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POLYNOMIAL INEQUALITIES REPRESENTING

POLYHEDRA⋆

HARTWIG BOSSE, MARTIN GRÖTSCHEL, AND MARTIN HENK

Abstract. Our main result is that every n-dimensional polytope can be
described by at most (2n− 1) polynomial inequalities and, moreover, these
polynomials can explicitly be constructed. For an n-dimensional pointed
polyhedral cone we prove the bound 2n− 2 and for arbitrary polyhedra we
get a constructible representation by 2n polynomial inequalities.

1. Introduction

By a striking result of Bröcker and Scheiderer (see [Sch89], [Brö91], [BCR98]
and [Mah89]), every basic closed semi-algebraic set of the form

S = {x ∈ R
n : f1(x) ≥ 0, . . . , fl(x) ≥ 0} ,

where fi ∈ R[x], 1 ≤ i ≤ l, are polynomials, can be represented by at most
n(n + 1)/2 polynomials, i.e., there exist polynomials p1, . . . , pn(n+1)/2 ∈ R[x]
such that

S =
{
x ∈ R

n : p1(x) ≥ 0, . . . , pn(n+1)/2(x) ≥ 0
}
.

Moreover, in the case of basic open semi-algebraic sets, i.e., ≥ is replaced
by strict inequality, one can even bound the maximal number of polynomi-
als needed by the dimension n instead of n(n + 1)/2. Rephrasing the results
in terms of semi-algebraic geometry, the stability index of every basic closed or
open semi-algebraic set is n(n+ 1)/2 or n, respectively. Both bounds are best
possible.

No explicit constructions, however, of such systems of polynomials are known
nor whether the upper bound n(n + 1)/2 can be improved for semi-algebraic
sets having additional structure such as convexity. Even in the very special
case of n-dimensional polyhedra almost nothing was known. In [Brö91, Exam-
ple 2.10] or in [ABR96, Example 4.7] a description of a regular convex m-gon
in the plane by two polynomials is given. This result was generalised to arbi-
trary convex polygons and three polynomial inequalities by vom Hofe [vH92].
Bernig [Ber98] proved that, for n = 2, every convex polygon can even be rep-
resented by two polynomial inequalities. In [GH03] a construction of O(nn)
polynomial inequalities representing an n-dimensional simple polytope is given.
Based on ideas from [Bos03], here we give, in particular, an explicit construc-
tion of (2n − 1) polynomials describing an arbitrary n-dimensional polytope.
Hence the general upper bound of n(n+1)/2 polynomials can be improved (at
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least) for n-dimensional polytopes, and we conjecture that the dimension itself
is the right value for this special case.

In order to state our results we fix some notation. A polyhedron P ⊂ R
n is

the intersection of finitely many closed halfspaces, i.e., we can write it as

P = {x ∈ R
n : ai · x ≤ bi, 1 ≤ i ≤ m} ,

for some ai ∈ R
n, bi ∈ R. Here a · x denotes the standard inner product on R

n.
If P is bounded then it is called a polytope. A pointed polyhedral cone C ⊂ R

n

with apex at the origin is the intersection of finitely many closed halfspaces of
the type

C =
{
x ∈ R

d : ai · x ≤ 0, 1 ≤ i ≤ m
}
,

ai ∈ R
n. For polynomials pi ∈ R[x], 1 ≤ i ≤ l, we denote by

P(p1, . . . , pl) := {x ∈ R
n : p1(x) ≥ 0, . . . , pl(x) ≥ 0}

the associated basic closed semi-algebraic set generated by the polynomials.

Theorem 1.1. Let C ⊂ R
n be an n-dimensional pointed polyhedral cone. Then

we can construct (2n − 2) polynomials pi ∈ R[x], 1 ≤ i ≤ 2n − 2, such that
C = P(p1, . . . , p2n−2).

The case of polytopes can be derived as a consequence of the construction
behind Theorem 1.1 and here we get

Theorem 1.2. Let P ⊂ R
n be an n-dimensional polytope. Then we can

construct (2n − 1) polynomials pi ∈ R[x], 1 ≤ i ≤ 2n − 1, such that P =
P(p1, . . . , p2n−1).

