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Abstract

We study conditions under which line search Newton methods for nonlinear systems
of equations and optimization fail due to the presence of singular non-stationary points.
These points are not solutions of the problem and are characterized by the fact that
Jacobian or Hessian matrices are singular. It is shown that, for systems of nonlinear
equations, the interaction between the Newton direction and the merit function can
prevent the iterates from escaping such non-stationary points. The unconstrained min-
imization problem is also studied, and conditions under which false convergence cannot
occur are presented. Several examples illustrating failure of Newton iterations for con-
strained optimization are also presented. The paper concludes by showing that a class
of line search feasible interior methods cannot exhibit convergence to non-stationary
points.
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1 Introduction

It is well known that a Newton method with no globalization strategy can behave quite
unpredictably, but that use of a line search stabilizes the iteration so that, in most cases,
it makes steady progress towards a solution. We wish to consider the question of when
singularity of the Jacobian or Hessian can cause serious difficulties for line search Newton
methods. If we allow the possibility of singularity, there are in principle many forms that
failure could take; for example, the method may break down, the iterates might oscillate
between two non-stationary points, or they could converge to a non-stationary point. Our
view is that, when methods fail in practice, there is often apparent convergence to a spu-
rious solution, or at least, negligible progress toward the solution. Therefore we consider
convergence to a non-solution point to be a failure of practical interest, and in this paper
we study conditions under which it can occur. We will analyze the performance of Newton
methods on three classes of problems: systems of nonlinear equations, unconstrained and
constrained optimization.

A line search Newton method for solving a system of n nonlinear equations F(z) = 0 in
n unknowns takes the form,

d, = —F'(zg) 'F(x) (1.1a)
Tpy1 = Ty + apdy, (1.1b)

where the steplength «y is chosen to reduce a merit function ¢ along dj,. The merit function
is often taken to be

$(z) = 5 F(2)]3- (1.2)

It is well known that this iteration cannot be guaranteed to converge to a solution of the
nonlinear system; in particular if an iterate is near a local minimizer Z of ¢, then the iteration
may converge to & even though we could have that F(£) # 0. A reasonable expectation for
a practical Newton method is, however, that it continue until it finds a stationary point of
the merit function ¢, i.e., a point such that V¢(z) = 0. For the Newton iteration (1.1) this
can be mathematically guaranteed under the condition that the Jacobian F'(zy) is bounded
away from singularity for all £ and that the steplength «y, provides sufficient decrease in ¢
at each iteration (see e.g. [3]).

There is a well known example of the type of failure that is the subject of this paper.
Powell [11] describes a nonlinear system of equations for which the iteration (1.1) with an
exact line search converges to a point z that is not stationary for the merit function ¢ and
where F' becomes singular. This is disturbing because there are directions of search from
z that allow us to both decrease the merit function and move toward the solution, but the
algorithm is unable to generate such directions. Wichter and Biegler [14] have recently
described another example of failure of a Newton iteration in the context of constrained
optimization. They show that a class of interior methods can fail to generate a feasible point
for a simple problem in three variables, and that the iterates do not approach a stationary
point of any measure of infeasibility for the problem. In this paper we present conditions
under which failures due to singularities can occur, as well as conditions that ensure that



failure cannot take place. We present several examples illustrating the role of the merit
function and the behavior of the search direction in various cases.

In section 2, we study the solution of nonlinear systems of equations and show that the
interaction between the Newton direction dj and the merit function in a neighborhood of
singular non-stationary points can cause convergence to such points. We also demonstrate
by means of an example, that although simple regularization techniques can prevent con-
vergence to non-stationary points, regularized Newton iterations can be very inefficient if
they approach such points. A trust region approach, on the other hand, performs efficiently
on the same example. In section 3 we study the solution of unconstrained minimization
problems and present conditions under which false convergence cannot occur. These results
suggest that there is fundamental difference between unconstrained minimization problems
and systems of nonlinear equations in that convergence to singular non-stationary points
seems much less likely for minimization problems. In section 4 we consider constrained
optimization problems. We present two examples illustrating failure of Newton iterations
that are different from those described by Wachter and Biegler. We conclude section 4 by
showing that a class of feasible interior methods cannot converge to non-stationary points
if an appropriate merit function is used.

Notation. Throughout the paper || - || denotes the Euclidean norm of a vector, R(A) the
range space of the matrix A, and macheps the machine unit roundoff error.

2 Systems of Nonlinear Equations
In this section we consider the solution of a nonlinear system of equations
F(z) =0, (2.1)

where F is a twice continuously differentiable mapping from IR" to IR™. We are interested
in studying the convergence of the line search Newton iteration (1.1) to points that are
neither solutions of (2.1) nor stationary points for the merit function (1.2).

Definition 2.1 A point z € IR" is a singular non-stationary point for problem (2.1), with
respect to the merit function ¢, if

F(z) #0, F'(2) is singular and V¢(z) # 0. (2.2)

As mentioned in the introduction, it is well known that the line search Newton iteration
can converge to singular non-stationary points.

Example 1 (Powell [11]) Consider the problem of finding a solution of the nonlinear

system
x 0
Flz,y) = < 10z/(x 4 0.1) + 242 > - < 0 > (2:3)



The unique solution is (z.,y«) = (0,0). Let us try to solve the problem using the Newton
iteration (1.1) where oy, is chosen to minimize ¢ along di. It has been proved in [11] that,
starting from

(:L'ano) = (37 1)7 (2'4)

the iterates converge to the point z ~ (1.8016,0.0000). That z is not a stationary point for
¢ is apparent from Figure 1 where we plot ¢ in the region of interest. More specifically, the
directional derivative of ¢ at z in the direction (z.,y.) — z is negative. Note also that F”' is
singular at z, as it is all along the x axis. Therefore the Newton iteration converged to a
singular non-stationary point for this problem. O
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Figure 1: Plot of ¢(z,y) = £||F(z,y)||? for Example 1.

Nonlinear systems of equations typically contain many singular non-stationary points,
but the Newton iteration is often not attracted to them. The goal of this section is to try
to understand why the Newton iterates converge to some of these points, but not to others.

