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Abstract
Home health care (HHC) services are of vital importance for the health care system
of many countries. Further increases in their demand must be expected and with it
grows the need to sustain these services in times of disasters. Existing risk assessment
tools and guides support HHC service providers to secure their services. However,
they do not provide insights on interdependencies of complex systems like HHC.
Causal-Loop-Diagrams (CLDs) are generated to visualize the impacts of epidemics,
blackouts, heatwaves, and floods on the HHC system. CLDs help to understand the
system design as well as cascading effects. Additionally, they simplify the process of
identifying points of action in order tomitigate the impacts of disasters. In a case study,
the course of the COVID-19 pandemic and its effects on HHC in Austria in spring
2020 are shown. A decision support system (DSS) to support the daily scheduling
of HHC nurses is presented and applied to numerically analyze the impacts of the
COVID-19 pandemic, using real-world data from a HHC service provider in Vienna.
The DSS is based on a Tabu Search metaheuristic that specifically aims to deal with
the peculiarities of urban regions. Various transport modes are considered, including
time-dependent public transport.
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1 Introduction

Many countries are experiencing a significant increase in demand for long-term care.
The average share of the population aged 65+ years in OECD countries increased
from about 9% in 1960 to 17% in 2015, and is forecast to reach 28% in 2050. The
share of those aged 80+ years is expected to grow even stronger. An increase in life
expectancy does not mean that the extra years are lived in good health. In fact, the risk
to develop disabilities and to need assistance also increases. On average across the
OECD countries, 13% of people over 65 receive long-term care and more than half of
them are 80+ years old (OECD 2017). Many care-dependent people are cared for by
friends or relatives. Others receive professional help either in nursing homes, day-care
centers, or their own homes through home health care (HHC) services. As outlined in
Rest et al. (2012), HHC services allow old and frail people to stay as long as possible
in their familiar environment but still receive professional care. Furthermore, the HHC
system is also more cost efficient than institutional long-term care.

HHC service providers offer a wide range of services, ranging from assisting in
daily life to qualified medical services. People with limited mobility or medical needs
(e.g., diabetics) require consistent services to avoid a deterioration of their health. But
even seemingly less important tasks like assisting in daily life are of vital importance.
These activities deal not only with personal hygiene or preparing meals, they are also
used to monitor the health of the people. This information is crucial to adapt the
services to the changing needs. Expecting an increase in demand and being a vital
part of the health care system, HHC services must be sustained by all means in order
to avoid health implications. To maintain business continuity, and thus continuity of
care, HHC service providers must prepare for a variety of disaster situations.

The aim of this paper is to analyze the effects of natural and technical disasters on
HHC services in urban regions. Based on information from the Austrian Red Cross
(ARC), one of the major HHC service providers in Austria, epidemics, heat waves,
floods, and blackouts have been defined as most important. Initial analysis and results
have been published in Rest et al. (2012) and in the conference proceedings of Rest and
Hirsch (2015). These findings are extended in two ways. First, the concepts of System
Dynamics (SD), especially Causal-Loop-Diagrams (CLDs), are used to visualize and
identify influential factors and vulnerabilities of HHC services. Second, in a case
study the impacts of the pandemic of the coronavirus disease 2019 (COVID-19) on
HHC in Austria in spring 2020 are analyzed. A decision support system (DSS) for
the daily scheduling of HHC nurses is presented and applied to analyze the impacts
of the COVID-19 pandemic. The DSS is a commercially available advancement of
the previously developed algorithms, published in Rest and Hirsch (2016). In contrast
to existing work, the DSS focuses on urban regions and allows planning with public
transport and with time-dependent travel times. It is applied to real-world data from
a Viennese HHC service provider to show the effects of the strict COVID-19 actions.
As different transport modes are considered, their impact on the planning is outlined
as well. The main findings of this work aim to raise the awareness of HHC service
providers regarding their vulnerabilities. The DSS itself can be used for the daily
scheduling aswell as for training and capacity analysis and planning. During a disaster,
it guarantees that the available staff is scheduled as efficient as possible.
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The remainder of the paper is organized as follows: Sect. 2 discusses emergency
preparedness of HHC services and relevant literature in this field. Section 3 assess the
vulnerability of critical assets of HHC to the fourmentioned disasters and plots them in
CLDs. In Sect. 4, theCOVID-19 case study is presented, including the presentation and
application of the DSS using real-world data from a Viennese HHC service provider.
Final remarks and an outlook on future research are given in Sect. 5.

2 Emergency preparedness of HHC services

HHC provides unique capabilities to manage disaster situations, both before and dur-
ing the event. The ability to deliver health services in non-structured environments
makes them ideal as key responders in times of crisis (NAHC 2008). Identifying and
addressing the needs of vulnerable people has been the focus of several studies (e.g.,
Aldrich and Benson 2008; Khorram-Manesh et al. 2017). HHC services are tailored
to the needs of care-dependent people, a group mainly consisting of frail older adults
and people with disabilities. Exactly this group is disproportionately affected by emer-
gencies. According to Aldrich and Benson (2008), about 80% of older adults have at
least one chronic condition that makes them more vulnerable during a disaster. They
point out that, for example, 71% of the fatalities of the hurricane Katrina in 2005
were over the age of 65 and that the median age of the heat-related deaths during the
heat wave in Chicago 1995 was 75 years. Thus, HHC services already have direct
access to one of the most vulnerable groups, which provides in-depth knowledge of
their medical needs, impairments, resources, as well as their home environments. In
addition, it enables targeted dissemination of public health (e.g., about vaccinations)
and disaster preparedness information.

