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Abstract Pit stops are a key element of racing strategy in several motor
sports. Typically, these stops involve decisions such as in which laps to stop,
and which type of tire, of three possible compounds, to set at each of these
stops. There are several factors that increase the complexity of the task: the
impact of lap times depending on the tire compound, the wear of the tires,
unexpected events on the track such as safety cars and the weather, among oth-
ers. This work presents a Dynamic Programming formulation that addresses
the pit-stop strategy problem in order to optimize the laps in which to stop,
and the tire changes that minimize the total race time. We show the rela-
tive performance of the optimal strategies for starting with tires of different
compounds with different yellow-flag scenarios. Then, we extend the Dynamic
Program (DP) to a Stochastic Dynamic Programming (SDP) formulation that
incorporates random events such as yellow flags or rainy weather. We are able
to visualize and compare these optimal pit-stop strategies obtained with these
models in different scenarios. We show that the SDP solution, compared to
the DP solution, tends to delay pit stops in order to benefit from a possible
yellow flag. Finally, we show that the SDP outperforms the DP, especially in
races in which yellow flags are likely to be waved more frequently.
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1 Introduction

Winning a race is the result of a combination of multiple factors, such as the
driver’s skill, the car and engine performance, the pit stop strategy, the tire
compounds, the weather, the competitors, and several random events that may
occur during the race. Consequently, racing teams invest significant effort and
amounts of resources (Forbes, 2018) in each of these factors in order to obtain
the best possible results in races.

Among the key factors mentioned above, in this work we look into pit stop
and tire compound strategies, specifically, in which laps the car should change
tires, and tires of which compounds should be used. This problem is framed
under the Formula 1 setting, however, the methodology developed here can
be easily extended and therefore applied to other racing federations that face
similar settings. For this reason, we do not analyze refueling as part of the pit
stop decisions, since refueling was banned from Formula 1 in the year 2010
(it had also been banned in the decade before 1994). But, we do consider the
problem of finding the optimal fuel level with which to start the race, which
is not trivial since, as we will show later in more detail, the fuel consumption
might depend on the compound of the tire being used. Still, the method of
solution presented here can be modified easily to incorporate other aspects
such as refueling.

In Formula 1, a race, also called a Grand Prix, consists of a specific track
on which racing cars have to complete a fixed number of laps in the shortest
period of time. During each lap, each car faces the decision of either: (a)
continuing on the track, or (b) doing a pit stop in order to have a change of
tires1. The reason for changing tires is twofold: (i) tires do not last for the
whole race, and (ii) there is a rule in Formula 1 that states that a car should
use tires of at least two different compounds during a race2. There are various
types of tire compounds. There is a set of tires for dry weather whose material
ranges from hard to soft compounds3. Tires of softer compounds tend to be
faster on the track compared to harder tires, especially in circuits with many
turns. But, these tires of softer compounds have a shorter life cycle compared
to the harder ones. Also, the racing time of a car will depend not just on the
compound of the tire being used, but also on the tire’s wear (due to graining,
blistering, marbles, flat spots, and others). There are tires for wet weather,
besides the dry weather tires, which allow better performance in the presence
of rain. There are two tire compounds for rainy weather, intermediate, and full
wets. The former is better suited for races with light rain, whereas the latter

1 Note that there are other reasons why the driver would choose to make a pit stop, such
as changing the front wing of the car in case it were damaged. For simplicity, we are not
going to consider this type of case.

2 This rule was set in 2016.
3 Since 2019, there have been a total of five tire compounds for dry weather, 3 of which

are available during each race.
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is better suited for races with moderate to heavy rain4. As expected, using
a wet tire compound in the absence of rain results in slower times compared
to using the dry ones. Similarly, using the dry-weather compounds in rainy
weather will increase lap times. Moreover, the driver will have to be especially
careful during turns, since the tires will not have the appropriate grip, and,
therefore, the risk of getting out of the track (which would possibly cause a
retirement from the race) will increase.

Tire strategy is not a trivial matter since it presents several complexities
and challenges that must be taken into account: (i) There is a trade-off between
tires of softer and harder compounds: the former allow faster laps, but softer
tires tend to wear down more quickly, and will therefore cause the need for more
pit stops. (ii) Racing performance does not depend only on the tire compound,
but also on the wear of the tires being used (see Farroni et al. (2017)). Indeed,
the term falling off the cliff is often used to refer to the point at which tires
are so deteriorated that the lap time increases significantly compared to the
lap time with low or medium tire degradation (see Terms (2019) for more
on terminology). (iii) Laps tend to be made more quickly as more laps are
completed since the car has less fuel and therefore less weight. (iv) Weather
can be a very uncertain factor in some races, since a prediction of rain is not
certain enough. It is also important to predict in which lap the rain will start,
and with what intensity. (v) Yellow flags5 are perfect times for cars to make
pit stops, since competitors on the track have a speed limit, so therefore a car
in the pit lane loses less time in relative terms when the stop is made during
a yellow flag.

In this work, we address the pit stop and race strategy problem taking into
account all five complexities mentioned above. More specifically, we formulate
a model to determine the optimal racing strategy by using dynamic program-
ming. In order to do so, we divide the problem in different stages, i.e. laps.
In each of these stages the driver has to make a decision, such as to make a
pit stop or not, given the current state during that particular stage. Thus, in
each lap information on the car is encoded in the state, which summarizes all
previous decisions, such as the compound of the current tires, the tire wear,
etc. We first solve a deterministic version of the problem in which there are no
uncertain events, although taking (i), (ii), and (iii) into account (see the previ-
ous paragraph). The outcome of this will be the optimal action that should be
taken in each lap. We then show how to use this deterministic formulation that

4 In case of rain, when using any of the two wet tire compounds, the rule that states that
tires of two different compounds should be used is no longer valid.

5 A yellow flag indicates the period of time during the race when the cars have to slow
down and no passing is allowed because an incident has taken place at some point on the
track which obstructs the normal execution of the race. The two main events in Formula
1 that take place during a yellow flag are: (a) Safety Car (SC) or (b) Virtual Safety Car
(VSC). In the former case, the safety car is deployed and all cars must follow with no
overtaking (and therefore time differences between cars are dramatically shrunk), while in
the latter (VSC) cars must decrease their speed (and so time differences between cars are
maintained). For the sake of simplicity, throughout the rest of the paper we consider yellow
flags to represent a VSC event.
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incorporates information on yellow flag events in case these happen. Finally,
we introduce uncertainty into the model in order to capture racing events that
are not fully known beforehand, such as, for example, weather changes, and
yellow flags ((iv) and (v) from the previous paragraph). The solution of this
model will return the optimal strategy to be used in each lap given the cur-
rent state, while taking the possible events that might happen in the future
into account. In reality pit-stop decisions are also affected by the interaction
between drivers; however, we have decided to neglect these from the model for
tractability reasons. The disadvantages of not considering driver interactions
is the omission of (a) the game theory aspect among drivers, and (b) events
which might have an impact on lap times, such as overtaking and blocking.

1.1 Related Work

Motor sports is not a new field of study. For several decades, various approaches
have been adopted to analyze this sport from different perspectives. Thirty
years ago, Foxall and Johnston (1991) published their work on innovation, and
the evolution of technology, organization, and strategy in Grand Prix motor
racing, while ten years later, Jenkins and Floyd (2001) focused their efforts on
analyzing the technological-development aspect of Formula 1. More recently,
Choo (2015) studied the impact of the pit crew and driver performances, tire
change decisions, and caution periods on race outcomes through a data-based
approach, which is arguably the most successful and popular methodology
in current practice (Bi, 2014). As opposed to our goal of computing optimal
strategies, Choo’s work focuses on using past data to evaluate and compare
past decisions in order to predict the outcome for future races.

