
Central European Journal of Operations Research (2022) 30:1129–1149
https://doi.org/10.1007/s10100-021-00753-6

ORIG INAL PAPER

Optimized location of light sources to cover a rectangular
region

Kristóf Kovács1 · Boglárka Tóth2

Accepted: 15 May 2021 / Published online: 9 June 2021
© The Author(s) 2021

Abstract
The problemwe considered was proposed by an industrial partner. The aim is to locate
light sources around a rectangular field such that the areas these illuminate cover the
whole field. We assume these illuminated areas to be rectangular as well, parallel to
the field. Covering an area with multiple lights is allowed. There are several types of
light sources, priced differently with different sizes of their illuminated area. We aim
to minimize the cost of the cover. We propose a constraint generation approach for
solving this covering problem. We formulate a MIP model to locate the light sources
such that a finite number of predetermined points have to be covered. The result
does not necessarily solve the original problem, i.e. it does not cover the whole field.
Therefore, a constraint generation model is built to calculate a non-covered point such
that the first model has to improve its previous solution to cover this new point as well.
If no uncovered point is found, the result is an optimal covering, thus we stop.We have
also designed some set of additional constraints to exclude symmetrical solutions, to
speed up the algorithm. We analyze the efficiency of the additional constraints and
report some computational results in realistic settings.

Keywords Location · Covering problem · MIP · Constraint generation

1 Introduction

We aim to locate light sources around a rectangular field. The problem comes from
an industrial application, where sports players are taught movement formations. Each

B Kristóf Kovács
kkovacs@math.bme.hu

Boglárka Tóth
boglarka@inf.szte.hu

1 Dept. of Differential Equations, Budapest University of Technology and Economics, Budapest,
Hungary

2 Dept. of Computational Optimization, University of Szeged, Szeged, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-021-00753-6&domain=pdf
http://orcid.org/0000-0002-2487-1957


1130 K. Kovács, B. G. Tóth

Fig. 1 An example of a feasible solution to our rectangle covering problem

player follows a path highlighted by a laser. The lasers are powerful enough to high-
light multiple paths, so only their coverage of the field is important. We deal only
with the location of the lights’ sources knowing the area that they can illuminate. Of
course, other applications are also possible, although the shape of the covering areas
as rectangles has to be justified.

The light sources can only be placed outside thefield.Different types of light sources
are available, characterized by their lighted areas and their costs. These lighted areas
are assumed to be rectangles to simplify the model and to ignore the light areas with
a too oblique angle of incidence. The whole field has to be covered by the lighted
rectangles.

Mathematically the problem can be formulated as a rectangle covering problem,
where the covering items are rectangles themselves and they each have a specific side
that has to be on, or outside the field (the one with its light source). An example of a
feasible solution with two different types of lights can be seen in Fig. 1, where the light
sources are represented by a numbered small circle. The blue rectangles represent the
lighted areas with the darker shades being their overlapping areas.

Covering problems are very common in optimization, as they have many applica-
tions in computer graphics, artificial intelligence, and in the industry. In general, a
covering problem is to find a minimal cover of a given set (e.g. a polygon) by some
mold (e.g. rectangles). In Franzblau and Kleitman (1984) the authors introduce an
algorithm to find the minimal cover of a rectilinear polygon by rectangles. The rect-
angles can be arbitrarily sized and overlapping is allowed, but all rectangles must be
wholly contained in the polygon. The objective is to find a cover with the least amount
of rectangles.

Iacob et al. (2003) solve a problem, where a polygon has to be covered with rect-
angles. They tried two objective functions, one where the number of rectangles used
to cover is minimized, and another where the overlapping areas are minimized.

TheManhattan p-center problem can also be seen as a covering problemby squares,
where a set of points has to be covered by p equal-sized squares, minimizing the size
of the congruent covering squares. Drezner (1987) gives an O(n log n) algorithm for
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Optimized location of light sources to cover a rectangular… 1131

the rectangular (Manhattan) 3-center problem. A general algorithm for the p-center
problem also exists, although far less efficient, see Ko et al. (1990).

A related problem of covering is the packing problem. Huang and Korf (2013)
study a rectangle packing problem,where the objective is to find the smallest enclosing
rectangle to contain a given set of rectangles without overlap. Similar problems appear
frequently in computer graphics, as compressing and using a single larger graphics
file is more efficient than using many smaller ones. Nöll and Strieker (2011) describe
an efficient algorithm for packing charts into a texture atlas.

