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On the Efficiency of Local Electricity Markets

Under Decentralized and Centralized Designs: A

Multi-leader Stackelberg Game Analysis∗

Hélène Le Cadre†

Abstract

In this paper, we analytically compare centralized and decentralized
market designs involving a national and local market operators, strategic
generators having market power and bidding sequentially in local mar-
kets, to determine which design is more efficient for the procurement of
energy. In the centralized design, used as benchmark, the national market
operator optimizes the exchanges between local markets and the genera-
tors’ block bids. In the decentralized design, generators act as Stackelberg
leaders, anticipating the local market prices and the flows on the trans-
mission lines. Clearing of the local markets can be either simultaneous or
sequential. The resulting two-stage game with competitive leaders that
are not price takers is formulated as a bilevel mathematical programming
problem which is reformulated as a Nash-Cournot game, and conditions
for existence and uniqueness of market equilibrium are studied. Imper-
fect information is also considered, resulting from the lack of incentives
from the generators to share their RES-based generations. Through a case
study, we determine that the decentralized design is as efficient as the cen-
tralized one with high share of renewables, using as performance measure
the Price of Anarchy, and that imperfect information has a limited im-
pact on the efficiency of the decentralized market design. Furthermore, we
check numerically that there exists an upper-limit on the block bid length
maximizing the social welfare under both centralized and decentralized
designs.

Keywords: Bilevel Mathematical Programming; Complementarity Theory; Electricity
Market; Bidding; Price of Anarchy

1 Introduction

The development of Distributed Energy Resources (DERs) may offer new sources
of flexibility, which may allow system operators to cost-effectively mitigate the im-
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pact of variable and unpredictable generation from Renewable Energy Sources (RES).
However, contracting DER-based generation in a centralized market structure may
complicate market clearing procedures due to the amount and complexity of the bids
and the associated coordination requirements between market parties [18]. The goal of
this article is to compare the efficiency of two market designs for energy procurement
with rebalancing: a centralized market, coordinated by a single national Market Oper-
ator (MO), and a decentralized market, governed by a number of strategic generators
located in local markets, that interact with the national MO.

In a centralized energy market, a coordinating MO contracts at the national level
DER directly from DER owners connected to the distribution grid, possibly by the
intermediate of an aggregator. Such a centralized market can be formulated as a stan-
dard optimization problem under transmission network constraints. On the contrary,
in a local market structure, a MO at the local (e.g., distribution) level matches DER-
based generation and local demand. In these local markets, generators have market
power, i.e., they adjust their quantities, recognizing that they can affect market clear-
ing prices [4, 36]. In this two-settlement model, generators anticipate the national
market clearing and behave as local leaders. Interactions between local markets may
be managed by a national MO. As a consequence, resources connected to the distri-
bution grid can only be offered to a global (national) market via local markets, taking
into account the transmission network constraints. Local generators will be considered
as multiple leaders who anticipate the reaction of the national MO who behaves as a
follower. Such hierarchical market structures, in which agents have conflicting interest
while sharing network constraints belong to the stream of literature called networked
Stackelberg competition [2, 3, 35]. Failures observed in electricity market competition
literature that increase the need for introducing a centralized authority (either a na-
tional Market Operator or a regulator) to coordinate the involved agents, do not seem
to be specific to the energy sector. Similar observations were made for example in com-
munication networks, and more specifically, in the Internet, where service providers
and content providers interact through a jointly shared network infrastructure. In the
Internet economy, to avoid failures resulting from service providers’ discriminatory
behavior, the Network Neutrality principle was introduced to guarantee the equal
treatment of all the data streams by service providers [10].

In this article, we consider a stylized energy market with rebalancing (i.e., ex-
changes between the local markets) where the bids take the form of either simple
quantity offers or block quantity offers that are subject to inter-temporal constraints
[28]. We assume that these inter-temporal constraints are set up so as to define a con-
vex feasible region for the bids, to keep the problem analytically tractable. In actual
markets, start up costs, block bids with minimum income requirements, load gradient,
exclusive orders, etc. [28, 39], render the generators’ optimization problems highly
non-convex and are thus not amenable to an analytical solution.

We also take into account the transmission network through a simplified linear
DC power flow model, which represents an approximation of Kirchhoff’s laws. This
assumption is classical and well-accepted in the electrical engineering literature [5, 23,
29, 33]. In practice, flows on lines can be calculated using power transfer distribution
factor which specifies the proportion of flow on line resulting from an injection of
one unit electricity at the corresponding source node and a corresponding one unit
withdrawal at some fixed reference node [36]. Distribution level constraints are ignored
in the provision of DER-based generation.

Stackelberg games are hierarchical games involving a leader and a follower. The
leader takes the followers’ optimal reaction into account when optimizing his strategy.
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Such games are traditionally formulated as bilevel optimization problems [6, 7, 8, 17].
Dedicated reformulations are required to solve these multi-leader follower games [9]. In
a first stream of the literature, such problems are reformulated using the Karush-Kuhn-
Tucker conditions for the lower level problems resulting in a Mathematical Program
with Complementarity Constraints (MPCC) [7, 9, 12]. However, as pointed out by
Dempe and Dutta in [9], such reformulation may not coincide with solutions of the
original Stackelberg game. In the non-convex cases, the Karush-Kuhn-Tucker condi-
tions are not sufficient and MPCC reformulation will result in a much larger feasible
set. If the lower-level is a parametric convex optimization problem, well developed-
approaches are used to compute local optima that in general do not coincide with
equilibrium of the Stackelberg game, unless the Slater’s constraint qualification is
checked at the lower level [9]. Another stream of the literature on bilevel program-
ming, reformulates the lower-level problem as a variational inequality [6]. Variational
inequalities are mathematical programs that allow the modelling of many equilibrium
phenomena encountered for example, in complementarity games in energy [12]. Math-
ematical Programs with Equilibrium Constraints (MPECs) may be viewed as bilevel
programs where the lower-level problem consists in a variational inequality. Both
streams have generated an abundant literature in the community of mathematical
bilevel optimization [6, 7, 8], and game theory for energy problems [12].

Equilibrium Problems with Equilibirum Constraints (EPECs) are generalizations
of MPECs in which multiple Stackelberg leaders participate in a simultaneous game,
the follower taking the strategies of the leaders as given and leaders making decisions
subject to the equilibrium conditions arising from the follower lower-level optimiza-
tion problem [17]. EPEC solving is still considered as a challenging problem in the
optimization and game theory communities [17]. However, several applications of
multi-leader follower games can be found in the energy literature [12, 23]. In [19], we
provided a game theoretic based representation of suppliers that interact in geographic
demand markets, organized as two-tiered systems. Assuming rational expectation of
the agents with respect to the outcome of the real-time market, existence and unique-
ness of subgame perfect Nash equilibrium are investigated. Strategic behaviors of the
agents have also been considered in [13, 30]. In these papers, the authors considered
respectively a strategic power producer and an aggregator that bid into the day-ahead
electricity market with the objective to maximize their profit and minimize charging
costs respectively, while anticipating the market clearing, behavior and data of rival
producers and consumers. In [23], Neuhoff et al. provide a very complete review of nu-
merical models of transmission-constrained electricity markets. In Cambridge II and
Madrid models, an integrated transmission and energy market is introduced [1, 4, 11]
where leaders are not price takers: each Stackelberg leader (strategic generator) antic-
ipates what happens to locational marginal prices, as well as flows on the transmission
lines. This is strongly related to the formulation that we present in this paper, except
that we do not consider fringe generation and that we introduce sequential bidding
which complexifies the computation of market equilibrium. Furthermore, we propose
an analytical approach to derive conditions for existence and uniqueness of market
equilibria, that can be seen as complementarity to the numerical models introduced
in [23].

In this paper, we propose an analysis of a multi-leader Stackelberg game under
generator market power and convex cost functions. We bring contributions to the
existing literature according to three aspects that we detail below:

(i) a first contribution relies on the formal proofs of the efficiency of decentralized
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energy markets compared to the classical centralized energy market which max-
imizes social welfare, and on the effect of sequential bidding, when generators
have market power and are not price takers.

(ii) a second contribution is related to the inclusion of imperfect information in
the two-settlement market model.

(iii) a third contribution is an analytical comparison of sequential versus simul-
taneous local market clearing.