Not only is the study of these phenomena interesting for its potential ap-
plications on motor sports themselves, but it can lead to original solutions in
completely different fields. For example, in medicine, Catchpole et al. (2007)
were able to reduce technical errors, information handover omissions, and du-
ration in patient handovers from surgery to intensive care using Formula 1
pit stop models, while Vergales et al. (2015) improved delivery room and ad-
mission efficiency, as well as the treatment of prematurely born infants, by
applying NASCAR pit-stop models.

In terms of optimization, we find a variety of approaches, such as the
study of air flow effects (Chandra et al., 2011), maximization of parameters
such as power, weight, tire grip, drag, and lift (Wright and Matthews, 2001),
and race-line optimization (Beltman, 2008; Xiong et al., 2010; Vesel, 2015; Jain
and Morari, 2020). Using simulation, Bekker and Lotz (2009) model a Formula
1 race by simulating events such as car failures, passing maneuvers, and pit
stops. A similar approach is used by both Phillips (2014) and Heilmeier et al.
(2018). In these studies (Bekker and Lotz, 2009; Phillips, 2014; Heilmeier et al.,
2018), the pit-stop strategies are an input of the model, and not the result of
an optimization process. Thus, the best strategy can be chosen by comparing
the output of all the strategies that were explored. McLaren Racing Limited
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(2019) addresses the optimal fuel strategy, which consists of the fuel level at
the start of the race, plus the timing and amount of fuel for refilling during
the race. An illustrative and graphic representation of the pit stop strategy
problem is presented in Chain Bear (2017). In a recent paper, Heilmeier et al.
(2020) use neural networks (NN) calibrated on real data to predict if a pit
stop should be made during the current lap, and the new tire compound to be
used. By computing the optimal race strategy under a no-competition setting
with a mixed-integer quadratic program (MIQP), the authors integrate these
NN for all drivers in a simulation to determine the race outcome. Our work
differs from their MIQP since our optimization framework does not require
a linear effect of tire degradation on lap times. In addition, our optimization
model is extended to a stochastic setting.

Interesting approaches can be found in other disciplines, as well: Tagliaferri
et al. (2014), for example, studied yacht racing tactics by framing them as a
stochastic shortest-path problem in which uncertain elements, such as wind
direction, are considered. To solve this problem, the authors rely on dynamic
programming, i.e., optimal policies being computed for a determined time hori-
zon, and for every possible state of the system that is being studied. Dynamic
programming has been applied in several other contexts; see Bertsekas (1995)
for more details. This solving method is suitable for our study: Every lap of
a Formula 1 race can be interpreted as a period in which decisions, such as
making pit stops, need to be made, and in which uncertain events, such as
accidents, can occur. Another important element of Tagliaferri et al., which
we include in our work, is the fact that interaction between boats (in our case
cars) is ignored: Even though interaction is obviously important in practice,
a simpler model is more convenient in terms of computations and focusing on
specific phenomena, rather than keeping a constant view of all the elements
that are involved in a race, such as car design and human error.

While there are clear similarities between our work and the approach used
by Tagliaferri et al., it is important to emphasize how different Formula 1 and
yacht racing are. In particular, one of the main focuses of our study is tire
strategy whereas in their work, Tagliaferri et al. focus on whether to tack the
boat or continue on the same direction. Deciding on the optimal instant in
which to replace tires, and the compound of the tires to be used could be
compared better to machine-maintenance scheduling and related fields (Yang
et al., 2008), in which dynamic programming can also be a valuable tool (Fal-
lahnezhad, 2014). Clear parallels can be drawn between these models and pit
stop planning since just as machine components degrade over time and need
to be repaired or replaced, tires become more worn out the more laps they
are used. While the degradation of a machine’s components might lead to de-
creased product quality, or even to a complete production stop, worn tires will
result in increasing lap times, and even a blowout, in the worst case, which
could lead to retirement from the race. Consequently, the following trade-
off must be taken into account: While a significant cost (in terms of money or
time) must be incurred when stopping production in order to repair a machine
(or carrying out a pit stop in order to change tires in our case), a consider-
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able performance improvement can be expected during the succeeding periods.
Not only does this mean that dynamic programming is well suited for both
race-strategy optimization and machine-maintenance scheduling, but the lat-
ter field could also be a rich source of models and techniques for future studies
of the former.

1.2 Organization of the Paper

The remainder of this paper is structured as follows: In Section 2 a determin-
istic model that optimizes pit-stop and tire-compound strategies is presented.
A stochastic version of the problem that incorporates uncertainty, such as
weather and yellow flags, is described in Section 3. Sections 2.2 and 3.1 con-
tain the results of numerical computations run with the models presented.
Finally, in Section 4, the main conclusions of our work are summarized.

2 Deterministic Model

Consider a race of N laps. Each lap is going to be one stage of the problem. At
each stage, the driver has to decide6 whether to continue on track, or make a pit
stop to change tires. Consider T = {1, . . . , T} to be the set of tire compounds
allowed to be used during the race. Let us denote by xn the driver decision
at lap n such that xn = 0 if there is no pit stop7, otherwise xn = t for some
t ∈ T where t indicates the compound of the new tires installed on the car.

As for the state variable, we will denote this by sn where n indicates the lap.
As mentioned above, the state variable should summarize the past information
up to lap n in order to make the decision (xn). The information in this case
encompasses the following: the compound type and wear of the tires in use,
and the fuel level. In addition, we must take the fact into account that the car
must use at least two different tire compounds during the race. Thus, at the
end of the race, the state variable should have this information. As a result,
at each lap n, the state variable will reflect whether or not tires of two or
more different compounds have been used so far. Then, the state variable sn
is denoted as

sn = (tn, wn, fn,mn) . (1)

tn ∈ T represents the compound of the tire in use at lap n. For simplification
purposes, we assume that the pits are located at the end of the lap8. Therefore,

6 This and other decisions are made together by the driver and engineers of the team. In
this paper, we will mention either the car, driver, or engineers, without distinction, to refer
to the decision maker on the race strategy.

7 We consider that it is not possible to do a pit stop in the last lap of the race. For
simplicity, we omit the description of this constraint.

8 In Formula 1, the pit lane is usually located in parallel to the finish line. The proposed
model can be easily adapted to the real setting.
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a change of tires in lap n (i.e. xn 6= 0) will not affect tn, but rather will affect
tn+1. Then

tn+1 = tn · 1{xn=0} + xn · 1{xn 6=0}. (2)

The fuel level at the beginning of lap n is denoted by fn. The fuel consumption
per lap could depend on the compound of the tires in use. Indeed, tires of softer
compounds allow maneuvers such as late breaking or taking curves at higher
speeds which might increase fuel consumption. Nonetheless, the softer tires
could require less acceleration after corners9. Let ct be the fuel consumption
per lap when using a tire compound of type t ∈ T . It can be seen easily that
the fuel at the next lap can be expressed as the fuel level at the start at the
lap minus the fuel consumption, namely

fn+1 = max{fn − ctn , 0}. (3)

To model tire wear, wn ∈ [0, 1] is a parameter that reflects the wear of the tires
at lap n, so that wn = 0 represents a new set of tires, whereas wn = 1 represents
tires that are totally worn out, and therefore the car cannot continue to race.
Tires degrade depending on the tire compound as well as on the fuel level.
Thus, the degradation of tires at a given lap n can be modeled as a function of
tn and fn, γ(tn, fn), which is decreasing on the hardness of the tire compound,
but increasing on the fuel level, since more fuel in the car implies more weight,
which increases the degradation of the tires. As a result, if there is no pit stop,
the tire wear of lap n+ 1 can be expressed as wn+1 = wn + γ(tn, fn), whereas
if there is a pit stop wn+1 = 0. Thus,

wn+1 = (wn + γ(tn, fn)) · 1{xn=0}. (4)

Finally, with respect to the state, we define the variable mn which is equal to
1 if the car has used tires of two or more different compounds up to lap n, and
0 otherwise. Then, the transition of this variable from one lap to the next can
be written as10

mn+1 = max{mn,1{xn 6=0,xn 6=tn}}. (5)

Since mn acts as an indicator variable that tires of two different compounds
have been used by lap n, we will call this the two-tire-compound-indicator.
This variable will be used for the border condition. More details of this are
given below. Putting Equations (2), (4), (3) together, and (5), we obtain the
transition of the state variable given the state and decisions of the previous
stage, namely, sn+1(sn, xn).

