[T
L
A 2

Technical Report
RAL-TR-2002-001

CLRC

Preprocessing for Quadratic Programming

N | M Gould and P L Toint

CERN LIBRARIES, GENEVA

o202 g 2otedeo MRARENL

CM-P00041362

RAL-TR-2002-001
Preprocessing for quadratic programming

Nicholas I. M. Gould!? and Philippe L. Toint34

ABSTRACT

Techniques for the preprocessing of (not-necessarily convex) quadratic programs are discussed. Most of the
procedures extend known ones from the linear to quadratic cases, but a few new preprocessing techniques
are introduced. The implementation aspects are also discussed. Numerical results are finally presented
to indicate the potential of the resulting code, both for linear and quadratic problems. The impact of
insisting that bounds of the variables in the reduced problem be as tight as possible rather than allowing
some slack in these bounds is also shown to be numerically significant.

! Computational Science and Engineering Department, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, OX11 0QX, England, EU.
Email : n.gould@rl.ac.uk

? Current reports available from “http://www numerical.rl.ac.uk/reports,/reports.html” .

% Department of Mathematics, University of Namur,
61, rue de Bruxelles, B-5000 Namur, Belgium, EU,
Email : philippe.toint@fundp.ac.be

* Current reports available from “http://www fundp.ac.be/~phtoint /pht /publications.html”,

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory
Oxfordshire OX11 0QX

January 1st, 2002.

Preprocessing for quadratic programming 1

1 Introduction

We investigate presolving techniques for quadratic programs, that is nonlinear optimization problems of
the form

minimize g(z) = f+ g7z + 2T He
QP <{ subjectto c< Ax <@ (1.1)
z<r<T

where the vector of variables & as well as the vectors g, £ and T belong to IR", where H is a symmetric
7 X n matrix, A an m X n matrix, and where the vectors ¢ and ¢ belong to IR™. Infinite components are
allowed in z, Z, ¢ or €, and fixed variables and equality constraints may be specified by choosing, for any
component i, £; = T; Or ¢; = ©;, respectively. The nonzero entries of A will be denoted by a;; and those
of H by hi;. In many cases of practical interest, H and/or A are large and sparse.

Presolving (or preprocessing) techniques have a long history in the domain of linear programming (that
is for the case where H = 0in (1.1)), where they are considered as an integral part of high quality software
for this kind of problem. The idea of presolving is to exploit simple logical relations between constraints
and variables to simplify the problem at hand at low cost as much as possible, before passing the resulting
transformed problem to an effective solver. Once the transformed problem has been solved, the inverse
operation is performed to restore its solution in terms of the original formulation, an operation often
called postsolving (or postprocessing). The reader will find a clear and recent description of presolving
techniques for linear programming in Gondzio (1997) and Andersen and Andersen (1995), while older
references include {Brearley, Mitra and Williams 1975), Bradley, Brown and Graves (1983) and Tomlin
and Welch (1983¢, 1983b). General primal presolve techniques are also described in Fourer and Gay (1994).
Presolving for linear complementarity problem is discussed in Ferris and Munson (2001).

In this paper, we are principally interested in the case where H is nonzero. We do not make any
convexity assumption on (1.1), which is to say that H is allowed to be indefinite.

The first order optimality conditions for (1.1) at = are given by the conditions

g+ Hz — ATy -2 =0, (1.2)
c< Ar <7, (1.3)
<z <7, (1.4)
>0 when ¢; = [Az];,
yig =0 when ¢, < [dz]; < &, {1.5)
<0 when {Az]; = &,
and
>0 when z; = zj,
zjs =0 when g, < z; < I (1.6)
<0 when r; = Ty

where y and z are the optimal Lagrange multipliers associated with the general linear constraints (1.3)
and the bound constraints (1.4), respectively, and where the notation [u]; denotes the k-th component of
the vector u. As we shall see, we may be able to augment problem (1.1) with constraints on y and z of
the form

(AN
IA
w3l

y<y (1.7)

and

|t
IA

z

IA
bl

(1.8)

where 31,3 € IR™ and z,Z € IR" may contain infinite components and where equalities may be specified by
choosir?g lower and upper bounds equal, as above. Combining such bounds with (1.5) and (1.6) may enable
us to deduce which of the constraints are active at optimality. In the absence of a priori information, we
assume that

y, = —oo, Y, = +oo, z; = -0, Zj = 400,

2 Nicholas I. M. Gould and Philippe L. Toint

fori=1,...,mand j =1,...,n. When a constraint bound is satisfied as an equality, we say that this
bound is active.

2 Simple transformations

Most problem transformations that we discuss in the following are based on conditions (1.2)-(1.8). We
have deliberately restricted the class of transformations that we consider to those that do not create fill-in,
i.e. to tranformations that do not cause the number of nonzero entries in H or A to increase, since then
the original data structure may be reused to hold that of the transformed problem. They include a few
simple operations that we now briefly outline.

e Figing a variable. If we fix the j-th variable to the value T;, say, this operation requires that we also
adapt the other problem quantities to reflect the transformation. In particular, the need to update
the constraint bounds, gradient and objective function independent term as follows. If variable j
occurs in the i-th constraint, then

Q:- = — Q45T and E": =€ — a2,
where the superscript * denotes quantities associated with the transformed problem. The indepen-

dent term of the quadratic objective function is updated to
I =f+g;3; + thysaj

and the gradient becomes
98 = g +hjez; (K # 5).

In some cases, a variable may be ignored. This happens if variable j does not occur explicitly in the
constraints nor in the objective function. Its value has therefore no impact of their values, and it

may be set to any value z; satisfying z; < z; < T; without performing the updating of constraint
bounds, objective or gradient values,

* Tightening bounds. If we are able to deduce that z; < b;, say, then we may revise the upper bound
on z;. We may then distinguish the lollowing subcases:

¢ b; < z;: the new and old bounds are incompatible, and the problem must therefore be infeasible;

¢ b; = z;: the new bound is forcing and we may fix the j-th variable to b;, using the technigue
that we have just described;

© £; < b; <F;: the new bound can be tightened, which is to say that E}' = by;;

© bj > T;: the new bound is redundant and no information is gained.

In the case where the bound may be tightened, we note that the original value of T; has become
irrelevant, and we may just assume that it is equal to +o0o: variable 7 is said to be implied upper

bounded, meaning that the bound that can be deduced from the rest of the problem data is stronger
than ;.

Similar cases can be distinguished for the case where a new bound of the form b; < z; is deduced.
A variable that is both implied lower bounded and implied upper bounded is known as implied free.

Obviously, the same type of reasoning applies for the possible tightening of other bounds in the
problem, that is bounds on the dual variables z;, bounds on the constraint values [Az]; and bounds
on the multipliers y;. In the approach described in this paper, we do not take into account the fact
that dual variables or multipliers may become implied free, but we immediately exploit any strictly
positive or strictly negative value of z; or y; to fix Z; or ¢; to one of its bounds.

Preprocessing for quadratic programming 3

e Eliminating a constraint. If a constraint is either implied free or if it is known to be always satisfied for
other reasons, we simply remove it from the problem formulation without altering its feasible domain.
The number of rows in A then decreases by one, which is obtained by declaring the eliminated row
inective. Since we need these inactive rows in order to reconstruct the data of the problem after the
transformed problem has been solved, they are not completely discarded but are kept in the problem
data structure at the end of A, without playing any role in the transformed problem.

¢ Adding a multiple of a constraint to enother. As we will see below, it may sometimes be advantageous
to add a multiple of an equality constraint to another constraint, typically to create a new zero in
the updated version of the latter. In this case, one must be careful to monitor all new values of
the a;; in the updated row, as cancellation may imply that more than a single zero is created. This
typically occurs when combining linearly dependent constraints.

3 Problem reduction

We now review the problem simplications techniques, in which the above transformations may be used.
Although a large number of the techniques used for the simplification of QPs apply as well to the case of

linear programming, and are essentially described in the references cited above, we also mention them for
completeness.

3.1 Bound compatibility

Given problem (1.1), we may immediately verify the simple compatibility conditions

5"'.._;6 SEJ' (.7 = 1:"'7”): (31)
and
¢, <% (i=1,...,m). (3.2)

If one of these conditions fails, (1.1) is clearly incompatible and attempting to solve it is doomed to fail.

The diagnostic is then passed to the user and preprocessing stopped. We also immediately obtain the
simple conclusions:

2<0 = 2; <0 = z2; =7; = T; < 400
and

£j>02>2j>0:>$j:£j = Z; > —oo.

and, conversely,

Fj=400 = z; 20 = 2,20 and z,=- = z; <0, = z; <0,

for j = 1,...,n. If we now turn to the constraints and their multiplers, we obtain that, fori =1,...,m,
;<0 = <0 = =0 = ¢ <+oc

and
Ei>0:>yi>0:> Ci=C = ¢ >0

and, conversely, that

G=+00 = ¥ >0 =y >0 and g=-00 = yu<0=7<0

3.2 Reductions of the constraints

We next consider the problem simplifications that can be deduced from the primal constraints (1.3) or
(1.4) independently of each other and irrespective of the values of g or H.

4 Nicholas I. M. Gould and Philippe L. Toint

3.2.1 Empty rows

The first (and easy)} case is when row i of the matrix A is identically zero. In this case, either
[} S 0 S E’h (33)

in which case the problem is compatible and the i-th linear constraint may be removed, or (3.3) fails and
the problem is again incompatible.

3.2.2 Singleton rows

If a general constraint 7 has the form

I
FAN

i ST S G

for some j between 1 and n, then it can be recast as a set of simple bounds on the variable ;. More
precisely, this constraint is equivalent to

C; [. [(o5, .
= <z < — (lf aij > 0) or — <z; < == (if i < O)
Aij tij @ij Qij

Once the current bounds on z; have been possibly tightened using these relations, the i-th general con-
straint may be removed from the problem. We also note that, when one of the tighter bounds is active at
the solution, then the optimal value of y; may then be simply computed from that of z; a8 Yi = z;/aqj.

3.2.3 Doubleton rows and split equalities
Another useful case is when the i constraint takes the form
QipTp + QT = ¢

{(meaning that ¢; = & = ¢;). In this case, z; may be eliminated from the equality, giving that

Ci — Ak Tk

Qi
which in turns is equivalent to the bounds
L N L (3.4)
G T Gk
if @;; and @y have the same sign, or
Ci — QijL; <z < C; — QT (3 5)
ik -7 ik

otherwise. This shows that the bounds on z; may be “transferred” to x; (or vice-versa), so that z; may

be considered as a free variable. In other words, we obtain that £} = —co, = +00, and
[ci—ayT] ~ [e — ez
z{ = max |z, ——22L and T} = min [Ty, ——
L Gik | Gik

if a;; and a; have the same sign, or

€ — ;| _ \
£§ = max |g,, ——2H and T} = min |Fy,
L ik i L Gik

C; — aiL;

otherwise. As will be seen in Sections 3.3.1 and 3.3.2, this transfer is sometimes advantageous.