Dosa et al. (2020) define the board packing problem, where a rectangular board has
to be covered partially by a set of rectangles. The board corresponds to some physical
area where investments are to be made, and the rectangles correspond to potential
investments which can give profit. Thus, the rectangles cannot overlap and the board
does not have to be fully covered. They maximize the profit of the investment and
solve the problem by a binary IP.

Surprisingly, although the above papers deal with problems similar to ours, the
solution methods offered cannot be used here. We could not find any literature on
more related problems. Thus, we have built new models to solve our specialized
rectangle covering problem.

The contributions of the paper are the basic models for the constraint generation
approach described in Sect. 2 and all the advanced constraints which exclude sym-
metrical solutions and force the rectangles to cover the border of the field, reported in
Sect. 3. These modeling techniques can be useful in many problems, where symmetry
gives the main difficulty for the models and methods. The efficiency of the models
is shown in some industrial problems in Sect. 4. Finally, we draw our conclusions in
Sect. 5.

This paper is based on the extended abstract published in Kovács and G.-Tóth
(2019), which only contains an earlier version of the basic model described next.

2 Model description

Let us introduce our problem formally. The given data are the rectangular field with
dimensions (a, b), a ≥ b and a finite set T of light source types. Set T contains triplets
((uk, vk), gk), where (uk, vk) are the dimensions of the illuminated region of a light
source k, and gk is its price. Based on the application, we assume that uk, vk ≤ b. The
light source is always located at the longer side with dimension uk(≥ vk). Each type
of light source can be used as many times as needed, but the maximum number of light
sources that can be used is n. This can be calculated by the given data, namely, the
number of the smallest rectangles able to cover the field. With these parameters, the
objective is to cover the whole field minimizing the overall cost of the light sources.

We made several attempts to describe the problem with a single Mixed-Integer
Linear Programming (MILP) model with no success. Our technique, named the con-
straint generation approach, instead of covering the whole field, aims to cover an
initially small set of points P spread across the field. This will be done by the main
model called the Covering model. By covering a finite set of points we may not ensure
that the whole field will be covered. Thus, an additional model generates a new point
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Fig. 2 Visual explanation of the rotation, corner and edge indexes

to be included in P , which was not covered by the solution of the main model. We call
the latter one the Point Generation model. These two models are executed in a loop
until a new non-covered point can not be found and thus the problem is solved.

An intermediate solution of the Covering model can have many symmetric solu-
tions. Not dealing with these wemight have to generate 3 or more points before a given
arrangement of light sources is eliminated. To deal with these symmetries and other
possible problems that may slow the solution process, in Sect. 3 we will introduce
some set of constraints to improve the main Covering model.

Todescribe themainmodel,we start by introducing thenotations (see the“Appendix”
for a compiled list of notations), visualizing some of them in Figs. 2 and 3. The used
indexes are fixed to the set they are iterating on. Namely, r ∈ R = {1, 2, 3, 4} will
always be used for the 4 rotations (it can also be interpreted as the 4 sides of the
field), k ∈ K = {1, . . . , |T |} for the types of light sources and c ∈ C = {1, 2, 3, 4}
for the corners (or sides in some cases) of a rectangle from the bottom-left corner in
counter-clockwise order. In Fig. 2 we show these notations, where the white circle
represents the light source and the shaded rectangle shows its lighted area. For each
rotation r the numbering of the corners and edges are written at the corners and on
the sides of the rectangles. Additionally, we will use i, j as indices of possible light
sources, i, j ∈ L = {1, . . . , n}, and p as the index of points in the field to be covered,
p ∈ P = {1, 2, . . .}.

As shown in Fig. 3, for each rotation, type and corner of a light source it is easy
to set a parameter dxrkc, dyrkc as the translations of corner c of light type k from the
light source’s position with rotation r . The coordinates of a point p to be covered are
denoted by xpp, ypp, being parameters to the main Covering model.

The continuous variables xi , yi and binary variables τirk describe the light sources.
Since we are locating the light sources on the field’s borders, one position variable
would be enough to describe a given position instead of the 2 dimensional coordinate
(xi , yi ). Using one position variable reduces the number of variables in the simplest
model. However, in the more advanced model describing the constraints becomes
much harder and so the computational effort does not decrease overall. The rotation
and type of light source i is represented by τirk , whose value is 1 only if light source
i has rotation r and type k.