9 Although we will assume that softer tires consume slightly more fuel than harder tires,
this might no be the case for all motorsports.
10 This deterministic model assumes that the weather is dry. If the weather should be rainy,

there is no need to have this state variable since in this case cars are not required to use
tires of two different compounds. We do not consider weather changes in the deterministic
section, as this will be presented in the stochastic model in the next section.
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As mentioned in Section 1, lap times are a function of the tire compound,
tire wear, fuel level, and whether or not a pit stop is made. We define the lap-
time function µ(t, w, f, x) that returns the lap time, given the tire of compound
t ∈ T in use, the tire wear w ∈ [0, 1], the fuel level f , and whether a pit stop
has been made (x 6= 0), or not (x = 0). This function must be: increasing on
w since the more tire wear, the higher the lap times will be; increasing on f
since more fuel in the car implies more weight; and increasing on 1{x=0} since
making a pit stop takes more time than not having one.

Given all the above, we can state the Bellman equation as:

Vn(sn, xn) = µ (tn, wn, fn, xn) + V ∗n+1(sn+1(sn, xn)), (6)

where

V ∗n (sn) = min
xn∈{0}∪T

Vn(sn, xn).

The border condition must be such that if the car has not used tires of more
than one compound during the race (i.e., mN+1 = 0), then the race time is
set to infinity, namely

V ∗N+1(sN+1) =

{
+∞ if mN+1 = 0,

0 otherwise.
(7)

We solve the dynamic program from stage N + 1 to stage 1, obtaining the
optimal decisions at each stage for each possible state. Then, the optimal
strategy for starting the race should state the best tire compound and the fuel
level with which to start the race. The latter can be obtained by:

(t1, B) = argmin
(t,b)∈T ×[0,∞)

V ∗1 (s1) , (8)

where s1 = (t, 0, b, 0). Note that at the start of the race, the tires are all com-
pletely new (i.e., w1 = 0), and the state variable m1 is set to 0. For those cars
that are required to start with a particular tire compound type11, t1 will take
the value of this specific tire compound, and w1 will take the value of possible
tire wear if there is any. Still, it is of great interest to analyze the optimal
strategies starting with the different tire compounds in order to analyze the
relative performance among them, and how these adapt to uncertain events
that might occur in the race (more of this will be discussed below). This dy-
namic program allows us to obtain the best race strategy to be used during the
race, at least from an a-priori stand point, i.e. if there are no random events
that might occur during the race. In other words, before the race starts, we
can obtain the best pit stop race strategy with respect to the compounds of
the tires to use at each lap. Note that if during the race some of these elements

11 In Formula 1, only cars that start after the 10th position are allowed to choose the
compound of the tires with which to start the race since the year 2016, whereas the rest
of the cars are required to re-use a specific tire (with a particular compound) used in the
qualifying event. The qualifying is an event that happens the day before the race, when
drivers try to make the best lap times as these will decide the starting grid positions.
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evolve in a different way from what we assumed at the beginning, the dynamic
program can be re-run in order to adapt to the race contingencies. This can
be done whenever a contingent event can be captured by the state variables
defined in Equation (1). For example, if, in one lap, a driver makes a maneuver
that wears the tires more than usual (more than γ(tn, fn) which stands for
the usual tire degrade per lap under the tire compound tn and fuel level fn),
then in the next lap, we can update the tire wear wn+1 to the actual value and
re-run the dynamic programming from there. One of the key elements of the
dynamic program is the lap-time function µ, which must be properly defined
when solving this formulation.

2.1 Functions

2.1.1 Lap-Tire Wear

The lap-tire wear function, γ(tn, fn) represents the tire degradation produced
on a lap n given the current tires (tn) and the fuel level (fn). As mentioned
before, we expect that the wear will be more pronounced for softer tire com-
pounds as well as when the car has more fuel. In order to capture these effects,
we consider the function of tire wear per lap as:

γ(tn, fn) = dtn · (1 + δ)fn/F , (9)

where dsoft > dmedium > dhard and δ > 0. Note that γ is a product of two
factors which represent the effects of the tire compound in use, and the fuel
level. More precisely, dt is a coefficient that represents the lap tire wear when
using tires of compound t. Since tires of a harder compound last longer, it is
natural to assume that dsoft > dmedium > dhard. As for the second factor of
the RHS of Equation (9), δ > 0 is a parameter that represents the additional
tire wear as the car has more fuel, while F > 0 is considered to be the fuel
tank capacity. Then, δ = 0.2 means that if the car has a full tank of fuel, its
tire wear per lap will be 20% greater than when it has almost no fuel. On the
contrary, δ = 0 represents the case where the tire wear is independent of the
fuel level. It can be seen that the tire wear per lap is increasing on the fuel
level fn.

2.1.2 Lap-time function

The time a car takes to drive a lap at any given lap n will be denoted by the
following function:

(10)

µ (tn, wn, fn, xn)

=

µ0 + p0 · 1{xn 6=0} + αtn + β(wn) + g · fn
if wn + γ(tn, fn) < 1

and fn − ctn > 0,
+∞ otherwise.
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The first case of the lap-time function described in Equation (10) occurs when
the two following things hold: (i) the wear of the tires is strictly less than one
(i.e. tires are not fully worn out), and (ii) the car has a sufficient amount of
fuel to finish the current lap. If either of these conditions, (i) or (ii), do not
hold, then we set the lap time to be infinity. The parameter µ0 is a baseline
(hypothetical) lap time if the car has a new set of soft compound tires, with
almost no fuel, and makes no pit stop. The parameter p0 accounts for the extra
time a pit stop takes with respect to not stopping. Then, the second term of
the first case of Equation (10) captures the time spent for a pit stop.

The parameter αt for t ∈ T corresponds to the relative lap time between
racing a lap with tires of compound t, versus using the fastest tire compound
(for the same level of tire wear). For example, if the tires are soft, medium, or
hard, we could have αsoft = 0, αmedium = 0.6, and αhard = 1.0. This means
that lapping with the medium tire compound takes 0.6 seconds more than
when using the soft one, and using the tires of a hard compound take a full
second more than using those of a soft compound. Then, the third term of
the first case of Equation (10) reflects the lap time difference caused by the
tire compound in use. The function β : [0, 1]→ [0,∞) takes, as argument, the
tire wear which ranges from zero to one and maps it to the extra time per lap
relative to using a new set of tires (wear equal to zero represents a new set
of tires, whereas wear equal to one means that the tires are completely worn
out). Hence, it is natural to assume that β is an increasing function of the
tire wear, and β(0) = 0. For more details see Appendix B. The parameter g
(in Equation (10)) represents the extra time per lap for each kilogram of fuel,
and the fifth term of Equation (10) corresponds to the additional lap time
caused by the current fuel level. A summarized description of the dynamic
programming formulation is provided in Appendix A.