The article is organized as follows. We start by introducing the model in Sec-
tion 2, i.e., the network model in Subsection 2.1, the agents and the utility functions
in Subsections 2.2 and 2.3 respectively, and the solution concepts that will be used
throughout the article in Subsection 2.4. Then we provide a mathematical model for
centralized and decentralized market designs in Subsections 3.1 and 3.2. We charac-
terize analytically the existence and uniqueness of solutions in each of these market
designs in Subsection 3.3, and quantify the efficiency of decentralized markets (cleared
either simultaneously or sequentially) with high shares of renewables, with respect to
the centralized market design using the Price of Anarchy as performance measure
(Subsection 4.1). Finally, a case study is provided in Section 4 to quantify the impact
of the share of renewables on the Price of Anarchy and on the existence of subgame
perfect Nash equilibrium for the decentralized market design, taking into account inter-
temporal constraints. A last numerical illustration opens the discussion towards the
necessity to find a trade-off between increasing bid complexity and guaranteeing the
efficiency of the market operation.

Notation

To uniformize the notations, vectors and matrices will be denoted by bold characters.

Agents
Gk conventional generator in local market k
MOk local Market k Operator
MO national Market Operator

Mathematical operators
xT transpose of vector x
1 unitary vector
∇J gradient of multi-variable function J

Parameters
t generic time period
tH time horizon
n number of local markets
l number of edges
f line transmission capacities
H shift-factor matrix

ak, bk price parameters in local market k
ξk information distortion factor in local market k
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Variables
qk(t) local market k simple bid at time period t
q−k(t) simple bids of all the other local markets except k at t
qk block bid in local market k
q(t) vector of simple bids at time period t
−rk(t) net power injection into local market k node at time period t
r(t) vector of exchanges between local markets at time period t
wk(t) RES-based generation in local market k at time period t
ŵk(t) estimated RES-based generation in local market k at t
ŵ(t) vector of the estimated local RES-based generations at t
dk(t) demand in local market k at time period t
pk(.) locational marginal price in local market k
λ Lagrange multiplier

A,B aggregated demand parameters
rc(ŵ) optimal exchanges under centralized design
qck(ŵ) Gk’s optimal production for the centralized design
q?k(w) Gk’s optimal bid for the decentralized design
Q total conventional and renewable generation

Sets and functions
X injection region
ck(.) distribution cost
Φ(.) inter-temporal constraints
πGk (.) generator’s profit in local market k
π̃k(.) renewable producer’s profit in local market k
πMO(.) national Market Operator’s utility function
SW(.) social welfare function
D aggregated demand
D−1 inverse demand function
ρ(q, ŵ) reaction function

Ψ vector of first order derivatives of generators’ profits
K set of bids checking non-negativity and inter-temporal constraints
L(.) Lagrangian function
PoA Price of Anarchy

2 The model

In this section, we describe the network model in Subsection 2.1, the agents and the
utility functions in Subsections 2.2 and 2.3 respectively, and the solution concepts that
will be used through the article in Subsection 2.4.

2.1 Network model

We consider a power network with n nodes (also called buses in electrical engineering)
labeled {1, ..., n} and l edges (lines). Each node will be associated with a local market.
The line flows are related to the nodal power injections through Kirchhoff’s laws.

The national Market Operator (MO) controls the exchanges between local market
nodes r(t) and the corresponding locational marginal prices are either fixed by the
national MO in case where a centralized market is implemented, or by local MOs in
case where a decentralized market holds. The exchanges between local market nodes
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r(t) must satisfy the network feasibility constraints, that is, the resulting power flows
should not exceed the transmission line capacity f in both directions. We model
the transmission network through a simplified linear DC power flow model, which
represents an approximation of Kirchhoff’s laws. This assumption is classical and
well-accepted in the electrical engineering literature [5, 23, 29, 33]. In practice, flows
on transmission lines can be calculated using power transfer distribution factor which
specifies the proportion of flow on one line resulting from an injection of unit electricity
at the corresponding source node and a corresponding one unit withdrawal at some
fixed reference node [36]. In our network model, distribution level constraints are
ignored in the provision of DER-based generation. On top of that, because we do not
consider storage in this paper, the demand and generation must be balanced at every
time period, implying that all exchanges between local market nodes must sum up to
zero.

Formally, all these constraints are captured through the injection region X that
we define below:

X :=
{
x ∈ Rn| − f ≤Hx ≤ f ,1Tx = 0

}
, (1)

where the matrix H is known as the shift-factor matrix that depends on the admit-
tances of the transmission lines of the power network [37]. The transmission capacities
of the lines are given by f ∈ Rl+ [36].

2.2 Agents

We consider a local networked market that is cleared at each time period t ∈ {0, ..., tH−
1} over a finite time horizon tH ∈ N∗, the local MO taking into account local network
constraints, and on which conventional generators, consumers and renewable producers
interact. The local MO reports the cleared quantities to the national MO who is
responsible for the operation of the global (national) market.

We consider quantity offers that are bidded on the energy market and take the
form of (linked) block bids, i.e., length tH vectors subject to inter-temporal constraints
that are accepted in full. In the EU Power Exchange context, generators have the
possibility to submit a certain interval of consecutive hours where they are willing to
produce [27]. In our paper, these inter-temporal constraints are set up so as to define
a convex feasible region for the bids, the goal being to keep the problem analytically
tractable to obtain closed form expressions for market equilibrium. In Section 4 we
will quantify the impact of parametrizations of the feasible set on the existence of
market equilibrium. These aspects have already been pointed out in [3, 12], as well as
the fact that mixed strategy equilibria exist where pure strategy ones might not. In
actual markets, start up costs, block bids with minimum income requirements, load
gradient, exclusive orders, etc. [28, 39], render the generators’ optimization problems
highly non-convex and are thus generally not amenable to an analytical solution. An
alternative is to use simple bids, which does not require to introduce inter-temporal
constraints. But, taking an operational perspective, this means that, for instance,
the offers of one thermal generating unit could be accepted in the 3-rd, 5-th, and 7-
th periods, leading to a unit schedule which could be highly uneconomical or simply
infeasible from the technical perspective. The simple idea behind the introduction of
inter-temporal constraints is to introduce as few complex constraints as possible in the
bid, so as not to complicate the matching process in excess while at the same time
removing the huge risk at which agents are exposed with simple bids. So inter-temporal
constraints in the bids may capture a mixed effect of actual operational constraints
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(start up costs, ramping constraints) and cost components.
We introduce the definition of a bijective application, which will be used to define

admissible inter-temporal constraints on the block bids:

Definition 1. The application Φ : RtH+ → Rm is bijective if, and only if, ∀y ∈ Rm,

there exists a unique q ∈ RtH+ such that Φ(q) = y.

We now describe in more details the various categories of agents that interact in
the market place:

• Local Market Operator (MO): in each local market node k ∈ {1, ..., n} and at
each time period t ∈ {0, ..., tH − 1}, there is a local MO that clears the local
market which is composed of one aggregated conventional (nuclear, gas, coal,
etc.) generator Gk, one aggregated renewable producer and consumers.

• Conventional generators: Gk submits a quantity offer qk ∈ RtH+ and incurs

a production cost

tH−1∑
t=0

ck
(
qk(t)

)
for qk, where the cost function ck : R+ →

R+ is assumed to be continuously differentiable, strictly increasing, and convex
with ck(0) = 0. The block bids of the generators are subject to inter-temporal
constraints Φ(qk) ≤ 0 where Φ : RtH+ → Rm is continuous, bijective following
Definition 1 and increasing in qk and m ∈ N∗ is the number of inter-temporal
constraints that are considered.

• Renewable producers: local MOs may also have RES-based generation in their
portfolio, and take it into account when clearing the local markets. We as-
sume a zero marginal cost for the RES-based generation and let ŵk(t), be the
estimated RES-based generation in market k ∈ {1, ..., n} node, at time period
t ∈ {0, ..., tH − 1}.

• Consumers: we assume that the aggregated consumption in each local market
node k is represented with an inverse demand function pk : R+ → R+ that
specifies how much the aggregate consumer is willing to pay to consume one
more unit of electrical energy. dk(t) is the aggregated demand in market node
k ∈ {1, ..., n}, at time period t. The consumer inverse demand function pk(.) is
assumed to be twice continuously differentiable, strictly decreasing, and concave,
i.e., p′k(.) < 0 and p′′k(.) ≤ 0. We assume a linear relation between price and
aggregated demand leading to:

pk
(
dk(t)

)
= ak − bkdk(t), (2)

for some ak > 0 and bk ≥ 0.

