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Abstract The quality of the health care is directly connected to the equity and to

the efficiency of the service delivered. Usually, the health care is delivered by crews

composed of individuals working together sharing knowledge, experiences and skills.

We consider the problem of composing medical crews in such a way that the health care

service provided follows the principles of equity and efficiency. We present a general

mathematical programming model for this problem and a solution algorithm based

on Tabu Search methodology. Computational analysis proves the effectiveness of the

proposed algorithm.

Keywords Health service · Manpower planning · Optimization

1 Introduction

The delivery of health care is a challenging problem concerning the quality of medical

services. The equity and the efficiency of the services provided are two indicators assess-

ing the quality of the health care system. Equity concerns the access to the health care

system: the access should be guaranteed to all people regardless of their age, income,

residence and also citizenship. For instance, this is the case of the Italian Emergency

Medical Service. Moreover, the system pursues equity when the level of the service de-

livered is independent on the personnel offering the service at that time. On the other

side, efficiency concerns how good is delivered the health care service.

Before discussing how to apply the principles of equity and efficiency to medical

crews, we first introduce an example arising at the operation center of the Emergency

Medical Service of Milano (Aringhieri 2008). The operation center manages all the

demands from the instant in which the operator receives a call to the time an ambulance

leave the hospital after the service. The Italian law states that, for urgent requests,
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the response has to be performed within a mandatory time of 8 minutes in the urban

areas. Urgent requests are those having red or yellow code after the triage procedure.

The statistical analysis of historical data indicates that a call last in the average more

than 2 minutes before the operator is able to summon an ambulance (Aringhieri et al

2008a). Here, the efficiency is directly connected to the capability of the operation

center to guarantee a fast response to each call associated to an urgent request. On the

other side, the equity in terms of access is related to the fact that the same efficiency

should be always guaranteed independently on the time of the day.

Usually, the health care is delivered by crews composed of individuals working to-

gether sharing knowledge, experiences and skills. In this paper, we consider the prob-

lem of composing medical crews in such a way that the health care service provide by

themselves satisfy the principles of equity and efficiency discussed before. The problem

commonly arises from the management of health care personnel. We have already dis-

cussed the case of the operation center at the Emergency Medical Service of Milano,

which is the starting point of our research. Another case is related to the composition

of heart surgery crews or crews for other specific surgery. Finally, this approach is

commonly used in the health care research when a new project starts creating a team

of researchers having different skills and knowledge, and – hopefully – high research

efficiency.

To the best of our knowledge, this problem is not already considered in literature.

The manpower planning literature is focused on the long-term supply of employees

in the company adapted to the forecasted needs by recruitments, layoffs or retraining

the current workforce (Feyter 2006, 2007). On the other side, huge research is devoted

to short-term tactical planning level of the organization, i.e., the assignment of the

available workforce to the different tasks that should be performed by the company or

the classic rostering problem (Jiang et al 2004; Ernst et al 2004a; Cheang et al 2003;

Burke et al 2004; Ernst et al 2004b; Kellogg and Walczak 2007). Integrated approach

are also studied (Li et al 2007).

The paper is organized as follows. In Section 2 we propose a general mathematical

programming model for our problem discussing also the possible extensions of this

formulation. Moreover, we also present a graph formulation in order to prove its NP-

hardness. In Section 3, we described the Tabu Search algorithm developed to solve

the problem. Section 4 reports the computational results obtained by solving a set of

benchmark instances randomly generated: the analysis reported shows the capability

of the algorithm to gain a substantial average improvement with respect to basic Local

Search and Tabu Search algorithms. Moreover, we validate the quality of the solution

provided by the algorithm through a comparison with a standard linear programming

bound. Finally, Section 5 closes the paper.

2 A general mathematical model

We can formulate our problem as follows. Let P be the number of individuals (p =

1, . . . , P ) available in order to compose T crews (t = 1, . . . , T ). Each crew should have

exactly Mt individuals in such a way that
PT

t=1Mt ≤ P .

In order to model the efficiency, we introduce the values ep ∈ R+ with p = 1, . . . , P :

it evaluates the capability of the individual p to do its job efficiently. For instance, ep
can represent the average time required to accomplish its task. In general, it measures

the effectiveness of the service provided with respect to a given parameter of evaluation,
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i.e., accuracy, fast answer, and so on. The simplest way to measure the efficiency of a

crew is the sum of all the individual efficiency. More accurate methods are discussed

in (Aringhieri 2008).