2.2 Computations

In this subsection we solve an instance with the dynamic program we intro-
duced above12. Consider a race that has 52 laps, and the tires that can be used
are of soft, medium, and hard compounds, respectively. Each of these will be
indexed by the numbers 1, 2, and 3, respectively. The rest of the parameters
considered are: µ0 = 85 [seconds/lap], p0 = 21 [seconds/pit stop], g = 0.03
[seconds/kg], c = (c1, c2, c3) = (1.92, 1.87, 1.83) [Kg/lap], d = (d1, d2, d3) =
(1/25, 1/40, 1/65) [1/lap], α = (α1, α2, α3) = (0, 0.6, 0.9) [seconds/lap].

The top left panel of Figure 1 shows the lap times for the best strategies
starting with each of the three (soft, medium, and hard) tire compounds. Tire
changes (i.e. pit stops) are marked with circles with the initial of the corre-
sponding tire compound currently installed on the car. It can be seen clearly
that softer tires are faster than their harder counterparts. Indeed, from laps 1
to 17, the continuous line is below the others (the dashed and dotted lines).

12 The code used to carry out these and all subsequent numerical experiments is available
at https://github.com/FCarrascoHeine/F1DP.
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Fig. 1 Each initial tire compound’s best strategy. Top left: Lap times. Top right: Partial
race time difference with respect to the best partial time. Bottom left: Fuel level of each
starting strategy. Bottom right: Tire wear during each lap. Filled red circles represent tire
changes with the letters “S”, “M”, and “H” representing the soft, medium, and hard tire
compounds, respectively.

Note that after lap 18 the strategy represented by the continuous line requires
using tires of a hard compound, thus the lap times of this curve are slower
than the other strategies once the latter change to the soft tire compound.
The top right panel of Figure 1 shows the relative time difference of the race
partial times for each starting tire compound strategy with respect to the
strategy with the minimum race time, which in this case corresponds to start-
ing with the soft tires. The steep increases are due to the pit stops made by
the respective strategies, whereas the decreases (lap 19) are because of the pit
stop made by the strategy starting with soft tires. The bottom left panel of
Figure 1 shows the fuel level on each lap for each strategy. The slope of each
of the curves of this plot represents the fuel consumption per lap, which is
a function of the type of tire being used. The strategy starting with tires of
medium compound starts the race with the largest amount of fuel. The rea-
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son for this is that this strategy uses tires of a medium and a soft compound
(unlike the other two that use tires of a soft and hard tire compound). Thus,
using more fuel is expected since the softer tires consume more fuel than the
harder tires. As expected, all strategies end up with almost no fuel by the end
of the race. Finally, the bottom right plot of Figure 1 shows the tire wear for
each strategy. Note that whenever a pit stop occurs, the tire wear goes to zero.
Also, the slope of each curve represents the rate of tire wear, which depends
mainly on the compound of the tires being used. Tires of softer compounds
have a higher slope, whereas tires of harder compounds have the lowest slope.
Viewing Figure 1, in particular its top-right panel, we can conclude that the
optimal, and therefore winning, strategy is to start with the soft tire compound
and change to the hard one in lap 19. The best strategies starting with tires
of medium and hard compounds take approximately 2.5 and 1.5 additional
seconds in their respective race-times (see the top right panel of Figure 1).

2.3 Yellow Flags

Another example of an event that might happen during the race which would
require re-solving the dynamic program is a yellow flag. These are usually
caused by an incident such as an engine breakdown, or a car crash. During a
yellow flag period, cars have to decrease their speed. As a result, making a pit
stop during this time lapse is attractive because the rest of the cars are not
racing at full speed, and so the relative time spent by stopping is less than
having a pit stop during a regular lap (with no yellow flag). Although yellow
flag slowdowns seem to be a convenient time to change tires, these events can
not be anticipated with absolute certainty. Before solving an instance where a
yellow flag occurs, we need to incorporate additional elements to the dynamic
program formulation introduced in Section 2. More precisely, if, for example,
there is a yellow flag during laps 21 and 22 in a race that has 52 total laps, the
idea is to solve the dynamic program without considering yellow flag events,
and use its optimal decisions until lap 20 (since up to this lap no yellow flag has
been raised). However, at lap 21, we are aware of a yellow flag event that takes
place during laps 21 and 22, and, therefore, we should solve an alternative
dynamic program from lap 21, which includes the current conditions in the
decisions to be made, from the current lap until the end of the race. More
precisely, for each lap n, let us consider the parameter zn which takes the
value 1 if there is a yellow flag at lap n, and 0 otherwise. When there is a
yellow flag, the fuel consumption is significantly less than when racing under
normal conditions. Let ct,a be the fuel consumption per lap when using tires
of compound t under a yellow flag (a = 1), or when there is none (a = 0).
Naturally, ct,1 < ct,0 for all t ∈ T . Similarly, there is less tire wear during a
yellow flag lap compared to a regular one. Let dt,a be the tire wear coefficient
per lap of a tire of compound t, where a denotes whether or not there is a
yellow flag (i.e., a = 1 if there is a yellow flag, and a = 0 if not). Then,
the recursion equations for the tire wear and fuel level (given previously in
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Equations (3) and (4)) are re-written as:

wn+1 = (wn + γ′(tn, fn, zn)) · 1{xn=0} (11)

fn+1 = max{fn − ctn,zn , 0}, (12)

where the tire wear function is now written as:

γ′(tn, fn, zn) = dtn,zn · (1 + δ)fn/F , (13)

which depends on the tire compound tn, the fuel level fn, and whether or
not the lap is being raced during a yellow flag event, i.e., zn = 1 or zn = 0
respectively. Similar to the case of the tire wear function, the lap-time function
has to include the fact that the car’s speed is reduced during a yellow flag. We
define p1 as the additional lap time when doing a pit stop during a yellow flag.

In order to reduce notation, let us define the event Ω = {wn+γ′(tn, fn, zn) <
1} and {fn − ctn,zn > 0}, which is the case when the car’s tires are not fully
worn out, and there is still fuel left. Then, the lap-time function can be re-
written as:

(14)

µ′ (tn, wn, fn, xn, zn)

=

µ0 + p0 · 1{xn 6=0} + αtn + β(wn) + g · fn if zn = 0 and Ω,
µ1 + p1 · 1{xn 6=0} if zn = 1 and Ω,
+∞ otherwise,

where µ1 denotes the lap time under a yellow flag and no pit stop. The Bellman
equation is defined as above in Equation (6), but using µ′ instead of µ, with
the same border condition shown in Equation (7). Let Z be the set of laps
with yellow flags, and DP (Z) be the solution of the dynamic program that
considers these events. Note that DP (∅) is the same as the dynamic program
described previously in Section 2. Following the example given above of a race
with 52 laps in which yellow flags occur on laps 21 and 22 (which is not known
a priori at the start of the race), we solve DP (∅) and DP ({21, 22}), and use
the solution of DP (∅) for laps 1 to 20, and the solution of DP ({21, 22}) from
laps 21 to 52. This is formalized in Algorithm 1 presented here.