To motivate the analysis that follows, let us refer again to Figure 1. The whole half-line

={(z,y) :y=0, z >0} (2.5)

consists of singular non-stationary points, and choosing certain initial guesses (xg,yp), the
iteration converges to different points on /. An examination of the numerical test mentioned
in Example 1 shows that, as the iterates approach the singular half-line ¢, the Newton
directions dj become increasingly longer and ever more perpendicular to the half line ¢,
but due to the (local) convexity of the merit function ¢ along these directions, the line
search forces the iterates to approach /. Without this convexity property the iterates would



move away from the singular half-line. This suggests that the interaction between the
Newton direction and the merit function plays a crucial role in provoking convergence to a
singular non-stationary point. This phenomenon is described in Theorem 2.2 below. Before
presenting this result, we introduce some notation and assumptions.

Let z € IR™ be a singular non-stationary point, i.e., a point that satisfies (2.2). Suppose,
in addition, that

rank(F'(z)) = n—1, and (2.6a)
F(z) €& R(F'(2)). (2.6b)
Later on we will see that the rank assumption (2.6a) can be generalized to allow any degree of

rank-deficiency, but that the range assumption (2.6b) is necessary to establish Theorem 2.2.
We define the singular value decompositions

F'(z) = UV, F'(z) =USVT, (2.7)
and denote the columns of Uy and V; by u, ..., u*, and v¥,... vE respectively, and the
singular values by of > .- > ok, A similar notation (without the superscript k) will be

used for the singular vectors and values of F'(z). From assumption (2.6a) we have that
o1 >+ > 0op_1 > o, = 0 and that v, spans the null space of F'(z).

The following result shows that, if in a neighborhood of a singular non-stationary point
z, the merit function satisfies a (local) convexity condition along the Newton directions dy,
then the total displacements z;,; — = become arbitrarily small near z. The convexity
assumption will be phrased in terms of the second directional derivative of ¢ along a vector
v, which we write as D2¢(z;v).

Theorem 2.2 Consider the Newton iteration (1.1) where «ay is the first local minimizer
of the merit function ¢(z) = 3||F(z)||%. Let z be a singular non-stationary point of prob-

lem (2.1) satisfying (2.6).
(i) If

n
D2p(z;0,) = ZFZ(z) vIV2Fy(2)v, > 0, (2.8)
i=1
then for any € > 0, there is a 6 > 0 such that, if ||z — 2| < 0 and F'(zy) is
nonsingular, we have that ||z,+1 — zi| < e.

(ii) On the other hand, if D?¢(z;v,) < 0, then for all sufficiently small § > 0, there
exists a constant T > 0 such that, if ||z — z|| < ¢ and F'(xy) is nonsingular, then
|zkr1 —2pll > T

Proof. Using the singular value decomposition (2.7) of F'(zy), the Newton direction can

be written as . .
= = [ ag)] ) = 30 T (2.9)

i=1 ?



Since by (2.6a)
R(F'(z)) = span{uy,...,up 1},

assumption (2.6b) implies that F(z)Tu, # 0. Therefore (uf)” F(x};) is bounded away from
zero for all zp in a neighborhood of z. By continuity of singular values, 05 approaches
zero as zj approaches z, while the other singular values remain bounded away from zero.
These facts and (2.9) imply that the norm of dj becomes arbitrarily large, and its direction
arbitrarily parallel to v,,, as z; approaches z. That is,

xlklglz ||dk|l = o0 and xlklm — = Up. (2.10)

To estimate the steplength «j we define the function

hi (1) = d(xy + 7di/ ||di]), (2.11)

which is the restriction of the merit function ¢ along the normalized Newton direction. We
compute the steplength of the Newton iteration by finding the first local minimizer of the
function hg(-), obtaining, say 7. Note, however, that 74 is not the steplength parameter «y,
in (1.1b) since hy is defined in terms of the normalized Newton direction, but it is related

to ay by
Tk
ap =

1kl
It follows that the total displacement of the Newton iteration is

lzk+1 — 2| = cwlldrll = Tk, (2.12)

and our goal is therefore to estimate the magnitude of 7.
By differentiating ¢, we have

Vo(z) = F'(z)TF(z) (2.13a)
Vip(z) = F'(2)TF'(z)+ zn:Fl(:Jc)V2Fl(x) (2.13b)
i=1
Recalling (2.11), (2.13a) and the first equality in (2.9), we obtain

hi(0) = (dp)"F'(2p)" F(xk)/| )
= —||F(z)|I*/ldi]l <O. (2.14)

It also follows from (2.11), that the second derivative of hy(-) is given by

hi(T) = (HZ—:H>TV2¢ (xk + T“Z—:H> <H3—:H> . (2.15)

Case (i) Let us assume that p = D%¢(z;v,) > 0. We write (2.15) as

hi (1) = (i /|l dxl, zx, T), (2.16)



where the function 1 is defined as
Y(w,z,7) = w! V2(z + Tw)w. (2.17)

Note that 1 is a continuous function in a neighborhood of (z,v,, 7).
Recalling (2.13b), and the fact that v, is a null vector of F'(z), it follows that

p=D’p(z;00) = vy VP(2)0n
= zn:Fi(z)ngZFi(z)vn
i=1
= (vp,2,0). (2.18)

By (2.18), (2.16), the second relation in (2.10), and continuity of the function 1, we know
that there exist positive values d; and T such that if ||z — z|| < 01 and 7 < T then

hi(t) > $p > 0. (2.19)
Additionally, by the first relation in (2.10), the continuity of F', and (2.14),
lim Ay (0) =0, (2.20)
which implies there exists d, < d; such that for all ||z — z|| < dq,
H(O0)] < 3T (221)

We will now combine (2.19), (2.20) and (2.21) to show that 7, becomes arbitrarily small
as ) approaches z. A Taylor expansion and (2.19) give

hi(t) > hg(0) + Thy,(0) + 7
> h(0) + 7 [h(0) + Jor] (2.22)
for ||z — z|| < d2 and 7 < T'. Note that the term inside the square brackets is non-negative
for 7 > —4h}.(0)/p. Thus inequality (2.22) implies that for such zj, there must be a local

minimizer of hy(-) in the interval (0, —4h},(0)/p) and, by (2.21), this interval is contained
in (0,7). Thus, the first local minimizer 7 of h(-) satisfies

—4h,(0)
P

TE <

Therefore, by (2.20), for any £ > 0 there exists § € (0,d2) such that if ||z — z|| < § then
H$k+1 - J?kH =T <E.
Case (ii) Let us assume now that p = D?¢(z;v,) < 0. The continuity of the function
1 defined by (2.17) implies that there exist constants d2 > 0 and 7" > 0 such that if
|lzr — z|| < 62 and 7 < T, then

Wi(r) < bp. (2.23)



A Taylor expansion, (2.23) and the fact that h} (0) < 0 give that
hip(1) < hp(0) + 5p < 5p <0 (2.24)

for ||z — z|| < d2 and 7 € [0, T]. Therefore, the minimizers of Ay, lie in the interval [T, 4+00),
and hence ||z — x| > T. O

We should note that the convexity assumption (2.8) implies, not only that ¢ is con-
vex at z along the null direction v,, but that along that direction ¢ actually has a one-
dimensional minimizer at z. This follows from the fact that D¢(z;v,) = vl F'(2)T F(2) = 0
and from (2.8). Therefore when z is close to z and the Newton direction is closely aligned
with vy, the first one-dimensional minimizer of ¢ along the Newton direction will be close
to z. This is the mechanism that prevents the iterates from immediately running away from
a singular non-stationary stationary point.