A manual for developing an all-hazards emergency preparedness plan is provided
by the NAHC (2008). It lists potential hazardous events that should be rated based on
probability, vulnerability and preparedness. Furthermore, a variety of recommended
actions are given to increase the resilience of HHC services. In scientific literature,
different approaches are proposed to increase the emergency preparedness of HHC
services. Wyte-Lake et al. (2015) present the results of a literature review examining
HHC organization policies and procedures, lessons learned in the field, and expert
recommendations.Most of the literature discusses only individual actions (e.g., patient
classification systems) or actions to tackle individual disasters (e.g., avian influenza).
All-hazards risk assessments are only addressed byDoherty (2004) and Rodriguez and
Long (2006). They provide advice on how to carry out risk assessments, particularly
by raising questions that need to be addressed by the HHC service providers. However,
the HHC system as well as various disaster events are complex systems that involve
numerous interdependencies. In our opinion, these interdependencies have received
little attention in the existing literature and risk assessment tools, but can be tackle by
applying SD methods.
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Fig. 1 Risk assessment process according to Baker (2005)

3 Vulnerability assessment and systems thinking

Risk assessments are an important part of the risk management procedure and a pre-
condition for the subsequent phases of the crisis management cycle (Pursiainen 2017).
As shown in Fig. 1, the first step of a risk assessment and management process is to
identify relevant threats and hazards. In the next step, vulnerability assessments are
used to evaluate the weaknesses of a system regarding these threats. Afterward, the
risks are determined by assigning likelihoods to each threat. The final step consists
of managerial decision making, heavily influenced by the resulting risk characteriza-
tions and the financial possibilities of an organization. The focus of this paper lies
on the vulnerability assessments as we think that the existing HHC literature and risk
assessment tools are deficient in this area. While they provide great guidelines for
the remaining steps, they offer little help in terms of insights into interdependencies.
According to Baker (2005), the main objectives of vulnerability assessments are to...

– understand the organization’s mission and mission-supporting systems.
– identify mission-threatening vulnerabilities of critical systems.
– understand system design and operation to determine failure modes.
– identify consequences of failures and cascading effects on other systems.

Understanding complex systems is themain goal of the SDmethodology. To the best
of our knowledge SDmethods have not been applied yet tomodel theHHC system. SD
has been described first by Forrester (1997) to model the behavior of complex systems
that are characterized by interdependencies of the influencing variables. CLDs are
one of the main concepts in the SD toolset and used to visualize cause-and-effect
relationships and feedback processes. A system is modeled as a network consisting
of nodes representing variables and links representing an interaction between two
variables. A link of a positive (resp. negative) interaction means a change in the same
(resp. opposite) direction, i.e., if the cause increases then the effect increases (resp.
decreases). Powell et al. (2016) show the advantages of using CLDs during the risk
assessment process and use them to analyze flood threat to an electricity substation.
CLDs are also well suited to visualize cascading effects of disasters, as shown by
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Berariu et al. (2015). They analyze cascade effects of floods and heatwaves and their
impact on critical infrastructures.

Expert interviewswith decisionmakers of theARC identified epidemics, blackouts,
heatwaves, and floods as their most significant disaster events. The ARC is not only
one of the largest HHC service providers in Austria, but also has extensive expertise in
health care and disaster management. The effects of these disasters have been analyzed
on the basis of scientific publications, addressing general disaster impacts on critical
infrastructure and lessons learned from specific events. The findings were modeled in
the form of CLDs and discussed and refined again with the ARC. In the following,
the CLDs for each of these disasters are presented.

3.1 Epidemics

Infectious diseases repeatedly affected large parts of the population within a short
period of time. Regionally confined outbreaks are classified as epidemics while the
termpandemic describes aworldwide spread.Gershon et al. (2007) state thatmore than
30 novel pathogens have been identified in the past 2 decades and that the incidence
of emerging pathogens is increasing. Globalization, with its increase in international
travel, fosters the spread of diseases and areas of high population density are par-
ticularly at risk. For example, the 2002 SARS outbreak started in China and spread
rapidly to Toronto, London, and New York. The US Centers for Disease Control and
Prevention estimates that the 2009 H1N1 (swine flu) outbreak resulted in about 60
million cases, 270,000 hospitalizations, and 12,500 deaths in the United States (CDC
2019). At the time of writing, the ongoing COVID-19 pandemic has already caused
massive economic damage and social restrictions worldwide. As of March 20, 2021,
the COVID-19 Dashboard of the Johns Hopkins University reports more than 122
million infections and more than 2.7 million deaths across 192 countries and terri-
tories (Johns Hopkins University 2021). The pandemic is described in detail in the
COVID-19 case study in Sect. 4.

The CLD in Fig. 2 shows the impact of epidemics. The intensity of an epidemic
directly affects the variable human health, which expresses the health of the population
and thus, the health of the nurses, the care-dependent people and their relatives. When
affected by the disaster, the overall health of the population decreases. This decreases
the number of available nurses. At the same time, people in poor health require
more care and those whose health condition previously allowed for a self-sufficient
life may now need care. The relation of vulnerable groups requiring additional care
during times of disasters is emphasized by several studies (e.g., Fernandez et al. 2002;
Khorram-Manesh et al. 2017). In addition, Knebel and Phillips (2008) point out that
the number of care-dependent people will also increase because more people are
discharged earlier from hospitals, due to short capacities. This is depicted in the CLD
by early dehospitalization. Thus, it can be concluded that the better the human health,
the lower the number of care-dependent people and the lower the average care time.
The human health is also an influential factor of the care efficiency. Both, the physical
and psychological health highly influences the efficiency of the conducted care.
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Fig. 2 CLD of the disaster impacts of epidemics on HHC

Another major problem arises from the nurses’ ability and willingness to work.
They might be sick themselves or have to care for other family members like children
(e.g. due to the closure of schools and day-care centers). Knebel and Phillips (2008)
estimate that about a quarter of the nurses will be sick themselves during an influenza
epidemic. The willingness of healthcare personnel to work during different disease
outbreaks (e.g., avian influenza and pox) has been addressed by several studies (e.g.,
Mackler et al. 2007; Irvin et al. 2008). They conclude thatwithout protective equipment
or vaccinations, few arewilling to showup for duty, and even fewer if they fear that they
might spread the disease to their own family members. However, the willingness to
work increases with the staff’s qualification and level of information about the disease.
Thus, the variable information and protectionmeasures directly affects not only human
health by preventing infections, but also the available nurses. The availability of
transportation also affect the nurses’ ability to work. Fuel supplies and public transport
might be limited because of high absenteeism or shut downs in order to limit the
spread of the disease (Knebel and Phillips 2008). The higher the availability of public
transport, the lower the travel times. The travel times are inversely proportional to
the care efficiency because the more time is spent for traveling, the less is available
for caring. A significant portion of care is still conducted by relatives and denoted
by the variable informal care. It is directly proportional to human health. The worse
the human health, the lower the amount of informal care. Relatives are unable to
carry out care activities for the same reasons as the nurses. However, they are more
affected as they might not have access to protective equipment or vaccinations to
protect themselves from infection.