The equity principle is related to the idea that the efficiency of the service delivered

should be independent on the personnel offering the service. This means that each crew

should have the skills to deal with any kind of problem encountered during its work.

Therefore, a crew with heterogeneous skills is better than the one having similar skills,

from an equity point of view. To model this fact, for each pair p, q with p, q = 1, . . . , P ,

we introduce the diversity measure dpq such that dpq = dqp ≥ 0 and dpp = 0. The

value dpq models how much the skills of the individuals p and q are heterogeneous. Let

D be the diversity threshold required for each crew t = 1, . . . , T .

We now introduce the binary variable xpt, with p = 1, . . . , P and t = 1, . . . , T ,

which is equal to 1 if the individual p is assigned to crew t, 0 otherwise. A general

mathematical model for our problem is the following:

P : max min
t=1,...,T

PX
p=1

epxpt (1)

s.t.
TX

t=1

xpt ≤ 1 , p = 1, . . . , P (2)

PX
p=1

xpt = Mt , t = 1, . . . , T (3)

P−1X
p=1

PX
q=p+1

dpqxptxqt ≥ D , t = 1, . . . , T (4)

xpt ∈ {0, 1} , p = 1, . . . , P , t = 1, . . . , T

Constraints (2) and (3) assure the correct crew composition in terms of cardinality

whilst constraint (4) models the fact that the skills should be enough distributed among

crews. In terms of equity, the model aims at maximizing the efficiency of the crew

having the minimum efficiency. The solution depicted by the model P selects a subset

of individuals in such a way that they are composed in T crews having fixed cardinality

and the skills are heterogeneously distributed within the crews.

Although P represents a general situation, it can be extended in order to model

more accurately the rules for the crew composition. In the current formulation, the case

in which two individuals p and q have the same skill is modeled by setting dpq = 0;

on the other side, a dpq > 0 models how different are the skills of p and q. In such

cases, this could be not enough to model the actual requirements for crew composition.

Therefore, we need to take into account explicitly the different skills introducing the set

of skills S and the new decision variable xspt which is equal to 1 when the individual p

having skill s is assigned to crew t. This detailed approach could be useful, for instance,

when it is required that each crew should be composed of a given number of individuals

having the same skill in order to allow a sort of turnover among them.
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NP-Hardness

In order to prove the NP-hardness of the problem, we introduce the following graph

formulation. Let G = (V,E) be the following weighted undirected graph where: V =

{1, . . . , P}, E = V × V , each vertex has a weight w′u = eu and each edge has a

weight w′′uv = duv. Let Et be the set of edge in the subgraph induced by any subset of

vertexes Vt ⊂ V . For any given T , a solution for P corresponds to finding V1, . . . , VT
disjoint subsets of V in such a way that |Vt| = Mt (t = 1, . . . , T ), the value ht =P

[u,v]∈Et
w′′uv should be greater than or equal to D for any t = 1, . . . , T , and the value

z = mint=1,...,T
P

u∈Vt
w′ is maximized. Since G is a complete graph, we observe that

each Vt is a k-clique with k = Mt.

We now consider the following particular instance of this problem. First we set

the vertex weights to 1, i.e., w′u = eu = 1 and Mt = m for any t = 1, . . . , T . This

is equivalent to fix the optimal solution value z? equal to m since for any possible

solution value is z = m. The corresponding problem is therefore that of finding T edge

weighted m-cliques in such a way that the weight of each clique should be greater than

or equal to D. Setting T equal to 1, we obtain the decision version of the maximum edge

subgraph problem which is known to be NP-complete (see, e.g., (Garey and Johnson

1979; Ausiello et al 1999)). By consequence, our problem is NP-hard.

3 The Tabu Search algorithm

The proposed algorithm is a quite standard Tabu Search (Glover and Laguna 1997) in

which the initial solution, computed by a Greedy algorithm, is improved by a neighbor-

hood search. This search is strengthened by adopting a short-term memory strategy

and allowing the search to explore unfeasible solutions.