Regarding the use of local renewable production, two cases are possible:

(i) dk(t) < ŵk(t) + qk(t) there is a surplus of power which is bought by the
local MO on the local market and submitted to the national MO on the
global market,

(ii) dk(t) ≥ ŵk(t) + qk(t) there is a lack of power that needs to be bought
by the local MO.

Conventional and renewable generators will be aggregated in a single portfolio,
in each local market.
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• National Market Operator (MO): the global (national) MO determines the ex-
changes between different market nodes r(t) ∈ Xn. Note that for all k ∈
{1, ..., n}, −rk(t) denotes the net injection into market node k, at time period t.
These exchanges are determined according to a market mechanism that maxi-
mizes the social welfare while guaranteeing supply and demand balance in each
market node. Exchanges, r(t), are constrained by the available transmission
capacity between the market nodes.

2.3 Timing of the game and utility functions of the agents

Demand and supply balance at each node k ∈ {1, ..., n} and each time period t ∈
{0, ..., tH − 1} implies that:

dk(t) = qk(t) + ŵk(t) + rk(t), (3)

which implies in turn that pk
(
dk(t)

)
= pk

(
qk(t) + ŵk(t) + rk(t)

)
. We model a nodal

pricing mechanism which properly rewards DERs. Exchanges between local markets
are only coming from consumers. The national MO plays on it by changing the price so
that consumers change how much they buy/consume. This is similar as the approach
introduced in [36] where the demand side is price taking with elastic demand functions
subject to quantity shifts in each local market1.

Depending on the market design, the strategic interactions between the agents is
either modeled as a standard constrained optimization problem (centralized market)
or as a Stackelberg game (decentralized market). The Stackelberg game takes place
as follows:

1) each conventional generator Gk, k ∈ {1, ..., n} chooses independently and
simultaneously his block bid qk to maximize his profit, anticipating the sequence
of local market clearing prices and exchanges between local market nodes.

2) at each time period t ∈ {0, ..., tH − 1}, each local MO clears the local market

and announces the price pk
(
qk(t)+ ŵk(t)+ rk(t)

)
to the conventional generator

Gk and the consumers. Subsequently, the central MO chooses the exchanges
between markets, r(t), that maximize the global social welfare.

With decentralized market design, the prices at different locations can differ. This
setting follows the locational marginal pricing approach [26], used commonly in the
US system2, and strongly related to Yao et al. formulation in [36].

With the centralized market design, we assume that there is no anticipation at the
generators’ side on the exchanges between local markets and that the national MO
optimizes simultaneously the production quantities (qk)k=1,...,n and the exchanges

between local markets
(
r(t)

)tH−1

t=0
in order to maximize the social welfare.

We now detail the utility functions of the agents involved in the Stackelberg game.
At time period t ∈ {0, ..., tH − 1}, the conventional generator Gk is paid according to

the locational marginal price pk
(
qk(t)+ ŵk(t)+rk(t)

)
. We define the profit of Gk at t

1Other approaches exist: in lots of markets, exchanges between local markets come from
generators within a real-time market (US), or is separately contracted (EU).

2By comparison, the EU system relies on zonal pricing, i.e., there is a unique market price
per zone [32]. The delimitation of the zones, which may contain multiple nodes, is a difficult
problem.
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as the difference between the revenue generated by the selling of qk(t) units at market
price pk(t) and the cost of these units production:

πGk

(
qk(t), q−k(t), r(t), ŵ(t)

)
= qk(t)pk

(
qk(t) + ŵk(t) + rk(t)

)
− ck

(
qk(t)

)
. (4)

Assuming a zero marginal cost for the production of renewable energy, the profit
of the renewable producer in local market k at time period t is defined as the revenue
generated from the selling of ŵk(t) at market price pk(t):

π̃k
(
qk(t), q−k(t), r(t), ŵ(t)

)
= ŵk(t)pk

(
qk(t) + ŵk(t) + rk(t)

)
. (5)

The national MO profit function is the following:

πMO

(
q(t), r(t), ŵ(t)

)
=

∑
k=1,...,n

rk(t)pk
(
qk(t) + ŵk(t) + rk(t)

)
. (6)

The national MO’s objective coincides with social welfare maximization, which is
defined as the maximization of the sum of the surplus of consumers and generators
(here, conventional and renewable generators) and the national MO’s profit:

SW
(
q(t), r(t), ŵ(t)

)
=

n∑
k=1

{(∫ qk(t)+ŵk(t)+rk(t)

0

(
pk(u)du− pk

(
qk(t) + ŵk(t) + rk(t)

))
du︸ ︷︷ ︸

local market k consumer surplus

+ ŵk(t)pk
(
qk(t) + ŵk(t) + rk(t)

)
+ qk(t)pk

(
qk(t) + ˆwk(t) + rk(t)

)
− ck

(
qk(t)

)}
+

∑
k=1,...,n

rk(t)pk
(
qk(t) + ŵk(t) + rk(t)

)
,

=

n∑
k=1

{∫ qk(t)+ŵk(t)+rk(t)

0

pk(u)du− ck
(
qk(t)

)}
. (7)

2.4 Solution concepts

The goal of this section is to formally introduce game theoretical solution concepts that
will be used throughout the article. We start by introducing the notion of strategy
and strategy profile.

Definition 2. [25] The strategy set of generators Gk, k ∈ {1, ..., n}, is the set of
actions (block bids) qk ∈ RtH that check the constraints defining the generator’s feasible

set. Similarly, the strategy set of the national MO is the set of exchanges
(
r(t)

)tH−1

t=0
∈

X tH that check the demand and generation balance equation.

The first solution concept that we define ignores the sequential structure of the
game; it treats the strategies as choices that are made once and for all before play
begins. We assume that the exchanges between the local markets, r, is fixed.

Definition 3. [25] A Nash equilibrium (for the Nash-Cournot game occurring between

the generators) is a strategy profile
(
q?(t)

)tH−1

t=0
such that for every generator Gk, k ∈
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{1, ..., n}

tH−1∑
t=0

πGk

(
q?k(t), q?−k(t), r(t), ŵ(t)

)
≥
tH−1∑
t=0

πGk

(
qk(t), q?−k(t), r(t), ŵ(t)

)
,

for all qk in generator Gk’s strategy set.

Stackelberg games are two-stage games involving multiple leaders (generators) and
a follower (the national MO). In the literature, they are often assimilated with EPEC
[12]. Two-stage games can be modeled as extensive form games3. A subgame is part
of this extensive form game that constitutes a valid extensive form game on its own.
In a perfect information extensive form game, every action of the agents (generators
or national MO) initializes a subgame [25]. This enables us to introduce the definition
of a subgame perfect Nash equilibrium.

Definition 4. [25] A subgame perfect Nash equilibrium is a strategy profile
(
q?, r?

)
for which for any history h (i.e., generators’ actions, or sequence of actions of gen-

erators and national MO) the strategy profile
(
q?, r?

)
|his a Nash equilibrium of the

subgame induced by h.

Since the whole game is a subgame, every subgame perfect Nash equilibrium is
a Nash equilibrium. Subgame perfect Nash equilibrium can be found using simple
algorithm known as backward induction [31].

3 Mathematical programming formulation

The two market designs described in Section 1, can be modeled as mathematical
programs that we detail in Subsection 3.1 (centralized market design) and 3.2 (decen-
tralized market design). Proofs for the existence and uniqueness of market equilibrium
for the decentralized market design are provided in Subsection 3.3. Finally, an ana-
lytical comparison of sequential versus simultaneous market clearing is provided in
Subsection 3.4.

3.1 A standard optimization problem for the centralized
market

With the centralized market design, we assume that the national MO simultaneously
balances supply and demand by optimizing exchanges, rk(t), between local markets
k ∈ {1, ..., n} such that demand at node k receives a quantity dk(t) = qk(t) + ŵk(t) +
rk(t), and optimizes the quantities produced by the conventional generators under non-
negativity and inter-temporal constraints. The centralized market is here modeled as a
one-level standard optimization problem under constraints on the quantity bids (non-
negativity, inter-temporality) and r(t) belongs to the injection region X defined in

3An extensive form game describes with a tree how a game is played. It depicts the order
in which players make moves, and the information each player has at each decision point [25].