The main challenge of epidemics can be summarized by a huge increase in the
number of care-dependent people and service times, paired with a significant decrease
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of the availability of nurses and informal care. The efficiency of the conducted care
services is also expected to decrease. A higher demand for HHC services (required
care) is thus offset by a reduced care potential (conducted care). The resulting gap
creates a reinforcing feedback loop as unsatisfied demand decreases the human health
of the care-dependent people. As a consequence, additional care is needed, which
again increases the gap.

3.2 Blackout

Blackouts refer to large-scale power outages that last for several days or even weeks.
However, even short-time interruptions of the electricity supplymight result in cascad-
ing failures of critical systems. They are often the cascading result of other events (e.g.,
floods or winter storms) or of man-made- and technical failures. Alhelou et al. (2019)
published a survey on blackouts around the globe and their cascading events. Europe
in general, and Austria in particular, experience a very high level of electricity supply
security. The single European electricity market imposes both, threats and benefits to
supply security. Local shortages or disruptions might be compensated transnationally
to avoid serious incidents, but in the worst case, they have ripple effects on their sur-
rounding area, leading to large-scale power outages. For example, in September 2003,
a tree flashover at a high-voltage line in Switzerland triggered a sequence of events that
led to a separation of Italy from the European grid. Italy suffered a nationwide black-
out that took about 19 h to re-energize all regions (Alhelou et al. 2019). According to
Marston (2018), the US power supply suffers from its aging infrastructure and by the
diverse set of infrastructure owners and operators, making the US power system even
more susceptible to blackouts. The author also describes the impacts of various envi-
ronmental and human-related threats, like physical sabotage and cyberattacks on the
different electric system components (e.g., generation, transmission, or distribution).
The significant growth of electricity generation from renewable energy sources results
in an increasing supply volatility, thereby putting pressure on transmission and distri-
bution systems (Reichl et al. 2013). The flourishing demand for electric vehicles will
additionally stress the electricity supply. The frequency and scale of blackouts might
therefore increase. Figure 3 visualizes the impacts of a blackout on the HHC system.

Blackouts affect nearly every aspect of daily life. Alhelou et al. (2019) describe
the social, economic, and political impacts of blackouts on modern societies. For
HHC, themost important impacts are on telecommunications, transport, and the health
care sector. Most HHC service providers rely heavily on their IT and communication
systems. Schedules are usually sent electronically to mobile devices of the nurses.
These devices are also used to track and monitor the conducted care services directly
at the clients’ locations. Cowie et al. (2004) examine the impact of two widespread
blackouts on the internet communication. Only the internet backboneswere unaffected
and thousands of institutional networks and millions of internet users where offline
for hours or days, including banks, companies, hospitals and government institutions.
Without IT systems and with limited ways of communication (modeled by availability
of ICT ) the available nurses are expected to decrease. Furthermore, the scheduling of
the staff is less efficient, resulting in longer travel times and a reduced care efficiency. A
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Fig. 3 CLD of the disaster impacts of blackouts on HHC

blackout also directly affects the availability of transport. Electricity-based transport
(e.g., underground, train, and tram) will be inoperable and buses and cars suffer from
lack of fuel and the failure of traffic management systems (e.g., traffic lights). A lack
of availability of transport leads to longer travel times and to a reduction of available
nurses and informal care.

The impacts on the health care sector are well documented by previous incidents.
For example, the blackout that hit the northeast of the United States and the Cana-
dian province of Ontario in August 2003 lasted for several days. Freese et al. (2006)
reveal that the number of emergency calls increased by 103% in New York during this
time. As the blackout happened in summer, most medical emergencies were related
to cardiac and respiratory complaints. Beatty et al. (2006) emphasize the critical sit-
uation of those people, relying on electric equipment (e.g., lifting or oxygen devices)
or medicines that require constant refrigeration. The authors also address an increase
of foodborne diseases as well as contamination with untreated sewage. Klein et al.
(2005) present the lessons learned from hospitals’ perspectives. Compared to HHC,
hospitals are well controlled environments and well prepared for disasters. Neverthe-
less, serious problems were encountered, including lighting, water supply, sanitation,
hygiene, heating, ventilation, and air conditioning. Most of these issues were related
to failing generators and city-wide loss of tap water supply and sewage disposal. The
authors also identified staffing problems due to lack of communication, transportation,
and childcare.

It can be concluded, that blackouts decrease human health in various ways, butmost
harm is done by the loss of electrically powered (medical) equipment or by the occur-
rence of diseases. The availability of safe food/water decreases without electricity,
which further reduces human health. Especially cities with many high-rise buildings
are at risk and depending on the season, the lack of heating or air conditioning further
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Fig. 4 CLD of the disaster impacts of heatwaves on HHC

aggravates these adverse health effects. The lower human health, the higher the num-
ber of care-dependent people and the higher the avg. care time. On the other hand,
the informal care potential, the number of available nurses and the care efficiency are
reduced. The top part of the CLD shows the same reinforcing feedback loop as during
epidemics. Unsatisfied demand for care decreases the health of the care-dependent
people, leading to an even higher demand.

3.3 Heatwave

Heatwaves refer to continuous periods with high temperature that last for weeks.
Because of climate change and global warming, the frequency and intensity of heat-
waves is expected to increase. Chapman et al. (2013) outline that urban regions are
particularly affected by heatwaves, due to the urban heat island effect, which describes
that temperatures in city centers are up to 10 ◦C higher than in the surroundings. Cities
not only produce and absorb more heat, they also store it longer and therefore, they
cool off more slowly. The CLD for heatwaves, shown in Fig. 4, resembles the CLD of
blackouts in Fig. 3. The effects of both disasters are not only similar, but blackouts are
often the cascading result of heatwaves. Themain difference is therefore, that the CLD
for heatwaves has been extended by an additional variable modeling the availability
of electricity. This variable corresponds to the previous blackout intensity.