However, this argument does not necessarily imply convergence to a non-stationary
point. All that Theorem 2.2 states is that if the iterates fall sufficiently close to such a
singular non-stationary point z, the displacements will be arbitrarily small. Mathematically,
this means that an arbitrarily large number of iterations can be made in a neighborhood
of a singular non-stationary point. This has important practical implications, as most
implementations of Newton’s method will terminate in this situation, either because of an
explicit stopping test of the form ||z, 1 — x| < €, or because in finite precision we will have
Oz + apdy) = ¢(zk), which will cause a failure in the line search procedure. It is clear
that the conditions of Theorem 2.2 can lead to convergence to a singular non-stationary
point in some cases, but whether it always does is an open question.

The assumption that the line search computes the first local minimizer of the merit
function ¢, can be replaced, for example, by a line search that finds a steplength belonging
to the first interval of steplengths satisfying the Wolfe conditions

(o +apdy) < dxr) +narVe(zy) dy (2.25a)
V(zr + ade) dp > BVG(ar) di, (2.25b)

where 1 and (3 are constants that satisfy 0 < n < 8 < 1; see e.g. [10]. Let us consider how
the proof can be extended to cover this case. In case (i) little change is needed since all
such points lie in the interval (0, —4h},(0)/p) specified in the proof. In case (ii), the Wolfe
condition (2.25b), which can be written as hj (1) > Sh},(0), does not hold for all 7 € [0, T]
by virtue of the first inequality in (2.24). Therefore, all the acceptable points will lie in the
interval [T, 4+00).

This analysis will not apply, however, to a line search that backtracks from the unit
steplength because, since the lengths of the Newton directions tend to infinity, the steplength
ar = 1 would result in trial points of increasingly large magnitude. To extend Theorem 2.2
to a backtracking line search would require a stronger assumption, for example, that the
merit function is unimodal along the sequence of rays {zy + ady; « > 0}.



Example 1-Revisited The Jacobian of the function (2.3),

, 1 0
Flwy) = 1/(x+0.1)2 4y |’

is singular on the half-line (2.5), and we can define v, = (0,1). It is easy to show that for
any point z on the half-line £, the rank and range conditions (2.6) hold and D?¢(z,v,) > 0.
Thus Theorem 2.2 applies to this example and predicts that the lengths of the Newton
displacements tend to zero in a neighborhood of the half line £.

Figure 2 plots the estimated length of the Newton displacements for problem (2.3) for
all values of (z,y) in a grid over the region [1,3] x [—1,1]. We estimate the length of the
Newton displacement, which by (2.12) is the steplength 74 to the first local minimizer of
hk, by means of the length of the one-dimensional Newton step on hg, which is given by
—h},(0)/R}(0). This estimate is increasingly accurate as = approaches the singular half-line.
In Figure 2 we plot &(z, yx) = —h},(0)/h}(0), for all (zy,yx) on the grid. The function & is
not defined on the half-line y = 0, but as expected its limit is zero as one approaches that
half-line. O
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Figure 2: Estimated lengths of the Newton steps on Example 1.

The assumption that F'(z) has rank n — 1 was made for simplicity, and the proof of
Theorem 2.2 can easily be extended to the case in which F’(2) is singular with an arbitrary
rank deficiency. We now restate the theorem including all the generalizations discussed so
far.



Theorem 2.3 Consider the Newton iteration (1.1) where oy, is either the first local mini-
mizer of the merit function ¢(z) = S||F(z)||*> or belongs to the first interval of steplengths
satisfying the Wolfe conditions (2.25). Let z be a singular non-stationary point of prob-
lem (2.1) satisfying (2.6b). If the matriz

n

> Fy(z) V2F(2) (2.26)
i=1
is positive definite on the null space of F'(2), then for any e > 0, there is a § > 0 such that,
if |z —z|| < 0 and F'(zy) is nonsingular, we have that ||xg11 — k|| < €. On the other hand,
if the matriz (2.26) is negative definite on the null space of F'(z), then for all § sufficiently
small, there exists a constant T > 0 such that if |z — z|| < 3 then ||z — zi|| > T

We conclude this section by showing that the range assumption (2.6b) is necessary in
Theorem 2.2 (or Theorem 2.3). Specifically, we will now show that if

F(z) € R(F'(2)),

and if all the other conditions of Theorem 2.2 (or Theorem 2.3) hold, there are problems
for which the conclusions of this theorem are valid, and others for which they are not.
Let us examine the problem

F(z,y) = (2% + 9% y*)T =0.

The point z = (2,0) is a singular non-stationary point at which the conditions (2.6a)
and (2.8) hold, but (2.6b) is violated. Consider the starting point (xg,1y) with yo # 0.
It is easy to see that the Newton step dy points directly to the solution (0,0), and that
¢ = 3||F||* decreases monotonically along do, from (zg,yo) to the solution. Thus, with
either an exact or backtracking line search, the total displacement ||(z1,y1) — (20, yo)|| will
be bounded below, regardless of how close is (zg, o) to (2,0). Therefore, in this example,
the conclusion (i) of Theorem 2.2 does not hold.

In the following example, on the other hand, the range assumption (2.6b) is violated,
but conclusion (i) of Theorem 2.2 is still valid.

Example 2 The only solution of the system of equations
F(z,y) = (v + v 2(z — 1)y)T =0, (2.27)
is (0,0). Let us define the line
T={(Ly):yc R}

We will show that if the starting point (zg,yp) belongs to the set 7 \ {(1,0)}, then the
iterates generated by Newton’s method are confined to 7. (The point (1,0) is excluded as
initial point because the Jacobian is singular at this point.)