Algorithm 1 Deterministic DP in presence of yellow flags

1: Input: Remaining laps with yellow flag y ∈ {0, 1, . . . , L}N , Starting tire t
2: Output: Decisions vn, lap-times un, ∀n ∈ {1, . . . , N}
3: Set

(
{xk(sk), ∀sk ∈ Sk}Nk=1, B

)
← solve DP (∅); s1 ← (t, 0, B, 0); n← 1

4: While n ≤ N do
5: If yn > 0 And yn−1 ≤ yn do
6: Z ← {i ∈ {1, . . . , N}|yi ≥ 1, 1 ≤ i− (n− 1) ≤ yn}
7: update {xk(sk), ∀sk ∈ Sk}Nk=n ← solve DP (Z)
8: End
9: vn ← xn(sn)
10: un ← µ′ (tn, wn, fn, xn(sn), yn)
11: sn+1 ← sn+1(sn, xn(sn))
12: n← n+ 1
13: End While



14 Oscar F. Carrasco Heine [Corresponding Author], Charles Thraves

Algorithm 1 solves the problem for a fixed scenario of yellow flag oc-
currences. It receives the duration of the yellow flags at each lap, and the
compound of the starting tires as input. Note that it is important to know
not just if there is a yellow flag, but how long it will last. For example if
y = (0 2 1 2 1 0 0 . . . )T , it means that there is a yellow flag in lap 2 that lasts
for two laps, while there is also another yellow flag in lap 4 which also lasts
for two laps. The output of Algorithm 1 is the decisions at each lap, and the
resulting lap times. In Line 3, we obtain the optimal decisions for each state on
every stage for the case in which there are no yellow flags. In Line 7 we check
whether or not we are in the presence of a new yellow flag event. In the earlier
example, where y = (0 2 1 2 1 0 0 . . . )T , this condition is satisfied in laps two
and four. In such a case, we have new information and we, therefore, can solve
the dynamic program from the current lap to the last lap while considering the
yellow flag information. More precisely, the set Z contains those laps which
will have yellow flags because of the current event. In the previous example,
if we are on lap 2, then Z = {2, 3}; while if we are on lap 4, Z = {4, 5}. Lines
11 to 13 save the decisions, compute the lap time, and update the state. We
will denote as DP the solution methods described in Algorithm 1.

We solve the same instance as described in Section 2.2 but introducing a
yellow flag in some laps during the race13. More specifically, we illustrate the
two following scenarios: (i) there is a yellow flag during laps 21 and 22, and
(ii) there is a yellow flag during laps 31 and 32. Scenario (i) is depicted in
Figure 2, while case (ii) is analyzed in Appendix D.

In (i), both the strategies that start with medium and hard-compound tires
use the yellow flag period to make a pit stop during these laps. This is clearly
beneficial as the extra time spent for the pit stop is only around 10 seconds
whereas a pit stop during a regular lap (with no yellow flag) would result in
a loss of more than 20 seconds. Contrarily, the starting strategy with tires of
the softer compound does not make a stop since it had already stopped two
laps before (in lap 19). The winning strategy in this case is the one starting
with tires of the medium compound (see the top-right panel of Figure 2).
In particular, once the yellow flag event occurs, this strategy is updated with
respect to its original version not just on the timing of the pit stop, but also on
the number of stops. Originally, in the case with no yellow flags, this strategy
had planned to do a single pit stop during the race at lap 30 (see top-left panel
of Figure 1). However, the yellow flag event in the middle of the race opens
a chance to change tires at a low cost in terms of time. Then, a change of
tires is performed in lap 21 (for the strategy starting with tires of the medium
compound), before the lap in which it was supposed to take place (lap 30). Still,
it is worth noticing that there is an additional pit stop considered in the race
strategy (in lap 37). What is the advantage, then, of making a pit stop during
the yellow flag slowdown if there is still a future pit stop to perform? The
answer lies on the fact that the additional pit stop implies that the tires will

13 We assume that the fuel consumption during a yellow flag is of 0.5 [Kg/lap] and that
there is no tire wear (also during a yellow flag). In addition, we consider that the additional
time lost to the pit stop in a lap with yellow flag is equal to µ1 = 10 [s].
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Fig. 2 Race with yellow flags in laps 21 and 22 with each initial tire compound’s best
strategy. Top left: Lap times. Top right: Partial race time difference with respect to the
best partial time. Bottom left: Fuel level for each initial strategy. Bottom right: Tire
wear for each lap. Filled circles represent tire changes, where the letters “S”, “M”, and “H”
represent the soft, medium, and hard tire compounds, respectively.

be significantly less degraded overall compared to those of the other strategies
(see bottom-right plot of Figure 2), offsetting the extra time due to a second
stop.

As observed above, the occurrence of yellow flag events, and in particular
their timing, has a significant impact on the pit stop strategies, and, therefore,
on the total race time. In order to expand the analysis performed above, we
consider a sweep over all possible yellow flag scenarios that last for two laps
(with a single occurrence). Namely, we consider the event of having a yellow
flag in laps 1 and 2, 2 and 3, 3 and 4, etc. The top panel of Figure 3 shows
the total race times for each strategy starting with tires of each compound,
for the different laps in which the yellow flag event takes place. For exam-
ple, if the yellow flag slowdown takes place during laps 6 and 7, the starting



16 Oscar F. Carrasco Heine [Corresponding Author], Charles Thraves

strategies’ total race times with soft, medium, and hard tire compounds are
approximately of 4630, 4633, and 4632 seconds, respectively.

Fig. 3 Deterministic case. First panel: Race times starting with tires of different com-
pounds, and yellow flag start in the x-axis. Second, third, and fourth panels: Pit stop
starting with the soft, medium, and hard tire compounds, respectively. The blue squares in
the diagonals highlight the laps in which the yellow flag is waved.



On the Optimization of Pit Stop Strategies via Dynamic Programming 17

At the top panel of Figure 3 we can see that if the yellow flag event takes
place before lap 20 or after lap 33, the winning strategy is the one starting
with tires of the soft compound, while if the yellow flag occurs between laps
20 and 33, the winning strategy alternates between the medium and the hard
tire compound. With all three strategies shown on the top panel of Figure 3,
we can see that the race times follow a slightly increasing straight line during
some specific lap time segments. More specifically, the race time of the strategy
starting with the soft compound tires follows a straight line from laps 1 to 6,
20 to 26, and from laps 44 to 51. We see that when the yellow flag event
occurs between laps 7 to 19, there is a significant reduction in the race time
with respect to the “interpolated” race time values of the straight line. These
race time reductions are a result of stopping during the yellow flag period, and
adding a future pit stop if necessary, which is also the case for the strategies
starting with the hard and medium compound tires. This can be observed on
the three lower panels of Figure 3. These panels depict the particular laps at
which the pit stops are made and the tires of other compounds changed in each
case. The second, third, and fourth panels (from top to bottom) of Figure 3
show to the cases starting with the soft, medium, and hard compound tires
respectively. We can observe from the second panel of Figure 3 that a pit stop
is made during the yellow flag event whenever this takes place during laps 7
to 19. In particular, if the yellow flag event takes place between laps 7 to 18,
then the dynamic program suggests using another set of soft tires and adding
an additional pit stop at a future lap for changing to medium compound tires.
Contrarily, if the yellow flag shows in between laps 20 to 26, it is not worth
making an additional pit stop; instead, it is better to change to hard compound
tires to use until the end of the race. The same analysis can be performed on
the strategies starting with the medium and hard compound tires (see the
bottom two panels of Figure 3).

The DP described is able to capture random events such as yellow flags in
a myopic manner by updating this information as they unveil. However, the
DP does not incorporate the probability of this uncertainty. In the following
section we present a stochastic dynamic program that takes uncertain events
into account that might happen during the race, and which are important to
take into consideration in order to make the best race strategy decisions.

3 Stochastic Model

In this section, we generalize the presented model by introducing uncertain
events that might have a considerable impact on the race strategy. In par-
ticular, we take into account the following two events: weather and yellow
flags.

For each lap n, the state variable will capture the current information of
the car (as in the deterministic model) plus: (i) the weather conditions of lap
n, and (ii) whether or not lap n is raced under yellow flag. Close to the end
of the lap, we need to decide whether to make a pit stop in order to change
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tires, or continue on the track. After this decision, at the very end of the lap,
the uncertainty is unveiled with respect to the weather of the next lap, and
the possible occurrence of a yellow flag, including how long it will last.

