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Abstract
While hundreds of papers study the strategic interactions of oligopolists facing 
sticky prices only very few treat the in my opinion more important and opposite case 
of sticky or sluggish demand and supply, e.g., for energy. This point was taken up in 
Wirl (Int J Ind Organ 28:220–229, 2010) but unfortunately, the computation of the 
linear Markov perfect equilibrium is wrong. The situation in energy markets follow-
ing Russia’s invasion of Ukraine adds a topical element to the theoretical analysis. 
Application to the oil market suggests that the difference between collusion and oli-
gopolistic competition among few (symmetric) players is small for Markov perfect 
linear eqilibria. This is in stark contrast to the outcome in open loop strategies.

Keywords Dynamic demand · Costly output adjustments · Differential game · 
Multiple linear Markov perfect equilibria

JEL Classification L13 · C72 · C61

1 Introduction

Many papers study Cournot strategies of oligopolists facing sticky prices, i.e., when 
the price adapts dynamically, more precisely, sluggishly to changes in an industry’s 
aggregate output. Indeed, sticky prices are one of the most studied cases in the dif-
ferential games literature and a few examples follow: First in Fershtman and Kamien 
(1987), extended in Dockner (1988), Tsutsui and Mino (1990) use it to show the 
existence of multiple nonlinear Markov perfect equilibria and in Cellini and Lam-
bertini (2004). It is discussed in the reference text books of Dockner et al. (2000) 
and in Lambertini (2018) and in the survey of Jun and Vives (2004).
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However, many prices are anything but sticky. Indeed, important markets, in particu-
lar the energy markets, have the opposite characteristic: drastic price changes, spikes 
and collapses, due to comparatively small changes in supply or demand. Examples on 
the supply side are: the Arab oil embargo in 1973 following the Yom-Kipur war and 
the reduction of Iranian oil supplies in 1979 after the Iranian revolution led in both 
instances to a quadrupling of world oil prices, the oil price collapse in 1986 after Saudi 
Arabia increased its supply, the minor shortages in California in 2000 led to a quadru-
pling of electricity prices (from $100 per MW in October to $400 in December), and 
the effect of the hurricane Katrina on oil prices. A very recent example is the short-
fall in Europe’s energy supplies due to Russia’s invasion of Ukraine. The shortfall, 
or only the perceived shortfall for the coming winter, sent natural gas prices to astro-
nomical levels during summer and autumn 2022 and as a consequence also electricity 
prices since the marginal power stations in Europe use natural gas. Sluggish reactions 
explain this price volatility. Demand is sluggish because adjustments require behavioral 
changes (not always easy since we know from Shakespeare that "use breeds a habit", 
which is often hard to break) and investments, e.g., in the case of energy demand: ret-
rofitting a house and buying new, presumably more efficient, equipment (refrigerators, 
cars, etc.) have long lasting implications on demand (around ten years for a car, many 
decades for buildings). This demand sluggishness leads to price volatility, first shown 
in Wirl et al. (1985) and applied to OPEC and the oil market in Caban and Wirl (2014) 
and Wirl (2015) in stochastic settings. Sluggishness and changes in demand explain the 
puzzle of oil prices reaching $140 per barrel during June 2008 but falling to below $40 
after the Lehman bankruptcy in autumn 2008 (which Hamilton 2009 finds, wrongly in 
my opinion, incompatible with market fundamentals). Similarly on the supply side. A 
supplier’s decision to either expand or to reduce output takes time and requires costly 
investments. Using again examples from the energy market, expanding oil production, 
natural gas distribution networks, and adding power plants require time, e.g., more than 
a decade for large hydro power stations and nuclear power plants; or as Kilian (2009) 
puts it ‘that taking a well offline as well as bringing one online incurs costs’ and, I 
would add, takes time.

An explanation of the sticky price model’s dominance in the literature is that its 
analysis can rely on a single state (the price) and that it permits multiple nonlinear 
Markov perfect equilibria, Tsutsui and Mino (1990). In contrast, the dimension of the 
state space cannot be reduced in a model of an oligopoly facing demand and supply 
sluggishness even if imposing symmetry (which, however, reduces the number of coef-
ficients that must be computed). Indeed Wirl (2010) made this error of reducing the 
state space from n, the supply of each firm represents one state of the system, to 2 and 
this paper corrects this error and discusses the different economic outcomes by exam-
ples including an application to the world oil market.
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2  Model (Wirl 2010)

2.1  Dynamic demand

Many goods in particular fuels (oil, but also gas, coal and electricity) are character-
ized by sluggish demand, i.e., small short run but larger long run price elasticities. The 
reason is that current demand (for energy and many other nondurables) depends on 
appliances (durables) and on habits, their number, size and technical efficiency, so that 
adjustment is costly and proceeds slowly. Therefore, the following reduced form model 
of dynamic demand is proposed,

x(t) is the demand in period t, D(p) is the target (or equilibrium or long run) demand 
given the price p, � is the time constant that measures the sluggishness of demand, 
more precisely, the time that it takes until 63% from the convergence to the equi-
librium demand (for a constant price level) are reached. The feedback rule in (1) 
describes the optimal intertemporal adjustment of myopic consumers facing quad-
ratic costs for deviating from their target demand and for adjustment, Eisner and 
Strotz (1963). Similar dynamic relations have been used in Wirl (1985), Rauscher 
(1992), Roy and Richardson (2003) and in many other papers. Furthermore, (1) is 
the continuous time version of the often estimated discrete time relation for mod-
eling dynamic demand, xt = (1 − �)D

