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Abstract In this paper a capacitated dynamic location problem with opening, clo-
sure and reopening of facilities is formulated and a primal-dual heuristic that can solve
this problem is described. The problem formulated considers the situation where a
facility is open (or reopens) with a certain maximum capacity that decreases as clients
are assigned to that facility during its operating periods. This problem is NP-hard.
Computational results are presented and discussed.

Keywords Dynamic location problems - Heuristics
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1 Introduction

Consider a network with a set A/ of nodes and a set A of arcs. Set A/ can be divided
in two disjoint subsets A'1 and N2. Nodes in N'1 are characterized by having a given
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demand. Nodes in /2 can, potentially, be suppliers. They are characterized by having
maximum limits on the demand they can serve. There is a fixed cost incurred by
fixing the capacity of a supplier in a value greater than zero. There are also costs
incurred by satisfying the demand of a node in A/1 using the capacity of a node in
N2. The objective is to decide which nodes in A2 will be used as suppliers and which
arcs in A will be used to satisfy the demand of all nodes in N1, minimizing both
fixed and assignment costs. As it is easily seen, this problem can be formulated as a
capacitated location problem. Now imagine that the costs associated with arcs in A
can change over time, or even that the set A itself can change over time (by insertion
or deletion of arcs). It is also possible to imagine that the demand of nodes in A1 is
time dependent. In this case, it is straightforward to conclude that the possibility of
modifying the network design during the planning horizon should be considered. This
means that there can exist nodes in /2 that are suppliers at time period ¢ but not at
t 4+ 1 ort — 1, or arcs that are used in one time period and not in the next one or at the
previous one. This dynamic version of the problem can be formulated as a dynamic
location problem that allows the reconfiguration of suppliers more than once during
the planning horizon.

The problem studied in this paper has two important characteristics that distinguish
it from the previous work done in this area: it is a capacitated dynamic location problem
that considers the possibility of reconfiguring one location more than once during the
planning horizon. This means that a facility can be open, closed and reopen more than
once, which increases the flexibility of the model. Differentiation between the opening
and the reopening of a facility is convenient because it allows the differentiation of
the corresponding fixed costs (that can be clearly different). The model proposed also
consider the existence of closing costs which, most of the times, cannot be ignored.
Moreover it considers a different type of capacity restrictions: the existence of an
initial maximum capacity that decreases as the facility serves clients. These kind of
restrictions appear, for instance, when locating sanitary landfills that have a maximum
capacity when are opened that diminishes as the solid waste is disposed.

There are several references in the literature that deal with capacitated location
problems (see, for instance, Cornuejols et al. 1991; Sridharan 1995). It is more difficult
to find references to the dynamic capacitated location problem than to the static version
of the problem. Most of the references consider maximum capacity restrictions (see,
for instance, Van Roy and Erlenkotter 1982; Saldanha da Gama 2002; Saldanha da
Gama and Captivo 2002; Dias et al. 2006, 2007), different from the ones considered
in this paper.

The primal-dual heuristic developed here is based on the work of Erlenkotter (1978),
Van Roy and Erlenkotter (1982) and Guignard and Spielberg (1979). This heuristic
is also an extension of the previous work done by the authors Dias et al. (2006)
considering a different kind of capacity restrictions. It builds a pair of primal and dual
solutions, trying to force the complementary conditions to be fulfilled.

In the next two sections the problem addressed is formulated, the corresponding
linear dual problem is presented and the primal-dual heuristic is described. In Sect. 4
computational experiments are described and the results shown, in Sect. 5 some final
comments are made and future work directions are pointed out.
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2 Dynamic location problem with maximum decreasing capacity constraints

Consider the following notation:
J={1,...,i,...,n} set of indices corresponding to the clients’ locations;
I =A1,...,j,...,m}setof indices corresponding to facilities’ possible locations;
T = number of time periods considered in the planning horizon (1 <t <& < T);

cl ; = cost of fully assigning client j to facility i in period ¢;

F Aft = fixed cost of opening a facility i at the beginning of period ¢, and closing
it at the end of period & (the facility will be in operation from the beginning of ¢ to the
end of &);

F Ri = fixed cost of reopening a facility i at the beginning of period 7, and closing
it at the end of period & (the facility will be in operation from the beginning of 7 to the
end of &);

d; = demand of client j at period ¢;

Q; = maximum capacity of the facility located at i, at the time of (re) opening;

and let us define the variables:

1 if facility i is opened at the beginning of period ¢
a:, = and stays open until the end of period &
0 otherwise

1 if facility i is reopened at the beginning
£ of period ¢ and stays open until the end
r;, = . ,t>1
i of period &

0 otherwise

xl? ;= fraction of customer j’s demand that is served by facility i during period ¢.

Consider a situation where a service can be opened (or reopened) with a cer-
tain maximum capacity. As long as this facility serves clients’ demand, its capacity
decreases. Examples of facilities with this kind of behavior can be found, for instance,
in sanitary landfills. When these facilities are opened, they can receive a maximum
quantity of solid waste. This maximum capacity decreases during the life-period of
the sanitary landfill, as it receives solid waste.

The dynamic location problem with maximum decreasing capacities that allows
facilities to open, close and reopen more than once during the planning horizon will
be formulated as DC-DLPOCR:

DC-DLPOCR
T T
Min D DS el + D> S FALa + D> S R, )
roi i E=t i E=t
subject to:
Dxl=1, Vj.i ()

1
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t T
> (af +rf) —xly =0, Vi e @
=1 &=t
—1t—1 T
PIED WAL "
r=1é=1 g=t

T T
> > a, <1, Vi )
£=t

T
> (al.r + rft) <1, Vit (6)

t

T
0i > (af, +7) = D> i =0, Vit )
=1&=1 =1 j
aft e{0,1}, Vi,t,&>1t
rse{0,1}, Vit>1,E>¢

it

®)

Constraints (2) guarantee that, in every time period, each client’s demand is satisfied,;
constraints (3) assure that, in every time period, a client can only be assigned to
facilities that are operational in that time period; constraints (4) and (6) impose that a
facility can only be reopened at the beginning of period ¢ if it has already been open
earlier and it is not in operation at the beginning of period ¢ and that, in every time
period, only one facility can be open in each location; constraints (5) guarantee that
a facility can only be opened once during the planning horizon. The model presented
considers admissible the situation where a facility is closed even if its capacity has
not been totally used. Restriction (7) considers that when a facility is reopened, its
maximum capacity will be equal to Q; plus the remaining capacity the facility had
when it was closed. It can be argued that this behavior is not admissible for some kinds
of facilities. Thinking, for instance, of sanitary landfills it is easy to imagine that if a
sanitary landfill is closed at period ¢ and reopened at period ¢ + 1, then its remaining
capacity at the end of ¢ can be used. Nevertheless, if the sanitary landfill is reopened
several time periods after its closure, its remaining capacity at the end of period ¢
will have been lost (because of all the closing and maintenance operations that need
to be performed). The fixed opening and reopening costs of these kind of facilities
are generally huge when compared with transportation and handling costs, so it is
not expected that a facility with useful remaining capacity will be closed, unless the
remaining capacity is insignificant when compared with Q;. Furthermore, the decision
maker is free to consider only the ali and rl.ér variables he/she feels are needed. He/she
can, for instance, consider variables such that & — t is greater than a minimum time
interval. For these reasons, the authors feel that the model presented has an acceptable
behavior and can be considered useful in the resolution of many real problems, but are
aware of the limitations of these capacity restrictions in some situations, especially
because the fixed reopening costs do not reflect the time distance between the closure
and the reopening periods.
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2.1 Formulation of the dual problem

