

Jena Research Papers in
Business and Economics

Comparing the Minimum Completion Times
of Two Longest-First Scheduling-Heuristics

Rico Walter

13/2010

Jenaer Schriften zur Wirtschaftswissenschaft

Working and Discussion Paper Series
School of Economics and Business Administration

Friedrich-Schiller-University Jena

ISSN 1864-3108

Publisher:

Wirtschaftswissenschaftliche Fakultät
Friedrich-Schiller-Universität Jena
Carl-Zeiß-Str. 3, D-07743 Jena

www.jbe.uni-jena.de

Editor:

Prof. Dr. Hans-Walter Lorenz
h.w.lorenz@wiwi.uni-jena.de

Prof. Dr. Armin Scholl
armin.scholl@wiwi.uni-jena.de

www.jbe.uni-jena.de

Comparing the Minimum Completion Times of Two
Longest-First Scheduling-Heuristics

Rico Walter
Friedrich-Schiller-Universität Jena, Fakultät für Wirtschaftswissenschaften,

Lehrstuhl für ABWL/Management Science, Carl-Zeiß-Straße 3, D-07743 Jena, Germany

rico.walter@uni-jena.de

Abstract

For the problem of non-preemptively scheduling n independent jobs on m identical parallel
machines so that the minimum (or earliest) machine completion time is maximized, we
compare two well-known longest-first heuristics - the LPT- (longest processing time) and the
RLPT-heuristic (restricted LPT).

We prove that the minimum completion time of the LPT-schedule is at least as long as
the minimum completion time of the RLPT-schedule. Furthermore, we show that the mini-
mum completion time of the RLPT-heuristic always remains within a factor of 1/m of the
optimal minimum completion time. The paper finishes with a conjecture on the probabilistic
behavior of the RLPT-heuristic compared to the LPT-heuristic in case of two machines.

Keywords: Scheduling, Heuristics, Minimum completion time, Worst-case analysis

1 Introduction

1.1 Problem description and notation

We consider m ≥ 2 identical parallel machines and a set J = {J1, . . . , Jn} of n independent jobs,
i.e., no precedence constraints exist between any two jobs. Each job has to be processed without
interruption by exactly one machine; regardless which one. Job Jj has a non-negative processing
time (or length) tj which does not depend on the machine by which the job is processed. We
assume the jobs to be labeled so that t1 ≥ . . . ≥ tn ≥ 0. Furthermore, without loss of generality
we assume n to be a multiple of m, and we assume tn−m+1 > 0. This brings some technical
benefits for the theoretical analyses presented in the Sections 2 and 3. For economy of notation,
we usually omit jobs of length 0 in the examples, and we often identify the jobs by their index.

The goal of the scheduling scenario is to assign the jobs to the machines so that the minimum
completion time of the machines is maximized (without introducing idle times). A feasible
assignment is called schedule. In other words, the goal is to partition the set of jobs into
(at most) m subsets so that the smallest subset sum is maximized. A subset sum is simply
the sum of the job processing times in the subset and corresponds to a machine completion
time. We let Ci denote the completion time of machine i. The minimum completion time is
denoted by Cmin = mini=1,...,m{C1, . . . , Cm}, the maximum completion time (also known as
makespan) is denoted by Cmax, and we denote the difference between the maximum and the
minimum completion time by C∆. Thereby, the superscript ∗ refers to an optimal schedule while
expressions with superscript H refer to a schedule generated by a heuristic H.

Concerning the analysis presented in the following sections it is useful to divide J into n/m
ranks, with jobs Jrm+1, . . . , Jrm+m in rank r + 1, r = 0, 1, . . . , n/m− 1.

1.2 Related objective functions

The problem of maximizing the minimum completion time belongs to the class of covering prob-
lems as the jobs should “cover” the longest possible time interval that is common to all machines.

1

It has applications in the sequencing of maintenance actions for modular gas turbine aircraft
engines, see [6]. In some sense it is dual - but in general not equivalent - to the well-known
problem of minimizing the makespan which belongs to the class of packing problems. Here, the
jobs should be “packed” into the smallest possible time interval on all machines. Both objec-
tive functions indirectly aim at practice-oriented balanced schedules. While the Cmax-criterion
attempts to level the total workload by concentrating on the longest running machine(s), with
the Cmin-criterion the key focus is on the shortest running machine(s). Balanced solutions are
often sought if the machines are operated by workers among which the total workload should
be distributed almost equally or if the machines should be utilized almost equally. In this con-
text, the problem of minimizing C∆ comprises both Cmin-maximization and Cmax-minimization
and it even seems to be a more direct measure of “near-equality” [2]. However, we concentrate
our investigations on the Cmin-maximization problem and extend our main result (see Theorem
2.1) to the problem of minimizing C∆. Both problems are not as well studied as the makespan
minimization problem.