We denote a solution for our problem as a set of crews Ct having efficiency Et and

diversity Dt for any t = 1, . . . , T . Moreover, the crew C0 is composed of the individuals

not selected by the algorithm, i.e., C0 = {1, . . . , P}\{C1∪ . . .∪Ct}. We finally denote

the diversity contribution of each individual p to a given crew Ct with the value Dt
p

for any p = 1, . . . , P and t = 1, . . . , T . Dt
p is set to

Dt
p =

X
q∈Ct

dpq. (5)

At the beginning of the algorithm, we have C0 = {1, . . . , P}, C1 = . . . = CT = ∅,
E1 = . . . = ET = 0 and D1 = . . . = DT = 0. Let z be equal to min{E1 = . . . = ET }.
Finally, all the values Dt

p are set to 0.

3.1 Greedy initialization

At each iteration, the greedy algorithm considers the individuals having largest effi-

ciency not already assigned to a crew. Among them, it builds a solution selecting the

individual giving the largest improvement Dt
p to the efficiency of a crew among the ones

having minimum cardinality. The pseudo-code of this procedure is given in Figure 1 in

which is also highlighted the update of Dt
p values.

The assignment to a crew having minimum cardinality guarantees the feasibility of

the constraints (2) and (3) while it is not guaranteed the feasibility of the constraint (4).
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Fig. 1 Greedy initialization pseudo-code.
procedure initGreedy( )
initializationOf(C0;Ct;Dt;Et;Dt

p);
repeat

Emax = {p ∈ C0 : ep = maxq∈C0{eq}};
Cmin = {t = 1, . . . , T : |Ct| = min{|Cs| : s = 1, . . . , T}};
select p ∈ Emax and t ∈ Cmin in such a way to maximize Dt

p;

Ct = Ct ∪ {p}; C0 = C0 \ {p}; Et = Et + ep; Dt = Dt + Dt
p;

for each q ∈ C0 do Dt
q = Dt

q + dpq ;

until |C1| = M1 && . . . && |CT | = MT ;
z = min{E1 = . . . = ET };
end-procedure

We actually update Dt
q also for q ∈ Ct, with the same formula, i.e., Dt

q = Dt
q + dpq,

since these values are required by the subsequent improvement phase. We observe that

the loop is repeated
PT

t=1Mt times which is O(P ). Each iteration is O(P T ) since

|Emax| is O(P ) and |Cmin| is O(T ). Therefore, the greedy initialization is O(P 2 T ).

3.2 Improvement phase

Such a solution is then improved by the following neighbourhood search. At each

iteration, the crew Cw having the worst efficiency is considered. Then, we find a pair

(p, q) of individuals giving the best solution improvement in such a way that p belongs

to Cw and q to any other crews. Notice that, the proposed neighbourhood maintains

the feasibility of the constraints (2) and (3). The pseudo-code of this procedure is given

in Figure 2 where zpq denotes the value of the solution that the search could obtain

exchanging p and q.

Fig. 2 Neighborhood Search pseudo-code.
procedure neighborhoodSearch( )
boolean improvedSolution;
repeat

improvedSolution = FALSE; z′ = 0;
select w s.t. Ew = min{Et : t = 1, . . . , T};
for each p ∈ Cw do

for each q ∈ {1, . . . , P} \ Cw do
if zpq > z′ && move (p, q) is feasible then

p′ = p; q′ = q; z′ = zpq ; t = crewOf(q);
end if

end for
end for
if z′ > z then

z = z′; Cw = Cw \ {p′} ∪ {q′}; Ct = Ct \ {q′} ∪ {p′};
update Dw and Dt using (6) and (7);
update Ds

r using (8) and (9);
improvedSolution = TRUE;

end if
until improvedSolution;
end-procedure
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In order to verify the feasibility of the constraint (4) of each move, we can use

the values defined in (5). The new possible Dw is obtained by subtracting the total

contribution of the old element p (that is Dw
p ) and adding the total contribution of the

new element t (that is Dw
q − dpq). In a similar way, we obtain the new possible value

of Dt. More formally, we have:

Dw = Dw −Dw
p +Dw

q − dpq (6)

and

Dt = Dt +Dt
p −Dt

q − dpq. (7)

The use of equations (6) and (7) makes the algorithm faster than the direct use of the

diversity matrix. Actually, this computation is O(1) while, without using the values

Dt
p, it will be O(Mt

2). Since the composition of the crews w and t is changed, the

algorithm should update also each individual contribution. With respect to the notation

introduced in Figure 2, this can be done using the following equations:

Dw
r = Dw

r − dp′r + dq′r , r ∈ {1, . . . , P}, (8)

and

Dt
r = Dt

r + dp′r − dq′r , r ∈ {1, . . . , P}. (9)

Each iteration of the search is O(P 2 + P T ) since the double for each is O(P 2) and

the update of the values (5) is O(P T ).

