

MIT Sloan School of Management

Working Paper 4392-02
September 2002

THE EXTENDED NEIGHBORHOOD: DEFINITION AND

CHARACTERIZATION

James B. Orlin and Dushyant Sharma

© 2002 by James B. Orlin and Dushyant Sharma. All rights reserved. Short sections of text, not to exceed two
paragraphs, may be quoted without explicit permission provided that full credit including © notice is given to the

source."

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract_id=349700

http://ssrn.com/abstract_id=349700

2

The Extended Neighborhood
James B. Orlin1 and Dushyant Sharma2

Abstract

We consider neighborhood search defined on combinatorial optimization problems. Suppose that N is a
neighborhood for combinatorial optimization problem X. We say that N′ is LO-equivalent (locally optimal)
to N if for any instance of X, the set of locally optimal solutions with respect to N and N′ are the same. The
union of two LO-equivalent neighborhoods is itself LO-equivalent to the neighborhoods. The largest
neighborhood that is LO-equivalent to N is called the extended neighborhood of N, and denoted as N*. We
analyze some basic properties of the extended neighborhood. We provide a geometric characterization of
the extended neighborhood N* when the instances have linear costs defined over a cone. For the TSP, we
consider 2-opt*, the extended neighborhood for the 2-opt (i.e., 2-exchange) neighborhood structure. We
show that number of neighbors of each tour T in 2-opt* is at least (n/2 -2)!. We show that finding the best
tour in the 2-opt* neighborhood is NP-hard. We also show that the extended neighborhood for the graph
partition problem is the same as the original neighborhood, regardless of the neighborhood defined. This
result extends to the quadratic assignment problem as well. This result on extended neighborhoods relies on
a proof that the convex hull of solutions for the graph partition problem has a diameter of 1, that is, every
two corner points of this polytope are adjacent.

(Last modified 09/29/02)

1 MIT Sloan School of Management, E40-147, Cambridge, MA 02139, jorlin@mit.edu
2 Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109,

dushyant@umich.edu

3

1. Introduction
Let X denote a combinatorial optimization problem, which is specified as a set of

instances. An instance of X is a pair I = (S, f), where S denotes a finite set of feasible solutions

and f: S → R is an objective function selected from some class F of objective functions. If f(x) =

cx for all x ∈ S, we alternatively express the instance as (S, c). A neighborhood structure for X
is a mapping N = (NS), where for each feasible set S of solutions NS: S → 2S is a mapping from
the set S to a subset of feasible solutions. For an instance (S, f), we usually refer to NS(x) as the
neighborhood of x with respect to N, with the understanding that the neighborhood not only
depends on x and on N but also on the instance. We note that the mapping NS does not vary with
the objective function f. We always assume that x ∈ NS(x).

We use the shorthand S ∈ X to mean that there is an instance (S, f) of X for some
objective function f.

We say that a feasible solution x for (S, f) is locally optimal with respect to N if f(x) ≤
f(x′) for all x′ ∈ NS(x).

A neighborhood search algorithm is an iterative procedure that starts with an initial
solution x. At each iteration the algorithm searches for a better solution in the neighborhood
NS(x). If a better solution y is found, the current solution x is replaced by y and the algorithm
continues. If there is no better solution in the neighborhood of the current solution x, then the
algorithm returns the current solution, which is a locally optimal solution.

Neighborhood search is a popular method to solve difficult optimization problems (Aarts
and Lenstra [1997], Voss et al. [1999]), largely because of its intuitive appeal and empirical
success in solving difficult optimization problems. A number of neighborhood structures have
been proposed in the literature for various combinatorial optimization problems. We refer the
reader to the recent survey papers of Ahuja et al. [2001], Deineko and Woeginger [2000] for
additional information.

We denote the set of locally optimal solutions with respect to a neighborhood structure N
in the instance I by LOI

N ⊆ S. We say that two neighborhood structures N1 and N2 are LO-

equivalent on the combinatorial optimization problem X if and only if
1

LOI
N =

2
LOI

N for all

instances I of X, i.e., N1 and N2 have the same set of local optima for all instances of X.

Suppose that N1 and N2 are two neighborhood structures defined on the same problem X.
The union of N1 and N2 is the neighborhood function N such that NS(x) = 1 2() ()∪x xS SN N for all

feasible sets S ∈ X and for all x ∈ S.

We state the following elementary property of LO-equivalence without proof.

4

Proposition 1. If two neighborhood structures N1 and N2 are LO-equivalent then the
neighborhood structure defined as N = N1 ∪ N2 is LO-equivalent to both N1 and N2.

We define the extended neighborhood of N for X, denoted by N*, as the neighborhood
structure that is LO-equivalent to N and has the following property: if N1 is LO-equivalent to N
over X and if S is any feasible set of solutions for an instance, then 1 *() ()⊆x xS SN N for all x ∈

S. That is, N* is the largest neighborhood structure that is LO-equivalent to N over X. Proposition
1 shows that the extended neighborhood is well defined. A corollary of Proposition 1 is that if N*

denotes the extended neighborhood of N, then the extended neighborhood of N* is N*.

Searching the original neighborhood N using neighborhood search will also search the
extended neighborhood, as we state more precisely in Section 2.

We say that a combinatorial optimization problem X has linear costs defined over a cone
if the following is true:

(1) each instance (S, c) of X has a linear objective function;

(2) associated with each set S ∈ X, with S ⊆ Rn is a polyhedral cone of objective
functions F(S) ⊆ Rn . This means that for each set S ∈ X, the pair (S, c) is an

instance of X if and only if c ∈ F(S).

The major contributions of this paper are as follows:

(1) We define the extended neighborhood, and relate the extended neighborhood to
other concepts in neighborhood search including very large scale neighborhood
(VLSN) search, and domination number, and exact neighborhoods.

(2) We provide a geometric characterization of the extended neighborhood when the
instances have linear costs defined over a cone.

(3) For the TSP, we consider 2-opt*, the extended neighborhood for the 2-opt (i.e., 2-
exchange) neighborhood structure. We show that number of neighbors of each tour
T in 2-opt* is at least (n/2 -2)!.

(4) We show that finding the best tour in the 2-opt* neighborhood is NP-hard.

(5) We show that there are instances of the TSP, where a locally optimal tour T′ is
reachable from a tour T with respect to the 2-opt* neighborhood, but not with respect
to the 2-opt neighborhood.

(6) We show that the extended neighborhood for the graph partition problem is the
same as the original neighborhood, regardless of the neighborhood defined. This
result extends to the quadratic assignment problem as well. This result relies on a

5

proof that the convex hull of solutions for the graph partition problem has a diameter
of 1, that is, every two corner points of this polytope are adjacent.

The rest of the paper is organized as follows. In Section 2, we give some additional definitions,
notation, and some basic results regarding extended neighborhoods. In Section 3, we provide the
characterization of the extended neighborhood in the case of combinatorial optimization problems
with linear costs defined over a cone, and present some additional results for important special
cases. In Section 4, we show that under commonly occurring conditions, one can recognize a
solution in the extended neighborhood in polynomial time. In Section 5, we present results
regarding properties of 2-opt*, the extended neighborhood for the 2-opt neighborhood structure
for the TSP, and establish the reachability result mentioned in point (5) above. In Section 6, we
show that for any n-city tour T, the number of neighbors in 2-opt*(T) is at least (n/2 – 2)! In
Section 7, we show that optimizing over 2-opt* is NP-hard. In Section 8, we show that if N is any
neighborhood the extended neighborhood for the graph partition problem, then N* = N. We
summarize contributions and provide future research directions in Section 9.

2. Neighborhood Search, LO-equivalence and the Extended Neighborhood

In this section, we consider a variety of elementary results about neighborhood search,
LO-equivalence, and the extended neighborhood. We will point out how the extended
neighborhood relates to very large scale neighborhood (VLSN) search, and also draw a
connection to the dominance number developed by Glover and Punnen (1997) and to exact
neighborhoods (see for example Papadimitriou and Steiglitz [1982]).

Let X be a combinatorial optimization problem. For each S ∈ X, let XS be problem X as
restricted to instances (S, f) for functions f ∈ F(S). Let N = (NS) denote a neighborhood function

for problem X, and let N* = (*
SN) denote the extended neighborhood. The definition of LO-

equivalence and the extended neighborhood apply equally to the problem XS.

The next observation formalizes the property that the extended neighborhood can be
determined independently for each feasible region S ∈ X.

Observation 1. Let N be a neighborhood of X and let N* be the extended neighborhood. Then
for each feasible set S ∈ X, *

SN is the extended neighborhood of N for XS.

We note that the extended neighborhood is defined even if there is a single instance (S, f) in XS.
We describe the extended neighborhood in this situation as Proposition 2, which we state and
prove next. We will give a polyhedral proof of Proposition 2 in Section 3 in the case that the
objective function is linear. This second proof illustrates the main theorem in that section.