10



Equation (1) at any time period t ∈ {0, ..., tH − 1}:

max
(q(t))

tH−1
t=0 ,(r(t))

tH−1
t=0

tH−1∑
t=0

SW
(
q(t), r(t), ŵ(t)

)
,

s.t. qk(t) ≥ 0, ∀t = 0, ..., tH − 1,∀k = 1, ..., n,

Φ(qk) ≤ 0, ∀k = 1, ..., n,

where Φ : RtH → Rm is continuous, bijective following Definition 1 and m ∈ N∗ is the
number of inter-temporal constraints that we consider for the block bids.

3.2 A bilevel mathematical program for local markets

With the decentralized market design, the national MO optimizes only the exchanges
between the local markets to guarantee that the aggregated supply and demand bal-
ance in each local market. Conventional generators declare simultaneously and in-
dependently quantity offers (block bids) in the local market4. The local market is
modeled as a Stackelberg game where generators (Gk)k=1,...,n act as leaders with
the national MO as a follower. It is therefore formulated as a bilevel mathematical
programming problem, where generators bid in their local market to maximize their
profits, subject to inter-temporal constraints on the block quantity offers, while antic-
ipating the outcome of the national market clearing. Bilevel problems are challenging
to solve because they are generally non-convex [7].

The variables are divided into two classes, namely the lower-level variables r(t) ∈
X , ∀t ∈ {0, ..., tH − 1}, which determine the exchanges between the local markets at
time period t, and the upper-level variables qk ∈ RtH , ∀k = 1, ..., n, which capture the
sequences of simple bids made by the generators. Mathematical programs (8), (9), (10)
and (11), (12) are connected through the use of common variables, namely the sequence

of exchanges between the local markets over time horizon tH ,
(
r(t)

)tH−1

t=0
. Also, the

profits of the generators in Equation (8) cannot be computed until the sequences of

exchanges,
(
r(t)

)tH−1

t=0
, between the local markets are known. These exchanges are

not in the direct control of the generators, but the solution of a mathematical program

parametrized in the generators’ bids
(
q(t)

)tH−1

t=0
.

Formally, for all k = 1, ..., n, the bilevel optimization problem writes down as
follows:

for all k = 1, ..., n,

max
qk∈RtH ,(r(t))

tH−1
t=0 ∈X tH

tH−1∑
t=0

πGk

(
qk(t), q−k(t), r(t), ŵ(t)

)
, (8)

s.t. qk(t) ≥ 0, ∀t ∈ {0, ..., tH − 1}, (9)

Φ(qk) ≤ 0. (10)

4The national MOs are responsible for the clearing of their local markets. It can happens
either simultaneously or sequentially.
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for all t = 0, ..., tH − 1,

r(t) = arg max
r′(t)∈X

SW
(
q(t), r′(t), ŵ(t)

)
, (11)

s.t.

n∑
k=1

rk(t) = 0. (12)

As classical in bilevel optimization [6, 7], the lower-level problem in Equations (11)
and (12) is nested within the upper-level problem described by Equations (8)-(10). The
lower-level problem describes a setting where the national MO optimizes consumption
only, and is strongly related to Yao et al. [36] formulation of the Cournot problem, but
differs from it because their Cournot players cannot affect the price difference between
buses.

At the upper-level, Equation (9) imposes non-negativity of the bid quantity sub-
mitted by Gk in local market node k and Equation (10) captures the inter-temporality
constraints associated with bid qk. At the lower-level, Equation (12) captures the
fact that the sum of the exchanges between local markets, r(t) ∈ X , vanishes at each
time period t ∈ {0, ..., tH − 1}, by definition of the set X introduced in Equation (1).
Equation (12) can easily be reformulated as an equation which represents demand and
supply equilibrium, i.e.,

∑n
k=1 qk(t) +

∑n
k=1 ŵk(t) =

∑n
k=1 dk(t), ∀t ∈ {0, ..., tH − 1}.

Furthermore, note that there is a temporal scale difference between the upper
and the lower level: while Gk defines block bids over time period {0, ..., tH − 1}, the
national MO re-optimizes the exchanges between local markets at each time period
t ∈ {0, ..., tH − 1}.

3.3 Solving the bilevel mathematical program

The inverse demand function pk : R+ → R is linear (a fortiori concave) and strictly
decreasing in qk. Hence p−1

k :] − ∞; ak] → R+ is well-defined and shares the same
properties as pk. We introduce the function D :]−∞, max

k=1,...,n
ak]→ R+ such that:

D(x) :=

n∑
k=1

p−1
k (x). (13)

For D to be well-defined and striclty decreasing and concave (as the sum of such
functions), we make the assumption that the price intercepts are identical i.e., ak =
a,∀k = 1, ..., n. Under this assumption, we can properly introduce the inverse demand
function D−1 : R+ →]−∞; a] which is strictly decreasing and concave.

Proposition 1. For simple bids, the equilibrium
(
q?(ŵ), r?(ŵ)

)
solution of the

Stackelberg game described by Equations (8), (9), (10), (11), (12) coincides with the
social welfare optimum of a Cournot game between the n conventional generators.

Proof of Proposition 1. For the sake of simplicity in this proof we omit the t
index since for simple bids we consider solely one time period. We start by computing
the reaction function ρ(.) solution of the lower-level optimization problem that checks
demand and supply balance, i.e.:

d(q, ŵ) = q + ŵ + ρ(q)︸︷︷︸
r

. (14)

12



Making change of variable in the lower-level problem, i.e., replacing the decision
variable r by d, Equations (11) and (12) can be re-written:

max
d∈Rn

+

n∑
k=1

{∫ dk

0

pk(u)du− ck(qk)
}
, (15)

s.t.

n∑
k=1

dk =

n∑
k=1

qk +

n∑
k=1

ŵk. (16)

Note that
∫ dk

0
pk(u)du =

∫ dk
0

(a − bku)du = (a − bk
2
dk)dk. Hence the objective

function in Equation (15) is strictly concave. This implies that the lower-level equiva-
lent problem described by Equations (15) and (16) admits a unique solution d?(q, ŵ).
In turn, this implies that there exists a unique reaction function ρ?(.) solution of
Equation (14).

We now introduce the Lagrangian function associated with Equations (15) and
(16):

L(d, λ) =

n∑
k=1

{∫ dk

0

pk(u)du− ck(qk)
}

+ λ
( n∑
k=1

dk −
n∑
k=1

qk −
n∑
k=1

ŵk
)
,

where λ ∈ R is the Lagrange multiplier associated with lower-level constraint (12).
Differentiating L(d, λ) with respect to dk, we obtain:

∂L(d, λ)

∂dk
= 0 ⇔ λ = pk(dk),

⇔ p−1
k (λ) = dk. (17)

By summation over k = 1, ..., n and definition of the market demand introduced in
Equation (13), we obtain: D(λ) =

∑n
k=1 dk. Using Equation (16), it can be rewritten:

D(λ) =
∑n
k=1 qk +

∑n
k=1 ŵk. From which we infer:

λ = D−1(

n∑
k=1

qk +

n∑
k=1

ŵk). (18)

By substitution of Equation (18) in Equation (17), we obtain:

d?k(q, ŵ) = p−1
k

(
D−1(1Tq + 1T ŵ)

)
. (19)

From which we infer the reaction function closed form expression: ρ?(q, ŵ) =
d?(q, ŵ)− q − ŵ.

The space of definition of r in the lower-level problem (11)-(12) imposes that:

ρ?(q, ŵ) ∈ X ⇔
n∑
k=1

ρ?(qk, ŵ) = 0,−f ≤Hρ?(q, ŵ) ≤ f .

This means that for a solution
(
q, ρ?(q, ŵ)

)
to be feasible in the upper-level problem,

the generators need to select q that check (9), (10) and −f ≤ Hρ?(q, ŵ) ≤ f , the
constraint

∑n
k=1 ρ

?(qk, ŵ) = 0 being automatically checked through Equation (16). In
practice, we will assume that a generator will always presumes that the transmission
network constraints remain non-binding (e.g., they are not saturated) when calculating
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the subgame perfect Nash equilibrium output5. If the anticipated constraints coincide
with the realized constraints then the belief of the generators is consistent, and the
algorithm converges to an equilibrium; otherwise oscillations might appear [23].