3.3 Short-term memory and unfeasible solutions

The pseudo-code reported in Figure 2 continues its search until it finds an improving

feasible solution. The Tabu Search methodology (Glover and Laguna 1997) relaxes

the need of an improving solution to continue the exploration of the solution space.

In order to avoid solution cycle, the Tabu Search plans to use a tabu list of already

visited solutions.

In our algorithm, we introduce two different tabu lists. List L1 forbids to select an

individual moved in the last `1 iterations whilst list L2 forbids to move an individual

to its original crew before `2 iterations. Notice that it should be `1 < `2. The basic

idea underlying the use of the lists L1 and L2 is not only to avoid cycles but also to

lead the search: after a move, L1 fixes p and q to allow the search to adjust the overall

solution after their shift; then, since L2 avoids the return to the original crew, it allows

the search to make a sequence of shifts moving p (or q) from its original crew to a crew

potentially more efficient when the direct exchange is not possible.

Short term memory provides the algorithm of a basic intensification and diversifica-

tion strategy (Dell’Amico and Trubian 1998): after W` not improving iterations, `1 and

`2 increase allowing the search to escape from a not promising region of the solution

space; on the contrary, after I` improving iterations, `1 and `2 decrease allowing the

search to intensify the search in a promising region. Therefore, during the search, the

length of tabu lists starts from an initial value and it ranges between a minimum and a

maximum values. Tabu Search requires also to introduce a termination condition: our

algorithm stops its search after Nit iterations.

Allowing the search to visit unfeasible solutions usually improves the capability

of the algorithm to explore the solution space finding better solutions (see, e.g., the
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algorithms for the Vehicle Routing Problem (Laporte et al 2000)). Moreover, this can

improve also the performance of the algorithm (see, e.g., (Aringhieri and Dell’Amico

2005)). To deal with the infeasibility of the constraint (4), we introduced the following

penalized objective function zp,

zp = z − αI (10)

where I is a measure of how much is unfeasible the solution, i.e.,

I =
TX

t=1

0@max

8<:0, D −
P−1X
p=1

PX
q=p+1

dpqxptxqt

9=;
1A ;

α is equal to
z?

D
where z? is the value of the best solution found during the search.

We notice that α increases during the search as soon as z? increases, i.e., the search

finds new best solutions. This means that the search explores unfeasible solutions more

easily at the beginning of the search when z? has low value. On the contrary, it is less

likely to explore unfeasible solutions at the end of the search since z? – hopefully –

tends to its optimal value.

4 Computational results

This section reports the computational results obtained by solving a set of benchmark

instances randomly generated: the analysis reported shows the capability of the algo-

rithm to gain a substantial average improvement with respect to basic Local Search

and Tabu Search algorithm. Moreover, we validate the solution quality through a com-

parison with a bound based on a linear programming approach.

4.1 Setting up the computational experiments

Our algorithm is coded using the C standard 2 and runs on a Linux machine with

g++ 3.4.6 compiler. The PC is an Intel Core 2 Duo T7200 2GHz with 2GB of main

memory running a GNU/Linux Slackware Linux operating system (kernel 2.6.18). For

our experiments, we use a set of 80 random generated instances such that:

– the number of individuals P = {100, 200, 300, 400, 500},
– number of crews T = {5, 10},
– number of individuals to be selected is equal to 60% or 80% of P ,

– each crew has the same number of individuals M set to
0.6P

T
or

0.8P

T
.

The diversity matrix is taken from the Silva’s instances (Silva et al 2004) for the

Maximum Diversity Problem (see, e.g., (Aringhieri et al 2008b)) while the efficiency

values are randomly generated.

We heavily tested our algorithm in order to obtain a suitable parameters’ settings,

reported in Table 1. In our test, we have also considered a restricted version of the

greedy algorithm depicted in Figure 1 in which the individual p is selected among all

the individuals instead of the individuals having largest efficiency. On our benchmark,

this allows to obtain always a feasible solution after the greedy computation.
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Table 1 Parameters’ settings.