(
pt
)
+ �xt−1 , in particular energy and oil 

demand, e.g., Pindyck (1978, 1979), Hogan (1989), Engsted and Bentzen (1993) and 
Dargay et al. (2007), Cuddington and Leila (2015) survey dynamic energy demand 
relations concerning their implicit restrictions on price and income elasticities. In 
order to arrive at a linear-quadratic game, demand is assumed to be linear and is in 
addition normalized (without loss in generality),

2.2  Intertemporal supply

As on the demand side, a supplier’s decision to expand or to reduce output is costly. 
Therefore, each non-competitive supplier, i = 1,… , n , decides about expanding, ui (or 
respectively reducing if ui < 0 ), its supply, yi,

at the costs C (negative if selling equipment). The costs include adjustment costs 
and are linear-quadratic as in the corresponding literature starting with Reynolds 
(1987, 1991) for the known reason of analytical tractability,

(1)ẋ(t) =
1

𝜏
(D(p(t)) − x(t)), x(0) = x0;

(2)D(p) = 1 − p.

(3)ẏi(t) = ui(t), yi(0) = yi0, i = 1,… , n,

(4)C
(
ui
)
=

a

2
u2
i
+ kui, a ≥ 0, k > 0.
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The aggregate investment costs in (4) would increase if the same volume were split 
among a smaller number of firms due to the implicit decreasing returns to scale of 
C. Hence increasing n would have two effects: a reduction of the costs of an indus-
try-wide expansion and an increase in competition. These two different effects of 
changing n are often ignored (e.g. in Reynolds 1991; Karp Larry and Jeffrey 1993 
and others). Therefore, I assume that the total cost for the aggregate expansion of an 
industry,

is independent whether one, two or many (symmetric) firms expand by the aggre-
gate amount U, i.e., C(U) = nC(U∕n) for all n. That is an increase in n measures 
indeed increased competition and not a cost decline. This assumption implies that 
the adjustment parameter a in (4) must increase linearly in n,

in which the parameter a1 refers to the adjustment cost of a single firm. Another 
rationalization of (5) is that a competitive sector supplies the equipment at the mar-
ginal costs k + AU where U = nu is the total investment demand, because these mar-
ginal costs must be independent whether the total demand U results from one, two 
or more firms. Therefore, A = a1 , and the normalization (5) must hold at the level of 
a firm in a symmetric oligopoly with n firms; otherwise the cartel outcome would 
change with respect to the number of its members.

Assuming perfect competition, the stationary price is equal to kr (= the inter-
est costs for an infinitesimally small adjustment), which must be less than the 
choke price. Therefore, I make the

Assumption In addition to the normalization of the adjustment costs according to 
(5), the interest costs for an infinitesimally small adjustment must be less than the 
choke price,

2.3  Market clearing price

Equating demand and supply at each period of time,

determines the market clearing price from (1),

U =

n∑
i=1

ui = nu,

(5)a(n) = a1n,

(6)kr < 1.

(7)x(t) =

n∑
i=1

yi(t), ẋ(t) =

n∑
i=1

ui(t),
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Hence, the effect of any change in output is magnified by � so that large time con-
stants translate even small output changes into large price changes.

2.4  Objectives

Each firm maximizes its net present value (using the constant discount rate r > 0 ) of 
profits (ignoring variable production costs),

subject to the n dynamic constraints (3), accounting for the market clearing price (8) 
and taking the data of all other players j ≠ i as given.

3  Collusive and open loop equilibria

The outcomes under cooperation (i.e., of a cartel) and in an open loop Nash equi-
librium can be taken from Wirl (2010) and are here amended for a few comparative 
static properties.

Proposition 1 If all n symmetric firms collude (identified by the superscript c, the 
subscript ∞ refers to the steady states), their optimal individual adjustment strategy 
can be written in the following feedback form,

Of course, the aggregates of adjustments (nuc) and of supplies (ny) are independent 
of n if the adjustment cost parameter is normalized according to (5) and thus both 
are identical to those of a monopoly (n = 1) . The longrun supply 

(
yc
∞

)
 is positive 

given the assumption ( 6), stable (since 𝛼c > 0 ), below the static solution (on the 
right hand side in (11) which is the limiting case for either r → 0 or � → 0 ),  declin-
ing with respect to costs, discounting and sluggishness, i.e., k, r and � but independ-
ent of the adjustment cost parameter (a) . This parameter affects only the speed of 
convergence (�c) negatively so that the time constant of convergence to yc

∞
, i.e., 1∕�c , 

increases with a higher value of a. A more sluggish demand, i.e., a larger value of 
� , increases �c and thus, surprisingly, reduces the time constant of the controlled 

(8)p(t) = D−1

(
n∑
i=1

yi(t) + �

n∑
i=1

ui(t)

)
= 1 −

n∑
i=1

yi(t) − �

n∑
i=1

ui(t).