As for the weather, let us consider that R is the set of weather types;
for example14 R = {Dry,mild rain,heavy rain}. Of course, the weather might
not be constant throughout the whole race, and the changes and timing of
these changes are not fully predictable. In most cases, we might have the
probabilities of the weather during the following laps. We will assume that
the weather of lap n depends on the weather of the previous lap, n − 1. Let
Rn ∈ R be the random variable that represents the weather during lap n. The
transition probability from weather of type i ∈ R in lap n − 1 to weather of
type j ∈ R in lap n is denoted by Pij(n). Then, the matrix P (n) ∈ R|R|×|R|
represents the weather transition matrix probabilities from lap n − 1 to n,
which resembles a markovian process. Also, note that this transition matrix
depends on the lap, and can therefore be updated at each lap as new weather
forecast information is revealed during the race.

With respect to yellow flags, on each lap there is a probability that a race
event (which triggers a yellow flag) happens. In addition, the duration of a
yellow flag, in terms of laps, can vary depending on the nature of the event.
Let Yn be the random variable that accounts for the number of remaining laps
under yellow flag from lap n including this lap. For example, if Y4 = 2, then
laps 4 and 5 will take place under yellow flag; if Y4 = 0 then lap 4 will be raced
normally (with no yellow flag). We assume yellow flags can last at most L laps,
so Yn ∈ {0, 1, · · · , L − 1, L}. The probabilities of the occurrence of a yellow
flag are represented by the following two cases: (i) given that lap n starts with
no yellow flag, i.e. Yn−1 ≤ 1, ql,r(n) denotes the probability that there will be
a yellow flag which will last for l laps in lap15 n given that the weather is of
type r ∈ R, thus ql,r(n) = P(Yn = l|Yn−1 ≤ 1, Rn = r). Indeed, the likelihood
of having a yellow flag event will depend on the weather of the current lap.
For example, yellow flag events are more likely to occur during rainy weather
rather than on a dry track. (ii), if there is an on-going yellow flag from the
previous lap, n− 1, with still more laps to go, i.e. Yn−1 > 1, then the current
lap (n) will be on yellow flag slowdown, too, for one less lap. More precisely
Yn = Yn−1 − 1 if Yn−1 > 1. Note that in the first case, where Yn−1 ≤ 1, the
probability that a race event (causing a yellow flag) happens can depend on
which lap we are in. For example, in the first laps of the race, the probability
that a yellow flag event happens is higher than in other laps since the cars are
packed together at the start, increasing the risk of contact among them.

The decision at each stage is the same as in the deterministic model,
namely, whether or not to have a pit stop or not, and if so, what tire compound
to change to. We denote this decision by xn ∈ {0} ∪ T . Also, the set of tire
compounds for wet weather will be denoted by Tw ⊂ T .

14 Of course we can consider a more refined enumeration of the possible weather states,
but, for the sake of simplicity we will show only a reduced set of weather states.
15 The l laps include lap n.
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The state variable will have the information on the weather of the current
lap, and the remaining number of laps under yellow flag, in addition to the
elements considered for the deterministic model (tire compound, tire wear,
fuel level, and the two-tire-compound indicator). The state variable, then, is
denoted by the tuple

sn = (tn, wn, fn,mn, rn, yn),

in which the first four components denote the same quantities as in the deter-
ministic model, while the last two encode the information about the weather
and yellow flag events. The component rn ∈ R of the state variable has the
weather information by lap n, while yn denotes the number of remaining laps
under yellow flag from lap n. During yellow flags events cars must reduce their
speed by a considerable amount, and, as a consequence, the tire wear and the
fuel consumption will differ from those when racing in a regular mode (i.e. no
yellow flag). As in the deterministic setting, let γ′(t, f, a) be the function that
returns the tire wear as a function of the tire compound t, fuel-level f , and
whether or not there is a yellow flag displayed (a = 1 if this is the case, other-
wise a = 0; see Equation (13)). Similarly, we define the fuel consumption ct,a
when using tire compound t and there is a yellow flag (a = 1), or when there
is not (a = 0). Before presenting the state transition equation, it is important
to mention that if the car uses any of the wet tire compounds, the condition
of using at least two different tire compounds vanishes. Then, the transition
of state variables can be expressed as:

tn+1 = tn · 1{xn=0} + xn · 1{xn 6=0} (15)

wn+1 = (wn + γ′(tn, fn, a)) · 1{xn=0}, where a = 1{yn≥1} (16)

fn+1 = max{fn − ctn,a, 0}, where a = 1{yn≥1} (17)

mn+1 = min{mn + 1{xn 6=0,xn 6=tn} + 1{xn∈Tw}, 1} (18)

rn+1 = Rn+1 (19)

yn+1 = Yn+1. (20)

Note that the two-tire-compound-indicator state variable (mn) is forced to be
1 if the driver uses a wet tire compound.

The Bellman Equation in the stochastic case is given by:

Vn(sn, xn) = µ′′
(
tn, wn, fn, xn,1{yn≥1}, rn

)
+ E

[
V ∗n+1(sn+1(sn, xn, Rn+1, Yn+1))

]
,

where

V ∗n (sn) = min
xn∈{0}∪T

Vn(sn, xn).

The border condition is given by:

V ∗N+1(sN+1) =

{
+∞ if mN+1 = 0,

0 otherwise
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Moreover, µ′′ is the lap time function, which can be expressed as:

(21)

µ′′ (tn, wn, fn, xn, zn, rn)

=

µ0 + p0 · 1{xn 6=0} + αtn,rn + β(wn) + g · fn if zn = 0 and Ω,
µ1 + p1 · 1{xn 6=0} if zn = 1 and Ω,
+∞ otherwise,

where αrn,tn denotes the extra lap time of using tire compound tn in weather
of type rn with respect to using the fastest tire compound and weather type.

As in the deterministic case, we seek to find the initial fuel level and the
best tire compound with which to start the race, namely:

(t1, B) = argmin
(t,b)∈T ×[0,∞)

E [V ∗1 (s1)] , (22)

where s1 = (t, 0, B, 0, r1, y1), where r1 = R1 is the weather for the first lap,
and y1 = Y1 is the number of laps with yellow flags from the first lap. We
can assume that we know the state of the weather at a time before the race,
R0, and that there is no yellow flag before the start of the race; therefore
P(Y1 = l) = ql(1). The resulting stochastic dynamic programming returns the
best decision to be made for each state we could possibly have, under the
particular probabilities on hand, P (n) and q(n). This stochastic deterministic
program will be denoted as SDP in the rest of the paper. A summarized
description of the SDP is provided in Appendix E.

3.1 Computations

We solve the SDP at the same instance described in Section 2.2, but including
yellow flag events. We set the probability of yellow flags such that there is a
70% chance that at least one yellow flag event will occur during the race (see
Appendix F for a more detailed description on how to compute the probability
of having a yellow flag in a lap). In reality, there are Formula 1 races which
have high chances of having a yellow flag, such as the Monaco or Singapore
Grand Prix, whereas there are others in which this probability is less likely. For
simplicity, we assume that yellow flags last for two laps. As in the deterministic
setting, we evaluate the performance and decisions of the SDP for each case in
which there is a yellow flag, which lasts for two laps, starting at each lap of the
race. Details on the running times and hardware are provided in Appendix G.

The top panel of Figure 4 shows the race times, while the bottom three
panels show the decisions for different starting tire strategies. The results are
similar to the ones observed when doing the same exercise but using the so-
lution of Algorithm 1 (i.e. the DP). However, we can see that there are some
cases in which the solution of the SDP extends the use of tires, weighing the
odds that a yellow flag will occur (making a pit stop if this is the case), and
the extra time due to the delay of the stop. For example, when starting with
the hard compound tire, the solution of the SDP indicates that if by lap 34
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Fig. 4 Stochastic case. First panel: Race Times for different starting tire compounds,
with the start of the yellow flag being shown in the x-axis. Second, third, and fourth
panels: Pit stop starting with the soft, medium, and hard compound tires, respectively.
The blue squares in the diagonals highlight the laps in which the yellow flag is waved.

there has been no yellow flag, then a stop should be made. However, when
using the deterministic solution, this threshold becomes 33, and therefore, if
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the first yellow flag occurs in lap 34, the SDP solution will be leveraged from
there.