An illustrative and small example revealing the non-equivalence of the three objectives in
case of more than two machines is the following job-system consisting of seven jobs with positive
processing times given by the vector T = (46, 39, 27, 26, 16, 13, 10). Assuming m = 3, the
(uniquely) optimal partitions are

•
{
{J1, J7}, {J2, J4}, {J3, J5, J6}

}
concerning Cmin,

•
{
{J1, J5}, {J2, J6, J7}, {J3, J4}

}
concerning Cmax,

•
{
{J1, J6}, {J2, J5}, {J3, J4, J7}

}
concerning C∆.

1.3 The heuristics LPT and RLPT

We put emphasis on the comparison of two well-known longest-first heuristics, the LPT- (longest
processing time) and the RLPT-heuristic (restricted longest processing time) which are briefly
described next.

The LPT-heuristic sorts all jobs in non-increasing order according to the processing times.
Then, each job is assigned sequentially to the next machine available. Ties are broken arbitrarily.

In comparison, the RLPT-heuristic assigns the jobs rank by rank in order of increasing ranks.
Jobs within a rank are assigned in non-increasing order according to the processing times to
distinct machines as the machines become available after executing all previous ranks. Thus, with
the RLPT-heuristic the assignment of the jobs of a certain rank is related to the current machine
completion times after the execution of all previous ranks. This is the main difference compared
to the LPT-heuristic where each job is assigned to the machine with minimum completion time
so far, i.e., after the assignment of all previous jobs. So, even within a rank jobs do not have to
be assigned to distinct machines in the LPT-schedule, as in Figure 1.

t

M1

M2

3

1 1 1

LPT

t

M1

M2

3

1 1

1

RLPT

Figure 1: Exemplary LPT- and RLPT-schedule

1.4 Previous work and intention of the paper

As the underlying problem of maximizing Cmin is known to be NP-hard, it seems unlikely that
an efficient algorithm will be found for obtaining an optimal solution. Woeginger [8] derived the

2

first polynomial-time approximation scheme for the problem under consideration.
Of special interest is the result by Coffman and Sethi [3]. They proved that the makespan

of the LPT-schedule is not worse than the makespan of the RLPT-schedule. The main result of
this paper is the proof of the corresponding Cmin-statement. In Section 2, we will show that the
minimum completion time of the LPT-schedule is not worse than the minimum completion time
of the RLPT-schedule.

Regarding the worst-case behavior of the LPT-heuristic applied to the Cmin-maximization
problem, Deuermeyer et al. [5] showed that the minimum completion time of the LPT-schedule is
never less than 3/4 times the optimal minimum completion time. This bound is asymptotically
tight when m tends to infinity. Csirik et al. [4] tightened the analysis for any fixed m and proved
that the minimum completion time of the LPT-schedule is at least (3m− 1)/(4m− 2) times the
optimal minimum completion time. In addition, we take a look at the worst-case performance
of the RLPT-heuristic in Section 3. We show that the minimum completion time of the RLPT-
heuristic always remains within a factor of 1/m of the optimal minimum completion time. This
bound is asymptotically tight but cannot be reached exactly.

2 Comparison of the minimum completion times

In this section we present a detailed comparison of the minimum completion times of LPT-
and RLPT-schedules. Therefore, it is useful to introduce the term profile of a schedule which
provides a measure finer than the minimum completion time and allows a comparison of (partial)
schedules after each rank. So, let the multiset {h1(g), . . . , hm(g)} give the times at which the
machines finish execution of tasks in rank g in schedule SH . Then, the ordered m-tuple h(g) =
(h1(g), . . . , hm(g)) so that hi(g) ≤ hi+1(g) for all i is called profile after rank g of the (partial)
schedule SH . It is important to note that hi(g) and hi(g + 1) may correspond to different
machines. Moreover, note that h1(n/m) = CH

min and hm(n/m) = CH
max. The main result of our

research is the proof of the following theorem.

Theorem 2.1
The minimum completion time of the LPT-schedule is at least as long as the minimum completion
time of the RLPT-schedule, i.e., CLPT

min ≥ CRLPT
min .