(9)Vi

(
y10,… , yn0

)
∶= max

{ui(t) t∈[0,∞)}

∞

∫
0

e−rt
[
p(t)yi(t) − C

(
ui(t)

)]
dt, i = 1,… , n,

(10)uc =𝛼c
�
yc
∞
− y

�
, 𝛼c =

1

2a

�√
a2r2 + 4an(2 + r𝜏) − ar

�
> 0,

(11)0 <yc
∞
=

1 − kr

(2 + r𝜏)n
<

1 − kr

2n
⟹ nyc

∞
=

1 − kr

2 + r𝜏
<

1 − kr

2
.
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process (1∕�c) . However, how discounting affects (1∕�c) depends on � and a, more 
precisely, it increases for 𝜏 <

√
2a1 but decreases for larger values of � , see Fig. 1.

Proposition 2 If all n firms compete and specify their strategies as functions of time, {
ui(t), t ∈ [0,∞)

}
 , then the corresponding symmetric open loop equilibrium strat-

egy, which is identified by the superscript o, can be expressed in a feedback form,

The open loop equilibrium exists given the assumption (6), is unique and is inde-
pendent of the competitors’ strategies. The implied long run supply 

(
yo
∞

)
 is positive, 

is above the collusive but below the static Cournot equilibrium (ys)  = the limiting 
case for either r → 0 or � → 0, is declining with respect to c, r, � and n, but the 
aggregate, nyo

∞
 is increasing with respect to n for the normalization (5). The limit of 

the open loop solution equals the competitive outcome,

The strategy (12)–(14) is stable (since 𝛼c > 0 ). The long run supply is independent 
of the adjustment cost parameter a, which, however, lowers the speed of convergence 
(�c)so that the time constant, 1∕�c , of approaching the steady state yo

∞
 is increased; 

this applies to n as well (using the normalization (5). However, whether the adjust-
ment speed �o is in- or decreasing with respect to the parameters r and � depends on 
the parameter values (see the examples in Fig. 1).

(12)uo =�o
(
yo
∞
− y

)
,

(13)𝛼o =

√
(ar + (n − 1)𝜏)2 + 4a(n + 1 + r𝜏) − (ar + (n − 1)𝜏)

2a
> 0,

(14)yo
∞
=

1 − kr

n + 1 + r𝜏
< ys =

1 − kr

n + 1
.

(15)lim
n→∞

nyo
∞
= 1 − kr.

Fig. 1  Time constants (1∕�) of open loop and cartel (dashed) strategies versus discounting (r) and 
demand sluggishness (�) , a1 = 5, n = 2, k = 5
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4  Linear Markov perfect equilibrium (LMPE)

In a Markov perfect equilibrium, the n players’ value functions must satisfy simulta-
neously the following n partial differential equations,

for i = 1,… , n . The maximizations on the right hand sides of (16) imply,

Linear-quadratic value functions,

solve the n functional equations in (16). As for the open loop solution, symmetry is 
assumed not only for the parameters but also of the outcomes1 for all players and in 
particular for the competitors of player i, thus yj = y (and subsequently equal to yi ) 
and uj = u . Therefore, we can drop the index i of the value function V. Focusing on 
the first player, i = 1 , implies the following coefficient matrix of the quadratic form,

The expressions on the right hand side of (19) follow for all mixed and symmetric 
terms,

because then yiyj = y2 for i > 1, j > 1 . Similarly, symmetry implies for the linear 
terms,

The sums on the right hand sides of (16) can be separated into the own terms 
(
ui, yi

)
 

and the sums over all the competitors j ≠ i . This suggests that one could reduce 
the n-dimensions of the state space to 2. Unfortunately, this is not possible. More 

(16)

rVi

(
y1,… , yi,… yn

)
= max

ui

{(
1 −

n∑
j=1

yj − �

n∑
j=1

uj

)
yi − kui −

au2
i

2
+

n∑
j=1

uj
�Vi

�yj

}
,

(17)ui =
1

a

(
�Vi

�yi
− k − �yi

)
, i = 1,… , n.

(18)V = v0 +

n∑
i=1

viyi +
1

2

n∑
i=1

yi

n∑
j=1

vijyj,

(19)

⎛⎜⎜⎜⎝

v11 v12 … v1n
v21 v22 … v2n
… … … …

vn1 vn2 … vnn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

v11 v12 … v12
v12 v22 … v22
… … … …

v12 v22 … v22

⎞⎟⎟⎟⎠
.

vij = v22 for i > 1, j > 1,

(20)v2 = v3 ⋯ = vn.

1 Although the assumption of symmetry of the strategies and of the value function is common in the 
differential games literature for a symmetric setup, it cannot be taken for granted. E.g., Engwerda (2005) 
gives an example in which only an asymmetric LMPE exist. However, no asymmetric solutions were 
found (numerically) in the game investigated in this paper.
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precisely, although symmetry allows to reduce the calculations to the determination 
of a single linear-quadratic value function of the type (18)–(20) with the coefficients 

one cannot reduce the state space to two for n > 2 . The reason is that the sum of 
controls appears in the objectives and thus on the right hand sides of (16). This error 
was made in Wirl (2010). The price for this correction is that no closed form solu-
tion can be given that is valid for all values of n. Although we can assume symmetry 
(proven at least for all the numerical examples), we CANNOT assume the identity 
yi = yj = y given the requirement of a subgame perfect equilibrium. That is, we can-
not reduce the dimension of the state space although in the end we have to solve only 
for one of the symmetric value functions of the type (18)–(20).