Multiplying constraints (5) and (6) by —1 and associating dual variables v; with
constraints (2), wf ; with constraints (3), uf with constraints (4), p; with constraints
(5), 7! with constraints (6), A} with constraints (7) and defining w = max{0, v —ci i
— Zgzt d ;)»lw }, Vi, j, t, the condensed dual of the linear relaxation of DC- DLPOCR
can be formulated as:

CDDC-DLPOCR
D39 3 I 3p 3
toj i [

subject to:

ZZmax 0, v —c Zd?k;”

SFAE ZM +,0,—|—Zn —Q,Zk,

t=£+1
Vit,E=t,...,T 9

ZZmaX 0, v —c Zd?k;”

& T
< FR, +ul+ > nf — Qi D AL,
T=t T=t

Vi, t>1,&=1t,...,T (10)

' Y .
u;, pi,m;,A; >0, Vit

2.2 Complementary conditions

Let us define:

& T
SAfleAE Z uj +p,+2n ZZmax O,v;—cZ/—Zd;A;p
=t Y=t

t=£+1 j

T
—Qi > M. VitE=t....T (11)

@ Springer



256 J. Dias et al.

3
SthzFRi+u;+ZniT—ZZmax 0, v —c Zd?)f
=t

T
—QiZAf, Vijt>1,6=t,...,T (12)

Sg_mln{SAE SRE}, Vit, E=t,....T (13)

i’

The following complementary slackness conditions hold if in presence of optimal
primal and dual feasible solutions (when there is no duality gap).

t T
SO (o o) =ty | wly =0, Vi (14)
=1 &=t
t—1 -1 T
20D = 2 | =0, Vi (15)
t=1&=1 E=t

T T

S>3 af —1)pi=0., Vi (16)

t T
> (af, +r5) 1)l =0, Vi (17)

=1 &=t
SAS .af, =0, Vit,E=t1,...,T (18)
SRS .15 =0, Vijt>1,6=1,...T (19)

T
o> (af+r”) ZZdj x5 =0, Vi (20)
t=1&=1 =1 j

3 Primal-dual heuristic

The primal-dual heuristic developed to solve the problem formulated in the previous
section builds admissible primal solutions based on admissible dual solutions, trying to
force the complementary conditions to be satisfied. The heuristic functioning scheme
is the following:

Initialisation of dual variables;

Dual ascent procedure for dual variables v;;

Primal procedure;

Dual adjustment procedure for dual variables p;. If the dual solution is changed
go to 2;

5. Repeat the dual-primal adjustment procedure for variables v;. until there is no
improvement in the dual objective function value;

bl S
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6. Dual adjustment procedure for dual variables p;. If the dual solution is changed

go to 2;
7. Dual ascent procedure for dual variables ui . If the dual solution is changed
go to 2;
8. Dual descent procedure for dual variables u}. If the dual solution is changed go
to 2;
9. Dual ascent procedure for dual variables A!. If the dual solution is changed
go to 2;
10.  Dual descent procedure for dual variables A!. If the dual solution is changed go
to 2;
11. Dual adjustment procedure for variables 7. If the dual solution is changed
go to 2.

The heuristic will stop when the optimal solution is found (the pair of primal and dual
solutions satisfies all complementary conditions), or when there are no improvements
in either primal or dual objective function values. Dual variables are initialised as:

1. vs._mln{clj} Vit 7l =0, Vit

2. wl=max{0, — min  FR,| Vir
t:FR, <0
£>1

T
3. pi=max{0, — min { FAS — > uf |}, Vi
t T=£+1

E>1

L

Step 2 of the primal-dual heuristic tries to increase all dual variables v ,(j, 1) €
JT,JT C J x T.]If this procedure is executed in step 2 of the heuristic, then J7Tis
the whole set J x T. Whenever this procedure is executed within other procedure, the
set J T will be defined before the Dual Ascent procedure is called. This procedure is
a straightforward adaptation of the one described in Van Roy and Erlenkotter, 1982.
The only difference is in the updating step of slacks SA?T and S R;’Z : each time the
value of v is increased, slacks S As and SRZST, T <t < &, have to be updated (its
value will be decreased by the same amount the dual variable was increased, if v is
greater than or equal to c ) The assignment costs for period ¢ should be con51dered
equal to cij + d;. ST )\if.

In most of the capacitated dynamic location problems, after deciding which facilities
are open at each time period, the optimal value of the assignment variables can be
calculated through the resolution of T transportation problems. In the present problem,
the resolution of T transportation problems does not guarantee the calculation of the
optimal assignments of clients to facilities, because the available capacity at period
t is dependant on the remaining available capacity at the end of period t — 1. The
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resolution of the following linear programming problem guarantees the calculation of
optimal assignments.

PL1
Min >SS e e
toi
subject to:
Dixli=1, Vij.t (22)
el
t T t
Q,ZZ(a +r) Zza'; X520, Vi ielt 23)!
t=1é=t1 =1 j

t . . +
X >0, Vjt,iel

3.1 Dual adjustment procedure for variables p;

If it is possible for a variable p; to decrease its value, the dual objective function
value will automatically increase. The value of variable p; can be decreased if S Ali #

0,V1 < t < £&. Increasing the value of the dual variable p;, increases all slacks § Afr.
The change in these slacks allows the increase of some v’. that were blocked. However,
variables p; have a coefficient of minus one in the dual objective function. Therefore,
they should only be increased if the enhancement of variables v; is compensatory. It

should be noted that it is worth trying to increase p; only if S Rli # 0 and SA?r =0.
Otherwise, a change in the slack SA;?r would not be reflected in dual variables vj..

Al

Dual adjustment procedure for dual variables p;

I < 1;

Ap; < minrfg{SAfr}. If Ap; = 0 then continue. Else go to 7.

Ap; = max{SRS, :3(i, 7, §) € [fwith SAS, = 0and SR, # 0}.

If Ap; # Othen p; < p; + Ap;; SA:?r <« SA?T + Ap;, V1, & > t. Else go to 8.

JT={(,0): I ]t* = {i}, Vt}. Execute the dual ascent procedure for dual variables
'

Uj.