We also compare the SDP solution and the DP on various sampled sce-
narios. In particular, once we solve the DP, we evaluate these solutions on
1000 sampled scenarios of yellow flag occurrences during the race, which are
generated with the same probabilities with which we solve the SDP.

RT diff. SDP vs DP Freq. Min. RT Avg. RT diff. if

Tire Y.F. Avg Sd Min Max SDP DP Even SDP
Wins

DP
Wins

Fuel
diff.

S
o
ft

0 0.00 0.00 0.00 0.00 0 0 314

0.00
1 0.01 0.25 -0.94 1.23 22 72 273 -0.64 0.25
2 -0.22 1.91 -11.00 9.82 27 57 132 -3.12 0.63
3 -1.05 3.55 -16.29 8.56 16 18 37 -5.69 0.91
4 -0.37 1.17 -3.70 1.32 6 5 13 -1.93 0.52

M
ed

iu
m

0 0.00 0.00 0.00 0.00 0 0 314

0.00
1 0.03 0.05 0.00 0.22 0 125 242 0.08
2 -0.12 1.53 -11.00 0.89 6 75 135 -8.01 0.29
3 -0.37 2.02 -11.00 0.82 6 19 46 -5.72 0.43
4 -1.13 3.21 -11.00 1.05 4 2 18 -7.16 0.80

H
a
rd

0 0.18 0.00 0.18 0.18 0 314 0 0.18

-0.10
1 -0.11 1.57 -11.15 0.57 210 157 0 -0.50 0.43
2 -0.34 2.11 -11.15 4.94 146 70 0 -0.74 0.49
3 -0.46 2.13 -11.14 3.95 53 18 0 -0.85 0.66
4 -1.12 3.12 -11.13 0.42 23 1 0 -1.19 0.42

Table 1 Comparison of the SDP and DP Race Times (RT) over sampled scenarios.

The columns of Table 1 represent: (1) the starting tire compounds, (2) the
number of yellow flags waved during the race, (3) - (6) the statistics of the
race times (RT) of the SDP minus the RT obtained from the solution of Algo-
rithm 1, (7) - (9) the frequency of cases that result in the lower RT, (10) - (11)
the average RT difference conditioned to the cases where either SDP or DP
has the lowest RT, and (12) the difference between the initial fuel load used by
the stochastic and the deterministic strategies. We see in the third column of
Table 1 that in almost all instances the stochastic solution results in lower race
times compared to the deterministic solution. In the cases when there are no
yellow flags (1st, 6th, and 11th rows of Table 1), we observe that the determin-
istic solution equals or outperforms the stochastic one. This is expected since
if there are no yellow flags, the assumptions made by the problem solved by
the deterministic DP from lap 1 match exactly with what occurs. We observe
that when starting with a soft or medium tire compound, the deterministic
and stochastic solution approaches (i.e., DP and SDP respectively) start the
race with the same fuel level, and their race times coincide when there are no
yellow flags. In the case of having exactly one yellow flag, the DP outperforms
the SDP by a narrow margin on some instances. This is because of the pit-stop
postponing effect of the SDP strategy (see in the second and third panels of
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Figures 3 and 4 how the second pit stops are delayed in the SDP with respect
to the analogous cases of the DP). As for the cases in which there are two or
more yellow flags, (also in the case when starting with soft and medium tires),
the SDP wins in less scenarios than the DP (as shown by Columns 7, 8, and
9 of Table 1); nonetheless, the average race time difference is less for the SDP
solution than the DP. When starting the race with the hard tire compound,
the SDP starts the race with slightly less fuel than the DP due to the delaying
of the first pit stop in the SDP solution. Thus, if there are no yellow flags,
the DP will win by a small margin. However, in the case in which there is
one or more yellow flags, the pit-stop postponing of the SDP outperforms, on
average, the DP solution.

So far, we have focused mainly on a specific instance in which the chances
of having a yellow flag during the race are 70%. Nonetheless, the impact of
this, and that of other parameters, on the results should not be ignored. Con-
sequently, we solve the SDP for the instance shown in Figure 4 and Table 1,
but considering different values for the probability, denoted as π, of having a
yellow flag (for the stochastic model) in the set P = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.95}, we solve our stochastic model. With each of these values,
we additionally simulate 1000 scenarios in order to test the performance of the
DP and SDP. Then, for every π ∈ P, the results obtained for the simulated
scenarios allow us to compute an expected race time for both the SDP and
the DP solutions.

In Figure 5, we can see the difference between expected race times of the
SDP and the DP, for every π ∈ P, depending on the type of tires that was
chosen with which to start the race. A negative difference on the y-axis of
Figure 5 means that the SDP results in a faster race time than the deterministic
model on average. As one would expect, the higher the yellow-flag probability
is, the larger the expected advantage of the stochastic model becomes. Indeed,
the SDP anticipates potential yellow flags reducing the expected race time
compared to the solution obtained with Algorithm 1

Fig. 5 SDP vs. DP Race-time differences, depending on the initial tire compound and
yellow-flag probability.
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4 Conclusions

We have presented two dynamic programming models to address the pit-stop
strategy decision-making process in a Formula 1 race: a deterministic and a
stochastic model. While both of them are used to study the impact of pit stops
and tire-compound choices on race times, the stochastic formulation extends
the deterministic one by including the probabilities of uncertainty, such as
potential yellow-flag events, and weather events, such as rain.

Not only are we able to solve instances for both models to optimality,
but we also present an algorithm that allows us to deal with the uncer-
tainty of yellow flags by solving the deterministic dynamic programming in
a non-anticipatory way. This allows us to compare the performance of both
approaches in simulated scenarios. With the DP, we observed that the race
performance depends not only on the starting tire compound, but also on the
particular scenarios that will be revealed during the race. The DP allows us
to answer questions such as “If there is a yellow flag in the current lap, is it
worth making a pit stop?”, and “If yes, to tires of which compound should
we change?”. The SDP, unlike the deterministic DP, tends to delay pit stops
weighing the odds of a yellow flag event from which to benefit. As expected,
we observed that the SDP outperforms the deterministic model when yellow
flags are more likely to occur.

It is worth noticing that the models presented are not bounded to Formula
1 racing. On the contrary, these could easily be extended to other motor-racing
competitions. Also, the particular functions used in this work to model tire
wear, fuel consumption, or lap times, can be generalized to any other functional
forms.

It is worth mentioning the limitations of the presented model. Probably
the most relevant factor that is not considered is the competition with other
drivers. The on-track interactions between drivers, such as blocking or overtak-
ing, have an impact on lap times. The main challenge of including competition
would be to model the game theory aspect of the problem. Another shortcom-
ing of the model is the simplification of yellow flags which are only considered
as VSC that take place between the start and end of laps. Thus, we believe
there are many further research directions of the problem to be addressed in
the future.
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Appendices
A Deterministic Dynamic Programming Model

– Parameters and functions:
N : number of laps.
T : set of tire compounds.
ct: fuel usage per lap when using tires of compound t ∈ T .
µ(t, w, f, x): function that returns the lap time as a function of the tire
compound t ∈ T in use, the tire wear w ∈ [0, 1], the fuel level f , and
whether a pit stop has been made (x ∈ T ) or not (x = 0).

– Stages:
Lap n ∈ {1, . . . , N}

– Decision (Control) Variables:
xn ∈ {0} ∪ T : Tire compound chosen to be changed at the end of lap n. If
there is no pit stop (and, thus, no change of tires), xn = 0.
B: Initial fuel level.