The reason is explained in the following: The observation—only the sums over 
all the competitors j ≠ i matter for controls, states and value functions—suggests 
wrongly that one could reduce the n-dimensions to 2, i.e., solving

instead of (16). As a consequence, the value function of player i = 1 is,

Analogous for another second player j as the representative for all of i = 1 ’s com-
petitors (and who takes i as representative for his competitors),

Combining this reduction to two states 
(
yi, y

)
 for n = 3 with the guess of the value 

function (24) yields

Using instead the original HJB-equation (16), assuming symmetry and accounting 
for each player’s strategy and state, the individual strategies are,

(21)v0, v1, v2, v11, v12 and v22,

(22)rVi

(
yi, y

)
= max

ui

{(
1 − yi − �ui − (n − 1)(y + �u)

)
yi − kui −

au2
i

2

+ui
�Vi

�yi
+ (n − 1)u

�Vi

�y

}
,

(23)rVj

(
y, yi

)
= max

u

{(
1 − y − �u − (n − 1)

(
y + �ui

))
y − ku −

au2

2

+u
�Vj

�y
+ (n − 1)ui

�Vj

�yi

}
,

(24)
Vi = v0 + v1y1 + (n − 1)v2y

+
1

2

(
v11y

2

1
+ 2(n − 1)v12y1y + (n − 1)2v22y

2
)
.

(25)
Vj = v0 + v1y + (n − 1)v2y1

+
1

2

(
v11y

2 + 2(n − 1)v12y1y + (n − 1)2v22y
2

1

)
.

(26)ui =
1

a

(
v1 +

(
v11 − �

)
y1 + 2v12y − k

)
,

(27)u =
1

a

(
v1 +

(
v11 − �

)
y + 2v12y1 − k

)
.
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And indeed, accounting for symmetry, y2 = y3 = y , and setting i = 1 , the outcomes 
in (28)–(30) seem identical to (26)–(27). Unfortunately, the implied equations for 
the determination of the value function coefficients differ and thus the derived value 
functions. The reason is that the sum of the controls differ in spite of the above simi-
larity. More precisely, setting, y = yj , j ≠ i , we get for the sum of the controls, first if 
accounting for all controls, i.e., (28)–(30),

Using the simplification of two states and controls, i.e., for (26)–(27), the sum over 
the controls is,

with K also from (32). However, the two sums (31) and (33) differ by

The difference Δ vanishes along a symmetric equilibrium, but this is insufficient for 
the HJB-equation setup and responsible for the error that this shortcut introduces. 
Similarly for n > 3 . Therefore, the dimension of the state space cannot be reduced to 
2 as in (26) and (27) above and in Wirl (2010).

5  A duopoly

Even a complete derivation for n = 2 requires numerical means, more precisely, 
in order to compute the coefficient v12 ; all the other coefficients can be given in a 
closed form conditional on the value of v12 . Moreover the uniqueness of the lin-
ear Markov perfect equilibrium can be shown, at least for duopolies. This sounds 
superfluous since almost no paper cares about this issue of uniqueness. However, 
Eigruber and Wirl (2022) show that a higher dimensional state space allows for 
multiple and symmetric LMPEs in meaningful economic models (even from the 

(28)u1 =
1

a

(
v1 +

(
v11 − �

)
y1 + v12y2 + v12y3 − k

)
,

(29)u2 =
1

a

(
v1 +

(
v11 − �

)
y2 + v12y1 + v12y3 − k

)
,

(30)u3 =
1

a

(
v1 +

(
v11 − �

)
y3 + v12y1 + v12y2 − k

)
.

(31)u1 + u2 + u3 =
K + 2v12y1 + 4v12y

a
,

(32)K = 3
(
v1 − k

)
− �y1 − 2�y + v11y1 + 2v11y.

(33)u1 + 2u =
K + 4v12y1 + 2v12y

a
,

Δ =
2v12y1 + 4v12y −

(
4v12y1 + 2v12y

)
a

=
2v12

(
y − y1

)
a

.
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field of industrial organization), a characterization that the so far known few 
examples of multiple LMPEs—Engwerda in a series of papers in particular and 
most recently in Engwerda (2016) and Lockwood (1996)—are lacking.

Substitution of the strategies

into the functional equation (16), using the guess (18) and comparing the coeffi-
cients leads to the following system of five equations,

that determines the coefficients of the value function guess (18); the equation for the 
intercept is dropped since v0 is not relevant for the strategies in (34).

Given multiple roots of the equation system (35)–(39) only those can char-
acterize an LMPE that imply stability for (3). Therefore, the Jacobian of the 
dynamic system, ẏ1 and ẏ2 after substituting the corresponding strategies (34), 
must have two negative eigenvalues, so that,

and

That is, the value of v12 , which classifies the strategies either as complements (if 
v12 > 0 ) or as substitutes (if v12 < 0 ) following Jun and Vives (2004), must be not 
too large in absolute terms in order to characterize an LMPE.

The first two equations are linear in v1 and v2 and therefore these coefficients 
can be computed (but conditional on the other coefficients); their solution is 

(34)

ui =
1

a

(
�Vi

�yi
− k − �yi

)
=

1

a

(
v1 − k +

(
v11 − �

)
yi + v12yj

)
, i = 1, 2, j ≠ i.