Preprocessing for quadratic programming 5

An extension of this idea is to free a variable by “splitting” an equality constraint into two inequalities
while removing the bounds on the considered variable. More precisely, the constraint

n
Qi T; + E airty =c¢; and z; <z; < T

k=1
ey
is transformed into
n T
a;;T; + E QikTh = Ci and e —a T < E QikThr < C; — L, {3.6)
k=1 k=1
ke ey
if a;; > 0, and
™ n
a:;T; + E aiTr =c; and ¢ —ayL; < E QikTr < ¢~ @i T (3.7)
k=1 k=1
k7t k7]

if a;; < 0. Of course, this transformation is only useful as a problem reduction technique if the original
equality may subsequently be eliminated from the problem, using the fact that x; is freed in the process
(see Sections 3.3.1 and 3.3.2). It also has the drawback of reducing the number of equality constraints,
therefore decreasing their potential use in other transformations such as those of Section 3.2.6. For this
reason, we found best not to use this technique in the first stages of the presolving process.

3.2.4 Forcing, redundant and infeasible primal constraints

If we now consider a general linear constraint, corresponding to the i-th row of A, say, then a simple
calculation shows that

n
_ def

[Ac]; = aya; < Y au®+ Y ez, = u, (3.8)

i=1 i=i i=1

i >0 i <0

and, similarly, that
_ def
[Az] > Z ai;z; + Z aiT; = L. (3.9)
al;>0 al;<0

The quantities #; and u; are known as lower and upper implied bounds on the i-th constraint.

Several cases may now occur. The first is when w; < ¢; or ¢; > ¢;. This implies that the i-th constraint,
cannot be satisfied for any value of the variables between the variable bounds, and the problem is therefore
infeasible. The second is when u; = ¢; or £; = &. The i-th constraint is then said to be foreing in the sense

that all variables occuring in this constraint must be fixed to their respective bounds for the constraint to
be satisfied, which implies that

T =T forale|a,-j>0 and i =I; forallj|a,-j<0

if u; =¢;, or

z;=g; forall jla;; >0 and z; =F; forall jlay <0
if £; = @. Once these variables are fixed, the i-th constraint is automatically satisfied and may be
eliminated from the problem.

It may also happen that ¢; < £; or u; < €. In this case, the corresponding inequality constraint is
redundant and may be dropped from the problem.

6 Nicholas I. M. Gould and Philippe L. Toint

3.2.5 Further use of implied variable bounds on primal constraints

If a primal constraint is not forcing, redundant or inconsistent, we may still use its expression and the
values of ¢; and u; to deduce useful bounds on the variables that occur in the constraint. Consider a
variable k occuring the the i-th constraint with a;; > 0. Then

n
b4 ap(zr —z) < Z a;;T; < {3.10)
=1

which then implies that

Ty < I +

Qi
Similarly, if a < 0, then

I/\
ol

&+ a,k(mk —Tx) < Z (3.11)

implies that
¢~ £
air

We may apply the same reasoning using the implied upper bound wu; and obtain that, for a;; > 0,

Tp > I+

g < Zaijxj < i + aie{Tr — Tk)
=1

implies that

_ G-
Tk > Tk + =

)
Qi

while, for a; < 0,

¢ < Zaijﬂij < ui + aw(TE — z)

j=i

implies that
Tp Sy + a8
Qi

Of course, these bounds are only useful if #; or u; are finite, which is to say when the bounds of the
variables occuring in their definitions (3.9) and (3.8} are finite. We now follow Gondzio (1997) are derive
further implications in the special case where only one of the bounds on the variables is infinite in (3.8)
or {3.9}). Assuming that £, = —oo for some k such that a;; > 0, then, considering the right part (upper
bound) of the i-th constraint, we have that

aQ;p Ty + E Qi + E a”$J<E 0T < i,

=13k =
aij >0 a.,<0
which then yields that
zp < 2 E QijZ; E | aiTj
ik i1k —
ai; >0 ﬂ-;; <U

Symmetrically, for a;; < 0 and T = +oc, the inequality

ik Tk + § a"ljx + E a‘ljxj < E Qi L5 S Ciy

J=1,j%k
a.,>(] e <0

Preprocessing for quadratic programming 7

gives that
T n
1 |_ —
Ty 2 — | G — @i, — E aijT;
Gik : .)
i=1 i=1,#k
ai; >0 ai;<0

If we now turn to the left part (lower bound) of the i-th constraint, we deduce in the same manner that

n TE n
¢ < E ai;Ti < QT + E ai;T; + E 0ijZ;
=1 i=1,i#k i=1
a¢j>0 a;,-<0
and therefore that
T n
1 _
Te 2 —— | & — E @ijT; — E , @i,
ik i N o
i=1,7#k i=1
ai; >0 a.'j<0

when a;; > 0 and T = 400, while the inequality

k) n n
(S E QijT; < @ik + E 4 Tj + E QijiL;
i=1

J=1 i=1,1#k
ai;j >0 a; <0

implies that

n n
1 -
Tp S —— | & — E ai T — E Qi
aik —

i= J=1.j#k
aij>0 ﬂ(j(O

when a;; < 0 and z;, = —o0.
This technique is especially useful because it allows the derivation of bounds on a variable that is free
in the original problem, provided it occurs as the only free variable in a constraint.

3.2.6 Making A sparser

A final possible reduction using primal constraints is to create new zero entries in A by suitably combining
two constraints. More specifically, we consider the case where both constraints ¢ and k involve variable
7 (that is ai; # 0 # ax;) and where the i-th constraint is an equality constraint (i.e. ¢; = 7;). It is then
possible to perform the transformation

2k .
[constraint k|t = [constraint k] — 5 [constraint i), (3.12)
ij
together with
QriC; ;€
cho- 5, o =g -0
Oij Qi
The multiplier bounds then become
Yt =Y Yt =TUp:
together with
ariY =, Okl
yj:ﬂi"*' £ W:yk—i_ J..k
a5 45
if the sign of ag; is the same as that of a;;, and
ax;y =, %Y
yi =y +—t g =gt

8 Nicholas I. M. Gould and Philippe L. Toint

otherwise.

Constraint ¢ is then called the pivot constraint and a;; the pivot. This transformation does not alter
the feasible set of the problem, but introduces a zero in position (k, j) of A. If we wish to remain consistent
with our strategy of avoiding fill-in in this matrix, we must restrict such transformations to the case where
the sparsity pattern of row k contains that of row i, that is when

{11<j<nand a; Z0} C{j|1<j<n and az; #0}.

In practice, we maintain a list of the equality constraints which are potential candidates for being pivot
constraints. Within this list, we follow the procedure suggested in Gondzio (1997): for each constraint 4
taken by increasing number of nonzeros, we first search the column of A that contain the least number of
nonzeros. We then consider combining constraint ¢ and each of the constraints that have a nonzero in this
column of minimum size: the transformation is applied if the sparsity pattern of the considered constraint
k is a superset of that of the pivot constraint i. Note that constraint k may itself be an equality, which
implies that the list of equality constraints (used as candidate for pivot constraints) must be managed
dynamically.

If constraint k turns out to be a multiple of constraint 4, then the transformation not only “zeroes” ay;,
but the entire k-th row through cancellation. This is one circumstance where the monitoring of cancellation
is useful, as it may lead to the conclusion that constraint & may be eliminated from the problem.

The attentive reader will have noticed that this transformation is a form Gaussian elimination. Since
the purpose of the presolving procedure is not to replace the linear or quadratic solvers that are potentially
much more efficient in terms of linear algebra, it is useful to limit the number of transformations of the type
just described. In our implementation, this number is kept reasonable by limiting the number of “passes”
in the procedure, that is the number of times one goes through the list of candidate equality constraints to
see if they can be used as pivot constraints. Also note that care must be taken to avoid dividing by a pivot
value which is too small, which could cause severe loss of information when transforming the constraints,
and thus some kind of threshold pivoting {see Duff, Erisman and Reid, 1986, for instance) is advisable.

3.3 Reductions on the variables

We next consider the problem reductions that depend on all constraints, or on the values of gor H.

3.3.1 Free linear singleton columns

Free (or implied free) variables that occur only linearly in the objective function and explicitly occuring
in a single constraint may be handled using equation (1.2), which reduces in this case to i — aijy; = 0.
Thus, we must have that

Y

y; = 2L {3.13)

(2473
Two cases are then possible. The first (and most common) is when g; # 0. In this situation, y; is also
nonzero and its sign determines which of the lower or upper bound is active for constraint 1. This constraint
may therefore be interpreted as an equality constraint, setting
=6 if 4, <0, or T =c¢h=¢ if y;>0.
Furthermore, since variable j only appears in the i-th constraint which is now transformed into an equality,
it can be substituted out from the constraint, giving that

1
Qij

r; = ET — Za,—gmg . (314)
£=1

oy

Preprocessing for quadratic programming 9

When a;; is not too small', we then remove this variable from the problem, while remembering that
its value can be computed from (3.14), once the optimal values of the other variables are known. Of
course, the objective function and the gradient of the transformed problem must be updated to reflect this
substitution. Using (3.13) and (3.14), we obtain that these updates are given by

fr=f+ay and gl =gi—auy; (£ # jan#0). (3.15)

The second case is when g; = y; == 0. In this case, the value of the objective function is independent, from
that of the j-th variable. It can therefore be fixed to any value that makes the problem feasible, without
affecting optimality. We may thus, for instance, choose (3.14) or

c. +¢ i
= =i LI E . , 3.16
i Gy 2 p— e ()

i#
depending on which of a boundary or interior solution is prefered. Note that, since y; = 0, no update of
the objective function or gradient is necessary. In both cases, constraint i may then be eliminated from
the problem, as it is implicitly taken into account by (3.14) or (3.16).

This reduction is quite advantageous since it allows both the numbers of variables and constraints
to decrease by one. Note that the technique of Section 3.2.3 (transferring bounds on the variables in a
doubleton row) may sometimes be used to make a linear singleton variable free or implied free.

Finally, linear singleton columns that are not free can nevertheless be used to deduce bounds on the

associated multiplier if one of the bounds corresponding to the column is infinite. Indeed, in this situation,
we have that g; — a;;y; = z;. Thus, we obtain that

+ g;

Y; ga— if T, =+o00 and az; >0, orif z; = —co and a;; <0,

)

and)
yg"zagi if T; =400 and a;; <0, orif z; =—o0 and a;; > 0.

if

3.3.2 Doubleton columuns

Assume now that column j of A only contains two nonzeros, a;; and ay;, that variable j is linear (meaning
that h;; = 0 for ¢ = 1,...,n) and free or implied free, and that constraint i is an equality constraint.
Then, as above, variable j may substituted from this constraint, yielding (3.14). However, the situation
is now slightly more complicated in that not only the objective function and gradient must be updated

using (3.15), but (3.14) must also be substituted into constraint k. This transformation may be expressed,
provided a;; is not too small, as

Qfj Qg
af, = agg — —— (3.17)
ﬂ,,;j
for£=1,...,n,£# 7, and
Qg C; QriCi
& =¢ — = and =g - 2
Gij @i
{note that ¢; = ;). Moreover, the j-th component of {1.2) gives that
G5 — A5l — kil = 25 = 0 (318)

since variable j must be linear and {(implied) free. We therefore deduce the bounds

gj—akjyk << gj_akjyk
e S S

Qi Aif
Mn practice, when its abolute value is above some user-specified threshold.