JT = J x T. Execute the dual ascent procedure for dual variables v;.
Ap; = min SAft.
T
E>1
Ap; = min {Api, pi} . If Ap; # Othen SAS «— SAS —Ap;, V1, £>1;p <

pi — Ap;.
If i = m then stop. Else i <— i + 1; goto 2.

1 Variables ali and rli are fixed to one or zero.
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3.2 Dual-primal adjustment procedure for variables U;‘

The dual-primal adjustment procedure for variables v; detects violations of the com-
plementary conditions (14), and decreases the values of some variables v;., allowing
other variables v’; to increase. This procedure can reduce the number of violations of
complementary conditions (14) and, at the same time, can improve the value of the
dual objective function.

Consider the following sets:

I'* {iza(r,g) witht <t < £|(i,7,€) € I* and v’-zc,’u}

J J

+_ L et t !
I; _{z.zelt and vj>cij}

Jj*:[(j,ﬂ:l}*:{i} and (i,y,6) ¢ Iy <E<t <t or t<t§y§§}

The set I}+ indicates, for each client j, all operating facilities during period ¢ such
that v’ is greater than the assignment cost ¢}.. A violation of the complementary
condition (14) is detected by the existence of, at least, one pair (j, ) such that the
number of elements in I]’.+ is greater than one. Decreasing the value of a variable v;

such that the number of elements in I;Jr is greater than one, means that at least slacks
S,i, T <t < &, will be increased for two distinct facilities. This may promote the

increase in the dual objective function. The set Jl.H' represents all variables v;. whose

value can be increased with the rise of slack Sii, T <t < &. This procedure is a
straightforward adaptation of the one described in Erlenkotter 1978 and Van Roy and
Erlenkotter (1982) taking into account the remarks of Saldanha da Gama and Captivo
(2002).

3.3 Dual ascent procedure for variables !

Increasing variables uf increases slacks S Ri, & > t, but at the same time diminishes
slacks SA?I, T < & < t. If the procedure is able to increase slacks Sft that are
blocking variables v;, decreasing Sii that are not blocking any variable vs., then it
will be possible to improve the dual objective function value. If there is § Ri = 0and
S Aft # 0, then the increase in uf can be of help. This situation occurs, for instance,

when (i,t,&) € Ij{ with SA‘;?EI # 0 and SRi = 0. In this case, SR;"CI should not
&

it’
value of § i On the other hand, variable u§ cannot grow more than the minimum value

of SA?I, V1t < & < t, sothat the dual solution remains admissible. Increasing variable
ulf can diminish the number of violations of complementary conditions (18). Consider

variables u} organized as a sequence of pairs (i, ).

increase more than S Ai — SR, because any further increase will not change the
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Dual ascent procedure for dual variables v’
Initialise (i, ¢) < (i,t)1; g < 1.
£ «—1; Aul < 0:8 < 0.
If SRS, = 0 and SAS, # 0, then Au! « max{Au!, SA5}and § « 1.
Ifé =TgotoS5,elseé < &+ 1, goto 3.
If § = 0, go to 7. Else Au! < min{Au!, min <, -, SAY },
SR, < SR, + Aul, V& > 1.
SA?r <« SA?T — Aul, VTt <& <tandul < ul + Aul.
6. JT={(,0:1 J’* = {i}, Vt}. Execute the dual ascent procedure for variables v"..

J
JT = J x T. Execute the dual ascent procedure for variables v’,.
7. Ifg =m x T thenstop. Else g <= g + 1; (i, 1) < (i, 1)4, go t0 2.

Al

3.4 Dual descent procedure for variables u!
Decreasing uf will decrease slacks S Ri, & > t, and increase slacks SA?T, T<§&<t.
To guarantee the admissibility of the dual solution, variable u! can only be decreased
if Sth > 0, V€ > t. If the procedure is able to increase slacks Sfr that are blocking
dual variables v; and decrease slacks that do not influence v; values, then it is possible
to improve the dual objective function value.
Dual descent procedure for variables uf
Initialise (i, 1) < (i,1)1;q < 1.
If u! = 0 go to 6; Otherwise, Aul <« 0;8 « 0.
If SR}, > 0, V& > 1, then Aul < mings,{SR;} and § < 1.
If § = 0 go to 6. Else Au! < min{Aul, u}};
SRS <« SRS, — Aul, V& > 1.
SAS — SAS 4 AulVr <& <rtandul < ul — Aul.
5. JT={(.0:1 ]’* = {i}, Vt}. Execute the dual ascent procedure for variables U;'
JT = J x T.Execute the dual ascent procedure for variables v"..
6. If g =m x T thenstop. Else g <— g +1; (i,1) < (i, 1)4, go to 2.

Ll o

3.5 Dual ascent procedure for variables A;

Variable Af influences the value of all slacks SA?T and S Ri, t < t. Consider the
following definitions:

T

1 £
A = max |- max {0, v; — cfj - E d}’)\.i
f=r

JeJ Y
T<t
T
JI@) =jed vi—c; = > da <sd . (24)
E=t

@ Springer
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Proposition 1 If variable )»f is increased by § €]0, Al, then slacks SAé and S th,
T < t, will be changed by:

d 6, 1,8)
min{&,t}

= Z Z max 0v —c Zd?)n;// + Z 5d‘;- —80;
s=T jeJ1(s) JEJ1(s)

(25)

Proof 1f )»5 is increased by § €]0, A], all sums ZIZ:Y djk;”, with s < ¢, will be

increased by d3§. These sums influence the values of all slacks SA?T and S R,i, with
T < t.Ift > & then all sums with t < s < & have to be taken into account. If ¢ < &,
then only sums with 7 < s < r will change (sums with s > ¢ will not be altered).
Foreach s, t < s < min{§, t}, v 211/ Sdsk‘// with j € J1(s) will become
less than or equal to zero (and the correspondmg w . variable will be equal to zero).
Forall j ¢ J1(s), variables w; i will be decreased by d ]8 Dual variable )J influences

all slacks SA?T and SR?T, T < t, not only due to sums ZVT, 5 dj)»:l/, witht <s <1,

but also due to the sum Q; Zi:r )»;/’. This sum will be increased by 6 Q;. Therefore,

it can be concluded that the total change in slacks S Aisr and S Rfr, T < t,duetoa
change § in dual variable )Lﬁ is given by ® (4, 7, ). O

As can be seen by expression (25), slacks influenced by the increase in the dual
variable will have different behaviors: some can be increased while others can be
decreased.

Proposition 2 Consider that ). is increased by §’, with §' > A, being the resulting
slacks SA/?T and SR/?T, with t < t. It is possible to find § €]0, A] such that if)»f is
increased by § instead of §', the resulting values of all slacks SA'?T and S R,.i, with
T < t, will be greater than or equal to SA/?T and SR/?T, with t < t.