(35)rv1 = 1 +
(2� − v11 + v12 − v12)

(
k − v1

)
+ v12v2

a
,

(36)rv2 =

(
v11 − �

)
v2 +

(
v1 − k

)(
v12 + v11

)
a

,

(37)r
v11
2

=
−2a + �2 + 2v212 − 2�

(

v11 + v12
)

+ v211
2a

,

(38)r
v22

2
=
v2
12
− 2

(
� − v11

)
v22

2a
,

(39)rv12 = − 1 +
�2 − �

(
v11 + 2v12

)
+ v12

(
v22 + 2v11

)
a

,

(40)v11 < 𝜏,

(41)𝜏 − v11 >∣ v12 ∣ .
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suppressed because they are not relevant for the selection of stable strategies. The 
third equation is quadratic and independent of v1 and v2 and has the roots,

First of all, the root A defined in (42) must be real. Hence, the term under the square 
root in (42) must be positive, which constrains the admissible values of v12 to,

Second, the negative root from (42), more precisely,

is the solution, because the stability condition (40) rules out the other root and 
requires moreover that

This leads to the bounds,

which ensure that v11 is real because the root in (42) includes in addition 1
2
a2r2 > 0 

so that v−
12

> v12real and v+
12

< vreal
12

 . The bounds in (45) as well as those already in 
(43) are symmetric around �∕2 with negative lower and positive upper values.

Substituting the solution (44) of v11 into the fourth equation (38) determines

uniquely.
Substituting v11and v22 from above into the last equation (39) allows (after 

some calculations) to define the function

The roots of � determine first v12 and then by backward substitution all the other 
coefficients and thus all the candidates for an LMPE. This function � is real valued 
for all values of v12 ∈

[
v12real, v

real

12

]
 . It does not depend on the linear cost term k, 

which determines the costs if the adjustments were spread out very thinly and which 
determines the longrun outcomes under competition (15), collusion (11) and for the 
open loop strategies (see (14)).

(42)v11 =
1

2
(ar + 2� ± A), A ∶=

√
a2r2 + 4a(2 + r�) + 8

(
� − v12

)
v12.

(43)

v12real ∶=
1

2

�
𝜏 −

√�
< v12 <

1

2

�
𝜏 +

√�
=∶ vreal

12
,
√

∶=

�
𝜏2 +

a2r2

2
+ 2a(2 + r𝜏).

(44)v11 =
ar

2
+ � −

A

2

v11 − 𝜏 =
1

2
(ar − A) < 0 ⟺ 4a(2 + r𝜏) + 8

(
𝜏 − v12

)
v12 > 0 ⟺ v12 ∈

(
v−
12
, v+

12

)
.

(45)
v−
12

∶=
1

2

�
𝜏 −

√
𝜏2 + 2a(2 + r𝜏)

�
< v12 < v+

12
∶=

1

2

�
𝜏 +

√
𝜏2 + 2a(2 + r𝜏)

�
,

(46)v22 =
v2
12

A
> 0

� ∶=
a(2 + r�)

(
A − 4

(
� − 2v12

))
−
(
� − 2v12

)
a2r2 − 2

(
2� − 3v12

)2
v12

aA
.
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Focussing on the numerator of the above ratio (of course only in the interval [
v12real, v

real

12

]
 ), we get the roots of � from solving the equation

The left hand side (lhs) is a cubic polynomial. It is defined for all v12 ∈ ℜ , diverges 
to −∞ on the left and to +∞ on the right due to a positive cubic coefficient of 18. 
Differentiating and equating to zero determines the local extrema at of the function 
defined on the left hand side of (47),

with the local maximum followed by the local minimum. The right hand side (rhs) 
of (47) defines a parabola that is zero at v12real and vreal

12
 , is positive in between and 

not existing outside this interval.
Figure 2 shows the typical features of the left hand and right hand sides of the equa-

tion (47), in particular, the possibility of three roots in the interval 
(
v12real, v

real

12

)
 . How-

ever, not each of the three roots determines an LMPE, because of the stability criteria: 
First (40) so that v12 ∈

(
v−
12
, v+

12

)
 from (45) and second the additional stability criterion 

(41) that restricts the set of solutions of v12 further. Loosely speaking, ∣ v12 ∣ must not 
be too large and within the bounds established in (45). Applying this stability condition 
(41) requires to study separately both cases of a positive or negative coefficient v12.

If v12 < 0,

then

(47)
(
� − 2v12

)
a2r2 + a(2 + r�)4

(
� − 2v12

)
+ 2

(
2� − 3v12

)2
v12 = a(2 + r�)A.

vextrema
12

=
4� ±

√
9

,
√

=

�
3(ar + 2�)2 + 24a − 8�2,

v11 − 𝜏 =
1

2
(ar − A) =

1

2

�
ar −

√
a2r2 + B

�
< v12

B ∶= 4a(2 + r𝜏) + 8
�
𝜏 − v12

�
v12

Fig. 2  The left (cubic, blue) and right hand (parabola, yellow) sides of the equation (47) determiming v12
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of which the equality determines the lower bound for the roots v12 that can lead to an 
LMPE,

so that vmin

12
< 0 yet to the right of the above two bounds on the left, i.e., v12real and 

v−
12

.
Analogously, any root v12 > 0 must satisfy,

Therefore, we get the upper bound,

so that vmax

12
> 0 and to the left of v+

12
 . Therefore the domains v12 < vmin

12
 and 

v12 > vmax

12
 are irrelevant for an LMPE and only the roots within the open interval (

vmin

12
, vmax

12

)
 can support an LMPE.