`1 `2
initial min max initial min max W` I` Nit

5 3 10 10 5 15 12 8 2000

4.2 Improvements analysis

In order to evaluate the improvement capability of the proposed algorithm, we intro-

duce the following two values. The former is zLS which is the result obtained by the

Local Search depicted in Figure 2. The latter is related to the Tabu Search with fixed

length tabu lists (i.e., without short-term memory) and without allowing the search

to explore unfeasible solutions: the value z30 is the best value selected among 30 ex-

ecutions of the algorithm, each one with a different length settings. We notice that

both tests use the restricted greedy algorithm to compute the initial feasible solution.

Moreover, we consider three versions of the proposed algorithm:

– TS1: our algorithm but starting with restricted greedy and allowing the search to

explore only feasible solutions;

– TS2: our algorithm but starting with restricted greedy and allowing the search to

explore both feasible and unfeasible solutions;

– TS3: our algorithm (the complete version).

In the following analysis, we do not discuss the results for each one of the 80 instances

but only the aggregate results. In order to do not to leave anything out, we report all

the computed results in Table 6 at the end of the paper.

First, we report the average and the maximum computing time of all the algorithms

considered in the following. The computing time reported is the overall time needed

by the algorithm to complete its execution, i.e., to perform all Nit iterations. Table 2

Table 2 Average and maximum computing time in seconds (column TS′
1 reports the results

obtained setting Nit = 4000).

zLS z30 TS1 TS′
1 TS2 TS3

avg. 0.15 10.99 0.38 0.68 2.76 2.64
max 0.33 35.44 1.21 2.78 8.05 7.58

shows that the proposed algorithm is really efficient from a computational point of

view. Actually, the proposed algorithm, i.e., TS3, finds a solution for the problem with

an average computing time equal to 2.64 seconds and a maximum time of 7.58 seconds

for an instance with P = 500, T = 5 and M = 80. We observe that the highest time is

obviously obtained by the 30 repeated basic Tabu Search to compute the value z30.

The following analysis is devoted to understand the capability of our algorithm,

TS3, to improve the quality of the solution performing a better exploration of the

solution space. Table 3 reports the comparisons of TSx algorithms with respect to the

values zLS and z30. Our algorithm TS3 shows the highest average improvements with

respect to zLS which is equal to 30.75%. Moreover, the number of instances improved
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Table 3 Gaps (row TS′
1 reports the results obtained setting Nit = 4000).

gaps
w.r.t. zLS w.r.t. z30

avg. min max avg. min max

TS1 26.71% 0.00% 65.19% −0.47% −13.69% 2.70%
TS′

1 27.37% 0.00% 65.19% 0.3% −13.69% 3.72%
TS2 12.64% −10.97% 51.17% −11.27% −45.27% 0.00%
TS3 30.75% 9.87% 75.28% 3.02% −4.85% 75.28%

on at least the 30% are 34 over 80. With respect to the value z30, TS3 improves it

on the 3.02%. Among the three TSx algorithms, the worst improvement is given by

TS2. This is due to the fact that the algorithm is not able to improve z just allowing

the search over unfeasible solutions. Furthermore, although it starts its search from

the same initial solution, TS1 obtains better average results than TS2. The algorithm

derives a substantial benefit from allowing the search over unfeasible solutions when

also the initial solution is unfeasible, as shown in Table 4. The reported analysis proves

Table 4 Gaps: TS3 vs. TS1 and TS2 (row TS′
1 reports the results obtained setting Nit =

4000).

gaps
avg. min max

TS1 3.56% −5.66% 75.28%
TS′

1 3.06% −5.86% 75.28%
TS2 16.80% −2.65% 82.23%

the capability of the proposed algorithm to find good quality solutions with respect to

basic algorithms. Unfortunately, we are not aware about how good are these solutions.

To understand this fact, we provide a comparison with the bound discussed in the

following.