Let (1,yx) be an iterate in 7 \ {(1,0)}. Since the Newton direction is given by

- 1 0 —2yx 147 0
dp = — [F'(1, YRy = — ko) = > |, (2.28
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the next iterate (xgy1,yr+1) = (Tk, yr) + ardi also belongs to 7. Note that on 7, the merit
function takes the form

o(Ly) = 5IF(Ly)l* = 5(1+ 477, (2:29)
and that
Vé(l,y) = F'(1,y)"F(l,y) = (1 + %) ( 21y ) ,

which implies that

IVe(Ly)ll = (1 +y*)/1+4y? > 1 (2.30)

for all y. The line T therefore is not only disjoint from the solution set {(0,0)} of (2.27),
but contains no stationary points for ¢ = 3| F||2.

Denoting by (dy ) the second element of dj, we observe from (2.28) that sign((dy)r) =
—sign(yg), so that d always points in the direction of the singular non-stationary point
z = (1,0). Therefore, a backtracking line search or a line search that enforces the Wolfe
conditions (2.25) would force the iterates to converge to z. (Note, from (2.29) that an exact
line search would immediately lead to z.)

Thus, in this case, the length of the displacements tends to zero near z, so that the
conclusion (i) of Theorem 2.2 holds. Note that the assumptions (2.6a) and (2.8) are satisfied
at z but (2.6b) is violated.

2.1 Regularized Newton Method

In most practical line search implementations of Newton’s method for systems of nonlinear
equations, a modification is introduced if the Jacobian matrix is singular or nearly singular.
One could therefore speculate that singular non-stationary points of the type described
above do not pose real difficulties in practice since the modified iteration will not converge
to them. However, as we now show by means of an example, if the modification takes
the form of a regularization whose only objective is to ensure that the iteration matrix
is not close to singular, the iteration can be very inefficient in the presence of singular
non-stationary points.
The most common form of regularization consists of replacing the standard Newton
equations (1.1a) by
(F' ()" F' () + pI)d = —F' ()" F (), (2.31)

where p > 0 is chosen so that the eigenvalues of the matrix on the left hand side are greater
than a certain threshold value; see for example [3, section 6.5]. A problematic aspect of this
approach is the selection of the threshold value, and hence p. To illustrate this, we applied
this modified Newton iteration to problem (2.3), using a backtracking line search on the
merit function ¢ = £||F||?>. The starting point was (z9,yo) = (1.7,0.1), which is near, but
not extremely close to the singular line y = 0.

The regularization was performed as follows. We first choose a fixed value of p, and
if the eigenvalues of the matrix (F,;)TF,; are larger than or equal to p, then the step is
computed by the standard Newton iteration (1.1a); otherwise the step is computed by (2.31).
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The results are given in Table 1 for various values of the parameter p. We report the
total number of iterations performed (iter), the number of iterations in which the step was
computed by (2.31) (# reg), and the final values of | F'|| and ||V ¢||. We used double precision
IEEE arithmetic, and terminated the iteration when ||F|| < 107%, or when the line search
could not produce a lower value of the merit function after 100 trials. We also imposed a
limit of 1000 iterations. This example indicates that singular non-stationary points can be

P iter # reg final ||F| final ||V
0 257 0 9.585e+00  4.662e+00
\/macheps 1000* 495 9.585e+00 4.662e+00
le-4 1000* 452 9.563e+00 4.774e+00
le-2 1000* 940 1.629e-04 9.034e-07
le-1 1000* 994 1.392e-03 1.492e-05

Table 1: Regularized Newton method (2.31) on Example 1. (#) Line search failed, (*) max-
imum number of iterations reached; macheps = 2.22 x 10716,

troublesome for a line search Newton iteration, even for a large value of the regularization
parameter, such as p = 0.1. We note that in these runs the largest eigenvalue of (FI’C)TFI'C
was of order 100, so that the regularization value p = 0.1 is not numerically insignificant
with respect to this large eigenvalue.

A regularization based on the singular value decomposition does not perform any better
in this example. We implemented it as follows. At the current iterate zj, we compute the
singular value decomposition (2.7) of F'(z), and based on it, we define the modification

UrSe Vi,
where the diagonal entries of ¥ are given by
o; = max(o;, p) i=1,...,n.
and p > 0 is the regularization parameter. The modified Newton direction is defined as
dy = —Vi. 3, U} Fy.

Applying this method with the same initial point and backtracking line search as before,
we observed that, for p = 0.1, the distance to the solution is still ||z — z.|| = O(10~2) after
1000 iterations. In 963 of these iterations the modification occurred. Smaller values of p
gave similar, or worse performance.

Given that regularization techniques were so unsuccessful on this problem, it is inter-
esting to ask how a trust region method would perform on this problem. From the point
of view of global convergence theory, trust region methods are not affected by singular
non-stationary points, but we would like to observe their behavior on Example 1. To this
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end, we consider the Levenberg-Morrison-Marquardt trust region method (see e.g. [2]) that
computes a step d by solving the subproblem

mdin||F1c + Fid|? subject to ||| < Ay,

where Ag is the trust region radius. It is well known that the solution of this problem has
the form (2.31), for some value p > 0.

We solved problem (2.3) using the code LMDER from the MINPACK package [9] which
implements the Levenberg-Morrison-Marquardt method, using again the starting point
(1.7,0.1). In Table 2 we report whether the step reduced the merit function ||F| suffi-
ciently and was accepted (Acc), or whether it was rejected (Rej); the value of the merit
function; and the “Levenberg-Marquardt” parameter chosen by the algorithm, which is the
value of p in (2.31). We also report the eigenvalues of (F})TF] (eig). The iteration was
stopped when ||F|| < 10-5. The Levenberg-Morrison-Marquardt method was very efficient

iter I|E| P eig

0 9.615e+00 2.743e+00 1.111e+00 1.439e-01
1 Rej 1.110e+01 1.689e+01 7.713e-01 2.764e+01
2 Acc 9.492e+00 1.984e+01 1.216e+00 1.896e-01
3 Acc 9.322e+00 1.984e+01 1.408e+00 1.179e-01
4 Acc 9.030e+00 1.256e+01 5.041e-02 2.163e+00
5 Acc 6.419e+00 7.030e-03 1.629e-03 1.726e+02
6 Rej 2.014e+01 4.010e+02 1.536e-02 1.872e+03
7 Acc 2.319e+00 1.983e-04 7.250e-05 3.540e+03
8 Acc 6.773e-01 0.000e+00 3.358e-05 1.327e+04
9 Acc 1.784e-05 0.000e+00 1.427e-08 1.000e+04
10 Acc 4.461e-06 0.000e+00 3.569e-09 1.000e+04
11 Acc 1.115e-06 0.000e+00 8.923e-10 1.000e+04
12 Acc 2.788e-07