10 Nicholas I. M. Gould and Ph_ﬂippe L. Toint

if a;; and ax; have the same sign, and

gi — QkjY i — QY
J Iy <y< 95 kilk
Qij Qij

otherwise. Similarly, if ay; is not too small,

gj ~— @iy, < i — @iy,

akj akj
if a;; and ax; have the same sign, and
95 — iy, P — 235,
2 3, S Uk S g5 ij ¥
Ok Gkj

otherwise. One could argue that (3.17) might create fill-in in A, when az; = 0 # ay for some £ # j.
This is formally correct, but, fortunately, of no consequence since we may use the storage required for
the i-th pivot contraint (to be eliminated) to store these possible fill-ins, as their number cannot exceed
the number of nonzeros in constraint 7. Of course this requires some care in the associated data structure
management (see Section 4). In our implementation, we use an additional integer array s of size m to
allow the concatenation of two rows of A4 into a single “merged” row. More precigely, s(k) contains the
index of the row to be concatenated to row k, if there is such a row, or a conventional marker if there is
no further row to concatenate to row k. This allows an easy exploration of merged rows.

This kind of reduction is especially useful in A (or part of it) is associated with linear network con-
straints, where intermediate nodes may often be eliminated. On the other hand, there is a danger of
creating constraints that are too dense (although to total number of nonzero entries in A can only de-
crease), which can be a disadvantage to certain interior-point methods, and safeguards against this effect
may be built in the procedure. For instance, row merging can be allowed so long as the size of the merged
row does not exceed that of row k in the original problem formulation by more than a user-specified per-
centage when A is sparse. Observe that one may again attempt to make a linear doubleton variable free or
implied free by applying the technique of Section 3.2.3. Finally note that our decision to use the storage
originally allocated for the pivot constraint for the possible fill-in in row k prevents us from substituting
{3.14) into more than one other constraint.

3.3.3 Weakly forcing, forcing and infeasible dual constraints

In the case of general dual constraints, we see that the j-th constraint in (1.2) may be rewritten as

m n
Zaijy,; — Ehgjmg =05 — 2. (3.19)
=1 =1

If some components of y or § are finite, this equation may be exploited using the notion of implied bounds,
in a manner similar to used for primal constraints in Section 3.2.4. We first define

m m n n
def — —
Vs ?E Z ai’jgi + Z ai;Y; — Z hgjl‘f - Z hgj:'_.l?_f (320)
=1 =] £=1 =1

a;; >0 ai; <0 he; >0 he; <0
and
m m n n
def _ .
w; = E ;i + E iy, — E hgj_:gl - E hij[. {3.21)
i=1 i=1 =1 =1
a:; >0 ai; <0 hep >0 he; <0

From these definitions, it is clear that

m n
v < E iy — E hzj:lﬁg < wy,
i=1 £=1

Preprocessing for quadratic programming 11

and therefore, from (3.19), that
vj £95 — 2 S W (3.22)

Unsurprisingly, v; and w; are called implied bounds on the j-th dual constraint. We then obtain that
95 —wj =25 < g5~ vy

Let us consider first the case where z; < 0, which must oceur if z; = —oo, for instance. A first
possibility is then that g; > w;. If this happens, then we deduce from (3.22) that

2 > g5 - w; > 0, (3.23)

which is inconsistent with our assumption that Z; < 0. Hence the problem is dual infeasible, and the
presolving procedure may be terminated. A second possibility is that g; < v;. In this case, we obtain
from (3.22) that

Zj <g;—v; <0, (3.24)

which in turn implies that the upper bound on the jth variable must be active: we may then fix x; to T;.
The j-th dual constraint is said to be weaekly forcing and the j-th variable is said to be dominated.

On the other hand, it may happen that z; > 0 (for instance if T; = +o0). Then, if g; < v;, we deduce
from (3.22) that (3.24) holds, which is again incompatible with our assumption that z; > 0. The problem
is also dual infeasible in this case, and our preprocessor exits with this information. If g; < v;, then it
follows as above that (3.23) holds. The j-th dual constraint is therefore forcing and we may then fix z; to
its lower bound z;.

Finally, it may happen that the j-th dual variable is known, i.e. that z; = Z;. For instance, if variable
7 is free or implied free, then z; = 0 = z;. If, additionally, we also have that v; = g; — z; or w; = g; — Z;,
then the j-th dual constraint is forcing, and, as in Section 3.2.4, all variables and multipliers occuring in
this constraint must be fixed to their appropriate bound for the constraint to be satisfied. More precisely,
we need to fix

oy =z, if (v; =g; —z; and hy; <0) or (w; = g; —%; and hy; > 0),

or

zy =Ty if (w; =g;~2; and hy; <0} or (v; =g; —%; and hy; > 0),
fork=1,...,n, as well as

Yi =y, if (v; =9;—2; and ay; >0) or (w; =g¢; —%; and ax; <0),
or

vi =7, if {w; =g; —2; and ax; > 0) or (v; =g; —%; and ag; <0),
fori=1,...,m.

3.3.4 Further use of the implied bounds on dual constraints

If (3.19) is neither infeasible or (weakly) forcing, we may, as in Section 3.2.5, make further use of v; and
w;, yielding new bounds on the variables or multipliers that may then be used for possibly tightening the
best bounds known for these quantities.

Consider first the case where zZ; < 0. We may then derive from the definition of w; and (3.22) that,
fork=1,...,m,

wj +aki Yk — Vi) 2 95 — 25 2 95
when ag; > 0, and
wi+ari(ye —Y,) 295 — 2 2 g5

12 Nicholas I. M. Gould and Philippe L. Toint

when ag; < 0. From these two inequalities, we may then deduce that

g Wi —g; .
ykzyk—wj 9i if ag; >0, and ykg'yk—"—g"" if ax; <O.
G j — (L1
Similarly, we also obtain from the definition of w; and (3.22) that, for k=1,...,n,
wj — his(@x —24) 2 9, — 25 > g;
when hg; > 0, and
wy — hij(Te —Fx) 2 g5 — 2 > g5
when hy; < 0, from which we derive that
th S o+ 2T i k>0, and oz > T+ 2% if py; <0,
hkj QFj

The same reasoning applied to the case where z; > 0 (and thus, in particular, if T; = +00) yields that

vi—g; . v — as
N B if ag; > 0, and Ye 2 Y — i 95
ki QL

if ag; < 0.

and

:Ekak+Uj_—gj if hgy >0, and mkg£k+7)j_gj if hgy < 0.
hkj Gkj

As for primal constraints, the above bounds are potentially useful when the involved implied bounds
are finite, that is when v; > —oc or w; < +00. However, we may also apply the technique of Section 3.2.5
and deduce further bounds on the variables or multipliers in the case where the implied bounds on the j-th
dual constraint contain a single infinite contribution (that is a single infinite term in the sums of (3.20) or
(3.21}). We now detail these bounds for the sake of completeness.

The unique infinite contribution may occur because one bound on the multipliers is infinite, or because
one bound on the variables in infinite. Assume first that it corresponds to the k-th multiplier (that is
Y, = —00 or §; = +00), and define

™m i T n
def — =
U;[r'yk] 2 E aiy, + E ai;Y; — E heiTe — E hejzg,
=1 =1

i=l,igk i=1,istk
a;i; >0 aq; <0 he; >0 he; <O

and

m m n i
def — T,
WP S g+ Y agy - Y hgz - 3 ke
=1 =1

i=1,igk i1,k
ai; >0 ai; <0 he; >0 hei <0

We thus have that m .
TrjY% + vﬁ-"” < Z QY — Z hejre < arjye + w&”*]
i=1 =1
and therefore that
(9] [!uc]_

GrYe + V5 S g5 — 25 < ariyr +w;

If we also have that Z; < 0, we then deduce that

95 — wﬁ”*] . -~
yp > ——— if ag; > 0 and ¥, = 400,
QArj
and that (o]
gj _ ,wjyk

Y < if ag; <0 and Y, = —0-

QA

Preprocessing for quadratic programming 13

Hf, on the other hand, z; > 0, then we obtain that

el
9i —Yj . —_—
yp < ——— if ax; >0 and g, = +oo,
Gk
and ve)
Ve
gt
ykZ"g—Ja—_J— if ax; <0 and y, = —o0.
kj
Symmetrically, if the only infinite bound corresponds to the k-th variable (that is z, = —o0 or T = +00),
we may define
i m n ™
def _ -
GE Y eyt 3D i Y haTe- Y i
=1 i=1 =1,k 2=1,t#k
ai; >0 ;<0 he; >0 he; <0

m m n n
def — —
w ST aylit 3 sy D hume— D b,
=1 i=1

i I=1,t%k =1 fAk
ai; >0 ai; <0 ke>0 he; <O

and obtain that " n
—hyjz + Ug-“] < Z aijlfi — Z hejze < —hgjzy + wﬁ“]
ir=] =1
and therefore that

—hg;Eg +'u£-“] <g;— 25 < —hgizs +w£-z'°].

If, as above, we also have that Z; < 0, we then deduce that

g; — ']
oy < —2—2 — if hy; >0 and z; = —o0, (3.25)
his
and that
o aplE]
g5 — Wy . —
Ty > ————"— if hy; <0 and T = +oo, {3.26)
hy;
while, if z; > 0, we obtain that
gi =]
I > -2 if hy; >0 and Ty = +oo, (3.27)
hij
and
g; — U[_M]
Tp < ——’—h—f* if hp; <0 and z, = —oo. (3.28)
kj

3.3.5 Removing dependent variables

The removal of dependent variables is reminiscent of the procedure of Section 3.2.6, applied to columns
and now possibly involving the matrix H. The difference is that we restrict ourselves here to an attempt
to identify all pairs of variables k and j such that

ahgk = hgj (f =]., ‘e ,ﬂ) and GQip = A4 (% = 1, e ,m) (329)

for some constant o # 0 independent of i and ¢. In order to verify this condition, we start by maintaining
a list of variables that are potentially dependent from another and by rejecting variables k within this list
whose associated column is diagonal in H. Indeed, if hizx # 0, then (3.29) implies that hy; = hji # 0, in
which case column k of H cannot be diagonal. We next identify a row ¢ of A such that a; # 0 which is
of minimal size, and attempt to verify that (3.29) holds for each column j # k such that ai; # 0. Since

14 Nicholas 1. M. Gould and Philippe L. Toint

this verification is potentially expensive, we first reject all columns j of A that have a number of nonzeros
different from that of column k. We also eliminate all j such that the size of the j-th row of H is different
from that of its k-th row. We also terminate the verification of (3.29) as soon as a row index is found
such that the second part of (3.29) fails, thereby limiting the computational effort as much as possible. If
the second part of the condition (concerning A) is verified, we then verify its first part (on H), stopping,
as above, as soon as possible. This procedure is inspired by Tomlin and Welch {1983a), Andersen and
Andersen (1995) and Gondzio {1997), with adaptations for the presence of the Hessian H. If (3-29) holds,
two cases may arise.

The first is when, additionally, agx = g;. In this case, we may interpret variable J as being redundant
in the problem, since the dependence of the objective function and constraint value on this variable is
exactly a times their dependence on variable k. We then remove variable J from the problem, and perform
the replacement

[variable k]* = [variable k] + a[variable 7],

such that

hgkm;:' = hexTy + aheex; = hepzy + hejz; (E=1,...,n),
and

agkl‘: = Qep ¥y © 0GR T; T GgpTy + ATy (£=1,.. .y T

This implies that the bounds of the new variable k are updated hy

]

I=§k+a§j and TF =% +ax; if a>0,

or

g: =z, +aT; and ZE}:" =T + QL ; if a<0,

while the bounds on the associated dual variable are now given by

g}l‘=gk+a§j and Ejzi;,+a2j if a>0

or
,Z_I=§k+a5j and E}f:fk+a§j if a<O.