In Fig. 3 the white circle containing 1 represents light source 1 with its coordinates
(x1, y1). The dashed lines are the borders of the field. The dummy variables xcic, ycic
serve as abbreviations for corner c of i’s lighted rectangle.
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Fig. 3 Visual explanation of the model’s parameters

Our objective function is to minimize the total price of the light sources,

min
∑

irk

gkτirk . (1)

Let us now describe the constraints of the model. To ensure every light source has
only one rotation and one type, or it is not used at all we have

∑

r ,k

τirk ≤ 1 ∀i ∈ L. (2)

We set up the dummy variables xcic, ycic using the translation values dxrkc and
dyrkc (see Fig. 3), which are predefined based on the parameters of the light source
types (uk, vk),

xcic = xi +
∑

r ,k

dxrkcτirk ∀i ∈ L, c ∈ C (3)

ycic = yi +
∑

r ,k

dyrkcτirk ∀i ∈ L, c ∈ C . (4)

The following constraints ensure that each light source is located on the border of
the field, where M is a sufficiently large number

0 ≤ xi ≤ a, 0 ≤ yi ≤ b ∀i ∈ L (5)
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b −
(
1 −

∑

k

τi3k

)
M ≤ yi ≤ 0 +

(
1 −

∑

k

τi1k

)
M ∀i ∈ L (6)

a −
(
1 −

∑

k

τi2k

)
M ≤ xi ≤ 0 +

(
1 −

∑

k

τi4k

)
M ∀i ∈ L (7)

When implementing these constraints, choosing the tightest M can be beneficial to
the optimization process. In general, the tightest choice of M is a or b depending on
the coordinate appearing in the constraint. When this is not the case we will specify
the used value when describing the constraints.

To further simplify the problem we constrain each rectangle to be wholly inside the
field,

0 ≤ xci1, yci1 and xci3 ≤ a and yci3 ≤ b ∀i ∈ L. (8)

To ensure that the points in P are covered, we introduce the binary variables ρi p,
which is 1 if light source i is covering point p. The following constraints guarantee
that at least one rectangle is covering every point in P .

∑

i

ρi p ≥ 1 ∀p ∈ P (9)

xci1 − (1 − ρi p)M ≤ xpp ≤ xci3 + (1 − ρi p)M ∀i ∈ L, p ∈ P (10)

yci1 − (1 − ρi p)M ≤ ypp ≤ yci3 + (1 − ρi p)M ∀i ∈ L, p ∈ P (11)

However, we have to ensure that only the light sources that are used can cover the
points in P , so

∑

p

ρi p ≤ |P|
∑

r ,k

τirk ∀i ∈ L. (12)

The only initial element of P is the midpoint of the field.
To speed up the early iterations of the algorithm we implement a constraint to have

the sum of the area of covering rectangles be at least as much as the area of the field

ab ≤
∑

irk

τirk (ukvk) . (13)

Lastly, we introduce the parameter LB which is updated after the first iteration to be
the objective value of the last solved problem. Now we can formulate the following
constraint on the objective function (1):

LB ≤
∑

irk

τirkgk, (14)

wherewe aim to help the optimizer forcing the solution to have at least as high objective
value as the previous solution.
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Let us move to the model in which either a new uncovered point is located, or we
prove that the whole field is covered.

2.1 Point generationmodel

We aim to find a new point that is not covered if one exists. We have found that the best
way is to seek a point maximizing the minimum �∞ distance from all the rectangles.
In this way, the new point with coordinates xn, yn is more or less centralized in the
uncovered area. However, in many cases, the optimal region of this objective function
is a segment instead of a point. In practice, it is desirable to choose the new point to
be close to the midpoint of the field. Thus, we add that to the objective function with
a very small weight. The objective is then

max d − 0.001(dxm + dym) (15)

where d is the minimal �∞ distance of the new point from all the rectangles and
dxm + dym is the new point’s �1 distance from the center of the field.