Proposition 2. Suppose that X is a combinatorial optimization problem, and that (S, f) is the
unique instance in XS. Let N be a neighborhood defined on X, and let L be the set of locally

6

optimal solutions for instance (S, f). If x ∉ L, then * ()xSN = S. If x ∈ L, then * ()xSN = {y ∈ S:

f(y) ≥ f(x)}.

Proof. Let us first define ′SN as follows. If x ∉ L, then ()′ xSN = S. If x ∈ L, then ()′ xSN =

{y ∈ S : f(y) ≥ f(x)}. We want to establish that ′SN = *
SN . Let L’ denote the set of locally optimal

solutions for S with respect to ′SN . Since NS(x) ⊆ ()′ xSN for all x ∈ S, it follows that L′ ⊆ L.

Conversely, any solution x in L is a locally optimal solution with respect to ′SN by its definition.

Therefore L ⊆ L′ . We conclude that L′ = L, and ′SN is LO-equivalent to both *
SN and NS. Finally,

we claim that ′SN is the largest neighborhood that is LO-equivalent to NS. To see this, note that if

x ∉ L, then ()′ xSN = S, which is as large a neighborhood as possible. If x ∈ L, then ()′ xSN = {y ∈

S : f(y) ≥ f(x)}. Adding any solution to ()′ xSN will result in x not being locally optimal, in which
case the resulting neighborhood would not be LO-equivalent. So any neighborhood that strictly
contains ′SN would not be LO-equivalent to NS. This completes the proof. ♦

Our definition of the extended neighborhood is in terms of LO-equivalence, which relates to our
motivation for studying the extended neighborhood. Below, we provide an alternative
characterization of the extended neighborhood that is sometimes simpler to use in proofs.

Lemma 1. Suppose that X is a combinatorial optimization problem and that N is a neighborhood
function defined on X. Suppose that S ∈ X, and that x ∈ S and x′ ∈ S. Then x′ ∈ * ()xSN if and
only if there is no instance (S, f) of X with the following properties:

(1) x is locally optimal for (S, f),

(2) f(x′) < f(x).

Proof. Suppose first that there is an instance (S, f) of X with properties (1) – (2). Since x is
locally optimal for (S, f), and f(x′) < f(x), it follows that x′ ∉ * ()xSN . Conversely, suppose that

there is no instance S satisfying (1) and (2). Let N* denote the extended neighborhood, and let N′
be defined as follows: ()′ xSN = NS(x) ∪ {x′}. ()′ ySN = NS(y) for y ≠ x, and ′′SN = NS′ for S′ ≠ S.

We claim that N′ and N are LO-equivalent. To see this, first consider a feasible solution y ≠ x.
Since N′(y) = N(y), it follows that y is locally optimal with respect to N, if and only if it is also
locally optimal with respect to N′. We now consider x. Since x does not have the properties (1)
and (2), it follows that x is locally optimal with respect to N if and only if it is also locally optimal
with respect to N′. This establishes that N and N′ are LO-equivalent. By Proposition 1, it follows
that N and N′ ∪ N* are also LO-equivalent. Since N* is the largest neighborhood that is LO-
equivalent to N, it follows that N′ ⊆ N*, and thus x′ ∈ N*(x), which completes the proof. ♦

We say that two problems X and Y are defined over the same set of feasible regions if the
following is true: S ∈ X if and only if S ∈ Y. For example, suppose that X is the set of traveling

7

salesman instances with nonnegative costs, and Y is the set of traveling salesman instances with
nonnegative costs satisfying the triangle inequality. Then X and Y are defined over the same set
of feasible regions. Since every instance (S, f) of Y is also an instance of X, we would write that
Y ⊆ X. If X and Y are defined over the same feasible regions, then any neighborhood function
for X is also a neighborhood function for Y.

Proposition 3. Suppose that X and Y are problems defined over the same set of feasible regions,
and suppose that X ⊆ Y. Suppose further N is any neighborhood structure defined on X (and on
Y). Let N* be the extended neighborhood of N for problem X and let N′ be the extended
neighborhood of N for problem Y. Then for any feasible region S and for any x ∈ S, ()SN x′ ⊆

* ()xSN .

Proof. Suppose that x′ ∉ * ()xSN . Then by Lemma 1, there is an instance (S, f) of X such that x is

locally optimal for the instance, and such that f(x′) < f(x). Since (S, f) is also an instance of Y, it
follows that x′ ∉ ()′ xSN , which completes the proof. ♦

Proposition 3 establishes that the extended neighborhood decreases in size as one
considers instances with a wider range of objective functions.

We now return our attention to properties of local search heuristics.

Let I = (S, f) be an instance of a combinatorial optimization problem X and let N be a

neighborhood structure defined on X. We say that a sequence of solutions x1, x2, …, xk is a
feasible search sequence if

(1) x1 ∈ S;

(2) xj ∈ NS(xj-1) for each j = 2 to k;

(3) f(xj) <f(xj-1) for each j = 2 to k.

If x1, x2, …, xk is a feasible search sequence, and if xk is a locally optimal solution, we refer to the
sequence as terminating.

Proposition 4. Suppose that I is an instance of a combinatorial optimization problem X. Suppose

that N is a neighborhood structure defined on X and let N* denote its extended neighborhood.
Then any feasible search sequence x1, x2, …, xk for N on instance I is also a feasible search

sequence for N* on instance I. Moreover, if x1, x2, …, xk is terminating for N, then it is also

terminating for N*.

Proof. The fact that NS(x) ⊆ * ()xSN for all x implies the first statement of the proposition. The
fact that N* has the same set of local optima as N implies the second. ♦

8

Proposition 4 shows a close connection between searching a neighborhood and searching
its extended neighborhood. There are times in which N is small, but N* is exponentially large. In
these cases, N is in some sense equivalent to an exponentially large neighborhood. Proposition 4
provides much of our motivation for studying properties of the extended neighborhood.

When N* is exponentially large, then searching N* is a special case of very large scale
neighborhood (VLSN) search, as surveyed by Deineko and Woeginger [1997] in the case of the
TSP and by Ahuja, Ergun, Orlin, and Punnen [2002] for the TSP and other problems. Ahuja et al
[2002] provided the following rule of thumb in their survey: the larger the size of the
neighborhood of each solution, the better is the quality of the locally optimal solutions. This rule
of thumb is de facto violated in the case of the extended neighborhood since N and N* have
exactly the same set of locally optimal solutions.

 Glover and Punnen [1997] introduced a concept related to extended neighborhoods.
They defined the domination ratio of a heuristic algorithm α for a combinatorial problem as

dom(α) =
()

{ }
,

inf : () () /
f

x f x f xα∈ ≥
S

S S where xα is the solution obtained by the heuristic α on

instance (S, f). The domination ratio is the minimum fraction of solutions that are guaranteed to
be worse than the solution obtained by the heuristic α. The concept is applicable to any heuristic
including neighborhood search heuristics; however, it is not directly associated with the definition
of a neighborhood structure. For example, if we generate a random solution from the set S, the
domination number of our heuristic is approximately half of the total solutions, even though there
is no neighborhood structure involved. We note that for neighborhood search heuristics,
min (|N*(x)| : x ∈ S)/|S| is a lower bound on the domination number of the heuristic on instances
in which the feasible region is S. Other papers on domination analysis include Gutin and Yeo
[2002], Punnen et al. [2002], Glover et al. [2001], and Punnen and Kabadi [2002].

A neighborhood structure is called exact for a combinatorial optimization problem if any
locally optimal solution for an instance is also an optimal solution for the instance. One of the
consequences of the definition of extended neighborhoods is an alternative characterization of
exact neighborhood structures. The following proposition follows directly from the definition of
the extended neighborhood of a neighborhood structure, and shows how exact neighborhoods are
related to extended neighborhoods.

Proposition 5. A neighborhood structure N is exact for a combinatorial optimization problem X
if and only if for any instance (S, f) of X, the extended neighborhood N* satisfies the condition:

* ()xSN = S for every x ∈ S.

3. Combinatorial Optimization Problems with linear cost objectives

In this section, we study some properties of the extended neighborhoods for
combinatorial optimization problems with linear costs defined over a cone. In particular, we
consider the set S ∈ X with S ⊆ Rn . We say that the costs for S are defined over a cone if the

9

following is true: there is a polyhedral cone F = {c: cAS ≥ 0}, where AS is an n × m matrix for

some m, and such that (S, c) is an instance of XS if and only if c ∈ F. As is suggested by our

notation, AS may depend on the feasible set of solutions S. Although AS varies with the set S of
feasible solutions, in most examples AS will be the same for all instances of the combinatorial
optimization problem that have the same dimension. We also assume here that m is finite, but the
results will also carry through if m is infinite.

In this section, we provide a polyhedral description of the extended neighborhood in
terms of the neighborhood structure N, the solution set S, and the constraint matrices AS for cost
vectors. We also consider the special cases in which all cost vectors are permitted, and when all
non-negative cost vectors are permitted.