No updating of A, H or g is necessary. This type of combination is especially useful when the updated
lower or upper bound become infinite.

If, on the other hand, agy # g;, then it may happen that one of the variables under consideration
dominates the other. If agy > g;, more reduction in the objective function can be achieved by reducing
variable k as much as possible than would be possible by reducing variable j. However, the dual constraints
have to remain feasible, which is is always possible if variable j is free or if it is suitably unbounded. More
formally, using (3.29), the symmetry of H and our assumption on g, we have that

m

n m "
Qzr = agy + o Z hieze — o Z QY > G + Z hjgay — Z QiU = 24, (3.30)
=1 i=1 =1 i=1
and therefore, if z; > 0 (which is the case when T; = +00) and a > 0, we deduce that z;, > 0. As a
consequence, variable & may be fixed to its lower bound in this case, unless it is equal to —co, implying
that the problem is dual infeasible. The same deduction can of course be made from (3.30) if z; < 0 (for

instance when g; = —00) and a < {. Symmetrically, if agy < g;, we obtain that
n nt Tt
azr = agy + o Z hpezy — o Z ay; < ag; + Z hjexe — Zaijy,- = azj, (3.31)
=i i=1 =1
and we deduce that variable & may be fixed at its upper bound if z; <0 (e.g. if z; = —oc) and o > 0, or

if z; > 0 (e.g. if T; = +00) and @ < 0. The inequalities (3.30) and (3.31) may also be used symmetrically
to deduce bounds on z; from the bounds on zx, and thus possibly to fix z; at one of its bounds.

Preprocessing for quadratic programming 15

3.4 TUnconstrained reductions

A last case of interest occurs when a variable does not appear in the linear constraints: we then say that it
is linearly unconstrained. However, note that such a variable usually remains subject to bound constraints.

If a linearly unconstrained variable j additionally occurs only linearly in the objective function, then
it may simply be fixed to its lower or upper bound, depending on whether the corresponding gradient
component g; is positive or negative. If the associated bound is infinite, then the problem is dual infeasible.
If g; is identically zero, then variable j has no impact on the value of the objective function, and it is fixed
to an optimal value that is arbitrarily chosen between its lower and upper bounds.

If such a variable does not occur linearly in the objective function, but its contribution is separable from
that of other variables (which is the case when the corresponding column of H is diagonal), then the global
minimum of the one-dimensional associated quadratic within the variable’s bounds can be computed unless
this problem is dual infeasible. The considered variable may then be fixed to the computed minimizer and
its dual variable chosen accordingly.

4 Data structures and presolving modes

We assume that the matrices A and H for problem (1.1) have been input using a row-wise storage scheme
(see, Duff, Erisman and Reid, 1986, pp?), and that only the lower triangular part of the symmetric H is
given—our implementation actually supports, in addition, both dense and co-ordinate input, but these
are converted internally into a row-wise scheme.

All the problem reductions described above can then be carried out reasonably simply and efficiently,
provided we maintain adequate additional information and suitably manage the corresponding data struc-
ture. In our implementation, we have chosen to maintain a record of the number of nonzeros in each
row and column of A and H, as well as an indicator of the diagonal nature of each column of H. This
informations is stored in three integer vectors that are built at the beginning of the problem analysis and
maintained throughout the problem reduction process.

Since a number of problem reduction technigques {see Section 3.2) require access to rows of A while
others (see Section 3.3) need access to its columns, it is useful to supplement the structure of A by a linked
lists superstructure describing its columns (see Duff et al., 1986). Similarly, it is advantageous to be able
to access to a complete row (or column) including its part beyond the diagonal. For this purpose, we also
build a pointer superstructure that provides a linked list of all nonzero elements of the upper triangular
part of a Hessian row. Both these superstructures (for A and H, whenever appropriate} are computed at
the start of the analysis.

As sugpested in Section 3.3.2, we also maintain an array of length m indicating, in its ¢-th component,
whether or not another row structure of A is to be concatenated with row i. The presence of this array
slightly complicates all program loops on the nonzero entries of a row in this case, but the additional
complexity remains marginal.

We also maintain an history of the successive transformations, as it is necessary to invert them once
the transformed problem has been solved. This history takes the form of two integer and one real vectors.
Each of these arrays has a length equal to the number of transformations actually applied to the problem.
The coding of these transformations is slightly more complicated than used by Gondzio {1997), but remains
comparable in the amount of memory used. As the number of problem transformations may sometimes be
substantial, we also provide a mechanism to save their history to disk files. The user is asked to specify how
many transformations are to be kept in memory, and the associated memory storage is then successively
filled and written to disk whenever necessary, in a totally transparent manner.

Two status vectors are also maintained for the variables and constraints, in order to distinguish active
variables or constraints (that is variables or constrained that haven’t been removed from the problem
formulation) from inactive ones. The status vector associated with the variables is also used to keep
track of implied free variables, whenever possible. Note that the user may specify in these vectors in

16 Nicholas I. M. Gould and Philippe L. Toint

a variable or a constraint is to be considered as part of the problem or not. This is potentially useful
in the case where one solves a set of “neighbouring QPs” that differ by the presence/absence of a few
constraints or variables, as can be the case in the exploration of the combinatorial tree for a nonlinear
integer programming problem. We further maintain a list of rows and columns of 4 whose number of
nonzeros have been modified, in order to restrict the application of the heuristics of Section 3.2.6 and 3.3
to these rows and columns, respectively. This technique allows us to use these more costly procedures
systematically at a very modest cost.

We also followed a suggestion made by Fourer and Gay (1994) in order to avoid, to some extent,
the presence of redundant constraints in the reduced problem, which arise naturally as a result of the
elimination process. While performing the problem transformations, we store in memory the best bounds
on the variables that are known not to be redundant for the {reduced) linear constraints, and allow the
user the option to pass this set of bounds to the solver, instead of the tighter but possibly more degenerate
ones that result from the problem reduction process. This option is referred to as the “medium” mode, at
variance with the “tightest” mode where the tightest known bounds on the variables and constraints are
included in the reduced problem. We also extended this idea by allowing the user to require the loosest
bounds that are known to guarantee the equivalence of the reduced problem an the original one, an option
that we refer to as the “loosest” mode. We comment in Section 7 on the impact of using these options.

5 The final permuted format

When the problem analysis is finally complete, we permute the resulting transformed problem into a form
that is designed to make the computation on this transformed problem eflicient. We have chosen a form
where the variables are ordered so that free variabies occur first, and so that the bounds on the remaining
variables appear in the order

non-negative variables: 0 < (J=1,...,m),

lower bounded variables: z; < =y (§=n1+1,...,n9),
range constrained variables: z; < z; < Z (J=na+1,...,n3),
upper bounded variables: z; S T (F=nz+l,...,m4),
non-positive variables: z; < 0 (F=ng+1,...,n5),

where the unspecified bounds are infinite and where n5 < n is the total number of variables remaining
in the transformed problem. Within each category, the variables are further ordered so that those with
non-zero diagonal Hessian entries occur before the remainder. The constraints are also ordered so that
their bounds appear in the order

equality constraints: ¢ = [Azx]; (F=1,...,m1),

non-negativity constraints: 0 < [Az]; (i=mi+1,...,ma),
lower bounded constraints: ¢, < [Ax]; (f=myg+1,...,m3),
range constraints: g < [Az)y £ & (i=m3+1,...,my),
upper bounded constraints: Az); < & (i=ma+1,...,ms),
non-positivity constraints: [Az); < 0 (i=ms+1,...,ms),

where mg < m is the total number of constraints remaining in the transformed problem. The data ¢, H
and A is reordered to conform with the above scheme; the digonal terms of H (if present) are stored last
within each of their given (subdiagonal) rows, so that unnecessary checking for diagonal entries does not
occur when forming Hessian-vector products.

Of course, the data associated with the disregarded variables or constraints is not lost. In practice,
we permute it to the end of the original data structures, beyond the reordered data for the transformed
problem. This ensures that is does not interfere at all in the processing of the transformed problem.

Preprocessing for quadratic programming 17

6 Problem restoration

Once the transformed problem has been processed (solved, hopefully), it is of course important to translate
the results obtained back to the original QP formulation, reintroducing variables and constraints that were
eliminated in the presolving process. This is called postsolving, and is simply performed by applying the
inverse of the problem transformations in the reverse order. In terms of the notation used above, this means
that, for each transformation, we have to deduce the quantities without the * superscript from those with
a * superscript. While this is rather straightforward in most cases, several points are nevertheless worth
noticing.

The first is that the restoration of certain problem values might require that of others. For instance,
the restoration of the original coefficients of the objective function’s gradient requires the restoration of
the coefficients of A as well, whenever a variable has been fixed in the the presolving process. A simple
strategy would be to always restore the complete problem data, but it might be advantageous to avoid
the irrelevant part of this computation when restoration of the complete problem is not necessary. We
must therefore keep track of the successive dependencies between the various problem quantities that
must be restored while transformations are determined and applied, in order to reconstruct all necessary
problem components, but only those, and only as far as necessary within the postsolve process. In our
implementation , we explicitly store these dynamic dependencies during the problem reduction phase for
reuse when postsolving.

The second point of interest is that it is usually desirable to recover the values of the dual variables and
multipliers at the solution of the original problem from those at the solution of the transformed problem.
For each problem transformation, we therefore have to deduce z and y from 2%, y* and, possibly, other data
of the transformed problem. We briefly consider how this can be done for some problem transformations.

6.1 Fixing a variable

Fixing a variable z; does not always permits to simultaneously fix the associated dual variable z;. For
instance, if we happen to deduce that 2; > 0, then we may fix x; to its lower bound, but the value of z;
is given by the equation z; = g; + [Hz|; — [ATy]; and both z and y are still unknown at the presolving
stage. Fortunately, this equation may be used when postsolving to deduce z; from the optimal z*, HY,
A" and yt, ie.,

2z = gj+ [HT2™]; — [AYTyH);.

6.2 Tightening a bound on the variables

I a bound on z, say, is tightened during the analysis, it may happen that the solution of the reduced
problem has a nonzero dual variable zk+ associated with this constraint. Since it is purely artificial, z;
must be set to zero in the solution of the initial problem, while maintaining both dual feasibility and
complementarity. This typically requires modifying the multipliers associated to the constraints involving
zi and, as a consequence, the duals z; of the other variables appearing in these constraints.

The simpler case is when an equality doubleton constraint is used to transfer the bounds on z; to zx,
as explained in Section 3.2.3. In this situation, we may distinguish two cases. In none of the bounds in
(3.4) or {3.5) is active, this means that the original bounds on z; are not active at the solution: they are
therefore irrelevant and could have been forgotten from the problem. Thus

zi=2z7(=0), z=2 and Y=y,
If, on the other hand, one of the bounds in (3.4) or (3.5} is active at the sclution of the transformed

problem , we first deduce that 2; must be zero. Moreover, (1.2) and the fact z;-r = 0 by design yield that

_ +
Qi +z; = QY

_ + +
AikYi = GigYy; T 2.

18 Nicholas I. M. Gould and Philippe L. Toint

We then immediately deduce that

1 Aiqf
yi =y + -a—z,;" and z; = ——Lz7. (6.1)
ik

@ik

The same type of reasoning applies to the slightly more complex case where bounds on z; are tightened
as the result of the analysis of the i-th primal constraint (see Section 3.2.5). In this case, the i-th constraint
may involve more than two variables, which means that we have to replace the second part of (6.1) by

Zj = —%z: for all j|a; #0. {6.2)

The most intricate case is when a bound on Ty is imposed as the result of the analysis of dual con-
straints, that is via (3.25)(3.28). In this case, the multipliers of all constraints i such that a7 0 must
be considered, together with the duals of all variables involved in these constraints. Fortunately, this
exploration and the associated updating of the multipliers and dual variables is typically very fast.