Proof
We let l(g) denote the LPT-profile and r(g) denote the RLPT-profile after rank g. In order to
prove the theorem we show that for all machines i with li(g) < r1(g) + tgm it must be true that
li(g) ≥ ri(g). As we are particularly interested in the comparison of l1(g) and r1(g), with the
previous statement we get in case l1(g) < r1(g) + tgm that l1(g) ≥ r1(g) must be true, and in
the other case l1(g) ≥ r1(g) + tgm we can directly conclude that l1(g) ≥ r1(g) as all processing
times are non-negative. The proof works by induction in the number of ranks.
Base of Induction: g = 1

The LPT-heuristic assigns each job of rank 1 to a different machine. Hence, the LPT-schedule
and the RLPT-schedule are identical after the assignment of rank 1.
Step of Induction: g → g + 1

Suppose that after rank g for all machines i with li(g) < r1(g)+tgm it is true that li(g) ≥ ri(g)
and rank g + 1 is being assigned next. Let 0 ≤ k ≤ m jobs of rank g + 1, i.e., the jobs
gm + 1, . . . , gm + k (in case that k ≥ 1), begin before r1(g) + tgm in the LPT-schedule. As tasks
even within a rank do not have to be assigned to distinct machines in the LPT-schedule, these k
jobs will be assigned to the first h ≤ k elements of the l(g)-profile. The remaining 0 ≤ m−k ≤ m
jobs of rank g+1 begin at or after r1(g)+tgm in the LPT-schedule. Since r1(g+1) ≤ r1(g)+tgm,
none of the machines that process at least one of the m− k shortest jobs of rank g + 1 can finish
earlier than r1(g+1)+t(g+1)m in the l(g+1)-profile. In other words, we assume that the following
inequality-chain holds in the l(g)-profile:

r1(g) + tgm ≤ l1(g) ≤ . . . ≤ lm(g) (case k = 0)

3

and
l1(g) ≤ . . . ≤ lh(g) < r1(g) + tgm ≤ lh+1(g) ≤ . . . ≤ lm(g) (case k ≥ 1).

The inductive hypothesis ensures li(g) ≥ ri(g) for all i = 1, . . . , h.

Case 1: There exists a machine in the LPT-schedule that processes at least two of the m− k
shortest jobs of rank g + 1.
This directly yields r1(g +1)+ t(g+1)m ≤ l1(g +1), i.e., none of the m machines finishes before
r1(g + 1) + tgm+m in the l(g + 1)-profile.

Case 2: None of the machines in the LPT-schedule processes more than one of the m − k
shortest jobs of rank g + 1.
Here, we distinguish the following two main subcases k = h and k > h(≥ 1). Each of these
two subcases will be subdivided further.

Subcase 1: k = h.
In case h = 0, each machine processes exactly one job of the current rank, i.e., element
i of the l(g)-profile processes job gm + i for i = 1, . . . ,m. As none of the jobs of the
current rank starts before r1(g) + tgm in the LPT-schedule, we can conclude further that
no machine finishes earlier than r1(g + 1) + tgm+m in the l(g + 1)-profile.
In case h > 0, element i of the l(g)-profile processes job gm + i for i = 1, . . . , h. From
the inductive hypothesis we know that li(g) + tgm+i ≥ ri(g) + tgm+i for i = 1, . . . , h. As
mentioned earlier, the m−k machines that process exactly one of the m−k shortest jobs
of the current rank cannot finish earlier than r1(g + 1) + tgm+m.
Provided that the last m− k elements of the l(g)-profile each process exactly one of the
m − k shortest jobs of the current rank, only the corresponding machines to the first
h elements in the l(g)-profile can finish earlier than r1(g + 1) + tgm+m in the l(g + 1)-
profile. Due to the inductive hypothesis we can find for each of these h machines a distinct
machine in the r(g+1)-profile which finishes not later. Thus, inequality li(g+1) ≥ ri(g+1)
holds for all i with li(g + 1) < r1(g + 1) + t(g+1)m.
In the other case, at least one of the first h elements in the l(g)-profile processes one of
the m − k shortest jobs. So, assume that h̄ ≤ min{h, m − h} of the first h elements in
the l(g)-profile process exactly one of the shortest m− k jobs. This means that the last
h̄ elements in the l(g)-profile do not process any job of the current rank. Further, after
having assigned gm + h jobs assume that lh1(g) + tgm+h1 (h1 ∈ {1, . . . , h}) is the longest
current completion time of all h̄ machines of the LPT-schedule that process exactly one
of the longest k jobs and one of the shortest m−k jobs of the current rank. Then, we can
conclude lh1(g) + tgm+h1 ≤ lm−h̄+1(g). We also know that only the h− h̄ elements out of
the first h elements in the l(g)-profile which process exactly one job of the current rank
and the last h̄ elements in the l(g)-profile which do not process any job of the current rank
can finish earlier than r1(g+1)+tgm+m in the l(g+1)-profile. Again, we can find for each
of these at most h machines a distinct machine in the r(g + 1)-profile which finishes not
later. Thus, inequality li(g+1) ≥ ri(g+1) holds for all i with li(g+1) < r1(g+1)+t(g+1)m.