The proof follows directly from proposition 1 and the definition of A . Proposition 1
motivates the following dual ascent procedure for variables A!.
Dual ascent procedures for variables A’

1. 1< 1;
i < 1;8 <« 4+o0;
1 &
3. § « 1}1621}( [Emax {0, v]f. Zé Td;k }]
T<t

# max{O,v}’. _Cirj_st:r d})\f}«i’
4. Ifs =0, then goto9.
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5. Compute J1(¢) asin (24). F3SAS or SRS, T < 1,suchthat SAS, +® (8, 7, ) <

T’
0 or SR?T + P, 1,6) <0goto6.Else goto 7.
6. If 8 =0, then go to 9. Else 8’ < 8. Go to 4.
7. A A48; SAS, «— SAS 408, 7, £)and SRS, < SRS 4+9(8,7,8),Vr < 1.
8. Execute the dual ascent procedure for variables v’,.
9. i < i+ 1;ifi > m then go to 10. Else go to 3.
0. t < t+ 1;ifr > T then stop. Else go to 2.

3.6 Dual descent procedure for variables A;

A decrease in the dual variable )J will increase all values v —c Zg c d]fkf, vVt <t.

Proposition 3 If 1! is decreased by 5, with:

dTas
0<6< min — ZS £ , (26)
T<t dt
/E_J J

vt —cf 7Zdrkg<0
J J
E=1

then all slacks SA?T and SR?T, with t < t, will be changed by:

min{&,z}
Qe =5[0- > > al'|l. @
V=t jeld

>, dla =0

Proof If A! is decreased by 8, all values vS —c}; —Zi S dj A;//, s < t,will be increased

by Sds To guarantee that v — c Zw s ds)»w < 0 will remain less than or equal
to zero

1 asny
Vi — ¢ st)»]/f+8ds<0 & §< vuz#
1

Therefore, the upper limit defined by (26) guarantees that for all j and s such that
v — c zw —s ds )\w < 0, this value will continue smaller than zero. For each slack

SAE and SRE W1thr < tallvalues v$ —cf, — 37 _ d$i) > 0,withs < min{g, 1},

w111 be 1ncreased by Sds Each of these slacks is also influenced by the decrease § Q;
in sum Q; zv/ A Therefore Q(4, T, &) expresses the change occurred in slacks
S Afr and S Rfr, W1th T < t, due to a decrease § in dual variable )\;. O

Proposition 3 motivates the following dual descent procedure for variables kﬁ.
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A dynamic location problem with maximum decreasing capacities 263

Dual descent procedure for variables 1.

1. t < 1;
2. 1<« 1;
Tt T grd
3. § < min )\;, m<11;1 [—U/c’!d#] ; If § = 0, then go to
T ;
jed !
Vi =31 dTAf <0
7.
4. If SA?r +Q@,1,8) <0or SRii 4+ Q(@6,1,&) <0, for some t < ¢, then:
5 . SAS, SRS,
< M O\ TaGen T Qenen |-
Q5,7,6)<0

5. 1f8 = 0 goto7. Else SA> « SAS + Q(5,7,£) and SR, < SR® +
Q@6 1,8),Vr <t.Al < AL +34.

6. Execute the dual ascent procedure for variables v;.

i < i+ 1;ifi > m then go to 8. Else go to 3.

8. t < t+1;ift > T then stop. Else go to 2.

~

3.7 Dual adjustment procedure for variables nl.’

Increasing the value of r(i’ will increase slacks Sfr, T <t < &.If there are slacks

Sfr, T <t < & that are blocking dual variables v;., then it is possible to improve the
value of the dual objective function. However it is only worth to increase 7/ if the
change in dual variables v;. compensates the loss of 7/ in the objective function value
(the variable nl.’ has a coefficient of minus one). If the procedure is able to diminish
the value of 71[.’ , maintaining the dual solution feasibility, then there is an immediate
improvement in the dual objective function value.

Consider variables rri’ organized as a sequence of pairs (i, t), and M alarge positive
number.

Dual adjustment procedure for variables 7/

1. Initialise (i, ¢) < (i, t)1; g < 1.

2. Anl = rIBtiEE S[i. If At/ # 0, then go to 6. Else Anr] < M.

3. Sii<—S§T+Ani’,‘v’rftfé;nl.’znl.’—i—Anf.

4. JT ={(j.0) : I}* = {i}, Vt}. Execute the dual ascent procedure for variables v}.

JT = J x T. Execute the dual ascent procedure for variables v
5. An/ = min S8

r<r<t T

t.
It
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264 J. Dias et al.

6. An! = min{An], 7!} If An/ # 0 then Sfr <« Sfr — An/,Vt <t < & and
nl =n! — An}.
7. Ifg =m x T thenstop. Else ¢ <— q + 1; (i, ) < (i,1)4, g0 to 2.

3.8 Primal procedure

The primal procedure, here developed, guarantees the calculation of a primal admis-
sible solution, if one exists for DC-PLDOCR. It begins by calculating a solution for
the uncapacitated problem. When it is necessary to open more services during a period
t, the procedure calculates the cost of opening facilities not in operation during that
time period, but also the cost of opening or reopening facilities before period ¢. Every
time a facility is (re) open, its capacity is increased. Consider the following notation:

I ={G,7,6:5 =0

I'={i:(t,§)el"andt <t <§}

I;" = {i: facility i is open during period }

IF={G,18:d. =1

IF={G, 0,8 =1}

hf = smallest cost incurred by opening a facility i ¢ I, during period ¢.

pf = smallest cost incurred by reopening a facility i € 1,7 at the beginning of a

period 1’ < 1.
Cap§ = Maximum capacity of facility i at the beginning of time period ¢.

DC-DLPOCR primal procedure
1. Iy =1} =90.0;" = ¢, V. Build sets I* and ;. Num = 0;
2. Fort=1,..., T,includein set I, all facilities i such that 3; : vs- > cfjandv; <
(o
Cirj» Vil #£1i.
3. Foreachclient j such that v} <l i Vi € 1,7, include in set /," facility i such that
t

i = minv;ZC;/j cf,j. Num=Num+1. If Num=1 then I} = I = 0.1} = I,
and I,+ = 0, Vt, go to 2. Else continue.
4. Build sets IX and I;. Update Il+. Fort = 1,..., T, assign each client j to

facility i’ € I;" such that ¢l = minjerfcf; ).

Test complementary slackness conditions.

6. Solve problem PL1 optimally using a general solver. If PL1 has no admissible
solutions, go to 7. Else stop.

7.t < 1.Capl.1 <~ 0Q;,Vi € Il+ andCapl.1 «~—0,Vi ¢ 11+~

D « Zj d;; C < Ziel;r Cap}. If D < C then go to 13.