We now substitute the reaction function ρ?(.) in the upper-level optimization prob-
lem objective function:

πGk

(
qk, q−k, ρ

?(q, ŵ), ŵ
)

= pk
(
d?k(q, ŵ)

)
qk − ck(qk),

= D−1
(
1Tq−k + qk + 1T ŵ

)
qk − ck(qk), (20)

using Equation (19). We observe that Equation (20) becomes independent of the
lower-level reaction function ρ?(q, ŵ). As a result, an equilibrium of the Stackelberg
game (a subgame perfect Nash equilibrium following Definition 4) is also an equilib-
rium of a corresponding Cournot game involving the n conventional generators and

D−1
(
1Tq−k + qk + 1T ŵ

)
as inverse demand function.

An important by-product of this result is that there is no difference between local
market prices. Also, note that in case where the cost function of the generators is
quadratic (i.e., ck(qk) = ckq

2
k, ck > 0,∀k ∈ {1, ..., n}), each conventional generator

which is producing more energy makes the profit of all the other conventional genera-
tors lower since the market price is decreasing as a function of the total production.

We now introduce an intermediate result on the generators’ profit functions.

Lemma 1. The generator Gk’s profit function πGk

(
qk, q−k, ρ

?(q, ŵ), ŵ
)

is twice

continuously differentiable and strictly concave with respect to own output qk.

Proof of Lemma 1. For the sake of simplicity we set Q := 1Tq−k + qk + 1T ŵ.
We mentioned above that the inverse market demand function D−1(.) is concave

and strictly decreasing with respect to qk which implies that ∂2D−1(Q)

∂q2
k

< 0 and

∂D−1(Q)
∂qk

< 0 respectively. Differentiating twice πGk with respect to qk, we obtain:

∂2πGk

(
qk,q−k,ρ

?(q),ŵ

)
∂q2

k
= qk

∂2D−1(Q)

∂q2
k︸ ︷︷ ︸

<0

+2
∂D−1(Q)

∂qk︸ ︷︷ ︸
<0

− ∂2ck(qk)

∂q2
k︸ ︷︷ ︸

>0

< 0, which implies

that πGk (.) is striclty concave with respect to qk.

Proposition 2. For simple bids, we prove that the Stackelberg game described by
Equations (8), (9), (10), (11), (12) is equivalent to a non linear Complementarity
Problem.

Proof of Proposition 2. Considering simple bids means that there is no inter-
temporal constraints, i.e., Φ(.) ≡ 0. It is well-known that the set of Cournot-Nash
equilibria is the same as the set of simultaneous solutions of the first-order optimality

5The case where generators anticipate transmission link congestion is for example addressed
in [19].
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conditions of the n individual generators’ problems [34]:

Ψk(q, ŵ) : =
∂πGk

(
qk, q−k, ρ

?(q, ŵ), ŵ
)

∂qk

=
∂D−1(Q)

∂qk
qk +D−1(Q)− c′k(qk) ≥ 0,

qk
∂πGk

(
qk, q−k, ρ

?(q, ŵ), ŵ
)

∂qk
= 0,

qk ≥ 0.

This system of equations can be reformulated as a non linear Complementarity Problem
CP (Rn+,Ψ):

Ψ
(
q, ŵ

)
≥ 0,

qTΨ
(
q, ŵ

)
= 0,

q ≥ 0,

where we set Ψ
(
q, ŵ

)
:=
(

Ψ1

(
q, ŵ

)
, ...,Ψn

(
q, ŵ

))
. The generators’ objective func-

tions πGk

(
qk, q−k, ρ

?(q, ŵ), ŵ
)

being twice continuously differentiable and striclty

concave with respect to qk for all k ∈ {1, ..., n} according to Lemma 1, Kolstad and
Mathiesen proved in [15] that finding a Nash-Cournot equilibrium q? is equivalent to
find q? ∈ CP (Rn+,Ψ).

We now try to generalize this result in case where inter-temporal constraints hold,
i.e., Φ(.) 6≡ 0. Let introduce the set

K :=
{
q ∈ Rn+|Φ(qk) ≤ 0, ∀k ∈ {1, ..., n}

}
. (21)

K is a subset of Rn. First, we check that K = Φ−1
(

]−∞; 0]m
)

is closed as reciprocal

image of a closed subset of Rm through a continuous application. By definition, K is
a bounded subset of Rn. Since compacts in Rn are in general the closed and bounded
subsets, we have proved that K is compact in Rn+.

We now prove some properties of the Ψ vector.

Lemma 2. ∇Ψ is an Hadamard matrix if, and only if

c′′k(qk) > (n− 3)
1∑n
l=1

1
bl

, ∀k ∈ {1, ..., n}. (22)

Proof of Lemma 2. By definition pk(Q) = ak − bkQ ⇔ Q = ak
bk
− 1

bk
pk(Q), ∀k ∈

{1, ..., n}. Substituting p−1
k (Q) in Q we obtain p−1

k (Q) = ak
bk
− 1

bk
Q. Then using

the definition of the demand function D(Q) =
∑n
k=1 p

−1
k (Q), we infer that D(Q) =

(
∑n
k=1

ak
bk

)− (
∑n
k=1

1
bk

)Q. Using the same principle, we infer that:

D−1(Q) =

∑n
k=1

ak
bk∑n

k=1
1
bk︸ ︷︷ ︸

A

− 1∑n
k=1

1
bk︸ ︷︷ ︸

B

Q.

15



Differentiating D−1(Q) with respect to qk, we obtain ∂D−1(Q)
∂qk

= −B, ∂2D−1(Q)

∂q2
k

=

0, ∀k ∈ {1, ..., n}. For ∇Ψ to be an Hadamard matrix we need to check the row
strictly diagonally dominance condition, i.e.,

| ∂
2

∂q2
k

D−1(Q)qk + 2
∂

∂qk
D−1(Q)− c′′k(qk)| >

n∑
l=1,l 6=k

| ∂2

∂ql∂qk
D−1(Q)qk +

∂

∂ql
D−1(Q)|

⇔ 2B + c′′k(qk) > (n− 1)B,

⇔ c′′k(qk) > (n− 3)B.

We now come to the more general result below

Proposition 3. The Stackelberg game described by Equations (8), (9), (10), (11),
(12) admits a unique equilibrium provided Equation (22) holds.

Proof of Proposition 3. We checked in Lemma 1 that each generator Gk profit
function is twice differentiable and striclty concave with respect to qk, and in Lemma 2
that ∇Ψ is an Hadamard matrix if, and only if, Equation (22) is checked. Then
following Moré and Rheinbold in [22], there exists at most one solution to CP (Rn+,Ψ).
This would prove the uniqueness of q?. We now deal with existence.

Let q ∈ Rn+ \ K, then there exist at least one k ∈ {1, ..., n} such that Φ(qk) > 0⇔
qk > Φ−1(0) if Φ−1 is monotonically increasing. We build a vector y ∈ Rn+ such that
yk < Φ−1(0) for all k ∈ {1, ..., n} such that qk > Φ−1(0) and for the remaining k, choose

yk = qk. Then (q − y)TΨ(q, ŵ) =
∑{

k∈{1,...,n}|qk>Φ−1(0)
}(qk − yk)

∂πGk
(q,ŵ)

∂qk
> 0 by

definition of q and construction of y. The same construction can be transposed to the
case where Φ is monotonically decreasing. In that case, for all the k ∈ {1, ..., n} such
that Φ(qk) > 0, we choose yk = qk, and for the remaining ones, we choose yk < Φ−1(0).

Following [14] this proves that if Equation (22) is checked, there exists a unique
Cournot-Nash equilibrium for the non-cooperative game between the generators, that
we call q?(ŵ).

The precedent steps lead us to the conclusion that there exists a unique equilibrium(
q?(ŵ), ρ?(q?, ŵ)

)
solution of the Stackelberg game described by Equations (8), (9),

(10), (11), (12).

Proposition 4. For block bids, there exists a unique equilibrium(
(q?(ŵ(t), t))tH−1

t=0 , (r?(ŵ(t), t))tH−1
t=0

)
solution of the Stackelberg game, provided Equa-

tion (22) is checked at each time period t ∈ {0, ..., tH − 1}.