Subcase 2: k > h.
In this case, at least one of the first h ≥ 1 elements in the l(g)-profile processes more
than one of the k longest jobs of the current rank. This means that at least the last k−h
elements of the l(g)-profile do not process any job of the current rank.
Assume that gm + k̄ (2 ≤ k̄ ≤ h + 1 ≤ k) is the first job of the current rank that is not
assigned to element lk̄(g). So, after the assignment of gm+ k̄−1 jobs we have the current
completion times

li(g) + tgm+i (i = 1, . . . , k̄ − 1)
and li(g) (i = k̄, . . . , m)

4

in the LPT-schedule and

ri(g) + tgm+i (i = 1, . . . , k̄ − 1)
and ri(g) (i = k̄, . . . , m)

in the RLPT-schedule. As the first h elements in the l(g)-profile fulfill the condition
li(g) < r1(g) + tgm (i = 1, . . . , h), the inductive hypothesis ensures

li(g) + tgm+i ≥ ri(g) + tgm+i

for i = 1, . . . , k̄ − 1.
Job gm + k̄ is assigned to one of the first (k̄ − 1) elements in the l(g)-profile, i.e.,

min
1≤i≤k̄−1

{li(g) + tgm+i} < lk̄(g).

In particular, we know

r1(g + 1) ≤ min
1≤i≤k̄−1

{ri(g) + tgm+i} ≤ min
1≤i≤k̄−1

{li(g) + tgm+i}.

By this, we can directly conclude that none of the machines that process at least one of
the jobs gm+k̄, . . . , gm+m can finish earlier than r1(g+1)+tgm+m in the l(g+1)-profile.
Thus, if a machine processes at least two of the jobs gm + k̄, . . . , gm + m, then none of
the m machines finishes before r1(g + 1) + tgm+m in the l(g + 1)-profile. In the other
case, i.e., the jobs gm + k̄, . . . , gm + m are assigned to distinct machines, at most the
elements out of the first k̄− 1 elements in the l(g)-profile that process exactly one job of
the current rank and the last k− h elements in the l(g)-profile which do not process any
job of the current rank can finish earlier than r1(g + 1) + tgm+m in the l(g + 1)-profile.
These are at most (k̄− 1− (k− h)) + (k− h) = k̄− 1 ≤ h machines. For each of them in
the l(g + 1)-profile we can find a distinct machine in the r(g + 1)-profile which finishes
not later. This is correct since li(g) + tgm+i ≥ ri(g) + tgm+i for all i ∈ {1, . . . , k̄− 1} and
lm−k+h+1(g) ≥ lk̄(g) > mini=1,...,k̄−1{li(g) + tgm+i}. Thus, we get li(g + 1) ≥ ri(g + 1)
for all i with li(g + 1) < r1(g + 1) + t(g+1)m.

This completes the proof of Theorem 2.1. �

The next corollary is a direct consequence of Theorem 2.1 and the result CLPT
max ≤ CRLPT

max by
Coffman and Sethi (see [3]).

Corollary 2.2
The C∆-value of the LPT-schedule is at most as large as the C∆-value of the RLPT-schedule,
i.e., CLPT

∆ ≤ CRLPT
∆ .