We have just a few constraints in this model to set the distance variables. The
binary variables θi j indicate if the new point is inside of light source i’s half-plane
corresponding to its side j . The following constraints define θi j and also the minimal
distance d. If the new point is outside j’s half-plane, then θi j = 0 and d is less than
the distance from that side, otherwise, the constraint is not in effect. For instance, let
us examine (16). The second part ensures that θi2 = 0 if the distance xci1 − xn is
positive, and so the first part guarantees d ≤ xci1 − xn. If xci1 − xn is negative, only
the optimization (maximizing d) will cause θi2 = 1, otherwise the distance could get
a negative value. The best choice for M is a or b, as usual. The last constraint ensures
that the new point cannot be inside any rectangle, as at least one θi j must be 0 for all
the rectangles.

d ≤ xci1 − xn + θi2M ≤ M ∀i ∈ L (16)

d ≤ xn − xci3 + θi4M ≤ M ∀i ∈ L (17)

d ≤ yci1 − yn + θi3M ≤ M ∀i ∈ L (18)

d ≤ yn − yci3 + θi1M ≤ M ∀i ∈ L (19)
∑

j

θi j ≤ 3 ∀i ∈ L (20)

Lower bounds on the coordinate distances from the midpoint are set by the con-
straints

a/2 − xn ≤ dxm ≥ xn − a/2, (21)

b/2 − yn ≤ dym ≥ yn − b/2. (22)

The objective (15) ensures that dxm, dym will not be higher than the real distance.
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Fig. 4 Four iterations to close the gap between two rectangles. The red dots are generated by the point
generation model and depicted by black when covered

If the new point is found with d > 0, this point is added to the set P , and the main
Covering model is solved again until no such point is found. In the latter case, d ≤ 0
ensures that the last solution covers the whole field, so we can stop the algorithm.

It is worth mentioning that the point generation model takes up an insignificant per-
centage of the total execution time. Thus, in Sect. 3 we focus on improving the main
Covering model only. Before that we describe an alternative formulation where we
combine the coordinate variables xi , yi into one variable, hoping to achieve improve-
ments in the solution time.

3 Improving themain coveringmodel

The model described in the previous section can solve our problem to optimality.
However, this can be inefficient due to the possible appearance of partial solutions
that are just symmetric versions of a previous solution. Also, neighboring rectangles
are not ensured to touch or overlap. These make it hard for the algorithm to plug a gap
between two rectangles as only half of the gap might be eliminated in each iteration.
An example can be seen in Fig. 4. In this section, we try to alleviate these problems
by introducing new constraints to the main Covering model.

3.1 Order on the rectangles

The following constraints ensure that the rectangles are ordered, so we can construct
constraints that refer to the neighbors of a given rectangle. It also allows us to eliminate
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symmetric solutions, as well as ensure that the outline of the field is covered in every
partial solution. We introduce the notation n(o) (p(o)) for the next (previous) index
after (before) o in its given set O in a circular manner. In other words n(o) = o+ 1 if
o < |O|, and n(|O|) = 1.

We create the order of the rectangles in four steps, see Fig. 5 for the result including
these steps one by one. First, we ensure that no unused light source(s) can appear
between any two used light sources. In other words, if there are z used light sources,
the light sources i = 1, . . . , z are the used ones, while (z + 1), . . . , n are the unused
ones. The following constraint ensures all τirk = 0 for i > z, as the right-hand-side
(RHS) is always z:

i
∑

r ,k

τirk ≤
∑

j,r ,k

τ jrk ∀i ∈ L. (23)

Next, an order on the edges of the field is created. The constraint

∑

k

τ11k ≥
∑

i,k

τi1k + τi3k

n + 1
(24)

ensures that if there is a light source either on the top or on the bottom edge of the
field (edge 1 and 3, see Fig. 2), then the rectangle with the first index, i = 1, will be
on the bottom edge (see Fig. 5b). The next constraint ensures that rectangles with the
same rotation are grouped. In other words, it makes sure that the next rectangle has
a rotation equal or higher (see Fig. 5c). The constraint ignores unused rectangles, as
the RHS is 4 for an unused n(i), because its sum for τn(i),rk gives 0 in that case, thus
making the constraint ineffective. Leaving out the i = n case, we do not force the first
rectangle to have a higher rotation than the last.