Suppose that S ∈ X and that NS(x) = {x1, …, xK} for some K. Then for each i = 1 to K,
we let vi = xi – x. We refer to vi as a neighborhood vector. We let VS(x) be a matrix whose j-th
column is vj. We will refer to VS(x) as the matrix of neighborhood vectors at the solution x. Thus,
there is one column in VS(x) for every neighbor in NS(x).

We now characterize the extended neighborhood.

Theorem 1. Suppose that XS ={(S, c): cAS ≥ 0}. Let NS be any neighborhood for XS, and let
VS(x) be the matrix of neighborhood vectors. Then the extended neighborhood of NS is *

SN , and

* ()xSN = {x′ ∈ S: x′ = x + VS(x)λ + AS γ ; λ ≥ 0 , γ ≥ 0}.

Proof. Let ()′ xSN = {x′ ∈ S: x′ = x + VS(x)λ + AS γ ; λ ≥ 0 , γ ≥ 0}. We want to establish that

()′ xSN = * ()xSN . We first prove that ′SN is LO-equivalent to NS.

Since NS(x) ⊆ ()′ xSN for all S ∈ X and for all x ∈ S, any locally optimal solution with

respect to ′SN is also locally optimal with respect to NS. So, we now consider the case that x is
locally optimal with respect to N, and we will show that x is also locally optimal with respect to
N′. Let c denote the cost function. By the definition of local optimality, we know that c(x′ – x) ≥
0 for each neighbor x′ of x, and so cVS(x) ≥ 0. Also, by assumption cAS ≥ 0. Hence for all λ ≥ 0
and for γ ≥ 0, it follows that

c[x + VS(x)λ + AS γ] ≥ cx,

and so for all x′ ∈ ()′ xSN , cx′ ≥ cx. Thus a locally optimal solution with respect to N is also a

locally optimal solution with respect to N′.

10

To complete the proof that N′ = N*, we will prove that N′(x) is the largest neighborhood
structure that is LO-equivalent to N. To this end, we let x* be any solution in S that is not in
N′(x). Since x* ∈ S\N′(x), there is no feasible solution to the following linear inequality system:

x* = x + VS(x) λ + AS γ, λ ≥ 0, γ ≥ 0.

It follows from Farkas Lemma that there exists a vector w ∈ Rn such that:

w(x* - x′) < 0, wVS(x) ≥ 0 and wAS ≥ 0.

This implies that in the instance (S, w), x is a locally optimal with respect to N but that x*

is a solution with lower cost. Since (S, w) is a feasible instance, it follows that x* is not in the
extended neighborhood of x. Since x* was an arbitrary element of S\ ()′ xSN and since ()′ xSN ⊆

* ()xSN , it follows that N′ = N*, completing the proof. ♦

We state the following two special cases as corollaries, and subsequently give an
alternative proof of Proposition 2 in the case that costs are linear. The first special case is one in
which all linear objective functions are permitted, and thus AS = 0. When all cost functions are
permitted for a combinatorial optimization problem X, we say that X has general linear costs.
The second special case is the one in which all non-negative linear objective functions are
permitted, in which case AS is the identity matrix. In this case, we say that X has general
nonnegative linear costs.

Corollary 1. Suppose that X is a combinatorial optimization problem with general linear costs,
and that N is a neighborhood structure defined for X. For each feasible region S ∈ X, let VS(x)
be the matrix of neighborhood vectors. Then the extended neighborhood of N is N*, where

* ()xSN = {x′ ∈ S: x′ = x + VS(x) λ ; λ ≥ 0}.

Corollary 2. Suppose that X is a combinatorial optimization problem with general nonnegatiave
linear costs, and that N is a neighborhood structure defined for X. For each feasible region S ∈
X, let VS(x) be the matrix of neighborhood vectors. Then the extended neighborhood of N is N*,
where

* ()xSN = {x′ ∈ S: x′ ≥ x + VS(x) λ; λ ≥ 0}.

The previous results follow directly from Theorem 1, and provide a geometric
characterization of the extended neighborhood for the combinatorial optimization problem with
linear costs defined over a cone. We next prove Proposition 2 in the case that the costs are
linear.

Proposition 2′. Suppose that X is a combinatorial optimization problem with linear costs, and

that (S, c) is the unique instance in XS for which
1

1
=

=∑ n
ii

c . Let NS be a neighborhood defined

11

on X, and let L be the set of locally optimal solutions for instance (S, f). If x ∉ L, then * ()xSN =

S. If x ∈ L, then * ()xSN = {y ∈ S : cy ≥ cx}.

Proof. We prove the result directly from Theorem 1. Let AS be a matrix such that wAS ≥ 0
implies that w is a non-negative multiple of c. Let us first define ′SN as follows. If x ∉ L, then

()′ xSN = S. If x ∈ L, then ()′ xSN = {y ∈ S : f(y) ≥ f(x)}. By Theorem 1,

* ()xSN = {x′ ∈ S: x′ = x + VS(x)λ + AS γ ; λ ≥ 0 , γ ≥ 0}.

Assume first that y ∈ * ()xSN and x ∈ L. Then c(y - x) = cVS(x)λ + cAS γ for some λ ≥ 0
and γ ≥ 0. By assumption, x ∈ L, and so cv ≥ 0 for each column v of VS(x). Also by assumption,
cAS ≥ 0. We conclude that c(y – x) ≥ 0, and so y ∈ ()′ xSN .

Assume next y ∉ * ()xSN and x ∈ L. By Farkas Lemma there is a vector w such that (1)

w(y - x) < 0, (2) w VS(x) ≥ 0, and (3) w AS ≥ 0. The inequality (3) implies that w is a nonnegative
multiple of c, and it is a strictly positive multiple because w(y – x) < 0. Inequality (2) is a
restatement that x ∈ L. Inequality (1) becomes “c(y - x) < 0”, and so y ∉ ()′ xSN . We have thus

shown that ()′ xSN = * ()xSN for x ∈ L.

We now consider the case that x ∉ L. In this case, * ()xSN ⊆ ()′ xSN = S. We thus need to

establish that * ()xSN = S. So, we suppose that y ∉ * ()xSN , and we will derive a contradiction. By
Farkas Lemma, there is a vector w satisfying (1) to (3) above. As before w is a positive multiple
of c. But then condition (2) is equivalent to writing c(x′ – x) ≥ 0 for all x′ ∈ NS(x), which
contradicts that x ∉ L. This contradiction shows that y ∈ * ()xSN , and thus ()′ xSN = * ()xSN = S
for x ∉ L completing the proof. ♦

We now illustrate Theorem 1 result using two examples of neighborhood structures in the
literature.

Example 1: A linear program: min {cx: x ∈ P ⊆ Rn } over a polytope P can be viewed as a
combinatorial optimization problem where the set of feasible solutions S is the set of extreme
points of the polytope. We assume that all linear objectives are allowed in the linear program, and
so we consider Corollary 1. The simplex method for the linear programming can be viewed as a
neighborhood search algorithm, where the neighbors of an extreme point x are those extreme
points that share an edge with x in the polytope P. It can be shown that for this neighborhood
structure, S ⊆ {x′: x′ = x + VS(x)λ, λ ≥ 0} for all x ∈ S. (This set is any solution that can be
expressed as a non-negative linear combination of neighborhood vectors.) Corollary 1 implies
that the * ()xSN = S for all feasible regions S, and thus the neighborhood is exact, a well known
result in linear programming.

12

Example 2: The traveling salesman problem is to find a minimum cost tour (or Hamiltonian
cycle) in a graph G = (V, E). It is often formulated as a combinatorial optimization problem with
linear costs as follows. Each tour T is represented as a 0/1 vector x ∈ {0, 1}|E| where xe = 1 means
that the edge e ∈ T. The set of feasible solutions of an instance is given by

S = {x ∈ {0, 1}|E|: x represents a tour in G}.

A 2-opt move on a tour T removes two edges from T and adds two edges to T in order to
get a new tour. The 2-opt neighborhood of a tour T consists of all tours that can be obtained from
T by a 2-opt move. If a tour is represented as a 0-1 vector x, then a 2-opt move can be
represented as a vector v ∈ {0, 1, -1}|E|, where ve = 1 means that the edge e is added to the cycle,
ve = -1 means that the edge is removed from the cycle, and ve = 0 otherwise. From Theorem 1,
the extended neighborhood of the 2-opt neighborhood structure contains all tours that can be
obtained by non-negative combinations of 2-opt moves.

4. Recognizing Solutions that are in the Extended Neighborhood

In this brief section, we give sufficient conditions under which a solution in the extended
neighborhood can be identified in polynomial time.

By the local improvement problem for N, we mean the following: given an instance
(S, c) of X and a feasible solution x, determine that x is locally optimal, or else determine a
neighbor x* of x with cx* < cx.

Theorem 2. Let X be a combinatorial optimization problem with linear costs defined over a cone.
Let N be a neighborhood structure for X. Suppose that the local improvement problem for N can
be solved in polynomial time and that the separation problem for the cone can be solved in
polynomial time. Then there is a polynomial time algorithm to determine the membership in the
extended neighborhood N*.