6.3 Freeing a variable by splitting an equality constraint

Transfering the bounds on a variable into bounds on a split equality constraint (as described at the end
of Section 3.2.3) is another case where recovering the dual variables and multipliers requires some care.
If 7 denotes the multiplier associated with the inequality constraint in of (3.6) and y; the multiplier
associated with the equality constraint, these values satisfy the dual equations

F m
gi + Z hejze — Z apjy;' - aijyj =0
£=1 p=

1
p#i
and
n m
g+ > hpezy ~ > ey — auwy — augit = zy
=1 p=l
p#i

for k # j, while we also have, for the problem before the transformation, that

n ™m
G+ D hews = apryp = 2
=1 =1

for k =1,...,n. It can then be verified that we may recover the value of 2; and y; from the relations
zj = —ay§; and g =y +§],

the dual variables of the variables different from j and the other multipliers being unmodified.

6.4 Forcing primal constraints

Consider now the problem transformation that removes a forcing primal constraint and fixes the values of
each of the variables occuring in this constraint to its lower or upper bound (as discussed in Section 3.2.4).
We then use the following strategy, proposed by Fourer and Gay (1994), to recover the associated dual
variables and multiplier. Let J be the index set of the variables fixed when removing the forcing constraint

t. If u; (as defined in (3.8)) is equal to ¢;, we know that ¥: = 0 and choose it as the smallest number which
is sufficiently positive to ensure that

zj <0 forall j|la; >0 and z; 2 0 forall j|a;y <0,
while we choose y; to be the largest non-positive number ensuring that

zjz[]fora.llj|aij>0 and szOforallea,-j<0
if £; (as defined in (3.9)) is equal to ;.

Preprocessing for quadratic programming 19

6.5 Linear combination of constraints

If we consider the transformation that add a multiple of an {equality) constraint to another constraint (such
as in Section 3.2.6, where this preocedure is used to make A sparser), the formulae for the corresponding
multipliers are easy to find. Specifically, if (3.12) describes such a transformation, we have that

+_ 9k

ve=y{ and gi=y iy
a,;j

Yy -

6.6 Constraint elimination using linear doubleton columns

Another case of interest is the undoing of a transformation where a linear (implied) free doubleton column
is used to eliminate one of the variable from an equality constraint (see Section 3.3.2). If variable j is
eliminated by substitution from constraint ¢ into constraint k, the j-th component of (1.2) gives (3.18) since
variable § must be linear and {implied) free. On the other hand, the same condition on the transformed
problem gives that
g+ + HYzt — [A+]Ty+ = o7t

We may then write the /-th component of this identity (where we assume that z; occurs in the transformed
problem) as

m
of - aiwi = 9e= 2o -l + eyl = Y aluy + e (e (6.3)
p=1
pEk
where we used the second part of (3.15) with (3.13) and (3.17). Now observe that, since z; is linear,
H = H" and [H*z%)y = [Hz];. Moreover, ap; = a;'e for p £ k, p # i and £ # i since the transformation
only alters rows k and ¢ in A. It is now easy to verify that the choices

[2e)e =[281e (£#3), and z; =0,

together with
1
e =y, and yi= —(g; ~ axyn)
ij
(the last equality resulting from (3.18)) translate the optimality conditions of the transformed problem
into optimality conditions for the untransformed one. In particular, (6.3) reduces to the £-th component
of (1.2) for the untransformed problem.

7 Preliminary numerical experience

We now report some numerical experience gained with our Fortran 95 implementation of the ideas discussed
above. The resulting package, PRESOLVE is an integral component of the GALAHAD optimization library
(see Gould, Orban and Toint, 2002). In this implementation, the status and bounds on the problems
quantities is first verified according to Section 3.1 and the heuristics discussed above are then applied in a
loop, until no further reduction in the problem dimensions (that is n, m and the numbers of nonzeros in
A and H) is obtained. Within each loop, the heuristics are applied in the following order:

1. remove empty and singletons rows, as indicated in Sections 3.2.1 and (3.2.2),

2. try to eliminate variables that are linearly unconstrained, as outlined in Section 3.4;

3. attempt to exploit the presence of linear singleton columns, as discussed in Section 3.3.1;
4. attempt to exploit the presence of linear doubleton columns, as explained in Section 3.3.2;

5. complete the analysis of the dual constraints, using the techniques of Section 3.3.3 and 3.3.4;

20 Nicholas I. M. Gould and Philippe L. Toint

6. remove empty and singletons rows, as indicated in Sections 3.2.1 and (3.2.2),
7. possibly remove dependent variables, as described in Section 3.3.5;

8. analyze the primal constraints, using the techniques described in Sections 3.2, except the sparsifica-
tion procedure of Section 3.2.6;

9. try to make A sparser as explained in Section 3.2.6;

10. check the current status of the variables, dual variables and multipliers, using the various implications
described in Section 3.1.

The resulting problem is finally permuted to comply with the format described in Section 5.

7.1 Problem reduction

We start by considering the efficiency of the presolving process in terms of reduction of the problem sizes.
Figures 7.1-7.4 report the effect of presolving on a collection of 178 linear and quadratic programs, of
which 8 only involves only simple bounds, from the CUTE collection of test problems (see Bongartz, Conn,
Gould and Toint, 1995) which includes the Netlib linear programs and 70 problems with a non-trivial
quadratic term. Results were obtained on a Pentium (biprocessor) running Linux Red Hat 7.0 with 256
MBytes of memory, using the frt Fujitsu Fortran compiler without optimization.

Figure 7.1, report, for each problem, the ratio of the number of variables in the reduced problem to
that in the original problem, sorted by decreasing size of the original problem (in the left part of the figure)
and by decreasing obtained reduction (in the right part). The left picture shows that there is little relation
between the original size of a problem and its potential for a substantial reduction in its number of variables.
The right picture shows the whole range of reduction, from the spectacular total reduction cases on the left
to cases (approximately one third) were no reduction in n is obtained. The number of problem variables
1s reduced by 19% on average across all problems. This average reduction is of 22% if one considers linear
problems only, and of 16% if one considers quadratic ones (that is problems with |H| > 0) only. Thus,
despite the fact that quadratic programs may typically produce more coupling between the problem’s
variables than linear ones (and thus potentially less opportunity for applying reduction heuristics), they
nevertheless also seem amenable to problem reduction.

100

Figure 7.1: The reduction obtained by presolving on the number of problem variables, sorted by decreasing
original problem size {left) and by decreasing reduction (right).

Figures 7.2-7.4 show the corresponding reduction ratios for the number of constraints m, the number
of nonzero entries in 4 and in H. The first of these figures indicates that there is slightly more potential in
reducing m (on average by 21%) than n, the amount of reduction being again uncorrelated to the original
value of m. Figures 7.3 and 7.4 show that the reduction of the number of nonzero entries in A and H

Preprocessing for quadratic programming 21

Figure 7.2: The reduction obtained by presolving on the number of constraints, sorted by decreasing
number of constraints in the original problem (left) and by decreasing reduction (right).

follow the same general pattern. The difference between linear and quadratic problems is marginal for
these two latter statistics. We also observe, that the average reduction in the size of H ({25%) exceeds
that in the size of A (21%), which indicates again that the potential of presolving quadratic programming
problems is comparable to that of linear programs, at least in terms of problem size reduction.

Figure 7.3: The reduction obtained by presolving on the number of nonzero entries in A, sorted by
decreasing number of such entries in the original problem (left) and by decreasing reduction (right).

Figure 7.4: The reduction obtained by presolving on the number of nonzero entries in H, sorted by
decreasing number of such entries in the original problem (left) and by decreasing reduction (right).

22 Nicholas I. M. Gould and Philippe L. Toint

Tables A.1-A.5 (in Appendix A) provide details of these results. In these (and later) tables, the CPU-
times are given in seconds. Examination of these detailed statistics first shows that the problem reduction
obtained for linear programs compares well with that obtained with specialized LP presolving tools. If we
compare them with the results reported by Gondzio (1997), we obtain smaller n for 64 of the 93 comparable
problems, smaller m for 50 and smaller number of nonzeros in A for 44, Gondzio’s results showing smaller
n for 29 problems, smaller m for 23 problems and smaller number of nonzeros in A for 43 problems, the
rest being ties. A second point of interest is that comparison of the presolve times with numerical solution
times for the tested problems (see below) also shows that presolve time remain marginal, as desired, both
for linear and quadratic examples. While it is not surprising that problems QPCBLEND, QPCBOIE1, QPCBOEI2
and QPCSTAIR are very comparable in this respect with their linear counterparts BLEND, BOEING1, BOEING2
and STAIR since their Hessians are diagonal, we notice the full range of possibilities for problems with
denser H: from little or no reduction for BLOCKQP1, BLOCKQPS, DTOC3, GMNCASE1, GMCASE2, GMNCASES or
YAD to more interesting cases like AUG2D, DUALCS, MOSARQP1, NCVXQP4, PRIMAL2, STATIC3 or UBH1, up to
the very successful examples such as GMNCASE4, STNPQ1, STNQP2 and SOSGP1 in which the presolve removes
all the variables and constraints, and thus reveals the complete solution to the QP under consideration.

7.2 Impact on solution time

We now turn to the impact of presolving on the total solution time for linear and quadratic programs. As
for problem reduction, we start by presenting a graphical comparison of the three (tightest, medium and
loosest, see Section 4) presolving modes with the case where no presolving is applied. The quadratic solver
used is QPB, also from GALAHAD, an interior point algorithm for nonconvex quadratic programs described
in Conn, Gould, Orban and Toint (20005), Gould, Orban, Sartenaer and Toint (2001}, or Gould and Toint
(2001). Note that we excluded four problems from the comparison: STATIC3, which is unbounded below,?,
DFL.001 and QAP12 which for which the memory of our computer was insufficient, and FIT2D for which the
solution time exceeded the upper limit of 20000 seconds for all presolving modes.

We first report in Table 7.1 the causes of failure to solve the (possibly reduced) problem for alt presolving
modes (including no presolving at all).

Presolving | apparently | conditioning | total
mode infeasible too large

nene 1 2 3
tightest 1 1 2
medium 0 1 1
loosest 1 2 3

Table 7.1: Failure causes for problem solution.

Figure 7.5 shows the ratio of the solution time required by the solver with presolving (in tightest mode)
to that required without presolving, for each of the 171 problems where both solves were successful. As
expected, the impact of presolving on solution times is variable. This impact is very favourable® in 34 of
the 172 compared problems, favourable® for 60 problems, relatively neutral® for 42, unfavourable® for 26
and very unfavorable” for 9, with an average gain of 10% (11% for linear problems and 7% for quadratic
ones).

Figures 7.6 and 7.7 show the same ratios for the medium and loosest presolving modes, respectively.
For the medium mode, the average gain over the 172 comparable problems is 14% (16% for linear problems

2 As successfully reported by the solver in all cases.
3Better by a factor at least 2.

4Between 10% and 100% better.

SDifference smalier than 10%.

SBetween 10% and 100% worse.