∑

r ,k

rτirk ≤
∑

r ,k

rτn(i),r ,k + 4

⎛

⎝1 −
∑

r ,k

τn(i),rk

⎞

⎠ ∀i ∈ L, i < n (25)

Now all that is left is to fix the order on each edge (see Fig. 5d). We ordered those
with one set of constraints for each side, namely

xi − M

(
1 −

∑

k

τi1k

)
≤ xn(i) + M

(
1 −

∑

k

τn(i),1,k

)
∀i ∈ L, i < n (26)

yi − M

(
1 −

∑

k

τi2k

)
≤ yn(i) + M

(
1 −

∑

k

τn(i),2,k

)
∀i ∈ L, i < n (27)

xi + M

(
1 −

∑

k

τi3k

)
≥ xn(i) − M

(
1 −

∑

k

τn(i),3,k

)
∀i ∈ L, i < n (28)

yi + M

(
1 −

∑

k

τi4k

)
≥ yn(i) − M

(
1 −

∑

k

τn(i),4,k

)
∀i ∈ L, i < n. (29)
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(a) (b)

(c) (d)

Fig. 5 The evolution of the order with each step of constraints

Here the big M parts disappear only if both i and n(i) are on the same edge, so the
constraint defines the relation on rectangles on the same edge. When either of the big
Ms remain in the constraint (so at least one of the light sources is not on the given
edge), the constraint becomes nonbinding for all coordinate values. The usual choice
of a or b for the big M is still valid here.

3.2 Eliminating symmetries

Now that we have an order on the rectangles we can define symmetric placements for
a given order of rectangle types and eliminate them from all future solutions of the
main model. An example of a solution and its vertical mirror can be seen in Fig. 6.
We introduce a new index and set f ∈ E , as the index and set of eliminations. Set
E will be growing after each execution of the main Covering model. The parameter
e f irk holds the information for the order of rectangle types that should be eliminated
for each f ∈ E .

For each new elimination f̂ describing a symmetric solution, let E = E ∪ { f̂ }.
A new set of parameters is created for this f̂ , where we set each e f̂ irk = 1

ẑ−0.5 if
τirk = 1 in the arrangement, e f̂ irk = 0 otherwise. Here ẑ is the number of active light
sources for this particular solution. The parameters e f̂ irk will have the property

∑

i,r ,k

e f̂ irk = ẑ

ẑ − 0.5
> 1

∑

i,r ,k

e f̂ irk − 1

ẑ − 0.5
= ẑ − 1

ẑ − 0.5
< 1.
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Fig. 6 A partial solution and its vertical mirror

This way the following constraint prevents all arrangements contained in E

∑

k

τ11k +
∑

i,r ,k

τirke f irk ≤ 2 ∀ f ∈ E, (30)

unless the first rectangle is not on the first side. In general, as the first sum is 1 (having
the first light source on the first side), the second sum is greater than 1 only if it has
the structure of a symmetric solution. In this case, it does not fulfill the constraint and
will not be considered for the solution. If at least one rectangle differs in the structure,
the second sum becomes less than 1, thus fulfilling the constraint. When the first light
source is not on the first side, we have a special case, as constraint (24) ensures that
this only happens when there are no rectangles on sides 1 and 3. A solution like that
has to use light sources that extend their lighted area to the half of the field’s width a.
These solutions usually consist of only two rectangles covering the whole field and
thus can safely be excluded from the symmetry calculations.

After each execution of the main model, we extend set E by all the symmetric or
rotated versions of the current solution (at most 3). We leave the current solution as
the only feasible solution with its arrangement of rectangles.

3.3 Forcing neighbors

The last method we use is the most complicated but also the most rewarding in terms
of saving computational time as will be evident from Sect. 4. The idea is that every
proper cover of the field has to cover each edge of the field as well. Thus by ensuring
that each edge is individually covered we can speed up the convergence to a whole
field cover. Since we have an order on the rectangles we can use that to ensure that
neighboring rectangles are tight and thus cover the edges of the field.

The complicated part of these constraints is that a given rectangle can cover not just
the side on which its light source is, but neighboring sides as well if it is in a corner.
Thus the first few constraints introduce variables that indicate if a given rectangle
touches a given side of the field and if it’s in one of the field’s corners.
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The following constraints give an upper bound to the binary variable ψio which is
an extension of τirk that shows if light source i touches side o of the field or not:

M (1 − ψi1) ≥ yci1 ∀i ∈ L (31)

aψi2 ≤ xci2 ∀i ∈ L (32)

bψi3 ≤ yci3 ∀i ∈ L (33)

M (1 − ψi4) ≥ xci4 ∀i ∈ L. (34)

The following constraint ensures that every active rectangle is on at least 1 side.

∑

o

ψio ≥
∑

rk

τirk ∀i ∈ L. (35)

Next, we set up the binary variable σio such that it shows if light source i is in
corner o of the field. The order of the sides and corners are set up so that the edges of
corner o are p(o) and o, as can be seen in Fig. 2.