Proof of Proposition 4. We proceed by extension of Proposition 1 proof. The conti-

nuity and strict concavity of
∑tH−1
t=0 πGk

(
qk(t), q−k(t), r(t), ŵ(t)

)
is straightforward

as the sum of functions having this property. In Proposition 1 proof, the case where
there is no inter-temporal constraint is straightforward to extend to block bids since
the upper-level problem in Equations (8), (9) can be decomposed in independent prob-
lems over the temporal space 0, ..., tH−1. In case where inter-temporal constraints are

introduced, Lemma 2 can be extended to prove that ∇Ψ
(
q(t), ŵ(t)

)
is an Hadamard

matrix at any time period t ∈ {0, ..., tH − 1}. The end of the proof is straightforward

to transpose to block bids by observing that Kn :=
{

(qk)nk=1 ∈ RntH+ |Φ(qk) ≤ 0,∀k ∈
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{1, ..., n}
}

=
∏
k=1,...,n Φ−1

(
] −∞; 0]m

)
is closed as the product of closed sets, and

that (q − y)TΨ
(
q, ŵ

)
=
∑tH−1
t=0

(
q(t)− y(t)

)T
Ψ
(
q(t), ŵ(t)

)
. Then, following the

same procedure as above, it is possible to construct vectors y(t) ∈ Rn+ such that(
q(t)− y(t)

)T
Ψ
(
q(t), ŵ(t)

)
> 0,∀t ∈ {0, ..., tH − 1}.

We have proved that the Stackelberg game between n generators located in local
markets and a national MO admits a unique equilibrium under mild assumptions.

3.4 Sequential local market clearing

In the previous section, the conventional generators optimize their quantity bids si-
multaneously and independently, and the local markets are cleared simultaneously by
the national MO. Another market design can be envisaged in which the local markets
are cleared sequentially by the national MO. Without loss of generalities, we assume
that local market k has lower priority than local market k+ 1 for any k = 1, ..., n− 1,
in the sequential clearing, and that the cost functions are quadratic in the quantity
produced, leading to ck(qk) = ckq

2
k, ∀k = 1, ..., n.

To solve the local market optimization sequentially, we have to decompose the
upper-level problem in n sequential optimization problems that will be solved proceed-
ing by backward induction, i.e., starting with the lowest priority local market. The
lower-level problem remains the same and the reaction function ρ?(q) coincides with
the one obtained in case of simultaneous local market clearing. We checked in Lemma 2
proof that it is possible to write the inverse demand function as D−1(Q) = A − BQ

where A :=

∑n
k=1

ak
bk∑n

k=1
1
bk

and B := 1∑n
k=1

1
bk

, assuming that there exists at least one

k ∈ {1, ..., n} such that bk > 0. Differentiating the conventional generator G1 (lowest
priority local market) profit function with respect to q1 we obtain:

∂πG1

(
q1, q−1, ρ

?(q), ŵ
)

∂q1
= A−B(q1 +Q)− 2c1q1 = 0,

⇔ A−BQ = (B + 2c1)q1. (23)

For any k = 2, ..., n, by substitution of Equation (23) in any Gk profit function, we
obtain:

πGk

(
qk, q−k, ρ

?(q), ŵ
)

= (A−BQ)qk − ckq2
k,

= (B + 2c1)q1qk − ckq2
k.

Then differentiating πGk with respect to qk we obtain:

∂πGk

(
qk, q−k, ρ

?(q), ŵ
)

∂qk
= (B + 2c1)q1 − 2ckqk = 0,

⇔ (B + 2c1)q1
2ck

= qk, ∀k = 2, ..., n. (24)

Proposition 5. Assuming that all the local markets are cleared sequentially, the opti-
mal quantity bidded by the generator in the lowest priority local market is smaller than
the optimal bid obtained when all the local markets are cleared simultaneously.
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Proof of Proposition 5. Using Equation (24) we infer that Q = q1+
∑n
k=2

B+2c1
2ck

q1+∑n
k=1 ŵk. By substitution in Equation (23), we infer that (B + 2c1)q1 = A−B

(
q1 +∑n

k=2
B+2c1

2ck
q1 +

∑n
k=1 ŵk

)
which is equivalent with:

(
2B + 2c1 +B(B + 2c1)

n∑
k=2

1

2ck

)
q1 = A−B

n∑
k=1

ŵk. (25)

If local markets are cleared simultaneously we have qk = B+2c1
B+2ck

q1, ∀k = 2, ..., n. Hence

Q = (B+2c1)
∑n
k=2

1
B+2ck

q1 +q1 +
∑n
k=1 ŵk. Using the relation (B+2c1)q1 = A−BQ

we infer that: (
2B + 2c1 +B(B + 2c1)

n∑
k=2

1

B + 2ck

)
q1 = A−B

n∑
k=1

ŵk. (26)

Using the definition of B, we conclude that the left part of Equation (26) is smaller
than the left part of Equation (25).

There is no straightforward generalization of Proposition 5 to local markets with
higher priority than 1, and related results could only be derived numerically.

Note that Proposition 5 does not imply a last-mover advantage [20] in general
because πG1(q?1 , q

?
−1, ŵ) = (1 − BQ)(q?1)2 − c1(q?1)2 = (B + c1)︸ ︷︷ ︸

>0

(q?1)2 using the fact

that A − BQ = (B + 2c1)q?1 , which holds both under simultaneous and sequential
local market clearing. Proposition 5 implying that the lowest priority generator G1’s
optimal bid is lower under sequential market clearing than under simultaneous, G1’s
profit function, πG1(q?1 , q

?
−1, ŵ) recalled just above, is smaller under sequential market

clearing than under simultaneous market clearing. However, in Subsection 4.3.2 case
study, we check numerically that sequential market clearing gives rise to a higher
social welfare (as defined in Equation (11)) than simultaneous market clearing. Based
on social welfare definition in Equation (7), this implies that sequential local market
clearing may be more profitable to other agents (generators and MOs in local markets
with higher priority than 1, renewable producers, consumers) than simultaneous local
market clearing.

4 Case study

We consider two market nodes interconnected by a single transmission line. Each
generator has a quadratic cost function, i.e., ck(qk) = ckq

2
k,∀k = 1, 2. Furthermore

c2 > c1 > 0 and r1 = −r2 = r.

4.1 Quantifying efficiency

The Price of Anarchy (PoA) is defined as the ratio between the optimal social welfare
and that of the worst value of an equilibrium [16, 18, 24]:

PoA(ŵ) :=
max

q∈RntH
+ ,r∈XntH

SW(q, r, ŵ)

SW
(
q?, ρ(q?), ŵ

) . (27)

18



The PoA is a measure of the efficiency loss when introducing anticipatory behavior
from the generators located in local markets, compared with the centralized market
design (where no anticipatory behavior holds). By definition, the PoA is always larger
than 1 and the efficiency loss is minimal when the PoA approaches 1 [18].

4.2 Computing solutions for centralized and decentralized
market designs

In the proposed case study, the social welfare can be expressed analytically as:

SW(q, r, ŵ) =
∑
k=1,2

{
ak(qk + rk + ŵk)− bk

2
(qk + rk + ŵk)2 − ckq2

k

}
. (28)

Using Equation (28), we derive closed form expressions of solutions for the centralized
market optimization problem given in Subsection 3.1 and Stackelberg game decribed
in Equations (8)-(12).

4.2.1 Centralized market

In the centralized market organization, the national MO determines simultaneously
the quantities produced by the generators (qck)k=1,2 and the exchanges between nodes
rc. Differentiating the social welfare function in Equation (28) with respect to each
of these variables, we obtain a linear system of equations in qc1, q

c
2, r

c which admits a
unique solution:

∂SW(q, r, ŵ)

∂qk
|qk=qc

k
= 0 ⇔ qck =

ak − bkrc − bkŵk
bk + 2ck

, ∀k = 1, 2,

∂SW(q, r, ŵ)

∂r
|r=rc = 0 ⇔ rc =

a1 + a2 − b1qc1 − b1ŵ1 − b2qc2 − b2ŵ2

b1 + b2
.

This is a linear system of equations that can be rewritten matricially as follows: b1 + 2c1 0 b1
0 b2 + 2c2 b2
b1 b2 b1 + b2

 qc1
qc2
rc

 =

 a1 − b1ŵ1

a2 − b2ŵ2

(a1 + a2)− b1ŵ1 − b2ŵ2

 .