To sum up, we can state that the LPT-heuristic generates schedules which are more balanced
(in the sense of Subsection 1.2) than RLPT-schedules. An even stronger conclusion is that
the RLPT-heuristic is dominated by the LPT-heuristic concerning any of the three objective
functions Cmax, Cmin and C∆. This means that the application of the RLPT-heuristic to any
job-system of the underlying problem cannot lead to better results than the LPT-heuristic yields.
Nevertheless, the RLPT-heuristic might be a reasonable procedure whenever cardinality-balanced
schedules, i.e., each machine processes n/m jobs, are required. For those scenarios, the LPT-
heuristic is inapplicable. The interest in cardinality-balanced schedules arises from practical
scheduling problems such as the allocation of component types to VLSI-chip manufacturing
machines (cf. [7]). For this reason we will take a look at the worst-case as well as the probabilistic
performance of the RLPT-heuristic in the subsequent sections.

5

3 Worst-case analysis of the RLPT-heuristic

This section deals with a determination of the worst-case ratios CRLPT
min /C∗min and CRLPT

min /CLPT
min .

Theorem 3.1
The performance bounds

CRLPT
min

C∗min

>
1
m

and
CRLPT

min

CLPT
min

>
1
m

are asymptotically tight for any fixed number m ≥ 2 of machines but cannot be reached exactly.

Note that the same bound applies when RLPT-scheduling is compared to LPT-scheduling
instead of optimal scheduling.

We do not intend to prove Theorem 3.1 in all detail. We rather give a sketch of the proof and
present a family of instances for any fixed number m ≥ 2 that approaches the bound. The main
idea of the proof is to compare the RLPT-heuristic with the SPT-heuristic (shortest processing
time) which sorts all jobs in non-decreasing order according to the processing times and assigns
each job sequentially to the next machine available. This leads to a simple but nice structure of
SPT-schedules.

Lemma 3.2
Whenever the SPT-heuristic assigns a job to a machine, then this machine has maximum com-
pletion time so far afterwards.

This result is quite obvious, so the proof is omitted. Clearly, Lemma 3.2 can be used to
determine all machine completion times in an SPT-schedule.

Corollary 3.3
The completion time of the i-th longest running machine in an SPT-schedule is given by ti +
tm+i + . . . + tn−m+i.

With the previous corollary we can directly conclude Corollary 3.4.

Corollary 3.4
The minimum completion time of the RLPT-schedule is at least as long as the minimum com-
pletion time of the SPT-schedule, i.e., CRLPT

min ≥ CSPT
min .

Proof
The proof is quite simple, too. As jobs of the same rank have to be assigned to distinct machines
in the RLPT-schedule we can conclude that

CRLPT
min ≥ tm + t2m + . . . + tn = CSPT

min

whereas the equality is due to Corollary 3.3. �

Hence, we can conclude CRLPT
min /C∗min ≥ CSPT

min /C∗min. As the SPT-heuristic is a special case
of the List-Scheduling algorithm whose performance ratio is 1/m concerning Cmin-maximization
as shown in [8], we can deduce CSPT

min /C∗min ≥ 1/m. To verify that this lower bound is tight for
any fixed number m of machines, we present the following job-system consisting of 2m− 1 jobs
with positive processing times:

t1 = . . . = tm−1 = m,

tm = . . . = t2m−1 = 1.

This job-system also reveals the tight lower bound of 1/m of the ratio CSPT
min /CLPT

min . So far, we
can conclude the following lower bounds:

CRLPT
min

C∗min

≥ 1
m

and
CRLPT

min

CLPT
min

≥ 1
m

.

6

Next, we present a family of job-systems for any fixed number m ≥ 2 so that the minimum
completion times of the RLPT-schedules approach the 1/m-bound. Therefore, assume d ∈ N
and consider the following job-system:

t1 = . . . = tm−1 = dm,

tm = . . . tdm+m−1 = 1.

Then, we get C∗min = dm = CLPT
min , whereas the minimum completion time of the RLPT-schedule

is CRLPT
min = d + 1. Hence,

CRLPT
min

C∗min

=
CRLPT

min

CLPT
min

=
d + 1
dm

=
1
m

+
1

dm
−→
d→∞

1
m

.

It remains to show that the bounds cannot be reached exactly. As mentioned before, we do
not intend to prove this in all detail. The main idea of this last part of the proof is to consider the
set of job-systems for which the SPT-heuristic generates schedules with a minimum completion
time of exactly 1/m of the optimal minimum completion time. In these cases, the processing
times have to fulfill the following properties:

(i) The n−m+1 shortest processing times must sum up to at most tm−1, i.e.,
∑n

j=m tj ≤ tm−1.