ψi,p(o) + ψi,o − 1 ≤ σi,o ∀i ∈ L, o ∈ R (36)

ψi,p(o) ≥ σi,o ∀i ∈ L, o ∈ R (37)

ψi,o ≥ σi,o ∀i ∈ L, o ∈ R (38)

(36)–(38) are McCormick linearizations of the relations ψi,p(o)ψi,o = σi,o ∀i ∈
L, o ∈ R, i.e. a rectangle corner is on the field’s corner if and only if the corresponding
two sides are on the field’s sides.

Using these binary variables we can force proper order on the rectangles near
corners. We still need to make sure that only active rectangles are considered, so

∑

r ,k

τirk ≥ σic ∀i ∈ L, c ∈ C, (39)

and that only one rectangle is in each corner,

∑

i

σic = 1 ∀c ∈ C . (40)

Note that a rectangle at a corner is not constrained to have two ψio = 1, o ∈ R
variables (only upper bounds are given for them in (31)–(34)). Thus, constraint (40)
is not effective until we make sure that a rectangle is in a corner iff the corresponding
σic = 1. Otherwise, there could be more than one rectangle in a corner for which the
conditions (45)–(52) would not be effective. Here we use a small ε instead of a big M
to make sure there is a minimum distance from the corner for all but one rectangle.

ε (1 − σi1) ≤ xci1 + yci1 ∀i ∈ L (41)

ε (1 − σi2) ≤ a − xci2 + yci2 ∀i ∈ L (42)
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ε (1 − σi3) ≤ a − xci3 + b − yci3 ∀i ∈ L (43)

ε (1 − σi4) ≤ xci4 + b − yci4 ∀i ∈ L (44)

Now that we have set up the variables, we can force neighboring rectangles to be
next to each other (either touching or overlapping but within the order). This way,
the edges of the field will be covered automatically. We also bring more structure to
a feasible solution, reducing the average number of iterations required to rule out a
given arrangement of rectangles.

We define two constraints for each side, namely

xci3 ≥ xcn(i),1 −
⎛

⎝
∑

r ,k

τirk +
∑

r ,k

τn(i),r ,k − ψi1 − ψn(i),1

⎞

⎠ M ∀i ∈ L (45)

yci3 ≥ ycn(i),1 − (2 − ψi2 − ψn(i),2)M ∀i ∈ L (46)

xci1 ≤ xcn(i),3 − (2 − ψi3 − ψn(i),3)M ∀i ∈ L (47)

yci1 ≤ ycn(i),3 −
⎛

⎝
∑

r ,k

τirk +
∑

r ,k

τn(i),r ,k − ψi4 − ψn(i),4

⎞

⎠ M ∀i ∈ L (48)

xci3 ≤ xcn(i),3 − 0.01 + (2 − ψi1 − ψn(i),1)M ∀i ∈ L (49)

yci3 ≤ ycn(i),3 − 0.01 + (2 − ψi2 − ψn(i),2)M ∀i ∈ L (50)

xci3 ≥ xcn(i),3 + 0.01 − (2 − ψi3 − ψn(i),3)M ∀i ∈ L (51)

yci3 ≥ ycn(i),3 + 0.01 − (2 − ψi4 − ψn(i),4)M ∀i ∈ L. (52)

First, let us examine constraints (46) and (50), with two consecutive rectangles on side
2 (so the big M parts vanish). These constraints force the 3rd corner of rectangle i to
be between the 1st and 3rd corner of rectangle n(i). That is, no hole between them,
only intersection or touch is allowed. When two consecutive rectangles are not on side
2, the big M part makes these constraints ineffective. The other pair of constraints can
be explained similarly, although for sides 1 and 4 we need to take care of the inactive
rectangles. The next constraints put the corners of the inactive light sources on top
of the first light source’s 4th corner. This way, the inactive rectangles function like a
reference to the first rectangle.

xc14 − M
∑

rk

τirk ≤ xcic ≤ xci4 + M
∑

rk

τirk ∀i ∈ L, c ∈ C (53)

yc14 − M
∑

rk

τirk ≤ ycic ≤ yci4 + M
∑

rk

τirk ∀i ∈ L, c ∈ C . (54)

Now, if we look back at the multiplier of the big M in either (45) or (48), we can see
that it permits one of the rectangles to not be on the given side if one of the rectangles
is inactive. This way, we can connect the last rectangle using the inactive rectangles
as proxies to the first rectangle. Constraint (45) corresponds to the case when the last
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Fig. 7 A feasible partial solution without constraints (55) and (56)

rectangle is in corner 1, while constraint (48) fits the case when the first rectangle is
in corner 1.