At the end of Section 3 (see Definition 3.3) we will give an explicit description
of the polynomials we employ. The construction behind the proof of Theorem
1.2 or Theorem 1.1 can also be applied to the interior of a polytope or a cone
which are open semi-algebraic sets. Furthermore, in [GH03, Proposition 2.5]
it is shown how a representation of a polytope by polynomial inequalities can
be used to get a representation of a polyhedron by polynomials. Applying this
proposition to Theorem 1.2 leads to

Corollary 1.3. Let P ⊂ R
n be an n-dimensional polyhedron. Then we can

construct 2n polynomials pi ∈ R[x], 1 ≤ i ≤ 2n, such that P = P(p1, . . . , p2n).

The paper is organised as follows. In Section 2 we give, for a pointed cone C, a
construction of two polynomials pC,ε, p0 such that C is “nicely approximated”
by P(pC,ε, p0). Then, for a face F = C ∩ {x ∈ R

n : ai · x = 0, i ∈ IF} of
C, we apply this construction to the cone CF = {x ∈ R

n : ai · x ≤ 0, i ∈ IF},
where IF denotes the index set of active constraints of F . In that way we get an
approximation of CF by a semi-algebraic set of the type P(pCF ,ε, pF ). In Section
3 we study the relations between the set P(pCF∩G,ε, pF∩G) and P(pCF ,ε, pF ),
P(pCG,ε, pG) for two different faces F and G of the same dimension. Thereby, it
turns out that we may multiply all polynomials pCF ,ε belonging to faces of the
same dimension as well as the polynomials pF in order to get a representation
of a pointed polyhedral cone by polynomials. In Section 4 we give a brief
outlook why we are interested in such a polynomial representation of polytopes
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and what might be achievable by such a representation with respect to hard
combinatorial optimisation problems.

2. Approximating cones

In the following we use some standard terminology and facts from the theory
of polyhedra for which we refer to the books [MS71] and [Zie95]. For the approx-
imation of a cone by a closed semi-algebraic set consisting of two polynomials
we need a lemma about the approximation of a polytope by a strictly convex
polynomial which was already shown in [GH03, Lemma 2.6]. Since it is essential
for the explicit construction of the polynomials we state it here. To this end,
let Bn be the n-dimensional unit ball centred at the origin. The diameter of
a polytope is denoted by diam(P ), i.e., diam(P ) = max{‖x − y‖ : x, y ∈ P},
where ‖ · ‖ denotes the Euclidean norm.

Lemma 2.1. Let P = {x ∈ R
n : ai · x ≤ bi, 1 ≤ i ≤ m} be an n-dimensional

polytope. For 1 ≤ i ≤ m let

vi(x) :=
2ai · x− h(ai) + h(−ai)

h(ai) + h(−ai)
,

where h(a) := max{a · x : x ∈ P} is the support function of P . Let ε > 0,
choose an integer k such that k > ln(m)/(2 ln(1 + 2ε

(n+1)diam(P ))), and set

pP,ε(x) :=
m∑

i=1

1

m
[vi(x)]

2 k and Kε := {x ∈ R
n : pP,ε(x) < 1}.

Then we have P ⊂ Kε ⊂ P + εBn.

Proof. [GH03, Lemma 2.6]. �

Now let

(2.1) C = {x ∈ R
n : ai · x ≤ 0, 1 ≤ i ≤ m} ,

be a pointed n-dimensional cone with ‖ai‖ = 1, 1 ≤ i ≤ m. The set of all
k-dimensional faces (k-faces for short) is denoted by Fk, 0 ≤ k ≤ n − 1. For
a k-face F , we denote by IF := {i : ai · x = 0 for all x ∈ F} the set of
active constraints. We always assume that our representation (2.1) of C is
non-redundant, hence {x ∈ C : ai · x = 0} is an (n − 1)-face (facet) of C for
1 ≤ i ≤ m. For each F , let

(2.2) uF :=

∑
i∈IF

ai

‖
∑

i∈IF
ai‖

and pF (x) := −uF · x.