Since the discriminant of the system matrix is positive (2b1b2c1+2b1b2c2+4b1c1c2+
4b2c1c2 > 0) because of the assumptions made on the parameters, the system admits
a unique solution that can be expressed analytically:

qc1(ŵ) =
a1b2c2 − a2b1c2 − b1b2c2ŵ1 + b1b2c2ŵ2

b1b2c1 + b1b2c2 + 2b1c1c2 + 2b2c1c2
,

qc2(ŵ) =
−a1b2c1 + a2b1c1 + b1b2c1ŵ1 − b1b2c1ŵ2

b1b2c1 + b1b2c2 + 2b1c1c2 + 2b2c1c2
,

rc(ŵ) =
{
a1b2c1 + 2a1c1c2 + a2b1c2 + 2a2c1c2 − b1b2c1ŵ1 − b1b2c2ŵ2 − 2b1c1c2ŵ1

− 2b2c1c2ŵ2

}{
b1b2c1 + b1b2c2 + 2b1c1c2 + 2b2c1c2

}−1

.
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4.2.2 Local markets with simultaneous market clearing

With the local market organization, a Stackelberg game (EPEC [12, 23, 36]) occurs be-
tween the conventional generators who anticipate the outcome of the market clearing
process, and the national MO. The Stackelberg game is formalized as a bilevel opti-
mization problem involving an upper-level optimization problem decribed by Equa-
tions (8), (9), (10) inter-related with a lower-level optimization problem described in
Equations (11), (12).

In this Stackelberg game setting, we are looking for subgame perfect Nash equi-
librium. To determine the lower-level reaction function, we proceed by backward
induction, i.e., we start by solving the lower-level optimization problem (11), (12) as-
suming that the generators’ quantities q1, q2 are fixed. Differentiating the lower-level
objective function with respect to r, we obtain the analytical expression of the reaction
function:

ρ?(q, ŵ) =
a1 + a2 − b1q1 − b1ŵ1 − b2q2 − b2ŵ2

b1 + b2
. (29)

By substitution of the reaction function in the upper-level equations (8), (9) and (10)
and differentiation with respect to qk (k = 1, 2), we obtain:

q?k(ŵ) =
{

3akbkb
2
l + 2akbkblcl + 4akb

3
l + 2akb

2
l cl − alb2kbl − 2alb

2
kcl − 2albkb

2
l

− 2albkblcl − 3b2kb
2
l ŵk + b2kb

2
l ŵl − 2b2kblclŵk + 2b2kblclŵl − 4bkb

3
l ŵk

+ 2bkb
3
l ŵl − 2bkb

2
l clŵk + 2bkb

2
l clŵl

}{
5b2kb

2
l + 4b2kblck + 4b2kblcl + 4b2kckcl

+ 8bkb
3
l + 12bkb

2
l ck + 4bkb

2
l cl + 8bkblckcl + 8b3l ck + 4b2l ckcl

}−1

, k, l = 1, 2, k 6= l.

4.2.3 Local markets with sequential market clearing

In this section, we assume instead that the local markets are cleared sequentially. The
reaction function is identical with Equation (29), i.e., in the case where local markets
are cleared simultaneously. The optimal bids of the generators located in the two local
markets (market 1 having lower priority than market 2) are computed analytically:

q?1(q2, ŵ) =
a1b2 − a2b1 + b1b2q2 − b1b2ŵ1 + b1b2ŵ2

2b1b2 + 2b1c1 + 2b2c1
,

q?2(ŵ) =
{
a1b1b

2
2 + 2a1b1b2c1 + 2a1b

2
2c1 + 3a2b

2
1b2 + 2a2b

2
1c1 + 4a2b1b

2
2

+ 6a2b1b2c1 + 4a2b
2
2c1 − b21b22ŵ1 − 3b21b

2
2ŵ2 − 2b21b

2
2ŵ2 − 2b21b2c1ŵ1

− 2b21b2c1ŵ2 − 4b1b
3
2ŵ2 − 2b1b

2
2c1ŵ1 − 6b1b

2
2c1ŵ2 − 4b32c1ŵ2

}{
6b21b

2
2

+ 4b21b2c1 + 4b21b2c2 + 4b21c1c2 + 8b1b
3
2 + 12b1b

2
2c1 + 4b1b

2
2c2 + 8b1b2c1c2

+ 8b32c1 + 4b22c1c2
}−1

.

4.3 Numerical illustrations

We aim, in this section, at quantifying numerically the impact of local market RES-
based generations, transmission and local market capacity constraints, on the PoA and
on the existence of a market equilibrium in Subsection 4.3.1. The impact of simulta-
neous versus sequential market clearings on the PoA and optimal bidding strategy is
analyzed in Subsection 4.3.2. Imperfect information is included in Subsection 4.3.3.
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Finally, we discuss the impact of inter-temporal constraints on the existence of an
equilibrium and prove numerically that there exists an optimal upper-limit on the
generators’ bid length in Subsection 4.3.4.

4.3.1 Impact of RES-based generation, transmission and local mar-
ket capacity constraints

In this subsection, we quantify numerically the impact of RES-based generation on
the efficiency of decentralized market design, using the PoA as performance measure.
Then, we focus on the analysis of the impact of transmission line and local market
capacity limits, on the existence of an equilibrium for the decentralized market design.

Impact of RES-based generation on the efficiency of the decentralized
market design: We want to quantify the impact of RES-based generation, ŵ1 and
ŵ2, on the PoA, assuming that the local markets are cleared simultaneously. The
parameters are set as follows a1 = a2 = 8, b1 = 0.3, b2 = 0.7, c1 = 10, c2 = 20. In
Figure 1, we have represented the PoA as a function of local RES-based generations.
We observe that the PoA always remains in the range of values [1; 1.025] and is exactly
1 in case where RES-based generation is the highest. This means that efficiency loss
caused by the introduction of anticipatory behavior is the smallest for high shares of
renewables. In other words, the decentralized market design output coincides with
the centralized market design output when the total RES-based generation is high. A
possible interpretation is that the increase of RES-based generation implies a decrease
of the market price and, a fortiori, a decrease in the conventional generators’ bids (that
are linear in D−1(Q) under simultaneous market clearing). Such a situation implies
less ability for conventional generators to affect pricing outcomes. These results may
be in favor of fully-decentralized market designs, i.e., peer-to-peer energy trading, were
no national MO is involved and local MOs/generators trade bilaterally energy with
one another [21], for high penetration of renewables.

Impact of transmission line finite capacity and local market capacity
constraints: We now assume that there is a single transmission line that intercon-
nects the local market nodes, with a finite capacity. We want to check to what extent
line capacity constraint might prevent the emergence of an equilibrium [3, 35]. Such
effects have already been studied using a game theoretical approach in [3]. Borenstein
et al. proved that there is an impact of capacity of transmission lines on the degree to
which generators in different locations compete with one another. They demonstrated
that there is a threshold level of capacity, above which two otherwise isolated mar-
kets are effectively merged. In case where the line capacity is below this threshold,
they proved analytically that line capacity has a clear effect on the output of both
generators: increases in the line capacity cause a monotonic decline in the expected
market price and monotonic increase in expected quantities produced up to the point
that the unconstrained market equilibrium is reached. Assuming that transmission
capacity holds, the set X includes a constraint of the form −f ≤ h1r1 +h2r2 ≤ f . The
shift-factor vector H depends on the admittances of the transmission line. We set the

reactance to the line to 2.10−3 and the bus admittance matrix is

(
1000 −1000
−1000 1000

)
.

Following [37], this implies that the associated shift-factor vector is H =
(

1 0
)

assuming power flow is in the direction from bus 1 to 2 and bus 2 is the reference.
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Figure 1: We evaluate numerically the impact of RES-based generation on the Price
of Anarchy (PoA) for decentralized market design and simultaneous clearings of the
local markets.

In Figure 2, we have represented Hrc in (a) and Hr?in (b), i.e., the local mar-
ket exchanges evaluated in the optimum (centralized design) and in the equilibrium
(decentralized design), as functions of RES-based generation on the local markets,
ŵ1 and ŵ2. If we choose the line transmission capacity so that f = 5, the set of
(ŵ1, ŵ2) ∈ R2

+ for which there exists an equilibrium is the subspace of R2
+ located

between the two dot magenta lines. We observe that the existence of solutions for
the centralized optimization problem and bilevel mathematical programming problem
depends on parametrizations (here, the RES-based generations).

In addition, we assume that capacity constraints hold in each local market node,
i.e., qk ≤ q̄k, ∀k = 1, 2 where q̄k > 0 is the maximum production capacity available
at node k. In Figure 3 (a), we have plotted q?1(ŵ1, ŵ2), q?2(ŵ1, ŵ2) as functions of ŵ1

and ŵ2. In Figure 3 (b) we have represented q? as a function of ŵ1 and ŵ2 taking
into account the finite capacity link constraint (0 ≤ r? ≤ 5) already represented in
Figure 2 and local market capacity constraints with q̄1 = q̄2 = 0.19. The magenta area
delineates the set of ŵ1 and ŵ2 for which equilibrium exists.