The impacts of heatwaves on human health are well documented and several stud-
ies outline the causal relation of increased mortality and morbidity during heatwaves.
Mayrhuber et al. (2018) recently published a review on this topic in order to assess the
vulnerability across societies. They emphasize that elderly and chronically ill people
are among the most susceptible groups at risk. Being confined to bed, not leaving
home daily, and being unable to care for oneself result in the highest risk of death.

123



142 K.-D. Rest, P. Hirsch

The most common health implications are heatstroke, dehydration, cardiovascular,
and respiratory diseases (Haines et al. 2006). Heatwaves might result in water short-
ages and thus, in an increase of infectious diseases. Zander et al. (2018) describe the
effects of heat stress and relief measures on the workforce. Without relief measures
(e.g., cooling, resting, or hydration) high temperatures result in fatigue, headaches
and in reduced cognitive abilities and decision quality. The productivity of staff is
significantly reduced and the risk of work place accidents increases, thus impacting
the care efficiency and the available nurses.

In addition to the health effects, heat waves also affect the physical infrastruc-
ture. McEvoy et al. (2012) studied the impacts of a heatwave on Melbourne’s critical
infrastructure. They discovered severe impacts on the road, rail, and electricity infras-
tructure. The electricity generation is reduced during heatwaves. Hydro power stations
suffer from low water levels and the efficiency of steam turbines depend on the tem-
perature difference of the cooling water. However, the demand for electricity increases
significantly because of air conditioning. As a consequence, the heatwave resulted in
blackouts. More than a third of the train services were canceled because of the elec-
trical faults, buckling rails, and failing air conditioning of the trains. Road traffic was
affected by failing traffic management systems and by road bleeding (McEvoy et al.
2012). Similar findings have been reported by Arkell and Darch (2006) for London’s
transport network. It can be concluded, that heatwaves decreases both, the availability
of transport and the availability of ICT.

3.4 Flood

Different types offloodsmust be distinguished.River floods are usually slow-rising and
more predictable, providing time to prepare preventive actions. The predictability of
coastal floods depends on the cause.Heavy stormsor hurricanes arewellmonitored and
allow for several days of preparation. Tsunamis however, are caused by spontaneous
events like earthquakes and provide only a few hours of preparation, at best. The least
predictable are flash floods, usually caused by heavy rain. Alpine and urban regions
are especially at risk as they have large areas of sealed surfaces. Figure 5 shows the
CLD of flood impacts on HHC. Again, this CLD has many similarities with the CLD
of blackouts, because floods often cause widespread blackouts by flooding electrical
equipment. However, evacuations have been included in the CLD. Usually, residents
are not permitted to stay in their homes if they are flooded or even threatened to be
flooded in near future. They often stay with relatives or at emergency shelters and
thus, might not need HHC services during this time. The more people evacuated, the
lower the number of care-dependent people in HHC.

The main impacts of floods are on human health, availability of transport, and
availability of ICT. The health impacts of floods have been analyzed by Jakubicka et al.
(2010). They distinguish short-term effects (e.g., injuries, or an increase in waterborne
diseases) and long-term effects (e.g., chronic disease, or mental health issues). The
disruption of sewage disposal and water treatment infrastructures has been identified
as one reason for disease outbreaks.Mental health impacts are based on the destruction
of property, loss of life, geographic displacement, or anxiety about event recurrence.
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Fig. 5 CLD of the disaster impacts of floods on HHC

Suk et al. (2019) published a literature review to show how cascade effects of floods
results in outbreaks of infectious diseases. According to Haines et al. (2006), large
parts of the city of Dresden lost electricity and fresh water for several days during
the flood that hit Europe in 2002. For the city of Vienna, floods are a high-impact
low-probability risk because of large-scale flood protections (e.g., Danube Island).
However, if these protections fail the effects are catastrophic, as outlined by the flood
risk analysis of Compton et al. (2009). The transport infrastructure would be heavily
damaged because of possible flooding of subway lines. The authors refer to subway
floodings in Boston, Seoul, Taipei, and Prague, which took them out of service for
several months. Road traffic concentrates itself on the remaining, non-flooded roads,
leading to congestion and prolonged travel times.

4 Decision support in times of disasters: a COVID-19 case study in
Austria

In late 2019, a novel coronavirus infection rapidly developed into an ongoing world-
wide pandemic. The main transmission takes place from person to person, either
through respiratory droplets (e.g., breathing, sneezing, coughing) or (in)direct con-
tact with an infected person. The infection mostly affects the respiratory tract, with
symptoms ranging from those of a common cold to very severe respiratory infec-
tions. While most infected people show only mild symptoms, older people and those
with pre-existing conditions are particularly at risk. As a result, more than half of all
COVID-19-related deaths in most EU countries are attributable to elderly residents of
long term care facilities and nursing homes (ECDC 2020). The World Health Orga-
nization declared the outbreak as a pandemic on March 11, 2020 (Kreidl et al. 2020).
As of March 20, 2021, the COVID-19 Dashboard of the Johns Hopkins University
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reports more than 122 million infections and more than 2.7 million deaths across 192
countries and territories (JohnsHopkins University 2021). In this section, the course of
the COVID-19 pandemic in Austria in spring 2020 is described as well as the actions
taken by the government and their effects on HHC. Subsequently, a DSS is presented
that aims to support HHC services by optimizing the daily scheduling of HHC nurses.
Based on the variables identified in Sect. 3, a case study with real-world data analyzes
the impacts of the COVID-19 pandemic on the scheduling of the nurses.