(ii) The number of jobs n must be larger than m and

t1 ≥ t2 ≥ . . . ≥ tm−1 >

> tm = . . . = t2m−1 ≥
...
≥ tn−m = . . . = tn−1 >

> tn = 0.

Then, it is rather straightforward to verify that for any of those job-systems inequality
CRLPT

min > CSPT
min holds.

4 Experimental results

As mentioned at the end of Section 2, scheduling scenarios exist that require cardinality-balanced
schedules. In contrast to the RLPT-heuristic, the LPT-heuristic is inapplicable in such scenarios.
To gain a little insight into the probabilistic behavior of the RLPT-heuristic we conducted an
experimental study. Thereby, we determined how often the RLPT-heuristic does not generate a
worse schedule than the LPT-heuristic. In case of m = 2 machines we found interesting relations,
although we do not have theoretical proofs so far.

In our experiments we assumed the processing times to be independent samples, uniformly
distributed in the unit interval [0, 1]. We shall also remark that n denotes the number of jobs
with positive processing times in this section, and n needs not to be a multiple of m. Our
experimental results led us to the following conjecture.

Conjecture 4.1
Assume the processing times to be independent samples, uniformly distributed in the unit interval
[0, 1] and assume m = 2 and n ≥ 4. Then,

(i) the probability Pr{CRLPT
min = CLPT

min } that the RLPT- and the LPT-schedule have the same
minimum completion time is

Pr{CRLPT
min = CLPT

min } =

{
3
4 if 2 | n,

7
8 if 2 - n.

7

(ii) the probability Pr{CRLPT
min (n − k) = CLPT

min (n − k)} that the RLPT- and the LPT-schedule
have the same (current) minimum completion time after the assignment of the (n − k)
longest jobs is

Pr{CRLPT
min (n− k) = CLPT

min (n− k)} = 1− 1
2k+2

in case n and k are of same parity and (n− k) ≥ 4.

To briefly summarize the experimental results we can state that, depending on the parity of
n but not on the concrete number of jobs, in 75% or 87.5% of cases equality CRLPT

min = CLPT
min

holds. In other words, the omission of the cardinality-balance constraint leads only in 25% or
12.5% of cases to a better LPT-schedule.

5 Conclusions

For the problem of maximizing the minimum completion time, we proved that the RLPT-heuristic
is outperformed and dominated by the LPT-heuristic. Nevertheless, in scheduling scenarios with
a cardinality-balance constraint on schedules the RLPT-heuristic seems to be an appropriate
procedure. At least in case of two machines, this additional constraint rarely results in a worse
minimum completion time compared to the LPT-heuristic which disregards this constraint.

References

[1] Bruno, J.; Coffman, E. G., Jr.; Sethi, R.: Scheduling independent tasks to reduce mean
finishing time. Communications of the ACM 17, No. 7, 382–387 (1974).

[2] Coffman, E. G., Jr.; Langston, M. A.: A performance guarentee for the greedy set-partitioning
algorithm. Acta Informatica 21, 409–415 (1984).

[3] Coffman, E. G., Jr.; Sethi, R.: Algorithms minimizing mean flow time: schedule-length
properties. Acta Informatica 6, 1–14 (1976).

[4] Csirik, J.; Kellerer, H.; Woeginger, G.: The exact LPT-bound for maximizing the minimum
completion time. Operations Research Letters 11, Issue 5, 281–287 (1992).

[5] Deuermeyer, B. L.; Friesen, D. K.; Langston, M. A.: Scheduling to maximize the minimum
processor finish time in a multiprocessor system. SIAM Journal on Algebraic and Discrete
Methods 3, No. 2, 190–196 (1982).

[6] Friesen, D. K.; Deuermeyer, B. L.: Analysis of greedy solutions for a replacement part
sequencing problem. Mathematics of Operations Research 6, No. 1, 74–87 (1981).

[7] Tsai, L.-H.: Asymptotic analysis of an algorithm for balanced parallel processor scheduling.
SIAM Journal on Computing 21, No. 1, 59–64 (1992).

[8] Woeginger, G. J.: A polynomial-time approximation scheme for maximizing the minimum
machine completion time. Operations Research Letters 20, Issue 4, 149–154 (1997).

8

	Introduction
	Problem description and notation
	Related objective functions
	The heuristics LPT and RLPT
	Previous work and intention of the paper

	Comparison of the minimum completion times
	Worst-case analysis of the RLPT-heuristic
	Experimental results
	Conclusions
	ADP52.tmp
	Rico Walter