Although I cannot establish a criterion for uniqueness of, or respectively, for 
multiple equilibria for an arbitrary n, I can show analytically that neither the first 
root of � in the interval 

(
v−
12
, v+

12

)
 nor the largest root can provide an LMPE for a 

duopoly. As mentioned, no one seems to care about the possible non-uniqueness 
of the LMPE; Reynolds (1991) is an exception that checks the uniqueness at least 
locally for small discount rates. And yes, there are very few examples, actually only 
two: Lockwood (1996) and Engwerda (2016) have two LMPEs in a single state 
game but both examples require assumptions that are at odds with economic mod-
els: either the "tail wags the dog" or such a strong convexity in the state that rules 
out a cooperative solution of the game, see Eigruber and Wirl (2022). Yet recently, 
Eigruber and Wirl (2022) find multiple LMPE in the economic setting of learning 
by doing, which is related to this game in its irreducibility of the state space. There-
fore, the issue of uniqueness is here addressed explicitly, at least for n = 2.

The first root, the left hand side in (47) cuts the rhs from below, can only support 
an LMPE if this root is in the feasible domain, v12 ∈

(
vmin

12
, vmax

12

)
 . This is only possi-

ble if the lhs in (47) were smaller than the right hand side at vmin

12
 . First, the left hand 

side

0 <
ar

2
− v12 <

A

2
⟺

(
ar

2
− v12

)2

<
1

4

(
a2r2 + 4a(2 + r𝜏) + 8

(
𝜏 − v12

)
v12

)

(48)

v12 > vmin

12
∶=

ar + 2𝜏 − C

6
, C ∶=

√
(ar + 2𝜏)2 + 12a(2 + r𝜏) > ar + 2𝜏,

0 <v12 < 𝜏 − v11 =
A

2
−

ar

2
⟺ 0 <

ar

2
+ v12 <

A

2
⟺

(
ar

2
+ v12

)2

<
a2r2 + 4a(2 + r𝜏) + 8

(
𝜏 − v12

)
v12

4
.

(49)v12 <v
max

12
∶=

2𝜏 − ar +
√

2
< v+

12
,

(50)√
∶ =

�
(2𝜏 − ar)2 + 12a(2 + r𝜏) =

�
(ar + 2𝜏)2 + 4a(6 + r𝜏) < C,
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is already positive at vmin

12
 since the root in the bracket, C from (50), exceeds 2� . 

Since the left hand side is positive at vmin

12
 , the relation between the left and right 

hand sides is maintained after squaring. Yet the difference between the left hand and 
right hand side, after squaring, yields,

which is positive. Hence, the first of the three roots (if existing2) is to the left of vmin

12
 

and thus cannot qualify for an LMPE.
The third and largest root results if the left hand side of equation (47) cuts the 

parabola on the right hand side from below. This root can only characterize an 
LMPE if the left hand side would exceed the right hand side at the upper bound of 
the feasible domain, i.e., at vmax

12
 . This requires first of all that the left hand side is 

positive at vmax

12
 , yet it is negative,

Therefore, only the root in the middle qualifies for an LMPE and is marked in Fig. 2.
Of course, one can find parameters for which no LMPE exists (even the root A 

need not exist), but if it exists, then the LMPE is unique at least for a duopoly.

6  Examples

6.1  Numerical examples

I draw on examples to sketch a few comparative static properties of the game using 
the reference parameters

so that the stationary total supplies are: for a cartel = 1/6 (from (11)) and for an 
open loop duopoly = 1/4 (from (14)) for competition =1/2 (as the limit of (14) for 
n → ∞ ). Figure 3 shows the strategies for n = 2, 3 and 4 at the individual level in the 
state space (assuming symmetric and identical output for the competitors, in particu-
lar, if n = 3 and 4) and the aggregates along the symmetric outcomes. This example, 
which assumes high costs for additional supply at half the choke price, reveals a 

a

3
(2ar(5 + 4r�) + (2 + r�)(C − 2�)),

4a3r(1 + r�)

3
(ar(7 + 5r�) + (2 + r�)(C − 2�)),

−
a

3

�
2ar(5 + r�) + (2 + r�)

�√
+ 2�

��
,

√
=
√
a2r2 + 4�2 + 8a(3 + r�) =

�
(ar + 2�)2 + 4a(6 + r�)

r = 0.10, � = 10, k = 5,

2 Given the steepness of the right hand side at v12real , actually ∞ , more than one root could exist to the 
left of vmin

12
 but none of them could qualify for an LMPE. Numerically only one or no root to left of v12real 

was found.
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substantial impact of competition, at least in the open loop setting: aggregate supply 
increases from 0.25 for n = 2 to 0.33 for n = 4 ). However, an outcome in Markov 
strategies leads to substantially less long run supply compared with the open loop 
equilibrium. The result is fairly similar for a much lower cost parameter, e.g., k = 1 , 
so that stationary competitive supply is 0.90 for competition and thus close to the 
saturation level of 1 and 0.30 for the monopoly; of course, supply vanishes at k = 10.

Figures  4, 5, 6 trace the consequences of the adjustment cost parameter 
(
a1
)
 . 