Based on these numerical illustrations, we observe that equilibrium satisfying finite
transmission line capacity and local market capacity constraints might exist only for
high RES shares. Otherwise, unstable behaviors will be observed which would be in
favor of a more centralized design.

4.3.2 Simultaneous versus sequential market clearing

In this subsection, we assume the the local market 1 has lower priority than the local
market 2, which implies that MO2 announces his clearing price p2(.) before MO1,
who will announce p1(.) later. We observe in Figure 4 that the optimal simple bid of
the generator in local market 1 is inferior under sequential market clearing than under
simultaneous market clearing, for any value of RES-based generation, ŵ1, ŵ2. This
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(a) (b)

Figure 2: We represent parametric feasible sets for the local market exchanges r(t)
as functions of RES-based generations for centralized (a) and decentralized market
designs (b).

(a) (b)

Figure 3: In (a) we represent each local market generator optimal block bid as a
function of local RES-based generation, ŵ1, ŵ2. Incorporating transmission capacity
0 ≤ r? ≤ 5 and local market generation capacity constraints with q̄1 = q̄2 = 0.19, we
delineate the set of RES-based generation where equilibrium exists in (b).

observation coincides with the result obtained in Proposition 5. In local market 2, the
reverse relation holds, i.e., the optimal bid under simultaneous market clearing is lower
than the optimal bid under sequential market clearing for ŵ1 ≤ 9.5,∀ŵ2 ≤ 10 and for
ŵ1 ≥ 9.5, ŵ2 ≤ 5. But for ŵ1 ≥ 9.5 and ŵ2 ≥ 5, the optimal bid for the generator
in local market 2 is larger under simultaneous market clearing than under sequential
market clearing. This numerical result illustrates that incentives for the generator
in the highest priority market to bid higher quantities under simultaneous market
clearing than under sequential is highly dependent on the RES-based generation.
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Figure 4: We compare the ratio of optimal bids under sequential and simultaneous
local market clearings in local market 1 (left) and local market 2 (right).

4.3.3 Impact of imperfect information

To compute the closed form expressions of the optimal bids of each generator as
introduced in Subsection 4.2, generators should share their (estimated) RES-based
generation with all the market operators (both local and national) and the other gen-
erators, something for which they might have no a priori incentives. To check whether
(RES-based generation) information sharing might be profitable for the generators,
we assume that each local MOk, k = 1, 2, makes the estimate that ξkŵl, l = 1, 2, l 6= k,
renewable power is produced on the other local market, with ξk ≥ 0 a distortion factor.
Note that ξk = 1 means that full information is disclosed, which implies that MOk

correctly guesses the RES-based generation on local market l = 1, 2, l 6= k.
We have represented in Figure 5, the PoA as a function of the distortion factors

for both simultaneous and sequential market clearings, assuming that the estimated
RES-based generation on each local market are set so that ŵ1 = 8 and ŵ2 = 10.
Furthermore, we assume that under centralized market design, perfect information
holds, i.e., local market RES-based generations are common knowledge. We observe
in Figure 5 that for distortion factors smaller than 3, imperfect information has a
limited impact on the PoA which stays exactly at 1 (meaning that the decentralized
market design with imperfect information is as efficient as the centralized market
design with perfect information). Identically, in [13], even with simple mechanisms
to guess the bids of other market participants, results close to a perfect information
benchmark can be achieved.
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Figure 5: We quantify the impact of information distortion on the PoA for simulta-
neous (left) and sequential (right) market clearings.

4.3.4 On the complexity of block bids

The liberalized electricity market design has been extended to facilitate the trade of
energy flexibility by introducing new categories of complex bids such as linked block
orders, exclusive block orders and flexible orders [28, 39]. The introduction of such
new categories of bids is justified by the need to take into account techno-economical
aspects of generation units, currently not captured by simple quantity bids. They also
generate lots of debates regarding possible trade-offs between an increase of complexity
in the bid definition and the guarantee of the efficiency of market operation.

Inter-temporal constraints: In this paper, we consider quantity offers that are
bidded on the energy market and take the form of (linked) block bids, i.e., length tH
vectors subject to inter-temporal constraints that are accepted in full. Inter-temporal
constraints might capture dynamic constraints such as ramping or start-up costs con-
straints. In the framework of this numerical illustration and for the sake of simplic-
ity, the RES-based generation on market 2 on the time period [t; t + 1] is fixed, i.e.,
ŵ2(t + 1) = ŵ2(t) = 8 and we focus on high wind share penetration. In Figure 6

left, we have represented
q?1 (t+1)

q?1 (t)
as a function of the local market RES-based gener-

ation at time periods t and t + 1, i.e., ŵ1(t), ŵ1(t + 1). We observe that in case of
a significant decrease in the RES-based generation, i.e., if ŵ1(t) >> ŵ1(t + 1) then,
q?1(t+ 1) >> q?1(t) meaning that the optimal quantity bidded by the generator in the
local market is larger at t+ 1 than at t. Otherwise, i.e., in case of significant increase
in the RES-based generation (ŵ1(t) << ŵ1(t + 1)) then, q?1(t + 1) << q?1(t) meaning
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that the optimal quantity bidded by the generator in local market 1 is smaller at t+ 1
than at t. If we take into account additional transmission line capacity constraint and
local market capacity constraints, we observe in Figure 6 right, that equilibrium exists
only for ŵ1(t+ 1) ≥ 7 i.e., only under high share of renewables in the local market.

Figure 6: We represent the impact of a change (increase/decrease) in RES-based
generation over two consecutive time periods on the ratio between two optimal con-
secutive simple bids (left) and on the existence of a market equilibrium taking into
account transmission link and capacity constraints (right).

Optimal bid size: We want to optimize numerically the length of the block
quantity offers submitted by the generators in the local markets. RES-based genera-
tions are based on the values provided on the ELIA website http://www.elia.be/en/

grid-data/data-download. We make the assumption that local market 1 RES-based
generation is provided by an offshore wind producer only, whereas on local market 2
the RES-based generation relies mainly on onshore wind farms.

In Figure 7, we have represented the social welfare as a function of the length of
the bid, evaluated in number of quarter hours (15 minutes), under centralized and
decentralized market designs. The decentralized market design may involve either
simultaneous or sequential market clearings of the local markets. We observe that a
first threshold is reached around 190 quarters (i.e., after two consecutive days) and
a third threshold is reached after 270 quarters (i.e, before three consecutive days).
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These results are therefore in favor of the existence of a maximum bid length, i.e.,
an upper-limit on tH . We observe in addition in Figure 7 that the social welfare
(in Equation (11)) is higher under simultaneous local market clearing than under
sequential market clearing.

Figure 7: Impact of the block bid size on the social welfare under centralized and
decentralized market designs (with either simultaneous market clearing or sequential
market clearing of the local markets).

5 Conclusion

In this paper, we have modeled interactions between local and national Market Oper-
ators for two market designs: a centralized one, formulated as a standard constrained
optimization problem, and a decentralized one, formulated as a Stackelberg game
where strategic generators, who have market power, act as leaders anticipating the
exchanges between the local markets, i.e., the locational marginal prices and trans-
mission flows in line. Both cases where local markets are cleared simultaneously or
sequentially are considered. We have quantified the loss of efficiency caused by the
generators’ anticipation through the Price of Anarchy (PoA). We have proved that
the Stackelberg game, formulated as a bilevel mathematical programming problem,
can be reformulated as a non linear Complementarity Problem and admits a unique
Nash equilibrium in case of simple bids. The result is generalized to block bids, i.e.,
length tH quantity vectors that are linked by inter-temporal constraints, using Com-
plementarity Theory. A case study highlights the impact of transmission line and
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local market generation capacities, as well as RES-based generation impacts, on the
existence of a market equilibrium. The impact of distortion caused by imperfect in-
formation on local RES-based generation on the PoA is also quantitatively assessed.
Numerical illustrations highlight that (i) decentralized market design is as efficient as
the centralized market design under high share of renewables, that (ii) transmission
and local market generation capacities have an impact on the existence of a market
equilibrium, that (iii) imperfect information has only a limited impact on the decen-
tralized market design efficiency compared with the centralized one, and that (iv) for
each market design, there exists an optimal size for the block bids that maximizes the
social welfare. Finally simultaneous market clearing gives rises to larger social welfare
than sequential market clearing.
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