4.1 COVID-19 pandemic andmeasures in Austria

In spring 2020, there were no specific treatments or approved vaccines for COVID-19.
The measures and recommended actions focused on the treatment of the symptoms as
well as preventing the further spread of the disease. The first diagnosed infections in
Europe (January 24)were associatedwith travels fromor to areas in south-eastAsia. At
that time, the European countries relied on screening and isolating symptomatic people
coming from such an area or who had direct contact with a confirmed case. The first
major outbreak in Europe was in Lombardy, northern Italy and thus, in the immediate
vicinity of Austria (Moshammer et al. 2020). According toKreidl et al. (2020), the first
diagnosed cases in Austria (February 25) were an Italian couple working in Innsbruck
but returning from Lombardy. Two days later, the first infected Austrian residents
where diagnosed in Vienna. In retrospect, it became apparent that there were already
large clusters of infections in skiing areas in the federal state of Tyrol. BetweenMarch
7 and 17 a total of 145 infections were diagnosed and attributed to a ski resort. It is
assumed that the crowding conditions in aprés ski bars with infected staff members
with mild symptoms during the influenza season resulted in an uncontrolled spread
of the virus. On March 12 Austria recorded the first COVID-19 fatality (Kreidl et al.
2020).

Desson et al. (2020) compare the policy responses of Austria, Germany and Swiss
in the early stage of the pandemic. With steadily increasing numbers of diagnosed
infections and hospitalizations, one of the first actions in Austria was the introduction
of selective border controls with health checks on March 6, especially on the Italian
border. On March 10, people were encouraged to practice social distancing and to
work from home, if possible. Public events like the upcoming Vienna City Marathon
have been canceled and public facilities (e.g., museums, federal gardens) were closed
(Desson et al. 2020). Universities were announced to close and switch to distance
learning by March 16, at the latest. Further measures for schools and limits on the
number of people attending events (incl. restaurants) have been promised. On March
12, the day of the first COVID-19 fatality, visits to hospitals were banned and actions
were taken to increase hospital capacities (e.g., postpone/cancel elective surgeries) and
to establish dedicated COVID-19 treatment centers (Pollak et al. 2020). In addition,
about 10,000 citizens completing their mandatory civil service were also moved into
health-care support roles as social care workers and paramedics (Desson et al. 2020).
As a result of the ski resort clusters, some Tyrolean communities were quarantined
for 14 days on March 13. In anticipation of a nationwide curfew, panic purchases took
place, overloading the supply chains of certain products. In addition, a ban on visits
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to nursing homes was announced (Pollak et al. 2020). On March 16, the Austrian
government declared a national state of emergency and initiated a strict nationwide
lockdown (Desson et al. 2020). Borders were closed, air traffic was largely suspended,
shops (apart from basic supply), restaurants, and bars were closed the following day
(Pollak et al. 2020). Strict contact regulations and curfews demanded that people leave
their home only for four reasons: (1) covering their basic needs (e.g., supermarkets,
pharmacies), (2) essential work, (3) assisting other people, and (4) taking walks alone
or with people from the same household. As a result of the lockdown, schools and
kindergartenswere closed and public transportation reduced its operation significantly.
HHC nurses who are dependent on public transportation suffered from longer travel
times. On March 30, it was announced that a mouth nose protection must be worn
when shopping. The lockdown was gradually lifted on April 14, due to the successful
containment and its economic impacts. Smaller shops were allowed to reopen and
the requirement to wear a face mask was extended to public transport. On May 1,
the curfews ended and the remaining shops and body-related service providers (e.g.
hairdressers) reopened. Two weeks later, restaurants, bars, and cafes opened with
restricted numbers of visitors. Schools opened nationwide on May 18 (Pollak et al.
2020).

Schmidt et al. (2020) analyzed the impact of COVID-19 on users and providers of
long-term care services in Austria. OnMay 15, Austria had a total of 16,068 confirmed
COVID-19 cases and 628 attributed fatalities. 788 residents of nursing homes and 448
staff were tested positive as of May 6. While 28% of the infected residents died, the
number of cases in nursing homes is estimated to be low in comparison with other
countries. It is outlined that the Austrian long-term care system significantly relies
on migrant carers from Eastern European countries, who were heavily affected by
travel restrictions and border closures. To prevent staff shortages, staffing regulations
have been loosened to allow people with limited (e.g., in training) or no qualifications
to provide basic care. To avoid infections of the nurses and transmissions to clients,
recommendations for preventive and protective measures were published. However,
it was difficult to provide sufficient amounts protective gear during the first weeks
of the pandemic. In order to sustain the informal care potential, telephone hotlines
providing psychological counseling and self-help through online support networks
(e.g., online courses for unpaid carers) were provided (Schmidt et al. 2020). With
reference to the CLD for epidemics presented in Sect. 3.1, the mitigation measures
and their consequences are well locatable in the CLD. They mainly relate to human
health, available nurses, care-dependent people, and availability of public transport.

4.2 Decision support system

ADSS can support multiple phases of the disaster management cycle (mitigation, pre-
paredness, response, and recovery). For example, it allows HHC service providers to
determine their operational limits and to adjust their processes and capacity planning,
in order to enhance the resilience of their organization. Furthermore, a DSS can be
used for the training of the dispatchers and nurses to prepare for various disaster events.
During the response phase of a disaster, it guarantees that the available resources are
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used as efficiently as possible. By speeding up the planning process, a DSS also frees
time of the dispatchers for other important activities.

Applying operations research methods and techniques to support HHC received a
lot of attention in the recent years. The organization and processes of HHC service
providers differ even within a single country, resulting in a wide range of publications,
addressing different aspects of HHC. The literature review of Hulshof et al. (2012)
lists various decision problems in HHC on the strategic (e.g., districting, capacity
dimensioning), tactical (e.g., capacity allocation, staff-shift scheduling), and opera-
tional level (e.g., staff-to-visit assignment, route creation). Optimizing the routing of
HHC services, which is in the main focus of this section, is addressed in the compre-
hensive literature reviews of Fikar and Hirsch (2017) and Grieco et al. (2020). They
reveal various challenging routing problems with a wide range of regulative and oper-
ational constraints as well as diverse objectives. Despite the large number of works,
the impacts of disaster scenarios on HHC services have been hardly discussed. To the
best of our knowledge, there is only a limited number of publications to support HHC
in such times. Barkaoui et al. (2018) developed a mixed integer linear program with
a dynamic risk-based clustering. The model considers the geographical proximity of
the clients and each client’s predefined risk rating for each period. It is decided which
groups are evacuated and which HHC resources are assigned to the groups of clients
staying at home during forecastable natural disasters such as floods. The routing of the
nurses is not considered. Trautsamwieser et al. (2011) present a mixed integer linear
program aswell as aVariableNeighborhood Search-basedmetaheuristic to support the
daily routing of HHC nurses in the rural area of Upper Austria. A sensitivity analysis
is carried out to show the impacts of natural disasters on the planning. A real-world
flood is analyzed as well as official flood risk scenarios with a 30, 100, and 200 year
return period.