Adjustment costs do not affect the long run supply of either a monopoly, or of the 
open loop oligopoly or of competition, see Fig. 4. The reason is that any targeted 
level of supply can be achieved by small expansions over time (at unit costs k) min-
imizing the diseconomies associated with large adjustments. However, the adjust-
ment cost, i.e., the penalty for large adjustments, affects the outcome if the firms 
employ Markov strategies and, very surprisingly, higher adjustment costs increase 

Fig. 3  Comparison of strategies, k = 5, r = .1, � = 10, a1 = 5

open loop 

LMPE

cartel 

a1 

ny

Fig. 4  Aggregate stationary supply for normalized variations in adjustment costs, 
a = a1n, n = 2(dashed)&3, k = 5, r = 0.1, � = 10
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the long run oligopolistic supply up to the point that it exceeds its open loop coun-
terpart at very high costs, e.g., at a1 > 50 and n = 4 in Fig. 4! Moreover, the Markov 
strategies are fairly close to the cartel outcome and much lower than the open loop 
counterpart if the adjustment costs are small. The reason is explained in Fig.  6: 
Higher adjustment costs lower the degree of complementarity between the strategies 
and turn them into substitutes at very high adjustment costs, which alters the rela-
tion with the open loop equilibrium strategy that is independent of the competitors’ 
states.

Adjustment costs affect the time constants of all the dynamic processes of yi gov-
erned by the players’ strategies and of course, higher adjustment costs slow down 
this process, see Fig. 5. Given the steep reactions of the cartel shown in Fig. 3, it 
is no surprise, that the cartel approaches its stationary supply quickest. Applying 
this intuition from the steepness of the strategies, the LMPE converges faster (i.e., 
the time constant 1∕� is smaller) but this relation is reversed at very high adjust-
ment costs as for the steady states (and only for n = 3 in the example in Fig. 5). The 

cartel 

LMPE

a1 

1/α

Fig. 5  Time constants (1∕�) vs adjustment costs (a = a1n, normalized), k = 5, r = 0.1, � = 10, n = 2 
(dashed) & n = 3

a1 

own = (v11 – τ)/a

cross = v12/a

Fig. 6  LMPE strategy coefficients (own-blue and cross-yellow) vs adjustment costs (a = a1n , normal-
ized), k = 5, r = 0.1, � = 10, n = 2 (dashed) & n = 3
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explanation is as above: high adjustment costs change the nature of the strategies 
from compliments to substitutes. According to the first order condition (17) and the 
linear-quadratic value function (18) with the coefficients (21), the strategies are

and are therefore complements, if v12 > 0 but otherwise substitutes. Figure 6 plots 
the coefficients of the LMPE strategies along symmetric outcomes for a duopoly 
and for n = 3 . The coefficient of yi is always negative (which follows from stability) 
while the cross effect and thus v12 is positive but turns negative at very high adjust-
ment costs and n = 3 . If v12 < 0 , then the strategies are substitutes, which creates 
an incentive to preempt and to deter the competitors’ supply expansions. This leads 
to supply in excess of the open loop strategy that do not take the rivals’ supplies 
into account. And this explains also the above puzzle that higher adjustment costs 
increase the supply in the linear Markov perfect equilibrium—the degree of com-
plementarity between the strategies is first reduced and then the strategies are even 
turned into substitutes.

6.2  Application to OPEC

I apply now the above game to OPEC. The purpose is not to give another, let alone 
detailed, account of the much discussed OPEC decision making—cartelized versus 
different degrees of internal competition3—but to present results that can be inter-
preted in particular in the light of the topical events during 2022 in the energy mar-
kets. Considering as in Wirl (2015) the following demand-price relation (demand in 
million barrels per day (mb/d) and the price in dollars per barrel ($/b)),

so that $100∕b imply an equilibrium export demand for OPEC oil of the order of 30 
mb/d and that 40 mb/d would maximize OPEC’s export revenues if demand were 
static. Gately (2006) arrived at this number but for a different set of OPEC coun-
tries than today. This seems not crucial given the coarse representation of the mar-
ket and the objective of evaluating different forms of competition—cartelized versus 
oligopolistic in open loop or feedback strategies. The dynamic intertemporal opti-
mization will lead to lower OPEC exports according to the results in this paper, in 
particular Propositions 1 and 2 and presumably for the LMPE too according to the 
previous section.

This demand relation (52) must first be transformed into the normalized one (2) 
in order to apply the framework introduced in Sect. 2 and must then be transferred 

(51)ui =
v1 − k

a
+

v11 − �

a
yi +

v12

a

∑
j≠i

yj, i = 1,… , n,

(52)D(p) = 80 −
1

2
p

3 Empirical investigations of OPEC as a cartel start with Griffin (1985), followed by 4, and Mason and 
Polasky (2005), all indicating that OPEC fits neither the competitive nor the cartel description neatly; 
John (2005) stresses the ambiguity of such tests and finds OPEC as in between a cartel and an oligopoly.
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back into the units used in the relation (52). This transformation must also be applied 
to the cost parameters in (4). According to IHS-markit (https://ihsmarkit.com/
research-analysis/global-crude-oil-curve-shows-projects-break-even-through-2040.
html visited on the 20th of August 2022) the costs for the expansion by an incremen-
tal barrel in the Middle East range on average from $20/b for the first barrel to $35/b 
for an expansion by 10 mb/d with $5/b (at 0) and $50/b (at 10 mb/d expansion) at 
the lower and respectively upper bound. Using these numbers to determine the mar-
ginal expansion costs at 0 and at 10 mb/d for both cost assumptions and applying the 
transformation for the normalized framework yields the following parameters for the 
cost function (4)