Lastly, we still have a special case to exclude, which can be seen in Fig. 7. What
happens here is that the order on each edge is appropriate, the neighboring in each
edge is proper as well, except that light source 2 should be in corner 2 since it comes
before light source 3. Thus, the constraints forcing the neighbors are invalidated since
light source 1 and light source 2 do not share the same edge.

To fix this, suppose there is a rectangle i in corner o which touches side p(o) and o
(in this order). The preceding rectangle p(i) cannot be on side o. The next rectangle
n(i) cannot be on side p(o). For example, in Fig. 7 rectangle 2 should not be on side
3, since rectangle 3 is in corner 2, which should prohibit the previous rectangle to be
on side 3. The next constraints describe this rule.

1 − ψp(i),o ≥ σi,o ∀i ∈ L, o ∈ R (55)

1 − ψn(i),p(o) ≥ σi,o ∀i ∈ L, o ∈ R. (56)

The effects of these additional constraints compared to the basic model can be seen
in the next section, where we discuss the computational results obtained with this
constraint generation approach.

4 Computational results

We used AMPL (Fourer et al. 2002) to implement the models and solved them with
CPLEX 12.8.0 (cpl 2020). The tests were run on a machine with 8 GB of memory and
an Intel Core i7-4710HQ CPU. The execution times (in seconds) can be seen in Table
1. The tests were run for different sets of light sources with |K | = 2, 3, 4, 5, 7, and
with n = 10, the maximum number of available light sources.
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Table 1 Execution times (in seconds) of different sets of constraints for maximum 10 light sources

Problem #light types Basic OE OF OEF Optimum

1 2 22 209 24 38 16

2 3 61 346 15 20 14

3 5 >1800 318 19 13 13

4 7 >1800 738 29 27 13

5 2 >1800 >1800 278 187 6

6 4 1769 >1800 15 10 58

7 2 64 440 2 2 16

8 3 3 5 1 1 13

Average >915 >708 48 38

Table 2 Model iterations and MIP iterations of different sets of constraints for the constraint generation
method

Problem Basic OE OT OET

Iter. MIP iter Iter. MIP iter Iter. MIP iter Iter. MIP iter

1 58 261,510 61 6,745,648 9 1,450,598 7 1,403,607

2 83 724,743 93 9,803,603 7 551,204 6 832,790

3 41 28,210,833 69 8,952,183 4 649,549 2 489,818

4 39 31,558,783 80 16,705,287 6 782,319 5 589,346

5 95 7,153,738 103 34,537,365 29 7,142,275 26 4,742,987

6 204 12,765,301 105 19,084,889 3 804,672 2 526,814

7 64 302,940 100 4,754,435 1 100,613 1 100,613

8 20 5741 23 119,770 1 13,729 1 13,729

Average 76 10,122,949 79 12,587,898 8 1,436,870 6 1,087,463

Problems 1–4 were generated by incrementally adding new types of light sources
to the previous problem, with different attributes. It is worth mentioning that adding
new light types can make a problem easier or harder depending on their attributes.
Problems 5–8 were designed to test the limits of the approach. In all problems the
dimensions of the field were a = 20, b = 12.

Four configurations of the constraints were tested. The one named basic contains
the model from Sect. 2, OE has additionally the Order constraints (23–reforderspsend)
as well as the Elimination of symmetric solutions (30). OF includes constraints on the
order (23–44) and on the field edge covering (45–52) apart from the basic model.
Lastly, OEF has every constraint we listed for the constraint generation approach.
These computational times can be seen inTable 1,while the number ofmodel iterations
and the sum of MIP iterations for the whole algorithm are shown in Table 2.

The resultsmake it clear that the constraint configuration using all the improvements
is superior in almost all cases to the others. It can also be seen that the most important
constraints apart from the order (which in itself does not lead to any improvement)
are the field edge covering constraints. The elimination method improves the consis-
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Table 3 Execution time, model and MIP iterations of the OEF version for problem 4 as a function of n, the
maximum number of light sources

n = 10 n = 11 n = 12 n = 13 n = 14 n = 15

Time (s) 27 131 32 65 67 54

Iter. 5 13 1 7 6 3

MIP iter. 589,346 2,865,134 725,321 1,138,136 1,386,597 1,020,826

tency of the algorithm, but highly increases the execution times without the field edge
covering constraints.