Proof. Let S denote a set of feasible solutions, and suppose that the costs are in the cone: {c :
cAS ≥ 0}. Suppose further that x, x′ ∈ S. By Theorem 1, x′ ∈ * ()xSN if and only if there is a
feasible solution to the following system of inequalities and equalities:

x′ = x + VS(x)λ + AS γ ; λ ≥ 0 , γ ≥ 0. (1)

By Farkas Lemma, we know that the linear system (1) has no feasible solution if and only if the
following linear system has a feasible solution:

w(x′ - x) < 0; (2a)
 wVS(x) ≥ 0; (2b)
 wAS ≥ 0. (2c)

We now claim that feasibility of (2) may be determined in polynomial time using the ellipsoid
algorithm. It suffices to show that the separation problem for this linear program is solvable in

13

polynomial time. Let w′ be any solution, not necessarily feasible for (2). If (2a) is not satisfied,
then w(x′ – x) ≥ 0 is a separating constraint.

If (2b) is not satisfied, then there exists a column vector v of VS(x) such that w′v < 0.
Equivalently, there is a vector x′ ∈ NS(x) x′ = x + v such that w′x′ < w′x. The separating
constraint is wv ≥ 0. Since we can solve the local improvement problem in polynomial time, we
can determine this vector x′ in polynomial time, and thus determine v in polynomial time.

If (2c) is not satisfied, then there is a column Aj of AS so that wAj < 0. By assumption, we
can solve the separation problem for this cone in polynomial time. We conclude that we can
separate w′ in polynomial time, and so we can recognize vectors in N*(x) in polynomial time. ♦

While recognizing vectors in N*(x) is solvable in polynomial time, optimizing over N*(x)
is often NP-hard. We prove an NP-hardness result for optimizing over N*(x) in the next section.

We next study the extended neighborhood for the well-known 2-opt neighborhood
structure for the traveling salesman problem.

5. Some Properties of the Extended Neighborhood for TSP 2-opt

In this section and in the following two sections, we analyze some properties of the
extended neighborhood 2-opt* of the 2-opt neighborhood structure for the TSP. We show that 2-
opt* is exponentially large, and that optimizing over 2-opt* is NP-hard.

If T is a feasible tour with n cities, we let 2-opt(T) be the tours that can be obtained from
T by a single 2-opt move, that is the neighbor T′ is obtained from T by adding two edges and
deleting two edges. In previous sections, we used the index S when describing the neighborhood
function. For the 2-opt neighborhood, the set S is obvious from context since it is the set of all
tours on n cities. So, we will omit the index S when discussing the neighborhood 2-opt as well as
its extended neighborhood 2-opt*.

Let G = (V, E) be a complete undirected graph with node set V = {1, …, n} and costs cij

associated with each edge (i, j) ∈ E. The traveling salesman problem (TSP) is to find the
minimum weight tour in G. We represent a tour as a sequence i1, i2, …, in, i1, where edges (ik, ik+1)
for k = 1, …, n-1 and (in, i1), belong to the tour. We assume without loss of generality that i1 = 1.
Let T be a tour. The incidence vector for T is the vector x ∈ {0, 1}|E| where xij = 1 for edges (i, j)
∈ T and xij = 0 otherwise. The traveling salesman problem can be formulated as a combinatorial
optimization problem with linear objective as follows. We define the set of feasible solutions as S
= {x ∈ {0, 1}|E|: x is incidence vector of some tour in G} and the linear objective function
associated with each feasible solution x is f(x) = cx.

For some examples, we will assume that the starting tour is T =1, 2, 3, …, n, 1. In this
notationally simpler case, we will represent 2-opt moves using the following concise notation.

14

We represent a 2-opt move by the unordered pair {k, l}, where k, l ∈ {1,…, n} such that nodes k
and l are not adjacent in the tour, i.e., k ≠ l-1 and k ≠ l+1. The move {k, l} represents the
following changes to tour T:

1. Remove the edges (k, k+1) and (l, l+1),

2. Add the edges (k, l) and (k+1, l+1).

In this definition, we assume that n+1 = 1. We denote the set of 2-opt moves corresponding to
tour T by 2-optmove(T). The 2-opt neighborhood for the tour T (solution x) is defined as all the
tours (incidence vectors of tours) that can be obtained from T by performing a 2-opt move {k, l}
for some {k, l} ∈ 2-optmove(T). We use vkl ∈ {-1, 0, 1}|E| to denote the neighborhood vector in 2-
optV(x) corresponding to the 2-opt neighbor obtained by performing the move {k, l}, i.e.,

vkl(e) =
1 1

1 1

1 if (,)or (,)
1 if (,)or (,)
0 otherwise.

+ +

+ +

− = =
 = =

k k l l

k l k l

e i i e i i
e i i e i i

For example, x + vkl to x gives the incidence vector of the tour obtained from the initial
tour T by performing the move {k, l}.

We consider all possible cost vectors in TSP. We let 2-opt*(x) denote the extended
neighborhood of x. Rather than use the matrix notation of Theorem 1, we represent solutions in
the extended neighborhood as x plus linear combinations of neighborhood vectors. In particular,

2-opt*(x) = {x′ ∈ S: x′ = x + { , } 2- (T)
kl

klk l optmove vλ∈∑ , λkl ≥ 0 for all {k, l}}. (3)

Often, the TSP is restricted to instances where the edge costs c satisfy the triangle
inequality, that is: for any i, j, k ∈ V, cij + cjk ≥ cik. We refer to this special case of the TSP as
TSPTI. Non-negative cost functions satisfying the triangle-inequality form a cone, and so we may
apply the results of Theorem 1, with an appropriately chosen matrix A(S). However, the extended
neighborhood is the same as the one given in Theorem 1. We establish this result next.

Theorem 3. Let 2-optTI* denote the extended neighborhood for 2-opt for the problem TSPTI.
Then 2-optTI* is the same as 2-opt*, the extended neighborhood of 2-opt for TSP.

Proof. By Proposition 3, every instance of TSPTI is also an instance of TSP, and so the extended
neighborhood of TSPTI contains the extended neighborhood of TSP, that is for all feasible
solutions x, 2-opt*(x) ⊆ 2-optTI*(x). Now let us suppose that x and x′ are incidence vectors for
tours on n cities, and that x′ ∉ 2-opt*(x). Then there is an instance on n cities with cost function c′
such that x is locally optimal with respect to the 2-opt neighborhood and such that c′(x′ –x) < 0.
We will next determine another cost vector c* such that c* is non-negative, satisfies the triangle
inequality, and such that x is locally optimal with respect to c* and such that c*(x′ – x) < 0. This
will establish that x′ ∉ 2-optTI*(x), which will complete the proof of the theorem.

15

Let cM be obtained from c′ by adding M to every component. If M is chosen large enough, then
cM will be strictly positive and will satisfy the triangle inequality. Moreover, for any solution y,
cM(y – x) = c′(y – x). It follows that x is locally optimal for cost function cM and that cM(x′ – x) <
0, completing the proof. ♦

Our next result concerns reachability. We say that a tour T′ is reachable from T with
respect to neighborhood N if there is a sequence T = T1, T2, …, TK = T′ of tours so that

1. Tour Tj ∈ N (Tj-1) for j = 2 to K;

2. The cost of Tj is less than the cost of Tj-1 for j = 2 to K.

We now address the following question: is reachability for 2-opt* the same or different
from reachability for 2-opt. Clearly, any tour T′ that is reachable from T with respect to the 2-opt
neighborhood is also reachable with respect to 2-opt*. In Theorem 4, we prove that the converse
is not true.

Theorem 4. Let T be any tour with at least 11 nodes. There is cost vector c and a tour T′ such
that T′ is not reachable from T with respect to 2-opt, and so that T′ is reachable from T with
respect to 2-opt*.

Proof. Without loss of generality, we may relabel the nodes so that T = (1, 2, …, n, 1). Suppose
that all edges of T have a cost of 0, that is, ci,i+1 = 0 for i = 1 to n, and cn1 = 0. Suppose further
that arcs (1,5), (2,6), (3,8), and (4,9) all have a cost of –2, arcs (6, 10) and (7, 11) have a cost of 1,
and all other arcs have a cost of 10. The optimal tour is T′ = 1, 5, 4, 9, 10, 6, 2, 3, 8, 7, 11, 12,
13,… n, 1, which has a cost of –6. It can be obtained from T by performing the 2-opt moves
{1,5}, {6, 10}, and {3,8} in that order. (Recall that move {i, j} adds arcs (i, j) and (i+1, j+1) and
deletes arcs (i, i+1) and (j, j+1).) The sum of these three 2-opt moves is in 2-opt*(T), and thus T′
is (trivially) reachable from T with respect to 2-opt*. However, T′ is not reachable from T with
respect to 2-opt. Indeed, if one performs either the move {1,5} or {3,8} on T, the resulting tour is
locally optimal. ♦

The previous example permitted negative costs, and violated the triangle inequality. By
adding 12 to each arc cost, one obtains an example that has positive costs and does satisfy the
triangle inequality.