Table 2: Levenberg-Morrison-Marquardt trust region method on Example 1

in this example, taking only 12 iterations to solve the problem to the prescribed accuracy.
Note that the parameter p varied significantly, taking values within the wide range [0,401].
Also observe that once the iterates reached a neighborhood of the solution, pure Newton
steps (with p = 0) were taken during the last 4 iterations. (We note that the value of p
reported in the table is that used to obtain the function value in the next line; in particular
p = 4.010e — 02 gave rise to a successful step with the new function value 2.319.)

3 Unconstrained Minimization

We have seen in the previous section that a line search Newton iteration for solving systems
of nonlinear equations can be attracted to singular non-stationary points. We now study
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whether a similar phenomenon can take place when solving an unconstrained minimization
problem,

min f(z), (3.1)
where f: IR™ — IR is a smooth function. We will consider the Newton iteration
Vif(zp)dy = —Vf(zx) (3.2a)
Tpy1 = Tp+ agdy, (3.2b)
where «y, is a steplength chosen to satisfy the Wolfe conditions
flog +opdy) < flan) +napVf(z) dy (3.3a)
V(e +oandp) dy > BV f(ax) dy, (3.3b)

where the constants 7 and 3 satisfy 0 <n < 8 < 1.
We would like to know whether this iteration can converge to a singular non-stationary
point z, which we define as follows.

Definition 3.1 A point z € IR" is called o singular non-stationary point for the uncon-
strained optimization problem (3.1) if

Vf(z)#0, and V2f(z) is positive semi-definite and singular.
We begin by introducing some notation. We denote the eigenpairs of V2 f(x},) by

)\Ifz---ZAfL and of,... 0F (3.4)

’»Yno

and let
A > 2> A, and wy,...,vu,

denote the eigenpairs of V2f(z). We assume that the eigenvectors always form an orthonor-
mal set.

The question of whether the Newton iteration (3.2) can converge to a singular non-
stationary point was posed by Fletcher [5, p. 121] while comparing the convergence prop-
erties of algorithms for nonlinear equations and optimization. However, to the best of our
knowledge, this question has not been investigated. Fletcher states (using our notation):

[T]f F'(x)) loses rank in the limit, then convergence [of Newton’s method for
systems of equations| to a non-stationary point can occur [11]. The situation
may therefore be more severe than with Newton’s method for minimization, for
which no such example (with z; — 2z, Vf(2) # 0, {V2f(z;)} positive definite
and V?2f(z) singular) has been developed to my knowledge.

We now establish a result showing that, in many cases, the Newton iteration cannot
converge to a singular non-stationary point.

Lemma 3.2 Suppose that f is twice continuously differentiable, and that V?f () is posi-
tive definite for all k so that the Newton iteration (3.2)—(3.3) is well defined. Assume that
z € IR" is a singular non-stationary point of problem (3.1), with rank(V?f(2)) =n—1, and
that Vf(z) € R(V?f(2)). Then, the iterates {zy} are bounded away from z.
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Proof. As in the previous section, it will be useful to work with a merit function based
on a normalized direction, and therefore we define

hi(T) = f(2r + 7di/||di])- (3.5)

Then

d
W) = VEEd/ldil, () = dEVEf (i rade Il (3.6)

Note from (3.2b) that the total displacement is
Tk = aglldi|l = [|zp11 — zll- (3.7)
We can write the curvature condition (3.3b) as
hie(1) > By 0).
This expression and the mean value theorem give
hi(7k) = hi(0) + Tehi (§k) > Bhy(0), (3.8)

for some scalar & € (0,7;). Let us assume that xzj is not a stationary point, so that
h}.(0) < 0. This fact, inequality (3.8), and the assumption § < 1, imply that A (&) > 0.

Therefore (6 — )i (0)
Tp > Lk 3.9
2R -
Using (3.2) and (3.4) we have that
n—1 T, .k T,k
(Ve vi) x  (Vfgom) &
dy, = — Z N\ Vi T TR n
i=1 i n
and recalling (3.6), we obtain
n—1(w ¢T,k\2 /\k T, k\2 /\k
- k)2 I \h A
h;c(O) — _ i=1 (vfk Uz) / 7 + (ka Un) / n (310)

VIR (VITOE /M) 4 (VT ok /38)E

With the purpose of finding a contradiction, assume that there is a subsequence {zy,} of
the iterates that converges to a singular non-stationary point z. Since Vf(z) € R(V2f(2)),
we have that

Vi(z) v, #0, (3.11)

and thus {kaTivﬁi} does not tend to zero as i — oo. Therefore, as Ak — X\, = 0, we have
that
|Vf,z;vﬁl|/)\gl — +o00.

Using this limit and (3.11) in (3.10), and since the other terms in the summations in (3.10)
are bounded, we obtain

hi, (0) = |V f(2)Twn| # 0,
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which shows that {h}.(0)} is bounded away from zero.
Recalling that {f(x)} is decreasing, the first Wolfe condition (3.3a), the first equality
in (3.6) and (3.7), we deduce that

> —nag, V() dy,
= i (0). (3.12)

Now, f(z;) — f(%k,y,) = 0, as {f(zk,)} is convergent. Recalling that {h} (0)} is bounded
away from zero, relation (3.12) implies that 7, — 0. Also, since V2f is continuous, by (3.6)
we have that {hj (0)} is bounded. All these facts contradict (3.9), as they imply that, for
the subsequence {x, }, the right hand side of (3.9) is bounded away from zero while the left
hand side tends to zero. O

What this result tells us is that, when rank(V?f(z)) = n — 1, Newton’s method for
minimization cannot converge to the singular non-stationary point z, except (possibly) in
the fairly special case when V f(2) € R(V?f(z)). We have not been able to find an example
of such false convergence when Vf(z) € R(V2f(z)), nor have we investigated the case when
the rank of V2f(z) is less than n — 1. Therefore the question of whether Lemma 3.2 can
be proved under weaker assumptions must be considered open. It is clear, though, that as
Fletcher observes, convergence to a singular non-stationary point appears much less likely
in this case than in the case of a general nonlinear system.