Looking at the number ofmodel iterations the averagenumber of iterations increases
if the elimination is used without the field edge covering constraints. This can be
attributed to the problem seen in Fig. 4. It is also worth mentioning that the method
with all constraints (OEF) scales well with the maximum number of light sources as
can be seen in Table 3. Thus, it is possible to verify if a higher number of light sources
would lead to a better solution.

It is important to mention that comparing the models is difficult because there are
many feasible placements of the rectangles for a given objective value. Depending on
the starting solution the execution time and the number of iterations can highly vary,
see Table 3.

5 Conclusions

In this paper, a new covering problem is formulated and solved, where a rectangle
has to be covered by different types of rectangles that describe the illuminated area of
light sources. As the problem comes from a new innovative industrial application, we
did not find existing models or algorithms to solve this specific problem.

Tobuild a usefulmodel, a constraint generation approach is designed. The concept is
to cover a set of points and check if the whole area is covered. If there is an uncovered
area, we locate a new point in it and rerun the covering model requiring this new
point to be covered as well. This approach is efficient for all the cases appearing in
the industrial application. Still, we could improve it by introducing ordering on the
rectangles, ensuring no gap between consecutive rectangles, and finally, eliminating
symmetric solutions.

Apart fromsettingup thesemodels to solve the given coveringproblem,weanalyzed
the model components. We checked the efficiency of the additional constraints. We
have found that forcing the most structure on the rectangles, by having neighboring
rectangles touch increases the model’s consistency by a large margin. We also learned
that eliminating symmetric solutions helps more if the model already forces a stricter
structure on the rectangles.

As for future research, we plan to extend the model by allowing arbitrary rotations
of the light sources, and generalizing the shape of the illuminated area to convex
polygons. In the industrial application, certain areas should be covered by multiple
light sources, leading to amore complex problem to be solved as a long-term objective.
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6 Appendix

6.1 Notation for the basemodel

Indices

i, j Index of the possible light sources, i, j ∈ L = {1, . . . , n}
r Type of rotation, r ∈ R = {1, 2, 3, 4} (see Fig. 2)
k Light source types k ∈ K = {1, . . . , |T |}
c Index of corners c ∈ C = {1, 2, 3, 4} from bottom-left corner in counter clockwise order (see Fig. 2)
p Index of points in the field to be covered p ∈ P = {1, . . . , }

Parameters

a, b Dimensions of the field
n Maximum number of light sources, n = |L|
uk , vk Dimensions of the lighted rectangle for light type k
gk price of light type k
dxrkc, dyrkc Translations of corner c of light type k from the light source’s position with rotation r
xpp, ypp Coordinates of a predefined point p

Variables

xi , yi Position of light source i
τirk Binary variable to indicate the type and rotation of a given light source:

τirk = 1 if light source i has rotation r and type k
ρi p Binary variables to indicate if point p is covered by light source i
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Dummy variables

xcic, ycic Position of corner c of light source i

6.2 Notation for the point generationmodel

Variables

xn, yn Position of the new point to be covered, xn ∈ [0, a], yn ∈ [0, b]
θi j Binary variables to indicate if the new point is inside of light source i corre-

sponding to its side j
d Minimum �∞ distance from the new point to the closest rectangle
dxm, dym Coordinate distances from the new point to the midpoint of the field

6.3 Notation for the improvedmodel

Indices

n(o) Next index after o in a circular manner for any set O = {1, . . . , |O|}:
n(o) = o + 1 if o < |O|, n(o) = 1 otherwise

p(o) Previous index before o in a circular manner for any set O = {1, . . . , |O|}:
p(o) = o − 1 if o > 1, p(o) = |O| otherwise

f Index for the eliminated placements, f ∈ E

Parameters

ε A small distance; a rectangle’s corner is either at a corner of the field or
cannot be ε-distance from said corner

e f ir t This is used to eliminate the solutions that are symmetric appearances of
earlier solutions

Variables

ψio Binary variable to indicate if light source i is touching side o
σic Binary variable to indicate if light source i is in corner c of the field

6.4 Parameters for the test problems

All parameters of the test cases are given in Table 4. The optimal coverings are shown
in Fig. 8.
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Fig. 8 Optimal solutions to each problem. The rectangles are labeled by their type (k) according to Table 4
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