A consequence of Theorem 4 is that local search using the extended neighborhood
fundamentally offers more possibilities than does local search using the original neighborhood. It
is possible that there are locally optimal solutions that are reachable from the initial tour T using
the extended neighborhood, but that are not reachable from T using the original neighborhood.

We next analyze the size of the extended neighborhood of a solution.

16

6. A Lower Bound on the Size of 2-opt*

Our original motivation for studying extended neighborhoods was in the context of very
large scale neighborhood search. We hypothesized that neighborhoods with very large extended
neighborhoods might reach better local optima. Whether this hypothesis is true awaits careful
empirical analysis. However, it does suggest that the size of the extended neighborhood is an
important parameter. In this section, we give a lower bound on the size of 2-opt*.

We note that the independent 2-opt neighborhood structure proposed by Potts and Velde
[1995] is LO-equivalent to the 2-opt neighborhood structure, and is thus a subset of 2-opt*. They
established the size of the independent 2-opt neighborhood structure for problems with n nodes to
be Ω(1.75n), it follows that the size of 2-opt* is Ω(1.75n). In this section, we show for problems
with at least n nodes that the size of the 2-opt* neighborhood of a solution is at least h(n) =
(3)(/ 2 3)!n n− − , which for n > 6 is at least n/2 - 2! We shall establish this result by

constructing a tree with at least h(n) nodes such that each node of the tree is a tour in 2-opt*(T).
Our enumeration tree satisfies the following properties:

1. The root of the tree is T.

2. Each node of the tree is in the 2-opt* neighborhood of T.

3. If T′ is a node in the tree then the children of T′ are obtained from T′ by performing a 2-
opt move that is also valid for T.

4. There are at least h(n) nodes in the tree.

We describe the construction of the tree later in the section after introducing some
preliminary results. Without loss of generality, we assume that T is given by the sequence 1, 2, 3,
…, n, 1. We again represent 2-opt moves for tree T using an unordered pair {i, j} of nodes such
that j ∉ {i-1, i+1}. Recall that the pair {i, j} represents the following change to the tour T:

1. Remove edges (i, i+1) and (j, j+1).

2. Add edges (i, j) and (i+1, j+1).

Let T′ be any tour represented as a sequence. If node k+1 immediately follows node k in
T′, we say that edge (k, k+1) is a forward edge of T′. If node k immediately follows node k+1 in
T′, we say that (k, k+1) is a backward edge of T′. (For convenience, we let both 1 and n+1 refer to
node 1.)

In our construction below, T′ will be tour obtained from T by a sequence of 2-opt moves,
each of the form {j, k} for some j and k. We will say that the move {j, k} is feasible for tour T′ if
T′ – {(j, j+1), (k, k+1)} ∪ {(j, k+1), (j+1, k)} is a tour. The following lemma gives necessary and
sufficient conditions for a move {j, k} to be feasible with respect to a tour T′.

17

Lemma 2. Let T′ be a tour. The move {j, k} is feasible for T′ if and only if (j, j+1) and (k, k+1)
are both forward edges of T′ or (j, j+1) and (k, k+1) are both backward edges of T′.

Proof. Suppose first that (j, j+1) and (k, k+1) are both forward edges of T′. Let us write T′ as i1,
i2, …, ir, ir+1, …, in, where i1= j, i2 = j+1, and ir = k. In this case the move {j, k} is feasible, and
results in the tour i1, ir, ir-1, ir-2, …, i2, ir+1, ir+2, …, in. Similarly, the move {j, k} is feasible if
(j, j+1) and (k , k+1) are both backward edges of T′. This establishes the “if part” of the lemma.

We now consider the only if part. If (j, j+1) or (k, k+1) is not an edge of T′, then clearly {j, k} is
not feasible. So, the remaining cases are when (j, j+1) is a forward edge and (k, k+1) is a
backward edge or when (j, j+1) is a backward edge and (k, k+1) is a forward edge. Let us
consider the case when (j, j+1) is a forward edge and (k, k+1) is a backward edge. Again, let T′
be written as i1, i2, …, ir, ir+1, …, in, where i1= j, i2 = j+1, and ir = k. In this case, deleting edges (j,
j+1) and (k, k+1) from T′ and adding edges (j, k) and (j+1, k+1) creates two subtours: i2, i3, …, ir-

1, i2 and ir, ir+1, …, in, i1, ir, and is thus not a feasible move. Similarly, when (j, j+1) is a
backward edge of T′ and (k, k+1) is a forward edge, then {j, k} is not a feasible move,
establishing the only if part of the lemma. ♦

We will now constructively prove that 2-opt*(T) has at least h(n) elements when T is a
tour on n cities. We do so by creating a tree with at least h(n) vertices, where the root vertex of
the tree corresponds to tour T, and where each non-root vertex of the tree corresponds to a tour in
2-opt*(T). (We are referring vertices of the tree so as to distinguish the terminology from the
nodes of the tour.) We assume without loss of generality that T = 1, 2, …, n, 1. Moreover, in our
construction, each child vertex in the tree is obtained from its parent vertex by a move of the form
{j, k} for suitable choices of {j, k}.

For any tour T′, we let F(T′) denote the set of edges (i, i+1) (where n+1 represents 1) in
T′ that are forward edges of the tour. We let B(T′) denote the set of edges (i, i+1) in T′ that are
backward edges of T′. The initial tour is T = 1, 2, 3, …, n, 1, and F(T) is the set of edges of T, and
B(T) = ∅. At intermediate stages of the algorithm, we say that a tour T′ of the tree is eligible if
T′ is a tour such that |F(T′)| ≥ 3 or |B(T′)| ≥ 3, and if T′ has no children. We are now ready to
state our algorithm to generate a tree of tours. Figure 1 gives the statement of our algorithm.

The tree contains the tour T as the root vertex. The root vertex has (n-3) children that are
obtained using the (n-3) moves {1, j+2} for j = 1, 2, …, n-3, on T. For each node T′ ≠ T, the
children are generated as follows. If |F(T′)| ≥ |B(T′)| then we find an forward edge (i, i+1) in the
sequence of T′ such that (i-1, i) is not an edge, and generate the children of T′ as tours obtained
by performing those 2-opt moves {i, j} of T on T′ that are feasible for T′. (We note that if (i, i+1)
is a forward edge of T′, then (i-1, i) cannot be a backward edge. So, Step 7 is equivalent to
determining an index i such that (i-1, i) is not an edge in T′ but (i, i+1) is. Since |F(T′)| < n, such
an index i always exists.) If |F(T′)| < |B(T′)| then we find a backward edge (i, i+1) such that (i-1,

18

i) is not a (backward) edge in T′. In this case, we again obtain children of T′ by performing those
2-opt moves {i, j} of T on T′ that are feasible for T′.

Procedure Tree-of-Tours;
begin
1. Let T be the root vertex of the tree;
2. Let the j-th child of T be the tour obtained from T by performing the move {1, j+2} for j

= 1,…, n-3;
3. while there is an eligible tour T′ in the tree do
4. begin
5. if |F(T′)| ≥ |B(T′)| then do
6. begin
7. select a node i such that (i, i+1) ∈ F(T′) and such that (i-1, i) ∉ T′;
8. for each node j such that {i, j} is a feasible move for T′, create a child of T′ by

 performing move {i, j};
9. – Note: the number of children of T′ created in this way is at least |F(T′)| - 2
10. end
11. else begin
12. select a node i such that (i, i+1) ∈ B(T′) and such that (i-1, i) ∉ T′;
13. for each node j such that {i, j} is a feasible move for T’, create a child of T′ by

 performing move {i, j};
14. – Note: the number of children of T′ created in this way is at least |B(T′)| - 2
15. end
16. end;
end.

Figure 1. Procedure to generate tree of some tours in 2-opt*.

Theorem 5. The tree generated by procedure Tree-of-Tours has at least h(n) =
(3)(/ 2 3)!n n− − distinct vertices when applied to a TSP with n nodes. Moreover, each non-

root vertex of the tree corresponds to a tour in 2-opt*(T).

Proof. First of all, all of the non-root vertices of the tree correspond to feasible tours because
they are obtained from their parent by a feasible 2-opt move of the form {j, k}, which deletes
edges (j, j+1) and (k, k+1) from a tour and adds edges (j, k) and (j+1, k+1). Moreover, each tour
is in 2-opt*(T) since it can be expressed as T plus the sum of 2-opt moves of the form {j, k} (This
follows from Theorem 1). We also note that for any tour T′ in the tree, the descendents of T′ in
the tree are obtained from T′ by a sequence of feasible 2-opt moves.

Observation 1. If a tour T′ of the tree does not have edge (j, j+1) then neither does any of its
descendents in the tree. The observation is true because no move can add back (j, j+1).