for the first assumption (using the average) and

for the 5–50 $/b range implying a larger value of a1.
Figure 7 compares the OPEC strategies for different degrees of competition—

cartel, duopoly and a group of n = 4 on the left hand side—and for the above 
two different cost assumptions comparing a cartel with a duopoly on the right 
hand side. A puzzling observation in the light of Fig. 3 is that the LMPE is very 
close to the cartel outcome even for n = 4; this applies even to the not shown 
second and steeper assumption about costs. Furthermore, while going from 2 to 
4 players within OPEC adds 10mb/d of supply (or 1/3) in the open loop equilib-
rium (and close to Gately’s number of 40 mb/d) but only above 1 mb/d for the 
LMPE; similarly for the different cost assumptions shown on the right hand side 
of Fig.  7. The reason is that the LMPE strategies are characterized by a large 
degree of complementarity. Already Fig. 6 shows that low adjustment costs imply 
a substantial complementarity for the players’ strategies and Fig. 8 shows this for 
the application to OPEC. More precisely, Fig. 8 documents this steepness of the 

a1 = 0.1875, k = 2.5,

a1 = 0.625, k = 0.5625,

Duopoly (bold) vs n = 4 (dashed) 
based on 15-35$/b cost range

Cartel vs duopoly for different costs
bold: 15-35$/b cost range vs
dashed: 5-50$/b cost range

open loop open loop 

cartel cartel 

LMPE
LMPE

ny (mb/d) ny (mb/d)

nu (mb/d) nu (mb/d)

Fig. 7  OPEC strategies (aggregate), r = .10, � = 10
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LMPE strategies with respect to the own (strongly negative) and the competi-
tor’s (positive and large) supply for a duopoly and the smaller cost range; similar 
observations hold for the other cost assumptions and a larger division of OPEC. 
However, a crucial caveat is that the above interpretation is based on the assump-
tion of symmetric cartel members yet OPEC members are highly asymmetric: 
they include the dominant global oil supplier Saudi Arabia producing above 
10 m/d now for more than a decade as well as countries like Congo, Equatorial 
Guinea and Gabon all producing below 0.2 mb/d (according to BP 2022).

Nevertheless, the examples and in particular the application to OPEC highlight 
that sluggish demand and supply lead to a linear Markov perfect equilibrium that 
diminishes competition substantially even if firms compete unless adjustment costs 
are very high. This contrasts oligopolistic supply behavior facing static demand 
that leads to preemptive and thus to extensive investments and outputs according to 
Reynolds (1987, 1991) and many follow ups. This finding—the difference between 
the behavior of a monolithic OPEC cartel or of an OPEC consisting of two or three 
crucial players is minor - corrects the wrong impression in Wirl (2015) of a "benevo-
lent" OPEC, albeit under the assumption of symmetric players. Asymmetry between 
the players, as it applies to OPEC with or without Russia consenting, may change 
this conclusion, yet this question, is left for future research.

7  Final remarks

This paper addresses the issue of sluggish demand and supply relations using a dif-
ferential game. Such a setup is highly relevant for many and in particular for very 
important markets like the energy markets. The first contribution is to correct an 
error in Wirl (2010), which affects the results and the interpretations significantly. 
Second, to highlight that the common assumption of symmetry does not allow to 

Fig. 8  OPEC as a Duopoly—Individual Strategies over the state space r = .10, � = 10 , costs based on 
15–35$/b range
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reduce the state space to 2 for n > 2 , as made in Wirl (2010) and in other papers; 
this is a warning for other differential games with a larger state space. Third, the 
examples and in particular the application to OPEC highlight that sluggish demand 
and supply can lead to a linear Markov perfect equilibrium that diminishes com-
petition substantially even if firms compete unless adjustment costs are very high. 
The economic explanation of weak oligopolistic competition in an equilibrium in 
Markov strategies is that the strategies are complements unless for very high adjust-
ment costs. And they are potentially strong complements if the adjustment costs are 
relatively small as applies to OPEC (more precisely, to expanding oil production 
in the Middle East). Complementarity means that expanding output will induce the 
competitor to expand output too. Therefore, each player internalizes output expan-
sion mimicking cartelization implicitly and tacitly. In contrast if the strategies were 
substitutes, then expanding the output will deter the competitor’s expansion, which 
leads to more output due to stronger competition. However, this requires very high 
adjustment costs that are implausible for the oil market.

Appendix

Calculations

Cartel

Open loop

Adjustment speed ( �o and respectively the opposite for the time constant 1∕�o)

𝜕𝛼m

𝜕a
= −

n(2 + r𝜏)

a
√
a2r2 + 4an(2 + r𝜏)

= −
(2 + r𝜏)

a1

�
a2
1
+ 4a1(2 + r𝜏)

< 0

𝜕𝛼m

𝜕r
=

1

4

�
2(ar + 2𝜏)√

a2r2 + 4an(2 + r𝜏)
− 2

�
>

<
0 ⟺ 𝜏

>

<

√
2a1,

𝜕𝛼m

𝜕𝜏
=

nr√
a2r2 + 4an(2 + r𝜏)

=
r�

a2
1
r2 + 4(2 + r𝜏)

> 0,
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Comparing coefficients for n = 3

Carrying out the comparison of the coefficients for n = 3 yields the following 
equations,

which is different from the setup that is obtained using the shortcut (26) and (27).
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