Calculate 7!, Vi ¢ 1" and p!,Vi € I'.h! < + o, Vi € I," and p! « +

Vi¢ It

10. Choose i’ such that min {h!,, p,} = min {h], p;} where h; = l’lnel}l {h!} and

e

© o

py = min {p;}.
11. Rebuild sets 12', I;, I,+, V¢t and recalculate Cap?, Vi, and C according to the
choice made in 10.

@ Springer



A dynamic location problem with maximum decreasing capacities 265
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Fig. 1 represents facility i functioning time periods

12. If D > C then go to 9. Else continue.

13.  Solve one transportation problem considering as sources the set J of clients
(with supplies d;), as destinations the set I,+ (with demands Cap?), and unit
transportation costs given by cf ; /d;. Consider the values of the transportation
variables designated by xl/;

14. Cap; < Cap; — 3¢, /. Vi € I

15. t < t+1;ift > T, then go to 6. Else continue.

16. If 3G, 1,&) € I7 U I}, then Cap! <« Capﬁ_1 + Q. Else Cap! « Cap;_l.
Go to 8.

In the primal procedure, steps 4 and 5 require special attention. As a matter of fact,
building sets IX and / 1—; is much more complicated than building set I as described in
Dynaloc Van Roy and Erlenkotter (1982) taking into account the remarks of Saldanha
da Gama and Captivo (2002). If, for a facility i € It+, Sli =0,7 <t < & for more
than one pair (7, &), the choice of which variable to include in set IX or 11‘; is not
trivial. For each facility i, these procedures include in / X or/ ; variables guaranteeing
that facility i will be open at least during periods 7 such that i € I;7, and that satisfy
constraints (4)—(6).

Considering time periods a, b, ¢, d (Fig. 1) defined formally as 2

b = max {0, max {t':i € I;,'}] ;a = t'such that (i, 7', b) € IT U I
t'<t
¢ = min {T + 1, min {t’ (i€ I[T } : d = t'such that (i, c, t’) € IX u I;;
t'>t

the calculation of hf is made as follows:

Calculation of k! for i ¢ I

. Ifb=0andc =T +1then F{ « min {FAf :1<t<r<&=T} Swp.
2. If b=0andc < T then

F! < min {min{FAS — FAL + FR. 1<t <1<f <,
min {FA? — FAL : 1 <7 <t}}
Ifb>0andc =T + 1 then go to 4. Else go to 7.
4. If (i,a,b) € IX then go to 5. Else go to 6.

F! < min{min{FAfa — FA;’a 1t <&<T}
min{Fth:b<r§t§$§T}}

. Stop.

[O8]

. Stop.

2 Time period b represents the time period before and nearest to ¢ such that facility i is operating. Time
period c represents the time period after and nearest to ¢ such that facility i is operating.
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¢ F < min(min(FR}, — FR, :1<§<T),
min{Fth:b<r§t§$§T}}

7. If(i,a,b) e IX then go to 8. Else go to 9.
Fi’ <« rnin{FA?a — FA;’a - FR;ic,min{FRii,b <T<t<E&<cl
min{FAS, — FA? 1 <& < ¢}, min{FR% — FRL, b < © < 1}}

F! < min{FRY — FRY — FRL min{FRS b <t <t <& <c),
min{FR;, — FRY 1 <& < ¢}, min{FR% — FRL, b < 7 < 1))

ra

. Stop.

. Stop.
; Stop.

The possibility of changing the value of variables af’a or riba is considered only if

facility i has remaining capacity greater than zero at the end of time period b (otherwise,
even if the facility was operational during time period ¢, it would not increase the total
available capacity).

If a service is already open during time period 7, there is the possibility of increasing
its available capacity by (re) opening the facility before time period 7. This can be

with 7 < ¢, that are considered equal

to one in the present primal solution or by considering new variables ali or ri‘i such

thati ¢ 1,4,', fort <1 < & < t. The calculation of p} takes all these possibilities into
account.

achieved either by splitting variables afr orr;,

Calculation of p! fori € I,¥

1. p! < min {400, . min . [FAfT—i-FRiH—FAfT},
(l,T,S)EIA

T <t

¢ <t

min {FR{ + FRS,, - FR}
(i,71,6) el
T<t
<t
tl < 1;
Ifi e I;[ go to 6. Else continue.
b = max {O, max,/ .| {t’ 1€ II?L}}; ¢ = min {t, ming/ {t/ ‘i€ IZT}};
If b = 0, there exists (i, a, d) € IX. Then
p! < min{p!, miny_, < _{FAS } + FRS — FAZ}. Else p! < min{p!,

AR

minb<r§$<c{FR,‘i}}-
6. t1 < t141;If¢r1 =t then go to 7. Else go to 3.

7 pi “%f%],where@ = [D_C’lfC+Qi <D

. . Stop.
Q;, otherwise p
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4 Computational tests
4.1 Description of the computational experiments

The primal-dual heuristic was tested with a set of randomly generated problems. The
following values for m, n and T (n > m) were considered and, for each combination,
5 instances were generated (total of 270 problems):

n 25 50 100 200 500
m 5 10 20 50
T 5 10 20

The data for the test problems were generated according to the following procedure:

1. Random generation of (x, y) coordinates in the plane of the m + n nodes of the
network, according to a uniform distribution and considering a 500 x 500 square.

2. Random creation of arcs between the network nodes, with a probability of 75%.

3. Creation of arcs (not created in step 2) between nodes such that the Euclidean
distance from one another is less than 50, with probability of 80%.

4. Forthe first period, the costs associated with arcs are randomly generated according
to a uniform distribution, in the interval [100,1100]. For ¢ > 1, the cost associated
to the arc in period ¢ is equal to the cost in period # — 1 plus a changing factor
randomly generated corresponding to a variation between —10% and +10%.

5. For each time period, calculation of the shortest path between each client and each
facility, using the Floyd-Warshall algorithm.

6. For each facility /i and period ¢, consider tend=t¢, ..., T. For tend=¢, the fixed

costs for variables a}fnd and rl.‘f“d are randomly generated according to a uniform
distribution in the interval [500, 3,500]. For tend > ¢, a factor between 0% and 10%,
that represents an increase in the fixed cost for tend—1, is randomly generated.

7. The maximum capacities and the clients demands in each time period are randomly
generated as described in Saldanha da Gama (2002).

All experiments were carried out in a Pentium 4, 1.80 Ghz, running under Windows
2000 operating system, with a maximum of 2,000 MB of virtual memory and 260 Mb
of Ram. The heuristic was programmed using C-language and Microsoft Visual C++
compiler. The performance of the algorithm was compared with the performance of
CPLEX, version 7.0.

CPLEX terminates without calculating the optimal solution whenever more than
2,100,000,000 nodes of the branch and bound tree are explored, or when the number
of simplex iterations in a node exceeds 2,100,000,000, or when there is not enough
memory to read the problem or when the execution time exceeds 200,000 .