4.3 Comparison with LP bound

The linear programming bound is based on the following reformulation of the original

mathematical formulation (1)–(4). We introduce the binary variable ypqt, with p, q =

1, . . . , P and t = 1, . . . , T : it is equal to 1 if xpt = xqt = 1, 0 otherwise. We reformulate

the constraint (4) adopting the following standard linearization:

ypqt ≤ xpt , p = 1, . . . , P, t = 1, . . . , T (11)

ypqt ≤ xqt , q = 1, . . . , P, t = 1, . . . , T (12)

xpt + xqt ≤ ypqt + 1 , p, q = 1, . . . , P, t = 1, . . . , T (13)

ypqt = yqpt , p, q = 1, . . . , P, t = 1, . . . , T. (14)
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Therefore, we consider the following linearized formulation of the original problem P:

PL : max min
t=1,...,T

PX
p=1

epxpt (15)

s.t. (2), (3), (11)− (14)

P−1X
p=1

PX
q=p+1

dpqypqt ≥ D , t = 1, . . . , T (16)

xpt , ypqt ∈ {0, 1} p, q = 1, . . . , P , t = 1, . . . , T

We recall that each crew, in the graph formulation, is a clique with Mt vertexes.

We exploit this fact to strengthen the above formulation adding the following two

constraints. The former, depicted in (17), states that if individual p belongs to the

crew t then the crew t will contain exactly other Mt − 1 individuals, i.e.,

PX
q=1,q 6=p

ypqt = (Mt − 1)xpt , p = 1, . . . , P , t = 1, . . . , T (17)

while the former, depicted in (18), states that each crew should contain exactly (Mt(Mt−
1))/2 individuals, i.e.,

P−1X
p=1

PX
q=p+1

ypqt =
Mt(Mt − 1)

2
, t = 1, . . . , T. (18)

Finally, the bound considered in the following is given by the solution of the linear

relaxation of the model PL strengthened with (17) and (18).

To compute the bounds we used Cplex 8.1 with standard settings. We tested only

the instances having P equal to 100 since they are the only instances solved within the

time limit of 24 hours. Table 5 reports the results computed by Cplex. The average

bound is 6.73% and it attests the quality of the solution computed by our algorithm.

Moreover, we observe that the average bound of TS1 and TS2 is respectively 19.82 and

33.02. We notice that the bound can be strengthened adopting more refined lineariza-

tion techniques even if this study is out of the scope of the paper.

5 Conclusions

In this paper, we have introduced the problem of composing medical crews in such a

way that the health care service provided by themselves follows the principle of equity

and efficiency. To the best of our knowledge, this problem has never been discussed in

literature.

We have proposed two mathematical formulations of the problem. The first one is

a general mathematical program in which the principles of equity and efficiency are

introduced. We discuss also possible extension of the model in order to take into account

more accurate rules for composing crews. The second one is a graph model which allow

us to prove the NP-hardness of our problem. We have also developed a Tabu Search

algorithm to compute a solution of the problem. The proposed algorithm has been

proved to be efficient from a computational point of view. Moreover, a comparison

with a linear programming bound shows the quality of the solution computed.
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Table 5 Comparing TS3 with LP bound

bound secs. TS3 secs. gaps

01-P100T10M6 449.70 18189.21 399 0.16 12.71%
01-P100T10M8 508.30 17174.76 458 0.23 10.98%
01-P100T5M12 899.40 707.12 871 0.18 3.26%
01-P100T5M16 1016.60 10459.12 999 0.25 1.76%
02-P100T10M6 449.70 9817.35 398 0.16 12.99%
02-P100T10M8 508.30 16032.57 469 0.22 8.38%
02-P100T5M12 899.40 3237.71 889 0.19 1.17%
02-P100T5M16 1016.60 7883.09 1008 0.24 0.85%
03-P100T10M6 449.70 14078.59 397 0.17 13.27%
03-P100T10M8 508.30 25855.01 475 0.22 7.01%
03-P100T5M12 899.40 1274.91 867 0.18 3.74%
03-P100T5M16 1016.60 8520.69 1002 0.24 1.46%
04-P100T10M6 449.70 13939.99 393 0.15 14.43%
04-P100T10M8 508.30 22554.53 467 0.22 8.84%
04-P100T5M12 899.40 4380.95 863 0.17 4.22%
04-P100T5M16 1016.60 10795.57 990 0.24 2.69%

average gap 6.73%

Ongoing research is mainly interested in the study of more accurate methods to

assess the efficiency of a crew. Although it is a valid measure, the objective function

described in (1) does not take into account how individuals collaborate in order to

accomplish their work. For instance, this can be done introducing properly a stochastic

process in the optimization model, as discussed in (Aringhieri 2008), or developing

a combined simulation and optimization approach (see, e.g., (Fu 2002)). All these

approaches will be – hopefully – tested and applied to a real case study.
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Table 6 Best solution value and computing time for each instance.

zLS z30 TS1 TS2 TS3
z? secs. z? secs. z? secs. z? secs. z? secs.