T"Worse by a factor at least 2.

Preprocessing for quadratic programming 23

Figure 7.5: The reduction (or increase) of solution time with presolving in tightest mode, sorted by
decreasing solution time for the original problem (left} and by decreasing reduction (right).

and 10% for quadratic ones), with 28 very favourable, 53 favourables, 61 neutral, 25 unfavourable and 5
very unfavourable cases. For the loosest mode, the average gain is 13% over 171 comparable problems
(15% for linear problems and 10% for quadratic ones), with 29 very favourable, 54 favourable, 70 neutral,

13 unfavourable and 5 very unfavourable cases. The medium mode therefore appears as a potentially
attractive middle ground between the two other strategies.

Figure 7.6: The reduction (or increase) of solution time with presolving in medium mode, sorted by
decreasing solution time for the original problem (left) and by decreasing reduction (right).

Figure 7.7: The reduction {or increase) of solution time with presolving in loosest mode, sorted by de-
creasing solution time for the original problem (left} and by decreasing reduction (right).

24 Nicholas I. M. Gould and Philippe L. Toint

Tables B.1-B.5 (in Appendix B) report the detailed solution times for each the problem and for each
presolving mode (“(t)” for tightest, “(m)” for medium and *(1)” for loosest). Failures are indicated in
these tables by a “-". In each case, the “c” column gives an indication of the final status reported by the
solver, except in unquestionably successful cases. The symbol “cond.” means that the solution returned is
the best that could be found given the high conditioning of the problem. The solution time is nevertheless
reported for those problems where the found solution coincides with the correct solution by at least five
digits of accuracy in the objective function value. The symbol “stp.” indicates that the solver was stopped
because the step had become so small that further progress was impossible. Note that none of these two
cases preclude a satisfactory solution. The symbol “inf.” indicates that the solver erroneously concluded
that the problem is primal infeasible, “mem.” indicates that the hecessary memory space could not be
allocated, “time” that the CPU-time limit was reached before finding a solution, and “unb.” that the
problem is unbounded below.

Globally speaking, the effect of presolving on solution time therefore seems to be relatively positive,
with a slightly larger gain for linear problems compared to quadratic ones.

7.3 Preprocessing in the context of SQP algorithms

An important class of algorithms that require the solution of quadratic programs are the “Sequential
Quadratic Programming” (SQP) methods for nonlinear optimization. These methods attempt to solve
general nonlinear minimization problems (that is involving possibly nonlinear and nonconvex objective
function and constraints) by solving a sequence of quadratic programs whose first-order optimality con-
ditions are identified with the Newton system arising from the first-order optimality conditions of the
nonlinear program. We will not describe these methods in any detail here {we refer the interested reader
to Gould and Toint, 2000, Nocedal and Wright, 1999 or Conn, Gould and Toint, 20004 and the references
therein for further discussion), we simply notice that the quadratic programs that are successively solved
(at each iteration of the SQP algorithm) may differ from one to the next in values of the coefficients of the
objective function and constraints, since they correspond to linearizations of the original nonlinear problem
at different points in the solution space. However, the structure of the problem is globally constant, and,
more importantly, any linear constraints present in the original problem continue to appear in successive
quadratic programs with the same coefficients (note however that this might not be the case for bound
constraints on the variables, since these could be used in the definition of an iteration dependent trust
region). If we wish to apply presolving techniques in this context, one may therefore hope to exploit the
fact that linear constraints (and, possibly, the objective function if it is quadratic in our general nonlinear
optimization problem) may be analyzed once and for all.

We have implemented this possibility in an early version of our code, but the advantage in solution
time turned out in practice to be at best marginal and often negative, compared to the simpler application
of the full set of presolving techniques to each QP under consideration. We have thus decided not to keep
this option in our final code.

8 Conclusion and perspectives

We have described a set of presolving techniques that can be applied on linear and quadratic optimization
problems. For the latter class, the problem reduction exploits the fact that both variables and multiphi-
ers appear tohether in the dual feasibility condition, leading to transformations that are specific to the
quadratic case. Numerical experience with the resulting code indicate that, despite their stronger inner
coupling, quadratic problems are almost as amenable to presolving as linear ones, both in terms of reduced
problem size and reduced solution time. The resulting thread-safe Fortran 95 package PRESOLVE is freely
available as part of the GALAHAD optimization library (see Gould et al., 2002)

Preprocessing for quadratic programming 25

Acknowledgements

The authors wish to thank J. Gondzio for his encouraging comments while this work was in progress and
to P. Y. Bernard for proofreading an early version of the manuscript and helping to debug the code.

References

E. D. Andersen and K. D. Andersen. Presolving in linear-programming. Mathematical Programming,
Series A, T1(2), 221-245, 1995.

I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and Unconstrained Testing
Environment. ACM Transactions on Mathematical Software, 21(1), 123-160, 1995.

G. H. Bradley, G. G. Brown, and G. W. Graves. Structural redundancy in large-scale optimization

models. fn M. H. Karwan et al., ed., ‘Redundancy in Mathematical Programming’, pp. 145-169,
Springer Verlag, Heidelberg, Berlin, New York, 1983,

A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical programming problems prior to
applying the simplex algorithin. Mathematical Programming, 8(1), 54-83, 1975.

A. R. Conn, N. 1. M. Gould, and Ph. L. Toint. Trust-region methods. SIAM, Philadelphia, 2000a.

A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-region algorithm for
non-convex nonlinear programming. Mathematical Programming, 87(2), 215-249, 20005.

L. S. Duff, A. M. Erisman, and J. K. Reild. Direct Methods for Sparse Matrices. QOxford University Press,
Oxford, England, 1986.

M. C. Ferris and T. S. Munson. Preprocessing complementarity problems. I'n M. C. Ferris, O. Mangasarian
and J. 5. Pang, eds, ‘Complementarity: Applications, Algorithms and Extensions’, Vol. 50, pp. 143
164, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.

R. Fourer and D. M. Gay. Experience with a primal presolve algorithm. In W. W. Hager, D. W. Hearn
and P. M. Pardalos, eds, ‘Large Scale Optimization: State of the Art’, pp. 135-154, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1994.

J. Gondzio. Presolve analysis of linear programs prior to applying an interfor point method. INFORMS
Journel on Computing, 9(1), 73-91, 1997.

N. I. M. Gould and Ph. L. Toint. SQP methods for large-scale nonlinear programming. In M. J. D.
Powell and S. Scholtes, eds, ‘System Modelling and Optimization, Methods, Theory and Applications’,
pp. 149-178, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

N. I M. Gould and Ph. L. Toint. An iterative working-set method for large-scale non-convex quadratic

programming. Technical Report RAL-TR-2001-026, Rutherford Appleton Laboratory, Chilton, Ox-
fordshire, England, 2001.

N. I M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe fortran 90 packages for

large-scale nonlinear optimization. Technical Report in preparation, Rutherford Appleton Laboratery,
Chilton, Oxfordshire, England, 2002.

N.I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Superlinear convergence of primal-dual interior
point algorithms for nonlinear programming. SIAM Journal on Optimization, 11(4), 974-1002, 2001.

J. Nocedal and S. J. Wright. Large sparse numerical optimization. Series in Operations Research. Springer
Verlag, Heidelberg, Berlin, New York, 1999.

26 Nicholas I. M. Gould and Philippe L. Toint

J. A. Tomlin and J. §. Welch. Formal optimization of some reduced linear-programming problems. Math-
ematical Programming, 27(2), 232-240, 1983a.

J. A. Tomlin and J. S. Welch. A pathological case in the reduction of linear programs. Operations Research
Letters, 2, h3-57, 1983b.

Appendix A: The effect of presolving on problem size

Problem Before presolve After presolve time
n m 4] | |H| n m |A] | |H]
25FV47 1571 { 821 | 16400 01468 | 741 | 9870 0] 35
80BAU3B | 9799 | 2262 | 21002 0| 8759 | 1991 | 19238 0 14.5
ADLITTLE 97 56 383 0 89 53 360 0 0.2
AFIRD 32 27 83 0 29 21 72 0| 01
AGG 163 | 488 | 2410 0] 105 | 173 875 0| 1.0
AGG2 302 | 516 : 4284 0| 233 | 289 2315 0| 17
AGG3 302 | 516} 4300 0] 235 290 | 2349 0| 17

AUG2D 3280 | 1600 | 6400 | 3120 | 2964 | 1444 | 5776 | 2964 1.9
AUG2DQP | 3280 | 1600 | 6400 | 3120 | 3120 | 1599 | 6238 | 3120 7.5
AUG2DC 3280 | 1600 | €400 | 3280 | 3280 | 1600 | 6400 | 3280 1.2
AUG2DCQP | 3280 | 1600 | 6400 | 3280 | 3280 | 1600 | 6400 | 3280 1.8

BANDM 472 | 305 | 2494 0] 202| 173 | 1256 0 0.9
BEACONFD [262 | 173 | 3375 0 15 7 26 0 0.7
BLEND 83 74 491 0 71 70 427 0 0.2

BLOCKQP1 | 2005 | 1001 | 9005 | 3005 | 2005 | 1001 | 8998 | 1005 6.3
BLOCKQP2 | 2005 | 1001 | 9005 | 3005 | 2005 | 1001 | 8998 | 1005 3.7
BLOCKQP3 | 2005 | 1001 | 9005 | 3005 | 2005 | 1001 | 8998 | 1005 | 6.2
BLOCKQP4 | 2005 | 1001 ; 9005 | 3005 | 2005 | 1001 | 8998 | 1005 7.0
BLOCKQP5 | 2010 | 1001 | 14010 | 3010 | 2005 ; 1001 | 13998 | 1010 7.0
BLOWEYA | 2002 | 1002 | 5003 | 4003 | 2002 | 1002 | 5003 | 3002 | 3.2
BLOWEYB | 2002 | 1002 | 5003 | 4003 | 2002 | 1002 | 5003 | 3002 3.1
BLOWEYC | 2002 | 1002 | 5003 | 4003 | 2002 | 1002 | 5003 | 3002 3.2

BNL1 1175 | 643 | 5121 0| 1673 | 535 | 4560 0 2.1
ENL2 3489 | 2324 | 13999 0| 2980 | 1835 | 12636 01 100
BOEING1 384 | 351 | 3485 0] 367 292 | 2303 0 1.3
BOEING2 143 | 166 | 1196 0| 139 134 | 1133 0 0.4
BORE3D 315 1 233 | 1428 0 70 59 356 0 0.0
BQPGABIM a0 0 0: 172 46 0 0| 153 0.0
BQPGAUSS | 2003 0 0| 9298 | 2003 0 0} 9298 1.0
BRANDY 249 | 220 | 2148 0} 172 | 110 | 1492 0 0.7
CAPRI 353 | 271 | 1767 0} 268 214 1351 0 0.8

CVXQP1 1000 ¢ 500 | 1498 | 3984 | 700 | 500 | 1498 | 2484 1.1
CvxQr2 1000 | 250 749 | 3984 | 550 | 250 749 | 1969 0.8
CVXQP3 1000 | 750 | 2247 | 3984 | 850 | 750 | 2243 | 3169 1.2
CYCLE 2857 | 1903 | 20720 0 [2063 | 1448 | 16873 0 8.0

Table A.1: The effect of presolving on the problem dimensions (1)