The assumption that V2f(x}) is positive definite for all k¥ may appear to be restrictive,
given that V2 f(z) is assumed to be singular. We make this assumption because a practical
line search Newton method would modify the Hessian if its eigenvalues are not sufficiently
positive, and this modification makes it even less likely that the iterates will converge to
z. Thus, we are showing that even in an unfavorable situation, convergence to a singular
non-sationary point cannot take place.

If we ask what it is about the case of minimization that makes such failure less likely
than for nonlinear systems of equations, we observe that the Newton iteration (3.2) is special
in two ways. First, it is a special case of a Newton iteration for nonlinear systems in which
the Jacobian is always symmetric. Second, the line search is performed on the objective
function f rather than the norm of the nonlinear system (i.e., the norm of the gradient in
the unconstrained minimization case). It appears that this second factor is crucial, since
in the case of minimization the step along the Newton direction minimizes the objective
based on first and second derivative of the objective function, but when we do a line search
on the norm of the nonlinear system we do not have (with Newton’s method) access to the
second derivative of that function.

4 Constrained Optimization

We now study whether convergence to singular non-stationary points can also take place in
the context of constrained optimization. We will consider problems of the form

min f(z) subject to g(z) >0, (4.1)
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where f: IR" — IR and ¢ : IR" — IR™ are smooth functions. We will restrict our attention
to the behavior of interior point methods, which solve a sequence of barrier problems of the
form

min 4, (2) = f(z) — p Y Ingi(a), (4.2)
=1

where p > 0 is the barrier parameter. To facilitate the analysis, we will study algorithms
that decrease p only after the optimality conditions of the barrier problem have been sat-
isfied to some accuracy—as opposed to algorithms that redefine i at every iteration.

An optimization algorithm can fail to solve a problem because it never achieves feasi-
bility, or if it does, because it cannot attain optimality. We will begin by considering the
latter case, and in section 4.3 we will study failures to achieve feasibility.

4.1 Failure in the Feasible Case

The following example shows that a line search interior method in which the merit function
is the norm of the perturbed KKT error, can converge to a singular non-stationary point
even if all the iterates are feasible.

Example 3 Consider the one-variable problem
min%(w —1)3+2 subject to x>0, (4.3)

whose only optimal solution is z, = 0. We use a primal-dual line search interior method to
solve this problem. This amounts [1, 4, 7, 13] to applying the Newton iteration (1.1) to the
perturbed KKT conditions for (4.3), which are given by

Fl(z,)) = ( (@ _;;2_*“1 -4 ) = ( 8 > : (4.4)

where A is the Lagrange multiplier. Let us choose the barrier parameter as yu = 0.01. After
some algebraic manipulations one can show that the system (4.4) has only one solution,
which is approximately (5 x 1072,1.99), and which satisfies the non-negativity bounds

z, A > 0. (4.5)

Moreover, one can also show that this solution is the only stationary point of the merit
function

Bu(,A) = 3l Fu(z, V). (4.6)

It would therefore appear that this merit function is appropriate for this problem; see [7,
section 5.1], [4].

We applied Newton’s method to (4.4) with u fixed at 0.01. The steplength oy was com-
puted by means of a backtracking line search on (4.6), starting always with the steplength
of 1. The initial point is chosen as (xg, Ag) = (5,1), which is feasible. Table 3 reports the
output of the run.
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k Tk A s cos(Vy, di) bu IVull

0 5.0000e+00 1.0000e+00 1.00e+00 -9.79e-01 1.40e+02 1.33e+02
1 2.9271e+00 4.1659e-01 1.00e+00 -9.69e-01 9.96e+00 1.71e+01
2 1.7485e+00 1.7115e-01 1.00e+00 -8.94e-01 1.01e+00 2.31e+00
3 T7.7378e-01 1.0113e-01 6.25e-02 -2.80e-01 4.54e-01 9.92e-01
4 9.7547e-01 6.9258e-02 2.44e-04 -2.20e-02 4.35e-01 8.76e-01
5 9.6445e-01 7.0026e-02 1.91e-06 -1.50e-03 4.35e-01 8.78e-01
6 9.6319e-01 7.0117e-02 4.77e-07 -8.29e-04 4.35e-01 8.78e-01
7 9.6375e-01 7.0076e-02 2.98e-08 -2.20e-04 4.35e-01 8.78e-01
8 9.6362e-01 7.0086e-02 4.66e-10 -2.67e-05 4.35e-01 8.78e-01
9 9.6364e-01 7.0084e-02 1.46e-11 -5.21e-06 4.35e-01 8.78e-01
10 9.6364e-01 7.0085e-02 7.11e-15 -1.13e-07 4.35e-01 8.78e-01
11 9.6364e-01 7.0085e-02 3.47e-18 -2.19e-09 4.35e-01 8.78e-01
12 9.6364e-01 7.0085e-02 -6.93e-10 4.35e-01 8.78e-01

Table 3: Primal dual interior method with merit function (4.6) on Example (4.3).

As the table indicates, the search directions tend to become orthogonal to V¢, and
the steplengths ay and total displacements xx; — z tend to zero. We should note that
the backtracking line search based on the merit function (4.6) automatically ensured that
the iterates remained well inside the positivity constraints (4.5), so that bounds (4.5) did
not need to be enforced explicitly. The algorithm terminated at iteration 15 when the
line search procedure failed to reduce the value of ¢,. The final iterate is, to five digits,
z = (9.6364e — 01, 7.0085¢ — 0).

Note that the behavior of the iteration is very similar to that observed for the nonlinear
system of equations described in Example 1. In fact, since the merit function is given
by (4.6), we can view the use of the interior method as the application of a standard line
search Newton method to the nonlinear system (4.4). In this light, the point z can be
considered as a singular non-stationary point (cf. (2.2)) since F},(2) is numerically singular,
and since z is neither a solution of (4.4) nor a stationary point of the merit function. It is
also easy to verify that the conditions (2.6) and (2.8) are satisfied by the function F), at the
limit point z = (9.6364e — 01, 7.0085¢ — 0), so that by Theorem 2.2 it is not surprising that
the algorithm grinds to a halt here.