01-P100T10M6 297 0.01 297 0.59 297 0.02 297 0.18 399 0.16
01-P100T10M8 360 0.01 360 0.61 360 0.02 360 0.23 458 0.23
01-P100T5M12 602 0.01 810 1.18 803 0.04 690 0.20 871 0.18
01-P100T5M16 830 0.01 1004 2.02 1011 0.06 968 0.25 999 0.25
02-P100T10M6 326 0.01 415 0.77 412 0.03 326 0.16 398 0.16
02-P100T10M8 375 0.01 488 1.02 487 0.02 384 0.23 469 0.22
02-P100T5M12 700 0.01 840 1.39 725 0.03 725 0.18 889 0.19
02-P100T5M16 851 0.01 1006 1.88 1005 0.06 992 0.24 1008 0.24
03-P100T10M6 306 0.02 372 0.85 372 0.03 320 0.15 397 0.17
03-P100T10M8 271 0.01 271 0.96 271 0.03 266 0.18 475 0.22
03-P100T5M12 661 0.01 843 1.43 816 0.05 600 0.18 867 0.18
03-P100T5M16 912 0.01 988 1.80 998 0.07 861 0.23 1002 0.24
04-P100T10M6 333 0.02 409 0.82 398 0.03 333 0.16 393 0.15
04-P100T10M8 299 0.01 490 1.14 447 0.03 452 0.23 467 0.22
04-P100T5M12 661 0.02 830 1.43 789 0.05 658 0.17 863 0.17
04-P100T5M16 849 0.01 988 1.76 908 0.06 849 0.24 990 0.24
05-P200T10M12 501 0.05 779 3.51 800 0.13 652 0.66 781 0.61
05-P200T10M16 719 0.05 925 4.50 938 0.15 854 0.86 903 0.83
05-P200T5M24 1211 0.06 1524 5.50 1549 0.18 1216 0.67 1645 0.69
05-P200T5M32 1509 0.06 1868 7.39 1872 0.25 1663 1.00 1870 0.94
06-P200T10M12 630 0.07 788 3.04 797 0.12 574 0.72 781 0.62
06-P200T10M16 711 0.06 924 3.84 931 0.15 807 0.96 905 0.87
06-P200T5M24 1245 0.06 1598 5.65 1594 0.20 1379 0.72 1626 0.67
06-P200T5M32 1574 0.06 1874 7.30 1876 0.24 1791 1.04 1864 0.94
07-P200T10M12 567 0.06 782 2.69 788 0.12 567 0.68 749 0.61
07-P200T10M16 764 0.06 928 3.67 936 0.15 907 0.88 883 0.91
07-P200T5M24 1255 0.06 1591 5.38 1597 0.20 1380 0.71 1623 0.70
07-P200T5M32 1581 0.06 1881 7.40 1884 0.23 1785 0.95 1860 0.93
08-P200T10M12 474 0.06 771 2.49 783 0.09 422 0.63 769 0.61
08-P200T10M16 750 0.06 928 3.49 923 0.15 833 0.86 887 0.88
08-P200T5M24 1221 0.06 1608 4.50 1598 0.16 1277 0.71 1641 0.69
08-P200T5M32 1584 0.06 1882 6.27 1883 0.24 1786 0.97 1871 0.94
09-P300T10M18 865 0.14 1228 5.72 1218 0.20 988 1.40 1245 1.38
09-P300T10M24 1143 0.14 1465 7.77 1468 0.27 1295 2.18 1440 2.06
09-P300T5M36 1790 0.13 2380 9.56 2363 0.33 2115 1.64 2551 1.60
09-P300T5M48 2431 0.14 2929 12.76 2926 0.43 2744 2.70 2932 2.12
10-P300T10M18 865 0.14 1189 5.52 1182 0.20 1034 1.78 1233 1.39
10-P300T10M24 1132 0.12 1432 7.02 1434 0.24 1308 2.61 1433 2.26
10-P300T5M36 1859 0.13 2449 9.40 2445 0.32 2136 1.95 2559 1.87
10-P300T5M48 2353 0.12 2940 12.85 2947 0.43 2824 2.70 2938 2.63
11-P300T10M18 942 0.14 1214 5.60 1219 0.19 1077 1.73 1265 1.78