After the execution of the primal-dual heuristic, a local search procedure was exe-
cuted. Let:

SOL =set of solutions constituting the k-neighborhood of solution S;

Z s =primal objective function value considering solution S.

Definition 1 An admissible solution S’ is said to be in the k- neighborhood of the
admissible solution § if and only if S’ differs from § by the insertion or removal of at
most k functioning continuous time periods to a service i.
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The local search procedure can be described as follows:
Local search procedure

k < 1.S=current primal solution.

Calculate ST € SOLg such that Zg+ = min {Zg}
S'eSOLs

If Zg+ < Zg, then S <— ST and go to 2. Else continue.
k < k+ 1.If k > T then stop. Else go to 2.

el NS

We also tested the performance of a lagrangean heuristic procedure that uses the
subgradient optimization method applied to the lagrangean relaxation obtained by
relaxing, in a lagrangean way, the capacity restrictions. An uncapacitated dynamic
location problem is obtained that is optimized using the heuristics described in
Dias et al. (2007). Then a primal procedure similar to the one described in this paper
is used to find an admissible solution.

4.2 Computational results

Table 1 shows the quality of the primal solutions found by the heuristic. It shows the
results obtained when the dual variables are initialised as described in Sect. 3 (columns
4-6). It also shows average results of the quality of the primal solutions obtained by the
primal-dual heuristic after the execution of the local search procedure around the best
solution found by the heuristic (columns 7-9). In the following columns the results
presented were obtained when the dual variables are initialised by solving a linear
programming problem, as described in Saldanha da Gama (2002). Table 2 shows the
results obtained with the lagrangean heuristic described in the end of the previous
section. The tables show the worst, the best and the average value of the deviations of
the final primal solution found from the best known lower bound on the optimal value.
This lower bound is equal to the optimum value for all problems CPLEX was able to
solve. For all the others, this lower bound is given by the best dual solution found by
the primal-dual heuristic. The values shown are calculated as (Z — Z; p)/Z1 p, where
Z 1is the objective function value of the final primal solution found and Z p is the
value of the lower bound. In Tables 1 and 2 there are some values greater than 100%.
This happens for sets of problems that CPLEX was unable to solve and was not even
capable of solving the linear relaxation. This means that the best lower bound known
is the one given by the primal-dual heuristics. As can be seen in Table 3, that shows
the quality of the dual solution calculated by the heuristics, the quality of this lower
bound is very poor. The quality of the lower bound is calculated as (Z* — Z;p)/Z*,
where Z* represents the best upper bound known. That is why these values greater
than 100% appear in Table 1. Table 4 shows the computational times spent by the
heuristics and by CPLEX. CPLEX is unable to solve one of the five problems with
(T, n, m) equal to (20,100,20) and is capable of solving only one of the five problems
with (T, n, m) equal to (20,200,20). The symbol ‘—’ is used in Table 3 for all cases
where CPLEX was not capable of solving any of the five problems.
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Table 1 Quality of the primal solution in percentage (primal-dual heuristic)

T n m Heuristic Heuristic + Heuristic with Heuristic with
local search Initialisation Initialisation using
using a LP a LP + local search

Best Average Worst Best Average Worst Best Average Worst Best Average Worst

5 25 5 022 1.17 347 0.00 0.12 0.62 024 221 495 0.00 1.26 4.88
5 25 10 1.21 2.01 4.17  0.89 1.59 345 077 2.28 385 0.68 1.94 3.56
5 25 20 146 272 3.89 140 2.12 326 1.06 2.53 3.87 041 2.02 3.51
5 50 5 0.11 0.96 1.30  0.02 0.69 1.21  0.80 3.05 6.30 0.00 1.56 4.17
5 50 10 1.31 2.93 4.68 130 243 340 146 222 3.62 074 151 1.98
5 50 20 1.42 272 386 0.74 221 386 131 3.20 581 091 243 3.99
5 100 5 042 1.75 4.65 0.10 1.38 386 0.00 2.38 4.57 0.00 2.10 4.46
5 100 10 1.00 1.46 205 072 1.16 205 073 1.52 225 044 1.09 1.79
5 100 20 1.40 2.44 349 140 1.99 289 0.87 2.03 324  0.63 1.59 3.24
5 100 50 1.71 3.23 440 134 2386 359 170 3.18 378 170 2.69 3.17
5 200 5 003 1.45 282 0.00 0.77 2.02  0.03 1.38 282  0.01 1.11 2.12
5 200 10 1.22 191 280 099 1.56 205 130 213 311 099 1.84 2.89
5 200 20 1.76 2.61 388 141 221 388 097 2.16 3.69 0.68 1.71 2.56
5 200 50 3.14 4.07 510 231 3.54 5.10 2.82 4.07 4.88 2.80 3.82 4.88
5 500 5 0.00 0.66 1.38  0.00 0.55 1.18 0.00 1.00 2.84 0.00 0.72 1.76
5 500 10 042 1.13 258 036 1.02 221 046 1.82 278 0.39 1.58 2.44
5 500 20 0.78 2.32 3.44 070 1.79 313 111 194 293 099 1.55 221
5 500 50 2.92 3.64 513 246 343 513 3.06 397 491 232 290 3.33
10 25 5 076 1.32 235 0.09 0.78 1.17  0.83 2.07 570 054 1.75 5.52
10 25 10 1.53 2.62 392 0.85 2.03 392 081 226 3.65 081 1.64 2.70
10 25 20 220 3.52 4.69 146 247 373 298 3.97 507 133 249 3.88
10 50 5 054 1.82 443  0.54 1.53 299 0.06 2.05 6.04 001 1.98 5.86
10 50 10 1.79 2.02 257  1.08 1.72 257 076 2.12 399 052 1.39 1.92
10 50 20 296 3.24 381 190 2.53 381 260 3.12 3.62 225 278 322
10 100 5 0.16 0.70 126 0.01 0.42 099 026 1.27 2.57 0.14 0.68 2.00
10 100 10 1.19 1.90 3.00 0.29 1.35 3.00 1.80 2.12 243 133 1.68 2.18
10 100 20 1.92 245 291 115 1.95 291 175 239 3.00 1.21 1.99 2.40
10 100 50 3.14 4.11 498 225 342 419 330 4.25 495 265 342 431
10 200 5 0.23 1.52 226 0.01 1.11 2.19 023 1.31 2.14 023 1.13 1.51
10 200 10 1.10 1.94 3.03 040 1.53 252 1.62 283 519 132 224 3.50
10 200 20 2.05 2.94 353 122 1.73 238 194 3.07 3.62 194 257 3.14
10 200 50 3.60 3.70 385 297 348 385 3.14 349 382 218 257 3.01
10 500 5 0.14 0.75 1.36  0.01 0.58 133 041 0.88 1.19 041 0.76 0.99
10 500 10 0.73 1.61 238 0.65 1.31 1.63 112 1.77 275 1.01 1.45 2.54
10 500 20 1.80 2.26 283 143 1.66 205 1.68 238 318  1.17 2.07 2.62
10 500 50 3.07 3.78 432 247 3.08 396 3.04 3.73 457 258 331 4.57
20 25 5 1.45 3.09 451 136 2.13 329 132 3.64 524 121 237 2.71
20 25 10 2.63 3.15 390 2.04 2.67 311 2.67 3.40 391 1.89 242 3.00
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Table 1 Continued
T n m Heuristic Heuristic + Heuristic with Heuristic with
local search Initialisation Initialisation using
using a LP a LP + local search

