2 + −5

x1+2x2+1 )
3x1 − 4x2 ≤ 6
−x1 + x2 ≤ 4
x1, x2 ≥ 0



Step 0 (0, 0) is the unique solution of both problems min
(x1,x2)∈S

(x1 +2x2 +1)

and Ph and we have δ0 = 1. We go to Step 1.
Step 1 We have xB0 (θ) = (x3 (θ) , x4 (θ) , x1 (θ))T = (6− 3θ, 4 + θ, θ)T , so
that the stability interval is [0, 2]. Since hTB0

uB0 = 3 > 0, we go to Step 2.
Step 2 We perform a pivot operation according with the dual simplex algo-
rithm. We get xB1 (θ) = (x2 (θ) , x4 (θ) , x1 (θ))T = (− 3

5 + 3
10θ,

29
5 + 1

10θ,
6
5 +

2
5θ)

T , and we go to Step 1.
Step 1 The stability interval is [2,+∞]. Since hTB1

uB1 = 0, the supremum
of the problem is 6 and it is not attained as a maximum.

Computational results. We have implemented the algorithm related
to Case II. Our implementation is based on Clp supported by OsiSolverIn-
terface. The program has been tested using randomly generated problem
instances. In order to guarantee the positivity of the function dTx+ d0 on
the feasible set, we have randomly positively generated both d and d0. Our
preliminary experiment shows that this algorithm converges quickly and the
number of iterations non-decreases as α approaches to 0.

5 Conclusion

In this paper we have considered the problem of maximizing the sum of a lin-
ear and a linear fractional function. Such a problem, equivalent to maxime
the sum of two linear ratios, is not easy to solve since it may have several
local maximum points. We have overcome this difficulty characterizing the
pseudoconcavity of the objective function; the obtained results have allowed
to propose a simple algorithm based on a suitable simplex-like procedure.
As we have already mentioned, some sequential methods have been sug-
gested for the sum of two or more ratios; these interesting methods, which
in general work on a compact feasible set and which do not converge in
a finite number of steps, are necessarily more sofisticated (at least from a
theoretical point of view). Computational comparisons and the extension
of our approach to the general case are open problems.
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