Preprocessing for quadratic programming

Problem Before presolve After presolve time
n| m 4] | |H] nj m |Af | |H]
CZPROB 3523 | 929 | 10669 0| 2502 | 479 5343 0 9.2
D2Q06C 5167 | 2171 | 32417 0| 4177 | 1986 | 30108 01 14.1
D6CUBE 6184 | 415 | 37704 0t 5447 | 403 | 33601 0| 226
DEGEN2 534 | 444 3978 0 529 | 441 3968 0 1.3
DEGEN3 1818 | 1503 | 24646 0| 1808 | 1493 | 24343 0 8.5
DFLO01 12230 { 6071 | 35632 0| 10626 ; 5754 | 33559 0] 285
DTOC3 2999 | 1998 6993 | 2997 | 2096 | 1997 6986 | 2996 1.9
DUAL1 85 1 85 | 3558 85 1 85 | 3558 0.5
DUAL2 96 1 96 | 4508 96 1 96 | 4508 0.6
DUALC1 9| 215 1935 45 9 11 78 45 0.7
DUALC2 7| 229 1603 28 7 7 39 28 04
DUALCS 8| 278 2224 36 8 3 20 36 0.5
DUALCS 81 503 4024 36 8 16 94 36 0.9
E226 282 | 223 2578 0 256 | 161 2223 0 0.6
ETAMACRO 688 | 400 2409 0 461 | 326 1762 0 0.8
FFFFF800 854 | 524 6227 0 624 | 427 4912 0 2.1
FINNIS 614 | 497 2310 0 457 | 369 1573 0 1.0
FIT1D 1026 24 | 13404 0! 1025 24 | 13308 0 4.6
FIT1P 1677 | 627 9968 0| 1028 | 627 9219 0 6.1
FIT2D 10500 25 | 129018 0 | 10485 25 | 128882 0| 142.2
FIT2P 13525 | 3000 | 50284 0 | 13525 | 3000 | 50284 0] 815
FORPLAN 421 | 161 4563 0 206 90 1892 0 14
GANGES 1681 | 1309 6912 0 578 | 714 4418 0 7.1
GFRD-PNC | 1092 | 616 2377 0 934 | 460 2063 0 1.0
GMNCASE1 175 | 300 | 23940 | 11803 175 | 300 | 23940 | 11802 2.3
GMNCASE2 175 | 1050 | 28546 | 11803 175 | 543 | 24361 | 11803 | 10.6
GMNCASE3 175 | 1050 | 28546 | 11803 175 | 585 | 24266 | 11803 | 10.6
GMNCASE4 175 | 350 | 27510 | 15330 0 0 0 0 2.5
GOULDGPZ | 1999 | 999 2097 | 1997 | 1999 | 999 2997 | 1997 1.2
GOULDQP3 | 1999 | 999 2997 | 3995 | 1999 | 999 2997 | 3995 1.3
GREENBEA | 5405 | 2392 | 30877 0| 3678 1830 | 2301t 0| 118
GREENBEB | 5405 | 2392 | 30877 0| 3665 1824 | 23864 0 12,5
GROW15 645 | 300 5620 0 645 | 300 5620 0 0.9
GROW22 946 | 440 8252 0 946 | 440 8252 0 1.3
GROW7 301 | 140 2612 0 301 | 140 2612 0 0.4
HUESTIS 1000 2 2000 | 1000 | 1000 2 1994 | 1000 0.8
ISRAEL 142 174 2269 0 142 163 2258 0 0.5
JNLBRNG1 | 5625 0 0| 16725 | 5329 0 0 | 15841 34
KB2 41 43 286 0 33 42 256 0 0.1

Table A.2: The effect of presolving on the problem dimensions {(2)

27

28

Nicholas I. M. Gould and Philippe I.. Toint

Problem Before presolve After presclve time
) m [4] |H| n m |A] |H|
KSIP 20 | 1001 | 20001 20 20 | 1000 | 20000 20| 3.9
LISWET8 103 | 100 400 103 | 103 | 100 400 1031 0.1
LOTFI 308 | 153 1078 0| 274 | 126 965 07 05
MAROS 1443 | 846 9614 0t 871 | 605 | 5797 01 33
MAROS-R7 | 9408 | 3136 | 144848 0 | 4435 | 2156 | 78295 0| 77.0
MODEL 1831 | 339 1893 0 6 9 20 0| 04
MODSZK1 | 1620 | 687 3168 0| 893 654 | 2407 0| 4.0
MOSARQP1 { 2500 | 700 3422 | 2545 | 732 700 | 3397 77| 4.8
MOSARQP2 | 900 | 600 2930 945 | 624 | 600 | 2921 669 | 0.8
NCVXBQP1 | 1000 0 0] 3984 | 998 0 0| 3976 | 0.5
NCVXBQFP2 | 1000 0 0 3984 | 998 0 0| 3976 0.5
NCVXQP1 | 1000 ; 500 1498 1 3984 | 711 | 500 { 1498 | 2539 1.2
NCVXQP2 | 1000 | 500 1498 | 3984 | 711 | 500 | 1498 | 2539 1.3
NCVXQP3 | 1000 | 500 1498 | 3984 | 806 | 500 | 1498 | 3010 1.9
NCVXQP4 | 1000 | 250 749 | 3984 | 550 [250 749 | 1969 1.6
NCVXQPS | 10600 | 250 749 | 3984 | 581 | 250 749 | 2144 1.3
NCVIQPE | 1000 | 250 749 | 3984 | 682 | 250 749 | 2507 | 1.6
NCVXQP7 | 1000 | 750 2247 | 3934 | 850 | 750 2243 | 3169 1.3
NCVIQP8 | 1000 [750 2247 | 3984 { 877 | 750 | 2243 : 3319 1.6
NCVXQP9 | 1000 | 750 2247 | 3984 | 903 | 750 | 2243 | 3464 1.7
NESM 2023 | 662 | 13288 0| 2227 | 614 | 12421 0 7.7
NOBNDTOR | 100 0 0 240 64 0 0 176 | 0.0
OBSTCLAE | 5625 0 0| 16425 | 5329 0 0 | 15841 2.8
0ET1 3| 1002 3004 0 31002 | 3004 0 1.3
PEROLD 1376 | 635 6018 0| 1113 ! 560 | 5228 0 1.9
PILOT 3652 | 1451 | 43167 0 | 3356 | 1361 | 40855 0| 189
PILOT4 1000 | 410 5141 0| 775 | 378 | 4609 0 1.4
PILAT8T | 4883 | 2030 | 73152 01 4602 | 1973 | 70750 0| 235
PILOT-JA | 1988 | 940 [14698 0| 1405 | 768 | 10768 0 4.2
PILOT-WE | 2789 | 722 9126 0] 2411 | 675 | 8332 0 6.2
PILOTNOV | 2172 | 975 | 13057 0] 1730 | 809 | 11369 01 7.1
PRIMAL1 325 85 5815 324 1 200 85 | bH815 199 | 0.5
PRIMAL2 649 96 8042 648 | 395 96 | 8042 394 | 0O8R
PRIMAL3 745 | 111 | 21547 744 | 673 | 111 | 21547 672 1.8
PRIMAL4 | 1489 73 | 16031 | 1488 | 1247 75 | 16031 | 1246 1.7
PRIMALCL | 230 9 2070 229 | 230 9 2070 229 | 04
PRIMALCS | 287 8 2296 286 | 287 81 2296 286 | 04
PRIMALCS | 520 8 4160 520 | 520 8| 4160 519 | 0.7
PT 2] 501 1002 0 21 501 | 1002 0| 0.2

Table A.3: The effect of presolving on the problem dimensions (3)

Preprocessing for quadratic programming

Problem Before presolve After presolve time
n| my| |Al||H]| n| m |41 | |H]
{JAP12 8856 | 3192 | 38304 0 | 8856 | 3192 ¢ 38304 0] 103
QAPS 1632 | 912 | 7296 0] 1632 912 | 7296 0 1.8
QPCBLEND 33 74 491 | 83 83 71 443 | 83 0.1
QPCBOEI1 384 351 3485 | 384 370 292 2303 | 370 1.4
QPCBOEI2 | 143 | 166 | 1196 | 143 | 143 | 134 | 1137 143 | 0.3
QPCSTAIR } 467 | 356 | 3856 467 | 385 | 356 | 3666 | 385 | 0.5
READING2 | 303 | 200 800 0| 187 88 361 0| 04
RECIPELP | 180 91 663 0 82 74 409 0} 02
5C105 103 | 105 280 0| 100| 101 273 0| 01
SC205 203 | 205 551 0| 199 | 200 543 0| 03
SC504 48 50 130 0 45 46 123 0| 01
SCH0B 48 a0 118 0 43 43 107 0 0.1
SCAGR25 500 471 1554 0 316 288 1080 0 6.9
SCAGR7 140 | 129 420 0 82 72 270 0| 0.2
SCFMX1 457 + 330 | 2589 0| 384 | 262 2205 0 1.0
SCFMX2 914 | 660 | 5183 0| 761 522 | 4420 01 2.8
SCFMX3 1371 | 990 ¢ 7777 011138 | 781 | 6589 0| 4.2
SCORPION | 358 | 388 | 1426 0| 132 | 124 439 0| 06
SCR38 1169 | 490 | 3182 0| 989 | 388 | 2605 0 2.3
8CsD1 760 77| 2388 0 760 77| 2388 0| 05
SCSD6 1350 | 147 | 4316 0| 1350 | 147 | 4316 0| 09
SCSD8 2750 | 397 ¢ 8584 0| 2750 | 397 | 8584 0 1.6
SCTAP1 480 300 1692 0 480 300 1692 0 0.4
SCTAP2 1880 | 1090 | 6714 0 | 1880 | 1090 | 6714 0 14
SCTAP3 2480 | 1480 | 8874 0 | 2440 | 1480 | 8874 0] 20
SEBA 1028 als 4352 0 41 138 658 0 2.4
SHARE1B 225 117 1151 [t} 191 106 943 0 0.4
SHARE2B 79 96 694 0 79 92 660 0| 0.2
SHELL 1775 7 536 | 3556 0| 12851 337 | 2576 0 27
SHIPO4L 2118 402 6332 0| 1915 325 5723 0 2.1
SHIP04S | 1458 | 402 4352 0| 1266 | 224 | 3481 0 1.7
SHIPQOSL | 4283 | 778 | 12802 0| 3147 | 526 | 9249 0] 4.8
SHIPOSS | 2387 | 778 | 7114 0| 1601 | 303 | 4436 0 2.4
SHIP12L | 5427 | 1151 | 16170 0| 4196 | 664 | 11092 0 7.5
SHIP12S 2763 | 1151 8178 0| 1895 321 4969 0 3.0
SIERRA 2036 | 1227 7302 0 1967 | 1126 6980 0 4.0
SIPOW1 2| 2000 | 4000 0 212000 | 4000 0 0.8
SIPOWIM 2 | 2000 4000 0 2 | 2000 4000 0 0.7

Table A.4: The effect of presolving on the problem dimensions (4)