Observation 2. If a tour T′ of the tree has edge (j, k) for k ≠ j-1 or j+1, then each descendent of
the tour T′ also has the edge (j, k). The observation is true because no move can delete edge (j, k).

To complete the proof, we need to establish that the tours in the tree are all distinct, and
that there are at least h(n) tours in the tree. We next show that any two distinct vertices in the tree

19

correspond to distinct tours. Let T1 and T2 be tours corresponding to two distinct vertices in the
tree generated by Tree-of-Tours. Let T3 be the tour corresponding to the vertex that is the least
common ancestor of the vertices for T1 and T2 in the tree. Let T4 be the child of T3 whose
descendent is T1. (Possibly T4 = T1). Let T5 be the child of T3 whose descendent is T2. (Possibly
T5 = T2). Figure 2 illustrates the situation.

T1 T2

T3

T4 T5

T1 T2

T3

T4 T5

Figure 2. T3 is the common ancestor of T1 and T2.

In creating children for T3 in the procedure “Tree of Tours” a node i is selected either in
Step 7 or Step 11 and all children of T3 are obtained by performing a move {i, j} for some j. In
either case (i-1, i) is not an edge of T3. Let (i, r) and (i, i+1) denote the two edges of T3 that are
incident to node i.

 Suppose that the tour T4 is obtained from the tour T3 by performing the move {i, j}, and
that the tour T5 is obtained from the tour T3 by performing the move {i, k}. Then T4 and all of its
descendents (including T1) contain the edges (i, j) and (i, r), whereas T5 and its descendents
(including T2) contain the edges (i, k) and (i, r). Since k ≠ j, it follows that tours T1 and T2 are
distinct.

We next establish that the tree has at least h(n) vertices. For a vertex T′ of the tree, each
child of T′ is obtained by performing a 2-opt move {j, k} for some j and k, obtaining a child T”.
This deletes edges (j, j+1) and (k, k+1) from T′, and so |T″ ∩ T| = |T′ ∩ T| - 2. It is easy to
establish inductively that for a vertex T′ at level l in the tree (where T is at level 0), |F(T′)| +
|B(T′)| = n – 2l. The number of children generated for the node T′ is at least max {|F(T′)|, |B(T′)|}
– 2 ≥ / 2 − n l – 2. The number of children of the root node is (n - 3). Thus the number of leaf

nodes in the tree is at least h(n) = (3)(/ 2 3)!n n− − . Hence the total number of nodes in the tree

is at least h(n) as well. This completes the proof. ♦

7. The Complexity of Optimizing Over 2-opt*

By definition of LO-equivalence and the extended neighborhood, the 2-opt neighborhood
of a tour contains a better solution if and only if the 2-opt* neighborhood of the tour contains a
better solution. Therefore, the complexity of finding a better solution in the 2-opt* neighborhood
is the same as that for the 2-opt neighborhood, and this requires O(n2) time. In this section, we

20

consider the problem of determining an optimal solution in 2-opt* and show that the problem of
optimizing over the extended neighborhood is strongly NP-hard. More precisely, we formulate a
decision version of the optimization problem, and show that the decision version is NP-complete.

2-Opt* Search Problem

INPUT: An undirected complete graph G = (V, E), where V = {1,…, n}, an integer K, and
integer edge costs cij for (i, j) ∈ E, and a tour T.

QUESTION: Is there a tour T′ ∈ 2-opt*(T) such that (,) T iji j c′∈∑ ≤ K?

Our proof that the 2-opt* Problem is NP-complete will rely on a transformation from the
Hamiltonian path problem, as well as on some properties of the neighborhood 2-opt*(T). We next
prove a lemma that is needed for the NP-completeness proof.

Lemma 3. Let n = 4p for some p > 1. Suppose that T is the tour T = 1, 2, 3, …, n, 1. For any
ordering P of the nodes {3, 7,…, 4r-1,…,4p-1} there exists a tour T′ ∈ 2-opt*(T) such that 1-2-P
is the subpath of the first 2 + n/4 nodes of T′.

Proof. We establish this lemma constructively using an approach similar to that used in
constructing the tree of tours. We first divide the set of edges in T into p groups of four
consecutive edges each, where the rth group is Er ={(4r-3, 4r-2), (4r-2, 4r-1), (4r-1, 4r), (4r,
4r+1)}. Note that Er has 5 nodes, and the middle node is 4r-1. Let P = (4r1-1), (4r2-1) , … , (4rp-1)
be an arbitrary ordering of the middle nodes of these p groups. We will construct a tour T′ in 2-
opt* such that 1 – 2 – P are the first p+2 nodes of T′.

More specifically, the procedure Construct-Tour given below in Figure 3 will create a
sequence T0, T1, T2, T3, …, Tp of tours with the following properties:

1. T0 = T,

2. For k = 1 to p, the first two nodes in Tk are 1 and 2; the j-th node is (4rj-2 – 1) for j = 3 to
k+2, and the node in position k+3 is either 4rk or (4rk - 2); in the former case (4rk – 1, 4rk)
∈ F(Tk); in the latter case (4rk – 1, 4rk – 2) ∈ B(Tk);

3. Er ⊆ Tk for all 1 ≤ k < r ≤ p;

4. Tk is in 2-opt*(T) for k = 1 to p.

Property 3 is needed within the proof itself. If we establish that properties 1, 2 and 4 are
satisfied, then T′ = Tp satisfies the conditions of the lemma, and the lemma is proved.

It remains to show that properties 1-4 are satisfied. They are satisfied for T1. We now
assume that they are satisfied for Tk and iteration k, and establish that they are also satisfied at
iteration k+1 and for Tk+1. We consider the four cases in the “for loop” of the procedure
separately.

21

Procedure Construct-Tour;
begin

if r1 = 1, then T1 = T;
else T1 is obtained from T by performing the 2-opt move {2, 4r1–1};
for k = 1 to p-1 do

if (4rk – 1, 4rk) ∈ F(Tk) and if Ek+1 ⊆ F(Tk), then Tk+1 is obtained from Tk by performing
the 2-opt move {4rk - 1, 4rk+1 - 1};

else if (4rk – 1, 4rk) ∈ F(Tk) and if Ek+1 ⊆ B(Tk), then Tk+1 is obtained from Tk by first
performing the 2-opt move {4rk+1 - 3, 4rk+1}, and subsequently performing the 2-opt
move {4rk - 1, 4rk+1 - 1};

else if (4rk – 1, 4rk – 2) ∈ B(Tk) and if Ek+1 ⊆ B(Tk), then Tk+1 is obtained from Tk by
performing the 2-opt move {4rk - 2, 4rk+1 - 2};

else if (4rk – 1, 4rk – 2) ∈ B(Tk) and if Ek+1 ⊆ F(Tk), then Tk+1 is obtained from Tk by first
performing the 2-opt move{4rk+1 - 3, 4rk+1} and subsequently performing the 2-opt
move {4rk - 2, 4rk+1 - 2};

end.

Figure 3. Procedure to generate trees Tk, k = 1, …, p.

Case 1. (4rk – 1, 4rk) ∈ F(Tk) and Ek+1 ⊆ F(Tk). In this case, the sequence for Tk starts with 1 – 2 –
(4r1–1) – (4r2-1) -… - (4rk–1) – 4rk by Property 2. By assumption, (4rk+1-1, 4rk+1) ∈ F(Tk), and so
the 2-opt move {4rk-1, 4rk+1-1} is feasible for Tk, and applying this move to Tk yields a new tour
Tk+1 ∈ 2-opt*(T). The move {4rk-1, 4rk+1-1} on Tk removes edges (4rk-1, 4rk), (4rk+1-1, 4rk+1) and
adds the edges (4rk-1, 4rk+1-1), (4rk, 4rk+1) to Tk. Hence (4rk+1-2, 4rk+1-1) ∈ B(Tk+1) Property 2
remains satisfied. Property 3 remains satisfied after the move because no edge in Er, r > k+1 is
deleted by the move.

Case 2. (4rk – 1, 4rk) ∈ F(Tk) and Ek+1 ⊆ B(Tk). In this case, the sequence for Tk starts with 1 – 2 –
(4r1–1) – (4r2-1) -… - (4rk–1) – 4rk by Property 2. The algorithm then performs the 2-opt move
{4rk+1-3, 4rk+1} on Tk, creating an intermediate tour T”. It follows that T” is in 2-opt*(T) and also
satisfied Properties 2 and 3. The edge (4rk+1-1, 4rk+1) ∈ F(T”), and so the 2-opt move {4rk-1,
4rk+1-1} is feasible for T”. Applying this move to T” yields a new tour Tk+1 ∈ 2-opt*(T). Just as
shown in Case 2, Properties 2 and 3 remain satisfied after the move.