Best  Average Worst Best  Average Worst Best

Average Worst Best  Average Worst

20 25 20 396 513 597 278 394 597 414
20 50 5 1.47  2.55 434 050 1.77 3.40  0.67
20 50 10 1.35 1.98 277 085 1.48 221 1.34
20 50 20 417 477 548 399 4.62 548 392
20 100 5 093 234 374 093  2.06 3.31 0.66
20 100 10 2.63  3.11 3.65 206 2.63 320  2.66
20 100 20 299 394 450 252 3.8 440 328
20 100 50 109.91 12820 137.60 108.56 127.02 136.43 120.99
20 200 5 1.79 213 2.49 1.51 1.88 240 236
20 200 10 1.10 191 270 0.96 1.69 221 261
20 200 20 2.86  3.39 4.26 1.88 275 355 3.02
20 200 50 115.41 132.04 151.36 113.99 130.83 150.07 120.25
20 500 5 1.58 285 3.95 1.19 228 3.56 1.75
20 500 10 243  3.04 450 142 202 228 223
20 500 20 3.65 437 729 244 386 424 398
20 500 50 118.87 143.93 165.74 116.27 141.29 162.08 123.60

6.02 794 251 3.47 451
2.32 464 028 1.49 3.06
2.69 5.30 1.02  2.11 4.52
4.48 5.31 2.08  3.07 3.92
245 487 0.58 1.84 2.85
3.20 4.50 1.62 256 3.07
3.72 4.07 231 2.63 3.28
130.55 156.65 110.39 131.50 139.25
2.89 3.25 1.89 238 2.95
291 310 225 258 2.76
4.23 502 242 312 3.77
136.96  165.30 119.25 128.59 162.20
3.12 4.03 149 298 3.63
4.15 5.11 223 351 4.25
5.12 743 318 498 6.69
152.60 163.97 122.55 151.07 161.87

Table 2 Quality of the primal solution in percentage (lagrangean heuristics)

T n m Lagrangean heuristic Lagrangean heuristic
+ local search

Best Average Worst Best Average Worst
5 25 5 0.00 3.71 9.44 0.00 2.38 6.05
5 25 10 0.91 5.59 7.58 0.86 4.35 6.98
5 25 20 3.06 4.97 7.71 2.09 4.08 7.17
5 50 5 0.00 1.58 4.68 0.00 1.13 2.56
5 50 10 1.48 4.67 8.34 0.95 2.80 4.00
5 50 20 3.19 5.49 9.73 1.52 4.51 8.58
5 100 5 0.97 3.42 4.73 0.97 3.23 4.64
5 100 10 2.62 6.05 13.04 1.88 4.51 10.47
5 100 20 3.81 5.68 8.54 3.22 4.60 6.66
5 100 50 3.66 5.47 8.04 3.03 4.65 7.58
5 200 5 2.08 3.09 4.16 0.00 1.93 3.50
5 200 10 3.36 4.64 6.69 2.33 3.82 6.23
5 200 20 4.20 5.73 8.20 3.03 3.98 4.89
5 200 50 5.19 6.28 7.40 4.03 5.11 6.15
5 500 5 0.00 1.54 3.12 0.00 1.02 1.81
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Table 2 Continued

T n m Lagrangean Heuristic Lagrangean heuristic
+ local search

Best Average Worst Best Average Worst

5 500 10 0.57 3.85 6.53 0.44 2.66 4.96

500 20 2.87 4.23 5.96 1.66 3.49 5.35
5 500 50 4.66 6.03 7.04 3.89 4.56 5.39
10 25 5 4.27 8.40 11.44 4.12 5.16 6.38
10 25 10 4.73 7.89 10.78 3.13 4.95 6.67
10 25 20 4.53 7.77 10.70 2.39 3.32 3.90
10 50 5 4.63 7.81 15.96 3.23 6.35 15.61
10 50 10 3.42 11.54 30.00 0.77 7.67 20.89
10 50 20 5.92 7.84 10.15 3.28 5.40 9.46
10 100 5 4.95 9.25 22.99 2.08 5.57 15.02
10 100 10 3.45 6.51 13.56 2.60 4.63 9.72
10 100 20 5.32 8.89 13.61 2.20 5.82 10.35
10 100 50 5.31 6.61 8.23 3.74 4.52 5.17
10 200 5 4.76 7.17 11.77 4.22 6.18 8.80
10 200 10 3.24 6.12 8.45 2.45 4.39 6.32
10 200 20 5.74 10.21 14.36 2.86 6.78 11.60
10 200 50 5.02 7.15 7.84 4.02 5.05 5.37
10 500 5 0.20 0.95 1.57 0.17 0.89 1.18
10 500 10 1.89 2.35 3.86 1.32 2.15 3.28
10 500 20 2.88 3.14 3.90 2.73 3.10 3.71
10 500 50 5.62 6.04 7.32 4.21 5.12 542
20 25 5 2.32 3.86 5.75 1.85 2.89 5.52
20 25 10 3.91 4.52 4.96 3.17 3.24 3.47
20 25 20 5.59 6.25 7.04 4.42 5.07 5.28
20 50 5 1.24 3.57 6.29 1.11 2.48 5.09
20 50 10 2.22 2.89 4.15 1.91 2.75 3.28
20 50 20 6.50 6.75 7.24 5.65 6.21 6.52
20 100 5 1.38 2.84 3.56 1.22 2.45 2.88
20 100 10 4.50 4.81 5.92 3.60 4.21 4.44
20 100 20 4.75 5.94 8.34 3.56 5.45 6.67
20 100 50 135.26 142.50 158.58 128.96 139.54 149.66
20 200 5 2.80 3.68 5.28 2.10 3.12 4.43
20 200 10 1.72 2.98 3.64 1.63 2.46 2.87
20 200 20 5.23 5.98 6.64 4.19 5.34 5.71
20 200 50 125.21 142.35 166.54 122.15 134.77 163.25
20 500 5 2.75 3.39 5.40 2.31 2.96 4.38
20 500 10 3.84 4.21 4.44 3.34 3.68 3.86
20 500 20 7.04 7.56 9.03 4.93 5.38 6.77
20 500 50 125.80 151.80 164.85 123.54 148.99 162.80
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Table 3 Quality of the dual solution in percentage