The solution approach of the presented DSS and the underlying HHC routing prob-
lem are based on those published in Rest and Hirsch (2016). They have been further
developed by the same authors into a commercially used software that has been mar-
keted by the ingentus decision support KG, a spin-off of the Institute of Production
and Logistics of the University of Natural Resources and Life Sciences Vienna. The
DSS is used by a major HHC service provider in Vienna for their daily planning.
In total this service provider has about 750 nurses and over 3000 clients. The HHC
routing problem has a daily planning horizon and can be briefly described by the
characteristics of the clients and nurses.
Clients require one or more services (jobs) per day and each job...

– must be executed by a feasible and appropriately skilled nurse (i.e., qualification
level, language skills, sex, not excluded nurse or transport mode).

– has to start within its given (hard) time window.
– has a fixed duration that must not be shortened.
– should be assigned to the clients’ team of preferred nurses and all of his/her jobs
should be assigned to the same nurse (for each qualification level).

– should be planned so that the minimum and maximum time offsets between jobs
are fulfilled (e.g., 2h between a morning and lunch job).
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– that is marked as ’multiclient job’ has to be carried out together with its counterpart
(i.e., same time and nurse).

Nurses are required to...

– carry out jobs that correspond to their primary qualification or that require a qual-
ification level that is included in their set of allowed qualifications (results in
over-qualification).

– obey working time restrictions (i.e., earliest/latest and minimum/maximum work-
ing time).

– hold breaks if the working time exceeds a certain time.
– work at most two shifts a day.
– use one of the available transport modes (i.e., public transport, cars, bicycles,
walking).

– start/end their shift either at a depot or directly at the location of their first/last job
and return to a predefined location if working two shifts.

– not exceed the total overtime limit defined for all nurses.
– have a similar workload compared to the other nurses (relative to their target
working time).

A weighted objective function balances the opposing goals of minimizing the route
lengths and maximizing the satisfaction of the clients and nurses. The client’s satis-
faction is mainly determined by the consistency of care regarding the visiting times
and nurses. For the nurses, overtime and over-qualification are crucial indicators for
their satisfaction. A total of 11 soft constraints are used to configure the tradeoffs
between the individual factors of the objective function. The actual weights have been
set together with the dispatchers and the managerial decision makers of the the HHC
service provider. In contrast to the algorithms published in Rest and Hirsch (2016),
the DSS must always present a schedule to the dispatcher. For this reason, only a few
hard constraints are considered. These consist of assignment constraints that can be
evaluated before the actual optimization. If the preliminary checks detect unassignable
jobs, the reasons for the infeasibilities are reported. In addition, the time windows of
jobs, the start and end times of a nurse’s shift as well as his/her total working time
limit can be marked as a hard constraint by the dispatcher. However, if no satisfying
solution is found, the best infeasible solution is reported.

The presented HHC routing problem mainly distinguishes itself from other work
by the fact that public transport is considered. Public transport operates on timetables
that have different departure intervals and travel times during the day. Thus, their
time-dependent travel times are modeled using a travel time matrix for each minute
of the day. The DSS is able to process timetable data from public transport service
providers in the General Transit Feed Specification (GTFS) format, developed by
Google.Another unique feature are themandatory breaks,which in contrast to previous
work, can be split into smaller parts. To the best of our knowledge, there are still
no other publications except for Rest and Hirsch (2016) in the field of HHC routing,
addressing one of these features. The routing itself is based on OpenStreetMap (OSM)
data, which is a viable alternative data source, especially in urban regions. The benefits
of community gathered data also ensures a better availability of routable maps in the
event of a disaster.
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Fig. 6 Structure of the DSS

Time and efficiency are crucial for practical applications. Due to the complexity
of the routing problem, the DSS uses a Tabu Search metaheuristic. The algorithm
is explained in detail in Rest and Hirsch (2016). Its process can be summarized as
follows: First, an initial solution is generated with an insertion heuristic, based on the
centered time windows of the jobs. Afterward, neighbor solutions are generated by
moving individual jobs from one nurse to the routes of all other nurses. The insertion
into the new routes are based on the ’best insertion’ principle. During the evaluation
of the new routes, their starting times are optimized and breaks are inserted, if needed.
The route with the best objective value updates the current solution and the cycle of
generating new neighbor solutions continues until a termination criteria (i.e., elapsed
time, number of iterations without improvements) is met. The best found solution is
tracked during the search and returned at the end. The search process temporarily
allows infeasible solutions and uses a ’tabu list’ to prevent the reversal of moves for a
certain amount of iterations. To further guide the search, dynamically adapted penalties
are added to the weighted objective function.

The presented algorithm is based on the same concepts used in Rest and Hirsch
(2016). However, several problem specific elements have been changed. The main
difference is the optimization of the start time of the nurses. In Rest and Hirsch (2016)
the aim was to determine the start time that results in the shortest working time of
the nurse. However, this might lead to considerably postponed start times, which
leave hardly any leeway for complications. Therefore, the algorithm of the DSS first
calculates the earliest possible end of the tour and then determines the latest start for
this end. Additional constraints have been implemented to cover the new requirements
regarding the multiclient jobs and the minimum and maximum time offsets between
jobs. A non-linear constraint was added to seek a balanced workload of the nurses.

For easy integration in existing systems, the DSS has been developed as a web
service using Java 8. This way, it is highly scalable to manage heavy workloads as
well as highly customizable and expandable with regard to constraints and objective
functions. It is able to solve real-world sized instances with about 250 jobs and 40
nurses within a few minutes. The DSS can be used to evaluate or improve the manual
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planning of the dispatchers or to compute schedules from scratch. The structure of the
DSS is shown in Fig. 6. For data protection reasons, a 2-stage process is followed. In the
first stage, geographical data is processed into time-dependent (i.e., public transport)
and time-independent (i.e., car, bike, walking) travel time matrices. Following the
principle of dataminimization, only the final travel timematrices are stored, preventing
direct geographical traceability. In the second stage, the travel time matrices and the
submitted anonymized instance data are used to compute the schedule. The results are
returned as a report (Html format) and as raw data (Json format) in order to display
and further process the schedules in the existing software systems of the HHC service
provider.