In summary, the iteration was unable to sufficiently reduce the optimality conditions of
the barrier problem, as measured by the norm of the KKT error, ¢,. If the interior method
required a higher accuracy in this optimality measure, then the algorithm would fail by
converging to the singular non-stationary point z of the barrier problem. O

Let us discuss the significance of Example 3. The fact that the primal-dual iteration
can fail (for a fixed value of 1) does not follow from Example 1, since a primal-dual system
such as (4.4) always contains one or more equations involving products of variables, namely
the perturbed complementarity conditions. This is not the case in the system (2.3), and
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therefore, it is not clear from the discussion in section 1 that convergence to stationary
points can be proved for systems of the primal-dual form.

4.2 A Globally Convergent Feasible Method.

We now address the question of whether failures of the type just described can occur with
other, more appropriate, merit functions. If all the iterates are feasible, the merit function
can be chosen simply as the barrier function (4.2). We will show that, for this choice of
merit function, a feasible interior method cannot converge to singular non-stationary points
if certain precautions are taken to control the Hessian approximation. To establish this
result, we need to describe the interior point iteration in more detail.

The perturbed KKT conditions for problem (4.1) are given by

Vf(x)—Axz)A = 0 (4.7a)

G(z)\ —pe = 0, (4.7b)

where A € IR™ are the Lagrange multipliers estimates, A(z)? is the Jacobian of g(z), G(z)
is a diagonal matrix with diagonal elements G(z); = g;(z), and e is the m-vector of all

ones. The search direction of a feasible primal-dual interior method is obtained by applying
Newton’s method to (4.7) at the current iterate (x, \x), giving

V2L, —Ay de \ _ [ Ve — Aph (4.8)
AkAg Gk d,\ Gk)\k — Kue ’ '

L(z, ) = f(z) =Y Xigi(x)
i=1

where

is the Lagrangian of the nonlinear program (4.1) and A is a diagonal matrix satisfying
Ake = >\k

The steplength «y will be determined by means of a line search that satisfies the Wolfe
conditions on the barrier function 1,

PYu(Tr) + 10 Vb (zk) " di (4.92)
BV ()" dy, (4.9b)

V(g + apdy)

<
Vb (g + odi) dy >

where 77 and [ are constants that satisfy 0 <n < 8 < 1.
The matrix G, is positive definite for all £ since we assume that all iterates are strictly
feasible with respect to the constraint g(z) > 0. Therefore we can rewrite (4.8) as

[v%k + AkG,;lAkA;{] dy = —Vir+pAGrle= Vi, (zr) (4.10a)
dy = =X+ Gyl (ne— ApALd,). (4.10b)

If the coefficient matrix in (4.10a) is positive definite, then the search direction can be
shown to be a descent direction for a variety of merit functions; otherwise, it is customary
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to modify it so that its eigenvalues are bounded above and away from zero for all & [6, 7, 13].
We will assume here that such a matrix modification is performed. This approach is thus
similar to that used in unconstrained optimization, where global convergence can be proved
if the Hessian approximations By have eigenvalues bounded above and away from zero.

We are concerned here only with the possibility that a feasible primal-dual algorithm
could fail near a point where the gradients of the active constraints are linearly dependent,
making the Jacobian in (4.8) singular. We now describe an algorithm for minimizing a
barrier function for fixed p for which this type of failure cannot occur.

Algorithm 1. Feasible Primal-Dual Method for Barrier Problem (4.2)

Choose an initial iterate (xg, Ag) such that g(xzo) > 0 and Ao > 0, and select a constant
7 € (0,1) (say 7 = 0.995).

Repeat until the barrier problem (4.2) is solved to some accuracy.

Step 1 Define By, as
By = V2£($k, >\k) + AkG;IAkAg (4.11)

provided this matrix is sufficiently positive definite; otherwise let By be a modification
of the matrix in the right hand side of (4.11).

Step 2 Solve
Bydy = —Vipu(zy) (4.12)
dy = X +Gp'(ne— ApALdy).
Step 3 Set
Tht1 = T + agdy, >\k+1 = A\ + apd)

where «ay, satisfies the Wolfe conditions (4.9), and &y, is the largest value in [0, 1] such
that )\k+1 2 (1 — T))\k.

End Repeat

Step-selection strategies different from the one given in step 4 have been proposed in the
literature [6, 7, 13]. The rule given in step 4 is, however, general enough for our purposes.
Our analysis will be done under the following assumptions.

Assumptions.
Al. f(z) is twice continuously differentiable and bounded below on the feasible region.
A2. V2f(z), V%g;(r), and Vg;(x) are bounded on the convex hull of the feasible region.

A3. The matrices {By} in (4.12) are positive definite with eigenvalues bounded above and
away from zero.

Theorem 4.1 If assumptions AI1-A3 hold, then any limit point of the sequence of iterates
generated by Algorithm 1 is a stationary point of the barrier function (4.2).
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Proof. The system (4.12) defines a Newton-like step on the barrier problem (4.2), with a
matrix that has eigenvalues bounded above and away from zero. We now use an adaptation
of standard unconstrained minimization analysis to show that any limit point of the sequence
of iterates {z}} is a stationary point of the function 1),.

Since the barrier function 1, is infinite at the boundary of the feasible region {z : g(z) >
0}, assumption Al and the decrease condition (4.9a) imply that there exists o > 0 such
that all the iterates {z} are contained in the set

Sy ={z: g(z) > oe}.

The logarithm function has bounded derivatives on the closed set [0/2, o0], and thus, as-
sumption A2 implies that Vi, (z) has a Lipschitz constant, say L, on the larger set S, /s.
Let us now consider two cases.

Case (a) If at iteration k, the entire line segment [zy,zj41] is contained in S, /5, then
using (4.9b) and the fact that V¢, (zx)"dy < 0, we have

(B = D)Vu(zp)Tdr < (Vpu(mpsr) — Vipu(zr)) T dy
< L|dg|*ou,

which implies that

(8= 1) Vibu () "di.