Case 3. (4rk-1, 4rk-2) ∈ B(Tk) and Ek+1 ⊆ B(Tk). In this case, the sequence for Tk starts with 1 – 2
– (4r1–1) – (4r2-1) -… - (4rk–1) – 4rk-2 by Property 2. Since (4rk-2, 4rk-1) ∈ B(Tk) and (4rk+1-2,
4rk+1-1) ∈ B(Tk), we can apply the 2-opt move {4rk-2, 4rk+1-2} to Tk, obtaining a tour Tk+1 ∈ 2-
opt*(T). Using argument similar to Case 1, it is easy to see that Tk+1 satisfied Property 2 and
Property 3.

Case 4. (4rk-1, 4rk-2) ∈ B(Tk) and Ek+1 ⊆ F(Tk). In this case, the sequence for Tk starts with 1 – 2
– (4r1–1) – (4r2-1) -… - (4rk–1) – 4rk-2 by Property 2. The algorithm then performs the 2-opt
move {4rk+1-3, 4rk+1} on Tk, creating an intermediate tour T”. It follows that T” is in 2-opt*(T)
and also satisfied Properties 2 and 3. Since (4rk-2, 4rk-1) ∈ B(T”) and (4rk+1-2, 4rk+1-1) ∈ B(T”),
we can apply the 2-opt move {4rk-2, 4rk+1-2} to T”, obtaining a tour Tk+1 ∈ 2-opt*(T). Using
argument similar to Case 1, it is easy to see that Tk+1 satisfied Property 2 and Property 3.

22

Based on our construction, the tour Tp satisfies the property claimed in the lemma. ♦

To establish the NP-completeness of the 2-opt* search problem, we will rely on the construction
in Lemma 3, and carry out a transformation from the Hamiltonian Path Problem.

Hamiltonian Path Problem

INPUT: An undirected graph G = (V, E), where V = {1,…, n}.

QUESTION: Is there a Hamiltonian path from node 1 to node n in G?

This problem is known to be NP-complete (Garey and Johnson [1979]).

Theorem 6. The 2-opt* Search Problem is NP-Complete.

Proof. The 2-opt* Search Problem is in the Class NP by Theorem 2. The rest of our proof will
rely on a transformation from the Hamiltonian Problem as well as Lemma 3. Let G = (V, E) be an
instance of the Hamiltonian Path problem. For notational convenience, we will assume that the n
nodes of V are labeled 3, 7, …, 4n-1, and the question is whether there is a Hamiltonian path in G
from node 3 to node 4n-1. We now create a complete graph G′ = (V′, E′) with node set V′ = {1, 2,
…, 4n} and let T be the tour 1 – 2 – 3 -…- 4n – 1. Using our notation, we may view V as a subset
of V′. We construct the edge weights c for G′ as follows:

1. If i ∈ V \{3, 4n-1} and j ∈ V′\V, then cij = 1

2. If i ∈ V and j ∈ V and (i, j) ∉ E, then cij = 1.

3. For all other arcs cij = 0. (E′ is a complete graph).

We now claim that G has a Hamiltonian path from node 3 to node 4n-1 if and only if there is a
tour T′ in 2-opt*(T) such that (,) T iji j c′∈∑ = 0.

Suppose first that there is a Hamiltonian Path P from node 3 to node 4n-1 in G. By
Lemma 3, there is a tour T′ in 2-opt*(T) such that the first n+2 nodes of T′ are 1-2-P. All nodes
following P are in V′\V. Regardless of how the remaining nodes in T′ are ordered, the cost of T′
is 0 by our construction of the edge weights.

We now consider the case that there is a tour T′ in 2-opt*(T) with cost 0. Since the first
and last nodes of T′ are in V′\V, there are at least two nodes of V are incident to nodes of V′\V in
T′. However, cij = 1 for i ∈ V\{3, 4n-1} and j ∈ V′\V. Since none of these arcs can be in T′
(which has a cost of 0), we conclude that exactly two nodes of V are incident to nodes of V′\V
and these nodes are 3 and 4n-1. This means that the nodes in V are consecutive in T′. Let P
denote the subpath formed by nodes in set V in tour T′. We now claim that P is Hamiltonian Path
in G. To see this, note that any arc of P that is not in E must have a cost of 1 in G′. This completes
the proof. ♦

23

Although it is NP-hard to optimally search the 2-opt* neighborhood, there are some
known large subsets of the 2-opt* neighborhood that are searchable in polynomial time. These
include the independent 2-opt neighborhood of Potts and Velde [1995] and the subsets of the
twisted neighborhood structure of Aurenhammer [1988].

8. The Extended Neighborhood for Graph Partition Problem

In the two examples provided in Section 3, the extended neighborhoods are much larger
than the neighborhood structures themselves. However, for some combinatorial optimization
problems, it can be shown that the extended neighborhood is always equal to the neighborhood
structure itself. In this section, we consider the graph partition problem given below.

Graph Partition Problem

INPUT: A complete undirected graph G = (V, E) containing 2n nodes and weights wij

associated with each edge (i, j) ∈ E.

OBJECTIVE: Partition the set of nodes V into two subsets V1 and V2 such that |V1| = |V2| and the
weight of edges crossing the partition, 1 2{(,): and } iji j i V j V w∈ ∈∑ , is minimum.

The Graph Partition problem is a widely studied problem, including several papers
devoted to neighborhood search. It is known to be NP-hard (Garey and Johnson [1979]). The
most popular algorithms for the Graph Partition problem are based on the search heuristics of
Kernighan and Lin [1970] and Fiduccia and Mathias [1982]. These search heuristics employ a
variable depth search procedure to identify a new solution starting from a solution to the Graph
Partitioning. We note that there is no neighborhood structure associated with each solution in
these search heuristics. Johnson et al. [1989] performed detailed computational experiments with
the search heuristic of Kernighan and Lin and a simulated annealing based neighborhood search
algorithm. They concluded that although the neighborhood search based algorithm worked better
on some instances, the heuristic of Kernighan and Lin performed well overall.

The main result of this section is that for any neighborhood function N of the graph
partition problem, the extended neighborhood N* = N. Our result relies on an important property
of the convex hull of solutions for the graph partition problem (when represented as an integer
program): all feasible partitions are adjacent corner points in the convex hull.

Because the graph partition problem is a special case of the quadratic assignment
problem, this result applies to the quadratic assignment problem as well.

Before proving the result for the Graph Partition Problem, we establish a more general
theorem concerning the extended neighborhood.

Let P = Conv(S) denote the convex hull of the feasible solution set of a combinatorial
optimization problem. In order to show the next result we assume that every feasible solution in S
is an extreme point of P. This property is automatically satisfied if S ⊆ {0, 1}n.

24

In the following theorem, we refer to adjacency in a polytope in the usual linear
programming sense of adjacency. That is, two corner points x and y are adjacent if one can
obtain y from x by a single linear programming pivot.

Theorem 7. Let X be a combinatorial optimization problem with general linear costs. Suppose
for every feasible region S ∈ X, the following is true:

(1) the set of corner points of Conv(S) is the set S.

(2) every two corner points of the polytope P = Conv(S) are adjacent;

Then for any neighborhood structure N defined on X, N* = N.

Proof. Let S ∈ X, and let us suppose that NS(x) ≠ * ()xSN for some x ∈ S. Let x′ be a solution in

N*(x)\NS(x). By hypothesis x and x′ share a common edge in the polytope. It is well known (see
for example Papadimitriou and Steiglitz [1982]) that in this case there must exist a cost vector w
satisfying: wx′ < wx and wx ≤ wx″ for all x″∈ S \{x, x′}. However, in the problem instance (S, w),
the solution x is locally optimal with respect to N but not with respect to N*, which is a
contradiction. Hence it must be the case that N*(x) = N(x) for all x ∈ S. ♦

The Graph Partition Problem can be formulated as an integer programming problem as
follows: We represent each node partition (V1, V2) as a vector x ∈ {0, 1}|E| such that xij = 1 if i ∈
V1 and j ∈ V2 and xij = 0 otherwise. Thus S = {x ∈ {0, 1}|E|: x represents a node partition}. The
Graph Partition problem is Minimize (wx : x ∈ S). We will next show that every two corner
points in Conv(S) are adjacent. Therefore, the extended neighborhood of any neighborhood
structure for the Graph Partition problem is the same as the neighborhood structure for all
instances of the problem and for any neighborhood structure.

Theorem 8. Let S = {x ∈ {0, 1}|E|: x represents a node partition of G = (V, E)} . Then every two
corner points in Conv(S) are adjacent in Conv(S).

Proof. Let S denote the set of feasible 0-1 solutions of the Graph Partition problem. Let x be a
solution representing the node partition (1V , 2V). Let x′ ∈ S be any other solution, and let

(1V̂ , 2V̂) denote its partition. We shall construct a weight function w satisfying: wx′ = wx and wx
< wx″ for all x″∈ S \{x, x′}. The existence of such a weight function implies that x and x′ share an
edge in the polytope Conv(S), proving the theorem.