T n  m  Heuristic Heuristic with Lagrangean heuristic
LP initialisation

Best Average  Worst  Best Average  Worst  Best Average  Worst
5 25 5 1537 2461 3478  6.42 13.58 21.55 0.66 2440 42.61
5 25 10 16.85 2593 30.60 7.66 11.17 1431 142 31.82 43.69
5 25 20 27.06 27.77 2848 9.27 12.90 17.34 4285 44.12 45.66
5 50 5 13.81 2593 42.56  7.66 13.60 2778 254 20.83 47.52
5 50 10 2748 29.08 30.57  8.92 12.72 1722 31.77 35.96 39.07
5 50 20 22.80 27.60 32.87 7.68 12.32 19.68 32.86 37.10 41.30
5 100 5 19.64 2590 3422 832 11.73 1622 18.01 28.97 40.68
5 100 10 21.12 29.14 39.52 731 13.23 22.07 29.15 36.49 46.93
5 100 20 2721 30.08 3228  9.03 11.55 1329 3744 38.80 40.44
5 100 50 28.81 3091 3239 1356 1432 15.57 4022 4343 48.50
5 200 5 2277 32.69 37.77 1490 18.61 21.87 21.08 32.03 40.31
5 200 10 2837 3425 42.09 8.85 16.13 28.39 27.84 3755 48.64
5 200 20 2651 29.87 36.00 8.33 13.54 19.86  31.80 37.04 41.14
5 200 50 31.12  35.29 3798 1536 18.13 21.23 4239 4533 46.95
5 500 5 26.08 34.32 4255 1259  17.94 2217 213 21.94 35.85
5 500 10 30.13 36.73 4693 1534 18.28 2436 2829 3275 36.39
5 500 20 31.60 35.71 4246 1489 1831 22770 27.89 35.15 43.98
5 500 50 3376 36.10 39.87 15.11 18.08 21.07 42.01 44.13 47.48
10 25 5 2932 35.06 3998 10.01 16.01 20.72  33.14 4042 44.43
10 25 10 31.63 36.93 46.23 1234  16.44 22.67 3827 4331 52.12
10 25 20 3491 3845 41.15 1727 20.16 2299 4537 47.50 49.62
10 50 5 2470 3444 4943  10.09 16.10 25.01 2934 3833 52.85
10 50 10 31.51 3658 43.69 11.09 1645 21.88 3735 42,07 48.68
10 50 20 3727 4221 4435 1334 20.36 2441 4401 49.28 51.52
10 100 5 30.74 37.89 45.61 1374 19.52 2473 2196  39.04 48.12
10 100 10 35.83 38.59 41.84 13774 18.92 2222 2589 3941 47.86
10 100 20 3474 3795 41.87 1546 17.54 19.53  40.81 44.46 48.97
10 100 50 41.19 42.06 4398 20.76 21.59 23.10 49.17 50.44 52.51
10 200 5 30.11 34.12 3848 13.77 16.94 22779 3326 36.37 39.21
10 200 10 3548 3941 4436 17.69 34.27 91.55 3572 40.81 44.93
10 200 20 3592 3885 4143 1544 1838 2072 4275 4420 46.19
10 200 50 38.66 40.58 42.15 1631 19.56 2278 4887 53.78 64.89
10 500 5 3795 4084 4488 19.52 2244 29.85 3148 4021 42.85
10 500 10 3529 4290 5135 1646 22.82 32.07 4596 46.89 47.98
10 500 20 37.18 42.14 4831 18.10 2191 25.09 38.15 40.82 41.76
10 500 50 4255 4588 48.33  21.60 24.94 27.56 37.28 42.17 44.69
20 25 5 3626 40.15 4539  19.09 20.54 2252 36.07 41.89 44.06
20 25 10 41.03 4395 46.20 2046 22.50 2432  27.60 3525 41.21
20 25 20 4698 4871 50.55  21.36 2440 26.54 3143 4001 42.26
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Table 3 Continued

a

n m  Heuristic Heuristic with Lagrangean heuristic
LP initialisation

Best Average  Worst  Best Average Worst  Best Average  Worst

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

50 5 3373 43.10 5021 1599 21.93 28.18 3525 41.89 44.88
50 10 4097 4634 5290 1849 2433 29.68 38.97 40.56 43.80
50 20 45.08 48.14 50.65 22.16 23.70 26.19 28.65 38.10 42.83
100 5 33.05 3938 4243 1423 18.96 21.16 43.89 45.87 46.58
100 10 42.60 48.22 5390 20.62 23.81 2920 40.69 42.54 44.58
100 20 45.05 49.20 52.02 2036 25.01 28.68 38.74 39.85 43.77
100 50 52.05 55.85 57.70 3254 3645 4226  26.52 32.58 46.82
200 5 3853 4171 4695 2152 33.54 3895 42,62 43.12 44.21
200 10 39.87 48.77 57.88 37.59 39.78 48.48 4090 42.03 43.51
200 20 46.73 48.99 50.08 4248 45.26 48.89  32.11 36.56 42.31
200 50 47.80 49.22 51.80 43.54 47.95 49.25  37.02 39.60 46.25
500 5 3569 4257 49.88 3398 38.96 45.87 3247 3598 43.25
500 10 37.55 42.69 51.49 3458 3948 48.54 4150 43.13 44.62
500 20 3457 43.54 56.00 3348 3845 5447 3335 38.77 44.43
500 50 42.69 44.52 58.10 43.02 46.15 53.87 37.46 38.99 39.83

4.3 Conclusions

The analysis of the computational results allows the following conclusions:

The primal-dual heuristic developed is capable of calculating good quality solu-
tions for the problem.

Initialising the dual variables by solving a linear programming problem decreases
the quality of the best primal solution found.

The lagrangean heuristic calculates, on average, solutions that are worse than the
primal-dual heuristics. This is a different result from the one obtained with the
other capacitated problems studied by the authors.

The local search procedure can increase significantly the quality of the best primal
solution found with a significant increase in the computational times.

The computational time spent by CPLEX is, on average, more than 10 times greater
than the time spent by the heuristics. It is also interesting to note that most of the
times CPLEX finishes without calculating the optimal solution to the problem. In
average it calculates primal solutions that are 0.02% distant from the best lower
bound known.

The heuristics presented are not capable of calculating good lower bounds. As can
be seen in Table 2, the lower bounds calculated are of very poor quality.

Only 0.03% of the linear relaxations of the problems generated have an optimal
integer solution.
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5 Final comments and future work directions

This work was motivated by the good results obtained with the computational tests
performed with the primal-dual heuristic developed for the uncapacitated dynamic
location problem (Dias et al. 2007). The computational tests already performed with
the heuristic presented in this paper indicate that the primal solutions found by the
heuristic are of good quality. The authors have also developed similar heuristics for
multi-level capacitated and uncapacitated problems, and also for capacitated problems
when the facilities can have different capacities.
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