11-P300T10M24 1207 0.13 1466 7.33 1471 0.26 1390 2.38 1455 2.32
11-P300T5M36 1945 0.14 2522 9.94 2526 0.34 2341 2.00 2556 1.93
11-P300T5M48 2332 0.13 2957 13.73 2957 0.48 2868 2.72 2937 2.67
12-P300T10M18 857 0.12 1210 5.54 1241 0.19 1080 1.77 1242 1.68
12-P300T10M24 1261 0.14 1466 7.22 1469 0.24 1351 2.50 1438 2.32
12-P300T5M36 1842 0.14 2425 9.34 2417 0.32 2140 2.00 2542 1.90
12-P300T5M48 2407 0.14 2950 12.89 2955 0.44 2790 2.60 2921 2.62
13-P400T10M24 1193 0.24 1567 9.59 1502 0.32 1218 3.36 1707 3.09
13-P400T10M32 1562 0.26 1993 12.98 1998 0.45 1894 4.28 1979 5.02
13-P400T5M48 2360 0.19 3344 16.65 3291 0.57 2995 3.65 3471 3.28
13-P400T5M64 3499 0.23 4004 22.27 3997 0.75 3797 4.94 4000 4.81
14-P400T10M24 1141 0.21 1653 10.19 1669 0.35 1454 2.91 1697 2.93
14-P400T10M32 1558 0.21 1992 13.10 2000 0.45 1879 4.26 1961 4.40
14-P400T5M48 2498 0.20 3211 16.17 3132 0.54 2643 3.70 3466 3.52
14-P400T5M64 3430 0.20 4008 22.78 4004 0.76 3788 5.19 3998 4.81
15-P400T10M24 1210 0.19 1652 9.88 1655 0.34 1432 3.13 1702 3.02
15-P400T10M32 1645 0.20 1998 13.17 1999 0.45 1878 4.38 1974 4.24
15-P400T5M48 2425 0.19 3341 16.64 3347 0.57 2898 3.93 3473 3.48
15-P400T5M64 3358 0.20 4018 22.74 4018 0.77 3883 4.82 4001 4.71
16-P400T10M24 1325 0.20 1620 9.78 1633 0.34 1453 3.19 1685 2.94
16-P400T10M32 1661 0.21 1981 12.73 1989 0.43 1898 4.79 1952 4.36
16-P400T5M48 2540 0.20 3355 16.89 3352 0.56 2981 3.36 3470 3.66
16-P400T5M64 3330 0.19 4023 23.43 4024 0.78 3832 5.10 3993 4.62
17-P500T10M30 1518 0.32 2010 16.07 1995 0.55 1801 5.22 2145 5.39
17-P500T10M40 2023 0.33 2466 20.58 2473 0.70 2202 7.20 2483 6.67
17-P500T5M60 3209 0.31 4001 25.79 3928 0.87 3601 5.73 4332 5.64
17-P500T5M80 4231 0.32 4946 34.35 4877 1.16 4428 7.83 4989 7.58
18-P500T10M30 1413 0.30 2016 15.97 2013 0.55 1746 5.32 2132 5.03
18-P500T10M40 2012 0.32 2474 20.71 2486 0.70 2226 7.08 2461 6.75
18-P500T5M60 2876 0.30 4015 25.53 4020 0.88 3399 5.60 4354 5.64
18-P500T5M80 3956 0.30 4972 34.93 4976 1.18 4771 7.86 5000 7.54
19-P500T10M30 1332 0.32 2021 16.12 2026 0.54 1699 5.22 2133 5.44
19-P500T10M40 2015 0.33 2469 20.25 2467 0.69 2260 7.87 2470 6.95
19-P500T5M60 3185 0.31 4126 26.34 4113 0.90 3600 5.80 4335 5.58
19-P500T5M80 4243 0.32 4966 35.43 4970 1.21 4776 7.48 4987 7.58
20-P500T10M30 1428 0.31 2122 16.54 2131 0.56 1922 5.16 2114 4.96
20-P500T10M40 1976 0.33 2503 21.61 2504 0.73 2378 7.51 2446 6.56
20-P500T5M60 3364 0.32 4109 25.97 4137 0.88 3581 6.06 4346 5.51
20-P500T5M80 4214 0.32 4992 35.44 4972 1.21 4767 8.05 4995 7.40