Let A = 1V ∩ 1V̂ , B = 2V ∩ 2V̂ , C = 1V ∩ 2V̂ , and D = 2V ∩ 1V̂ . Therefore, 1V = A ∪ C,
2V = B ∪ D, 1V̂ = A ∪ D, and 2V̂ = B ∪ C. The partition (1V̂ , 2V̂) can be obtained from (1V , 2V)

by moving the nodes in C from 1V to 2V and nodes in D from 2V to 1V . We note that the
following must hold: |A| = |B| and |C| = |D|. We assign the weights in the graph as follows:

1. wij = M if i, j ∈ A or i, j ∈ B or i, j ∈ C or i, j ∈ D, where M > |V|2.

25

2. wij = 1 if i ∈ A ∪ B and j ∈ C ∪ D.

3. wij = 0 for all other edges.

By our construction, wx = |A| |D| + |B| |C|, and wx′ = |A| |C| + |B| |D|. Since |A| = |B| and
|C| = |D|, it follows that wx = wx′ = 2 |A| |C| < |V|2. We now claim that any other partition x″ =
(W1, W2) has a higher cost. If there is an edge (i, j) with i ∈ A ∩ W1 and j ∈ A ∩ W2, then wij =
M > wx. We conclude that if wx″ < M, then A ⊆ W1 or A ⊆ W2. Similarly for S′ = B or C or D, S′
⊆ W1 or S′ ⊆ W2. Without loss of generality, we assume that A ⊆ W1. This leads to only one
other possibilities other than x and x′. It follows that W1 = A ∪ B. (If W1 = A, it would not be a
partition, nor would it be a partition if W1 were larger than A ∪ C.) Since W1 = A ∪ B, it follows
that wx” = |A| |C| + |A| |D| + |B| |C| + |B| |D| = 4 |A| |C| > wx. This proves the theorem. ♦

Putting together the results of Theorems 7 and 8 yields the following theorem.

Theorem 9. Suppose that all cost vectors are feasible for the Graph Partition Problem. Then for
any neighborhood structure N for the Graph Partition Problem, N*(x) = N(x) for all x ∈ S.

We observe that we could restrict attention to costs that are non-negative since adding a
constant M to every edge adds the constant value |V/2|2 to every partition. We have also assumed
that every instance of the graph partition problem is complete. We can relax this assumption to
permit problems in which the graph G = (V, E) is not complete. If E is not complete, then we can
create an equivalent problem in which G is complete by assigning a weight of 0 to arcs not in E.

9. Conclusions

In this paper, we have introduced the concepts of LO-equivalence of neighborhoods and
of the extended neighborhood of a neighborhood structure for the combinatorial optimization
problems. These concepts are motivated in part by the study of the independent 2-opt
neighborhood for the TSP, which is exponentially large even though it is LO-equivalent to the 2-
opt neighborhood. It is also motivated in part by the concept of dominance as per Glover and
Punnen. It is also motivated in part as a generalization of “exactness” of neighborhoods.

The size of the extended neighborhood provides an alternative metric for a neighborhood
structure. A small neighborhood structures can appear to be very large scale if its extended
neighborhood is of exponential size.

We showed in the case of combinatorial optimization problems with linear costs defined
over a cone that there is a geometric characterization of the extended neighborhood for any
neighborhood structure. We used this geometric characterization to study the size and other
properties for the extended neighborhood for the 2-opt neighborhood structure for TSP. We
showed that the number of neighbors of each solution in 2-opt*(x) is at least ((n-4)/2)!. We also
showed that the 2-opt* neighborhood differs from the 2-opt neighborhood in important ways other

26

than its size. We showed that optimizing over the 2-opt* neighborhood is NP-hard. We also
showed that there are possibly local optima reachable from a tour T with respect to the 2-opt*

neighborhood that are not reachable with respect to the 2-opt neighborhood.

We showed that for certain problems such as Graph Partition problem, the extended
neighborhood is always equal to the neighborhood structure. This relied on a theorem stating that
all corner points in the convex hull of partitions are adjacent.

There is an interesting related property of VLSN search for the TSP and quadratic
assignment problem. Deineko and Woeginger [1997] point out that there are many known
exponentially large neighborhoods of the traveling salesman problem that can be searched in
polynomial time, but that there is no known exponentially large neighborhood of the quadratic
assignment problem that can be solved in polynomial time. We mention this related property
because the quadratic assignment problem contains the graph partition problem as a special case,
and we wonder whether our results in Section 8 and their observations are connected.

We note that our definition of the extended neighborhood of a neighborhood structure is
dependent implicitly on the class of objective functions that are allowed for a problem. In the
future, it may be worthwhile to analyze the extended neighborhoods for specific neighborhood
structures as well as restricted classes of objective functions.

Acknowledgments. We thank Ravi Ahuja, Andreas Schulz, and Ozlem Ergun for useful
discussions. This research was supported through NSF contract DMI-9820998.

References

Aarts, E. M. L., and J. K. Lenstra. 1997. Local search in Combinatorial Optimization. John
Wiley.

Ahuja, R. K., O. Ergun, J. B. Orlin, and A. P. Punnen. 2001. A Survey of Very Large-Scale
Neighborhood Search Techniques. Discrete Applied Mathematics 23, p75-102.

Deineko, V. G., and G. J. Woeginger. 2000. A study of exponential neighborhoods for the
traveling salesman problem and the quadratic assignment problem. Mathematical Programming
87, p519-542.

Ergun, O. 2001. New Neighborhood Search Algorithms Based on Exponentially Large
Neighborhoods. PhD Thesis, Operations Research Center, MIT, Cambridge, Massachusetts,
USA.

Fiduccia, C. M., and R. M. Mattheyes. 1982. A linear time heuristic for improving network
partitions. ACM IEEE Nineteenth Design Automation Conference Proceedings, IEEE Computer
Society, p175-181.

Garey, M., and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman.

27

Glover, F., G. Gutin, A. Yeo, and A. Zverovich. 2001. Construction heuristics for the asymmetric
TSP. European Journal of Operational Research 129, p555-568.

Glover, F., and A. P. Punnen. 1997. The Traveling Salesman Problem: New Solvable Cases and
Linkages with the Development of Approximation Algorithms. Journal of the Operations
Research Society 48, p502-510.

Gutin, G., and A. Yeo. 2002. Polynomial approximation algorithms for the TSP and the QAP
with a factorial domination number. Discrete Applied Mathematics 119, p107-116.

Johnson, D. S., C. R. Aragon, L. A. McGeoch, C. Schevon. 1989. Optimization by Simulated
Annealing: An Experimental Evaluation; Part 1, Graph Partitioning. Operations Research 37(6),
p865-892.

Johnson, D. S., and L. A. McGeoch. 2002. Experimental Analysis of Heuristics for the STSP.
Gutin and Punnen (eds.), The Traveling Salesman Problem and its Variations, Kluwer Academic
Publishers.

Kernighan, B. W., and S. Lin. 1970. An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal 49, p291-307.

Papadimitriou, C. H., and K. Steiglitz. 1982. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall.

Potts, C. N., and S. L. van de Velde. 1995. Dynasearch – Iterative local improvement by dynamic
programming: Part 1, The traveling salesman problem. Technical Report, University of Twente,
The Netherlands.

Punnen, A. P., and S. N. Kabadi. 2002. Domination Analysis of some heuristics for the
asymmetric traveling salesman problem. Discrete Applied Mathematics 119, p117-128.

Punnen, A. P., F. Margot, and S. N. Kabadi. 2002. TSP heuristics: domination analysis and
complexity. Algorithmica (accepted).

Savage, S. L. 1973. The solution of discrete linear optimization problems by neighborhood search
techniques. PhD Thesis, Department of Computer Science, Yale University.

Sharma, D. 2002. Cyclic Exchange and Related Neighborhood Structures for Combinatorial
Optimization Problems. Ph.D. Thesis. Operations Research Center, MIT, Cambridge, MA.

Voss, S., S. Martello, C. Roucairol, I. H. Osman. 1999. Meta-Heuristics: Advances and Trends in
Local Search Paradigms for Optimization. Kluwer.

	The Extended Neighborhood: Definition and Characterization
	James B. Orlin
	Sloan School of Management
	Massachusetts Institute of Technology
	Cambridge, MA02139, USA
	jorlin@mit.edu
	Dushyant Sharma
	Department of Industrial and Operations Engineering
	University of Michigan
	Ann Arbor, MI48105, USA
	dushyant@umich.edu
	The Extended Neighborhood
	Abstract
	
	(Last modified 09/29/02)
	1. Introduction

	Neighborhood Search, LO-equivalence and the Extended Neighborhood
	Combinatorial Optimization Problems with linear cost objectives
	Recognizing Solutions that are in the Extended Neighborhood
	
	Some Properties of the Extended Neighborhood for TSP 2-opt
	A Lower Bound on the Size of 2-opt*
	The Complexity of Optimizing Over 2-opt*
	The Extended Neighborhood for Graph Partition Problem
	Conclusions
	References