4.3 Numerical studies

Based on the findings in Sects. 3.1 and 4.1, several strategies were followed to numeri-
cally assess the impact of the COVID-19 pandemic on HHC in Vienna. The focus was
laid on two areas, the transport infrastructure (travel times, availability of transport
modes) and the clients (duration of care). The DSS was adapted so that changes in
these areas can be done directly through input data modifications. Due to the sen-
sitivity of the real-world data, artificial manipulations such as adding and removing
clients, jobs or nurses were avoided. Unfavorable decisions can quickly lead to useless
instances whose results may even lead to wrong conclusions. For example, it is easy
to overburden some nurses while others hardly work at all because of exclusions. In
practice, dispatchers would then deploy nurses in or from different areas, but such
decisions are based on the expertise of the dispatchers. The specific settings of each
scenario are described below, together with their results.

The DSS is applied to real-world data from a major HHC service provider in
Vienna. A total of 16 instances (I1 − I16) from regular weekdays are available. For
data protection reasons, the instances originate from a corresponding period in 2019.
Geographically, the clients are spread across all districts of Vienna. Each instance
represents a group of nurses working in a certain area. The zoning has been done
by the HHC service provider, primarily based on public transport hubs. The working
times of the nurses are given by their contracts and the rosters of the corresponding
weekday. Table 1 shows for each instance the number of jobs, nurses, total shifts aswell
as how many nurses use public transport or cars. The average walking time between
all clients is given as indicator for their geographical distribution. The walking speed
is based on 5 km/h, for cycling a speed of 18 km/h was assumed and for cars, the
speed is based on the OSM road types but set slightly below their limits. However, all
speeds are reduced by the actual speed limits on the streets. The qualification level of
all nurses and jobs correspond to those of home helpers. The service times of the jobs
vary between 15 and 165 min, averaging 49 min. The average length of the jobs’ time
windows is just under 2.5 h, but with a minimum length of 15 min and a maximum of
6.75 h for less time critical jobs.

The weight setting used for the computations of this paper are the same that the
dispatchers at the HHC service provider use in practice. In times of disasters, priorities
are usually shifting to ensuring the delivery of care. However, the DSS was designed
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Table 1 Data characteristics of the real-world instances

Jobs Nurses Shifts Pub. transp. Cars Avg. walking
(#) (#) (#) (#) (#) (min)

I1 139 28 34 21 7 32

I2 140 20 26 20 0 20

I3 138 18 27 18 0 19

I4 123 20 24 15 5 26

I5 134 18 24 15 3 33

I6 109 18 22 7 11 60

I7 133 24 33 20 4 34

I8 136 27 35 23 4 22

I9 135 21 29 18 3 22

I10 129 21 25 14 7 26

I11 154 26 33 20 6 47

I12 163 21 29 17 4 48

I13 121 17 21 16 1 33

I14 140 25 32 18 7 32

I15 122 26 31 26 0 22

I16 134 20 25 17 3 34

to always report a solution and its constraints have been configured so that the focus
is shifting in case of larger violations. For example, at low workloads, the focus is on
meeting the preferences of the clients (i.e., preferred nurses, consistency of care). On
the other hand, at high workloads, meeting the mandatory working time restrictions
is more important. Furthermore, using the real-world setting allows for a good com-
parability of the results from before and during the pandemic. All computations have
been carried out locally on a Lenovo ThinkPad T490 with an Intel Core i7-8565U
processor, 16 GB of RAM and running Windows 10 Pro. The computation time limit
has been set to 600 seconds per instance.

The first scenario analyzes transport infrastructure impacts. As outlined in Sect. 4.1,
only public transport was affected during the pandemic in Austria. In this scenario,
each instance is solved using the timetable data from before and during the lockdown.
As reference for a timetable without restrictions the day of January 13, was chosen,
a normal weekday without COVID-19 measures. For the second date, March 23 was
chosen, the same weekday but 1 week after the curfew came into effect. Just looking
at the raw GTFS data, it can be seen that there are substantially less connections
on this day. The modal split of the nurses, shown in Table 1, remains unchanged in
this scenario. Table 2 compares the resulting schedules for all instances before and
during the lockdown. As key performance indicators for the travel impacts the total
travel times (incl. waiting) as well as the total overtime of each instance are reported.
Additionally, these values were summarized to an objective value to show a percentage
increase. Overtime is defined as the time that a nurse works outside his/her defined
working time window (e.g., 7 a.m. to 2 p.m.). In addition, dispatchers define a target
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total working time for each shift of the nurse (e.g., 4 h) and exceeding these targets
also counts to overtime. This is done to balance the accumulated over- and undertime
of a nurse in order to reach his/her contracted working time. As a consequence, the
pre corona results already show a considerable overtime for those instances that were
submitted with minimum target working times (e.g., I8, I9, I12).

It can be seen that the restrictions on public transport result only in small increases
in travel (incl. waiting) times and overtime, amounting to an average increase of
the objective value of 6.6%. However, individual instances like I1, I4, I7, and I15
show increases from 10% up to 18%, which might be deemed already infeasible by
dispatchers. The biggest impact is caused by the share of cars in the modal split,
in combination with the average distances between clients. As car travels were not
affected by the COVID-19 actions, instances with a high share of car users (e.g., I6,
I14) are less affected as long distances are then covered by nurses using cars. On
the other hand, nurses relying on public transport suffer even more from its reduced
availability the longer the walking distances between the clients are.