29

30

Nicholas I. M. Gould and Philippe L. Toint

Problem Before presolve After presolve time
n m | Al |H| 7 ™m | A |H|
SIPQOW2 2| 2000 | 3000 0 2| 1000 | 2000 0 0.8
SIPOW2M 2 (2000 | 3000 0 2| 1000 | 2000 0 0.8
SIPOW3 4 2000 5992 0 2 1998 5990 0 1.3
SIPOW4 41 20001 7000 0 21 2000 | 7000 0 0.7
508QP1 2000 | 1001 { 4000 | 3000 0 0 0 0 1.0
505QP2 2000 | 1001 | 4000 | 3000 | 2000 | 1001 | 3000 | 1000 7.0
SSEBLIN 194 72 312 0 192 72 310 0 0.1
STAIR 467 356 | 3856 0 333 305 | 3560 0 1.1
STANDATA 1075 359 3031 0 372 293 1037 0 1.6
STANDGUB | 1184 361 | 3139 0 382 293 | 1057 0 1.6
STANDMPS | 1075 467 | 3679 0 956 395 | 2421 0 2.0
STATIC3 434 96 496 | 1014 171 48 176 738 | 0.4
STCQP1 4097 | 2052 | 13338 | 26603 | 3158 0 0| 4683 2.7
STCQP2 4097 | 2052 | 13338 | 26603 | 2045 0 0| 7943 2.9
STHQP1 4097 2052 | 13338 | 26603 3158 0 0 4512 2.6
STNQP2 4097 | 2052 | 13338 | 26603 | 2045 0 0| 7770 3.3
STOCFOR1 111 117 447 0 92 a1 357 0 0.2
STOCFOR2 2031 2157 8343 0 1798 1964 7392 0 44
STOCFOR3 | 15695 | 16675 | 64875 0 | 13892 | 15236 | 56774 0| 48.7
TORSION1 5476 0 0| 15984 5184 0 0 § 15408 2.5
TRUSS 8806 | 1000 | 27836 0| 8806 [1000 | 27836 0 6.7
TUFF 587 333 1 4520 0 476 253 | 4032 0 2.2
UBH1 9009 { 6000 | 24000 | 3003 | 6000 | 3003 | 14991 | 3003 | 74.4
VTP-BASE 203 198 908 0 55 38 168 0 0.3
WwOoD1P 2595 244 | 70215 0% 1800 171 | 48552 0 252
WooDw 8405 1098 | 37474 0 5194 706 | 22800 0] 168
YAQ 202 200 600 202 200 199 596 200 0.3

Table A.5: The effect of presolving on the problem dimensions (5)

Preprocessing for quadratic programming

Appendix B: The effect of presolving on solution time

Problem No presolve | Presolve (i} | Presolve (m) | Presolve (1)
time c time c time c time ¢
25FV47 249.5 285.2 252.6 240.9
BOBAU3B | 827.1 778.0 744.4 844.3
ADLITTLE 1.6 3.0 1.9 1.2
AFIRO 0.2 0.2 0.2 0.2
AGG 5.8 7.7 7.0 84
AGG2 211 cond. 8.0 8.6 10.5
AGG3 18.86 7.6 7.6 9.3
AUG2D 24.1 17.6 18.6 17.6
AUG2DQP 58.6 107.9 inf. 53.9 54.3
AUG2DC 244 23.6 23.6 23.3
AUG2DCQP | 62.4 - cond. | 62.7 63.2
BANDM 18.2 19.3 20.1 18.3
BEACONFD 16.3 0.1 01 0.1
BLEND 2.4 2.1 2.7 24
BLOCKQP1 19.5 14.3 13.2 14.5
BLOCKQP2 | 30.0 23.6 24.5 24.6
BLOCKQP3 | 19.5 13.2 14.3 13.2
BLOCKQP4 | 32.0 27.0 26.8 26.9
BLOCKQP5 | 27.6 20.1 20.1 20.1
BLOWEYA 96.7 34.5 102.4 102.4
BLOWEYB 48.3 424 69.3 70.0
BLOWEYC 88.4 39.0 82.5 82.6
BNL1 50.9 71.3 61.6 53.0
BNLZ2 228.2 136.1 193.7 208.8
BOEING1 378 35.0 24.1 35.6
BOEING2 11.0 11.6 9.8 11.3
BORE3D 9.8 2.5 2.3 2.9
BQPGABIM 0.5 14 1.4 0.4
BQPGAUSS | 39.9 40.2 40.6 40.4
BRANDY 214 19.1 274 5.7
CAPRI 11.5 22.8 24.8 24.4
CVXQP1 65.3 39.4 42.3 41.5
CVIQP2 30.5 18.3 24.8 16.4
CVXQP3 105.0 86.0 95.7 95.4
CYCLE 201.3 285.6 381.8 363.9

Table B.1: The effect of presolving on the problem solution time (1)

31

Nicholas I. M. Gould and Philippe L. Toint

Problem No presolve Presolve () Presolve (m) Presolve (1)
time C time c time C time c

CZPROB 97.4 178.4 201.5 172.6
D2QosC 1972.5 1284.6 1379.6 1587.6
D6CUBE 626.5 564.9 491.2 424.5
DEGEN2 19.4 49.6 19.8 19.4
DEGEN3 130.1 332.7 129.0 127.7
DFL0OO1 - mem. - mem. - mem. -~ mem.
DTOC3 647.2 545.5 556.9 551.7
DUAL1 6.4 9.3 5.7 8.3
DUAL2 5.8 4.6 5.0 4.8
DUALC1 9.7 2.3 2.2 24
DUALC2 8.4 1.3 1.3 1.2
DUALCS 10.6 0.6 0.6 0.6
DUALCS 17.7 1.9 1.6 1.6

E226 41.0 35.3 45.0 31.6
ETAMACRO 274 27.6 30.9 18.9
FFFFF800 59.8 23.6 24.3 476
FINNIS 19.8 14.5 14.4 15.1
FIT1D 560.2 552.5 557.4 560.1
FITiP 223 56.3 55.6 58.3
FIT2D - time - time - time - time
FIT2P 345.2 340.2 343.9 i 3356
FORPLAN 35.4 10.7 11.7 11.7
GANGES 56.3 24.2 25.9 25.6
GFRD-PNC 40.0 26.0 31.4 20.6
GMNCASE1 105.6 94.6 95.5 94.6
GMNCASE?2 141.8 110.9 108.4 107.8
GMNCASEZ 226.3 135.6 130.8 123.2
GMNCASE4 18.2 0.0 0.0 0.0
GOULDQP2 2.5 2.3 2.3 2.3
GOULDQP3 2.4 2.3 2.3 2.3
GREENBEA 838.0 cond. 419.6 216.7 - cond.
GREENBRER 399.9 2940 300.0 199.6
GROW15 42.0 34.9 42.0 424
GROW22 61.2 52.2 61.5 61.0
GROW7 18.8 16.5 19.1 19.2
HUESTIS ~ inf. 321 26.8 - inf.
ISRAEL 108.6 74.3 94.1 100.7
JNLBRNG1 746.3 740.8 739.0 770.0

KB2 1.8 2.1 2.0 1.9

Table B.2: The effect of presolving on the problem solution time (2)

Preprocessing for quadratic programming

33

Problem | No presolve | Presolve (t) | Presolve (m) Presolve (1)
time ¢ time ¢ time c time €

KSIP 342 40.1 70.9 711
LISWET8 10.4 8.2 11.0 11.0
LOTFI 9.8 3.6 6.6 6.4
MARQS 392.2 152.6 176.1 141.2
MAROS-R7 | 3158.0 804.5 813.6 795.3
MODEL 0.9 0.1 0.1 0.1
MODSZK1 21.6 24.0 244 236
MOSARQP1 42.5 32.5 33.2 32.2
MOSARQP2 32.8 27.2 27.5 27.5
NCVXBQP1 8.2 8.7 stp.| 119 23.2
NCVXBQP2 84.2 60.5 66.2 171.0
NCVIQP1 89.6 66.1 53.2 46.6
NCVXQP2 41.3 86.0 65.5 60.7
NCVXQP3 145.8 149.7 120.9 230.3
NCVXQP4 26.6 15.1 15.8 15.2
NCVXQP5S 33.5 21.8 25.5 25.3
NCVXQP6 74.1 95.3 74.1 113.4
NCVXQP7 129.4 209.9 142.8 115.5
NCVXQP8 125.3 186.7 140.2 113.0
NCVXQP9 229.2 202.7 165.8 218.2
NESM 258.4 193.8 238.0 257.4
NOBNDTOR 0.6 0.6 0.6 0.6
OBSTCLAE | 668.1 655.1 686.2 684 .4
OET1 4.1 a.1 4.4 4.7
PEROLD 70.5 65.8 81.2 75.0
PILOT 951.1 598.8 624.7 1137.3
PILOT4 30.8 31.7 31.6 32.7
PILOTB7 8264.0 2585.0 2247.3 8021.5
PILOT-JA 172.2 119.0 222.8 - cond.
PILOT-WE 84.9 168.0 - cond. 78.1
PILOTNOV 73.1 76.4 91.3 80.1
PRIMAL1 65.9 55.9 65.9 67.5
PRIMAL2 66.2 64.5 67.6 67.8
PRIMAL3 194.0 200.2 190.6 192.9
PRIMAL4 116.0 94.9 112.3 110.9
PRIMALC1 23.0 22.7 22.2 224
PRIMALCS 23.4 22.4 22.6 229
PRIMALCS 363.5 66.0 66.6 66.4
PT 0.5 0.5 0.5 0.5

Table B.3: The effect of presolving on the problem solution time (3)

34

Nicholas I. M.

Gould and Philippe L. Toint

Problem No presolve | Presolve (t) | Presolve (m) | Presolve M
time c time c time ¢ time c

QAP12 - mem. - mem. - mem. - mem.
QAPS 48.8 45.2 49.3 48.4
§PCBLEND 9.2 4.9 4.4 5.3
QPCBOET1 921 60.0 62.6 61.7
QPCBOEIZ | 20.5 27.2 27.2 20.7
QPCSTAIR | 104.1 131.7 127.3 129.6
READING2 0.3 0.3 0.3 0.3
RECIPELP 48 2.9 29 2.9
8C105 1.0 1.3 1.1 1.0
5C205 2.2 2.5 24 21
SCBoA 0.4 0.5 0.5 0.4
SC50B 0.5 0.4 0.3 0.3
SCAGR25 7.8 6.8 8.3 7.7
SCAGRT 1.7 1.3 1.6 1.5
SCFMX1 38.1 37.3 37.7 34.2
SCFMX2 123.1 106.6 116.2 99.0
SCFMX3 2186 192.5 210.5 183.8
SCORPION 6.1 1.7 1.7 1.7
SCRS8 295 24.3 20.9 20.7
SC8b1 4.0 3.9 3.9 4.0
SCSD6 8.2 8.5 8.8 8.7
5CSD8 17.5 17.7 17.5 17.5
SCTAP1 18.6 14.5 18.4 18.4
SCTAP2 81.1 72.4 81.2 81.3
SCTAP3 115.2 88.0 114.2 116.9
SEBA 12.6 6.1 7.2 5.3
SHARE1B 15.0 9.6 12.6 12.5
SHAREZ2B 4.3 6.4 4.9 3.8
SHELL 22.0 15.0 13.7 16.8
SHIPQ4L 259 58.5 20.1 24.0
SHIPO4S 221 33.0 14.9 17.4
SHIPOSL 52.9 105.9 38.5 38.4
SHIP0O8S 29.5 47.3 22.8 23.3
SHIP12L 89.3 165.4 62.4 39.8
SHIP12S 43.1 54.0 32.6 29.5
SIERRA 46.9 43.8 479 47.8
SIPOW1 2.5 2.7 2.7 2.7
SIPOW1M 2.5 2.7 2.7 2.7

Table B.4: The effect of presolving on the problem solution time (4)