«a 4.13
S A PAE 1
Now, from (4.9a),
buler) = Yulzrin) > —napVipy(er) " dy,
which, together with (4.13), gives
_ Tq >
Yu(ex) — (i) > 0 (V‘/"iﬁ?j? d’f) . (114)

Case (b) If the line segment [y, Tf1] is not contained in S, /5, then for some i € {1,...,m},
gi(zk +0dp) <o/2 and gi(zp) 20
for some 0 € (0, ). Therefore

o/2 |gi(wk + Odi) — gi(zg)|

<

< 0C|di,

where C, the Lipschitz constant of g;, is guaranteed to exist by Assumption A2. Hence
[2kt1 — 2l = alldell = Olldgl| = o/ (2C). (4.15)

Now, using (4.9a) and (4.15), and recalling V¢, (z)Td, < 0 we have

Yu(ze) — (o) > —noVepy(ze) ' dy,
—no V@bu(xk)Tdk
2C ldell

Y

(4.16)
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We can now combine the two cases. Since the barrier function in (4.2) decreases at
each step, the sequence {1, (z;)} is monotonically decreasing. If {z)} has a limit point,
and since 1, is continuous the sequence {1, (z;)} is bounded below and thus convergent.
Hence, (4.14) and (4.16) imply that

—Vipu(zi) " dy,
|||

By assumption A3, there exist constants 3, 32 > 0 such that v¥ < 3; and By < ¥ for all £,

n
where v¥ and 4 denote the largest and smallest eigenvalues of By, respectively. Therefore

0. (4.17)

(o) _ Vi) By V(o) IV 17/ | e
el 1B, Vol V(g B

The limit (4.17) then gives ||V, (z)|| — 0, proving the result. 0

IV (@)l

It should be noted that the Hessian modification prescribed in Step 2 of Algorithm 1
can easily be done, and in such a way that it is not needed near a solution (z,,\,) of
the barrier problem (4.2) for which A(z,) is full rank and V?1,,(z,) is sufficiently positive
definite. Thus it does not interfere with the quadratic convergence of Newton’s method in
such cases. Here is one such modification. To ensure boundedness of the modified Hessian
we can modify the multiplier estimates by

(Ae)i = min{(M\p)is cp/gi(zp)} i=1,...,m, ¢>1.

These modified multipliers will be uniformly bounded since, as established in the proof
of Theorem 4.1, the constraints g;(zj) are all bounded away from zero, and therefore a
Hessian approximation (4.11) using these multipliers will be bounded. Since (4.7b) holds at
a stationary point of the barrier problem this modification will not occur near such a point.

To ensure positive definiteness, standard techniques such as a modified Cholesky fac-
torization [12, 8] can be used to modify Bg. Since By should approach V?t,(z,), near a
stationary point this modification will not be necessary as long as V21, (z,) is sufficiently
positive definite.

In summary, we are arguing that the situation regarding global convergence of Algo-
rithm 1 is analogous to that of Newton’s method for unconstrained minimization, and
potential singularity of the Jacobian Ay in (4.8) will cause no problems.

4.3 Failure To Achieve Feasibility

As we mentioned at the beginning of this section, an interior method can fail because it
cannot attain feasibility. Wachter and Biegler [14] describe a problem for which a general
class of interior methods is unable to generate a feasible point, even in the limit. An instance
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of their problem is given by

min f(z) (4.18a)

subject to (1)’ —29—1 = 0 (4.18b)
r1—x3—2 = 0 (4.18c)

x>0, xz3 > 0, (4.18d)

where the objective f(z) is any smooth function. They show that, for a large choice of
starting points, the iterates remain bounded away from the feasible region and from any
stationary point of the norm of the constraints. This failure of the iteration takes place
regardless of the choice of merit function, and with any iteration that imposes the linearized
equality constraints

h((IIk) + h'(xk)d =0, (4.19)

where h(z) = 0 denotes the equality constraints (4.18b)—(4.18c). What occurs with a typical
implementation is that steps towards satisfaction of (4.19) are blocked by the bounds, forcing
the step to be truncated. The iterates converge to a point on the edge of the bounds where
the gradients of all active constraints are dependent. The presence of the bounds plays a
key role in blocking progress toward feasibility.

We now describe an example, where the bounds play no role, in which a class of Newton
methods cannot attain feasibility, regardless of the choice of merit function and of the step
selection strategy.

Example 4 Consider the problem

min f(z,y,z) (4.20a)

subject to : [x +y+ V22 + ( 2] =0 (4.20b)
V2

7((1) +y+vV22-2)y—2z) = 0 (4.20¢)

r > -1, (4.20d)

where f : IR> — IR is any smooth function. We will show that, for a range of infeasible initial
points (g, Yo, 20), any line search algorithm whose search direction d satisfies the lineariza-
tion of the constraints (4.20b)—(4.20c) will never achieve feasibility (even asymptotically)
nor converge to a stationary point of constraint violation.

Since Newton’s method is invariant under linear transformation of variables, we can
consider its behavior after the change of variables

1

T /2 —v2/2 —-12 (=
y |« | 172 V2/2 —1/2 y
z V2/2 0 Vv2/2 z

A computation shows that, under this change of variables, the constraints (4.20b)-(4.20c)
are transformed into the system of equations (2.27) from Example 2, which we rewrite for
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convenience:

T+ y? 0
o= (7%, ) (2):

The feasible region for problem (4.20), after this change of variables, is {z,y,z : ¢ = y =
0,z > —1}.

We can now reason as in Example 2 (except for the presence of the variable z, which
plays no role). Consider the plane

P={(L,y,2) :y,z € R};

which is disjoint from the feasible region. If (zk,y, 2x) € P, with y, # 0, and the search
direction d satisfies Fj, + Fj.d = 0, then it follows from (2.28) that d has the form

2
,dy) d, € R.

This implies that (g1, Y11, 2641) = (Tk, Yk, 2k) + ad will also belong to P for any positive
steplength «, and therefore the iterates will never become feasible. Moreover, the gradient
1

of the constraint violation ¢(z,y,2) = 3| F(z,v, 2)||? is bounded away from zero on P, as

from (2.30) we have that [|[V¢(1,y,2)|| > 1 for all y, z € IR. O

The examples and analysis in this section show that failure of a feasible primal-dual
iteration can occur with a KKT-based merit function of the form (4.6), but, under certain
conditions, failure will not occur with the barrier function (4.2) as a merit function. With
a method that generates infeasible iterates failure can take place in the neighborhood of
a point where that active constraints are dependent. This can occur because of the effect
of bounds or inequality constraints as in the example of Wachter and Biegler or without
involvement from bounds as in Example 4, which displays essentially the same type of failure
that occurs in Examples 1 and 2.

Acknowledgement. We are grateful to Annick Sartenaer for many useful comments and
corrections.
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