The second scenario aims to analyze the operational limits of the different instances
during theCOVID-19pandemic. In theCLDfor epidemics inSect. 3.1 it is outlined that
clients require more care in such disaster situations. Thus, it should be analyzed how
much the service times can be prolonged before capacity problems occur. Therefore,
the service times of all jobs are gradually increased in steps of 10%. Determining the
feasibility of an instance is difficult to generalize. From the perspective of a dispatcher,
even a minor delay at a single job might render the schedule infeasible, if he/she
considers it time critical. On the other hand, a slight violation of themaximumworking
time can still be acceptable in order to guarantee care for all clients. Therefore, the
average overtime per nurse and the average time window violation per job are reported
as key performance indicators of the schedules. It has already been shown in the
previous scenario that the modal split has a large impact on the scheduling. Thus, all
computations are carried out also with additional transport modes. The current mix
of public transport and cars is used as reference and in case no changes to the modal
split are possible. Under the assumption that already existing cars are still available,
calculations were made in which all nurses, who previously used public transport, use
cars, bicycles or walking. The use of walking can be seen as a worst case scenario,
if public transport is shut down completely or if the dispatcher wants to minimize
the risk of infections. The calculations with public transport are again based on the
timetable data at the time of the lockdown.

Table 3 shows the impacts of the considered transport modes and the prolonged
service times on the average overtime and tardiness. Regarding the prolonged service
times, both the average overtime per nurse as well as the average tardiness indicate
an even increase for each transport mode. At first glance, the numbers seem to be
manageable by the HHC provider. At the current modal split the average tardiness
increases from about 5 min without prolonged service times up to 31 min at +50%.
Being late by 5 min is negligible and by half an hour is also most likely acceptable in
times of a pandemic, as long as the jobs are not time critical. On the other hand, the
average overtime of each nurse increases from 53 min to slightly more than 3 h. The
ability to work additional 3 h every day depends on the nurses’ contracted working
times. It is most likely not recommended for longer-lasting events like pandemics.
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Table 3 Impacts of transport modes and service times on overtime and tardiness (in min)

Prolonged service time
+ 0% + 10% + 20% + 30% + 40% + 50%

Current mix

Avg. overtime 53.4 77.4 101.0 131.1 157.2 189.1

Avg. tardiness 5.3 7.7 11.6 17.3 23.2 31.3

Car

Avg. overtime 32.8 54.1 77.6 107.7 134.4 165.4

Avg. tardiness 2.3 5.3 8.6 13.6 19.0 26.9

Bike

Avg. overtime 39.7 62.3 85.7 115.8 143.2 175.0

Avg. tardiness 3.1 6.6 9.7 14.3 20.4 28.4

Foot

Avg. overtime 55.3 79.3 103.4 132.7 159.5 191.3

Avg. tardiness 5.5 7.9 12.1 17.7 23.5 31.6

Considering the average instance size of 22 nurses and 134 jobs, even without pro-
longed service times, the COVID-19 situation results in a total overtime of about 19.5
h and a total tardiness of almost 12 h, on average across all instances. Thus, each
instance would need 2.5 additional full-term nurses, working 8 h a day, to compen-
sate the additional workload. The advantage of using cars was already apparent in the
previous scenario. In comparison with the current modal split, the overtime can be
reduced by 23% if all nurses have access to cars. The use of bicycles is inferior to
cars due to the lower average speed. Although the DSS is able to explicitly consider
times for parking, this feature is not used by the HHC service provider, because the
considered speed limits already result in realistic driving times. However, the bicycle
results are still significantly better then the current modal split. Furthermore, they are
an economically and ecologically viable alternative, and also usable by nurses who do
not have a driver’s license. Avoiding public transport only leads to a slight increase of
the average overtime by 2% across all scenarios.

5 Discussion and outlook

HHC services are rising in importance in the health care systems ofmany countries and
with it grows the need to sustain these services in times of disasters. Risk assessment
tools and guides support HHC service providers to secure their services. However,
they do not provide insights on interdependencies of complex systems like HHC.
CLDs have been used to visualize the impacts of epidemics, blackouts, heatwaves,
and floods on the HHC system. They help to understand the system design as well
as cascading effects. Additionally, SD simplifies the process of identifying points of
action in order to mitigate the impacts of disasters. For example, during an epidemic,
protective equipment is crucial as it prevents not only infection of HHC staff and
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transmission of the disease to clients, but increases their willingness to work. The
CLDs also show the importance of informal care, provided by friends and relatives.
This outlines the need for a close coordinationwith them. In case of their unavailability,
HHC services need to step in immediately to prevent health issues. On the other hand,
relatives might be able to reduce the pressure of HHC services if they are able to take
over some tasks.

In a case study, real-world data from a HHC service provider in Vienna was used to
show the impacts of the COVID-19 pandemic on HHC in spring 2020. Furthermore,
it shows the applicability of the presented DSS in times of disasters, which can be
used for the daily scheduling of the nurses to ensure that the limited resources are
used as efficient as possible. By speeding up the planning process, it frees time of
the dispatchers for other important activities. It also allows HHC service providers
to better prepare for disasters and helps to determine the operational limits of the
nursing teams, operating in different areas with different characteristics (i.e., distance
between clients, availability of public transport). The DSS also shows the effects of
using various transport modes. In urban regions, careful planning allows to covermany
distances by foot or (electric) bicycles.

While the DSS was used to analyze the impacts of the COVID-19 pandemic in
Vienna, it can also be applied to analyze other disaster scenarios, such as those pre-
sented in Sect. 3 of the paper. The applicability of the DSS in other regions and
countries depends on the organizational requirements of the respective HHC system.
However, as the DSS was developed as a commercial software, much attention was
paid to flexibility and customizability. Both, the objective function and the constraints
can be easily extended and adjusted to the new requirements. Most of the analysis can
be done by varying the input data, making the availability of reliable data one of the
biggest challenges.

However, the presented DSS has limitations. While supporting HHC service
providers, it further increases their dependency on IT systems, which are especially
vulnerable during disasters with limited availability of electricity. While it is designed
to run on low-powered hardware like notebooks, continuous local backups of the rele-
vant data are required. Furthermore, in its current stage of development, it is assumed
that all jobs have to be carried out. At some point duringmajor disasters the operational
limits are reached. For these cases, a computer assisted triage system is needed to pri-
oritize the most critical jobs and to carry out as many jobs as possible. Future work
should also cover the dynamics of the HHC routing problem. The short computation
times of the DSS allows for rapid re-scheduling, but the generated schedules might
be entirely different each time. Especially with limited means of communications, it
is usually preferable to adapt to the new situation with as few changes as possible.
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