– State Variables:
sn = (tn, wn, fn,mn): state at lap n.
tn: Tire compound used during lap n.
wn: Tire wear at the beginning of lap n.
fn: Fuel level at the beginning of lap n.
mn: Equals 0 if the car has used only one type of tire compound until the
beginning of lap n. Otherwise mn = 1 if the car has already used more
than one type of tire.

– State Transition:
tn+1 = tn · 1{xn=0} + xn · 1{xn 6=0}
wn+1 = (wn + γ(tn, fn)) · 1{xn=0}
fn+1 = max{fn − ctn , 0}
mn+1 = min{mn + 1{xn 6=0,xn 6=tn}, 1}

– Bellman Equation:

Vn(sn, xn) = µ (tn, wn, fn, xn) + V ∗n+1(sn+1(sn, xn))

where
V ∗n (sn) = min

xn∈{0}∪T
Vn(sn, xn)

– Border Conditions:

V ∗N+1(sN+1) =

{
+∞ mN+1 = 0
0 otherwise

B Lap time vs tire wear

The precise way we build the β function is by considering a finite set of points,
i.e. tire wear-extra time tuples, and interpolate a cubic spline forced with null
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second derivatives at the extreme points of the [0, 1]. Figure 6 depicts an
example of the β function in which the filled marker points are the input tuples,
and the line corresponds to the interpolated values. According to Figure 6, if
the wear of the set of tires is at 70%, then the car will take 1.2 seconds more to
do a lap with respect to having a new set of tires (of the same type). Note that
the function β grows slowly in the first part of the unit interval, but the slope
becomes steeper as the tires become more worn (see the right side of Figure 6).
In the latter case, lap times have a significant increase, also known as falling
from the cliff. Note that the β function is quite flexible, since it allows the
user to pick any arbitrary set of (tire wear, extra time)-tuples from which the
function can be generated.

Fig. 6 Additional lap time for each level of tire wear. The filled red dots are input time-wear
tuples, while the continuous blue line shows the interpolated points using a cubic spline.

C Lap Segments

A lap is depicted in Figure 7, where points “A” and “B” represent the exit
from and entrance to the pits, respectively.

D Case (ii)

Figure 8 illustrates the case in which yellow flags occur in laps 31 and 32.
In this case, we can see that both the strategies benefiting from this are the
ones starting with soft and hard tires. However, in the former strategy, there
had been a stop during lap 19 already, whereas in the latter strategy just a
single stop takes place. As a result, the strategy starting with hard tires ends
up being the winning strategy, (see top-right panel of Figure 8). Note that
the strategy starting with the medium tires does not stop during the yellow
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A

B

Fig. 7 Illustration of a lap, with the actual track being represented by the continuous line,
while the pit lane is represented by the dashed line.

flag since it had made a pit stop just one lap earlier, changing to a soft tire
compound. Thus, making a stop during the yellow flag is not convenient.

E Stochastic Dynamic Programming Model

– Parameters and functions:
N : number of laps.
T : set of tire compounds.
Tw: set of wet tire compounds.
ct,a: fuel usage per lap when using tires of compound t ∈ T , given that
there is no yellow flag (a = 0), or if there is a yellow flag, a = 1.
µ′′(t, w, f, x, a, r): function that returns the lap time as a function of the
tire compound t ∈ T in use, the tire wear w ∈ [0, 1], the fuel level f , the
existence of a pit stop during the lap (x ∈ T ), or not (x = 0), the presence
of a yellow flag (a = 1 if there is one, and a = 0 otherwise), and under the
weather condition r ∈ R.

– Stages:
Lap n ∈ {1, . . . , N}

– Decision (Control) Variables:
xn ∈ {0} ∪ T : Tire compound chosen to change to at the end of lap n. If
there is no pit stop (and, thus, no change of tires), xn = 0.
B: Initial fuel level.

– State Variables:
sn = (tn, wn, fn,mn, rn, yn): state at lap n.
tn: Tire compound used during lap n.
wn: Tire wear at the beginning of lap n.
fn: Fuel level at the beginning of lap n.
mn: Equals 0 if the car has used only one type of tire compound until the
beginning of lap n (and no rainy weather has occurred). Otherwise mn = 1
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Fig. 8 Race with yellow flags in laps 31 and 32. For each initial tire compound’s best
strategy: Top left Lap times. Top right Partial race time difference with respect to the
best partial time. Bottom left Fuel level for each initial strategy. Bottom right Tire
wear for each lap. Filled circles represent tire changes where the letter “S”, “M”, and “H”
represent the soft, medium, and hard tire compound respectively.

if the car has used more than one type of tire compound (or rainy weather
has occurred).
rn: Weather during lap n, where rn ∈ R.
yn: Number of laps left under yellow flag. yn ∈ {0, 1, . . . , L}, where L is the
maximum number of laps a yellow flag can last (due to the same event).

– Random Variables:
Rn: Weather during lap n, Rn ∈ R. The weather transition is given by
Pij(n) so that

Pij(n) = P(Rn = j|Rn−1 = i)

where i, j ∈ R.
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Yn: Number of laps with yellow flag remaining, from lap n, so that the
probability of a yellow flag of length l laps is defined as

ql(n) = P(Yn = l|Yn−1 ≤ 1),

where l ∈ {0, 1, . . . , L}, and n is the lap, and

Yn = Yn−1 − 1

for the cases where Yn−1 > 1.
– State Transition:
tn+1 = tn · 1{xn=0} + xn · 1{xn 6=0}
wn+1 = (wn + γ′(tn, fn, a)) · 1{xn=0}, where a = 1{yn≥1}
fn+1 = max{fn − ctn,a, 0}, where a = 1{yn≥1}
mn+1 = min{mn + 1{xn 6=0,xn 6=tn} + 1{xn∈Tw}, 1}, where Tw ⊂ T is the set
of wet tire compounds, suspending the condition of needing to use at least
two tire compounds.
rn+1 = Rn+1

yn+1 = Yn+1

– Bellman Equation:

Vn(sn, xn) = µ′′
(
tn, wn, fn, xn,1{yn≥1}, rn

)
+ E

[
V ∗n+1(sn+1(sn, xn, Rn+1, Yn+1))

]
,

where
V ∗n (sn) = min

xn∈{0}∪T
Vn(sn, xn)

– Border Conditions:

V ∗N+1(sN+1) =

{
+∞ if mN+1 = 0
0 otherwise

F Probability of Yellow Flag

Let π denote the probability that at least one yellow flag occurs during the
race, and let φ denote the probability that a yellow flag occurs on a lap. We
assume that this probability is independent of the specific lap. Then, it must
hold that 1 − π = (1 − φ)N , where N is the total number of laps. Thus, we

have that φ = 1− (1− π)
1/N

.

G Running times

The algorithms were run in Julia 1.7.2, using 6-CPU of an Apple M1 Pro with
16 GB RAM. Table 2 shows running-time statistics for the DP and SDP and
average number of states for each stage (lap). The number of runs for the DP
are 53 since there is one run for the case with no yellow flags, and one run
for each lap in which a yellow flag starts (and lasts for two laps). The runs
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of the SDP are the ones considering different probability of yellow flag during
the race. In order to have a finite number of states, we discretize the fuel and
tire wear. In particular, the instances run use a grid refinement with a width
of 1/1995(≈ 0.0010) and 1.01 · 1.92 · 966/52(≈ 0.0505) for tire wear and fuel,
respectively.

Time [s]

Case Average Std. Dev. Maximum Minimum Runs Avg. States

DP 120.72 5.94 140.81 112.3 53 2107242
SDP 635.58 12.67 657.76 616.22 10 9109140

Table 2 Running times
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