uF is an outer unit normal vector of the face F , i.e., F = C ∩ {x ∈ R
n :

pF (x) = 0} and C \ F ⊂ {x ∈ R
n : pF (x) > 0}. The only vertex, i.e., 0-face,

of C is the origin, and in this case, we denote the above outer unit normal
vector and the polynomial by u0 and p0, respectively. In the next lemma we
construct a basic closed semi-algebraic set consisting of two polynomials that
gives a nice and controllable approximation of C. In what follows we will often
use some constants depending on the cone or polytope. All of these constants
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are explicitly computable by elementary methods, but in order to keep the
presentation simple we do not go into the details here.

Lemma 2.2. For every ε ∈ (0, 1/2] we can construct a polynomial pC,ε(x) such
that

i) {x+ ε (u0 · x)B
n : x ∈ C} ⊂ P(pC,ε, p0) ⊂ {x+ ωC ε (u0 · x)B

n : x ∈ C} ,

ii) {x ∈ R
n : pC,ε(x) = 0, p0(x) = 0} = {0},

iii) {x+ ε (u0 · x)B
n : x ∈ C, p0(x) > 0} ⊂ {x ∈ R

n : pC,ε(x) > 0} ,

where ωC ≥ 1 is a constant depending only on C.

Proof. Firstly, observe that for n = 1 there is nothing to do, because we may
set pC,ε(x) := p0(x) and ωC = 1, say. So let n ≥ 2. For ease of notation we
may assume that −u0 = en, the n-th unit vector, which can be achieved by
a suitable rotation. Due to this choice C ∩ {x ∈ R

n : xn = 1} is an (n − 1)-
dimensional polytope P , which we identify with its image under the orthogonal

projection onto R
n−1. Thus let P = {x ∈ R

n−1 : ãi · x ≤ b̃i, 1 ≤ i ≤ m}, for

some ãi ∈ R
n−1, ‖ãi‖ = 1, b̃i ∈ R. With this notation we may write C as the

homogenisation of P , i.e., C = {xn (x, 1)
⊺ : x ∈ P, xn ≥ 0}. For µ ≥ 0 let

Pµ = {x ∈ R
n−1 : ãi · x ≤ b̃i + µ, 1 ≤ i ≤ m}.

Then

P + µBn−1 ⊂ Pµ ⊂ P + ωP µBn−1,

for a certain constant ωP ≥ 1 depending only on P . From Lemma 2.1 we get
that, for every ν > 0, we can construct a strictly convex polynomial pPµ,ν such
that

(2.3) Pµ ⊂
{
x ∈ R

n−1 : pPµ,ν (x) < 1
}
⊂ Pµ + ν Bn−1.

In particular, pPµ,ν can be written as pPµ,ν (x) =
∑m

i=1 λi[ãi ·x−αi]
2k for certain

constants λi ∈ R>0, αi ∈ R, k ∈ N, depending on Pµ and ν (cf. Lemma 2.1).
For a scalar xn > 0 we immediately get

xn Pµ ⊂ {x ∈ R
n−1 :

m∑

i=1

λi[ãi · x− xnαi]
2k < (xn)

2k}

⊂ xn P + xn(ν + ωPµ)B
n−1.

(2.4)

Since ã1, . . . , ãm are the outer normal vectors of an (n−1)-dimensional polytope,
these inclusions hold for xn = 0 as well, if we replace < by ≤. Hence, with

pPµ,ν
(x) = (xn)

2k −

m∑

i=1

λi[ãi · (x1, . . . , xn−1)
⊺ − xnαi]

2k

and p0(x) = xn, for x = (x1, . . . , xn)
⊺ ∈ R

n, we get

i) {x ∈ R
n : pPµ,ν

(x) = 0, p0(x) = 0} = {0},

ii) xn Pµ ⊂ {x ∈ R
n : pPµ,ν

(x) ≥ 0}, for xn ≥ 0,

iii) xn Pµ ⊂ {x ∈ R
n : pPµ,ν

(x) > 0}, for xn > 0.

(2.5)
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From (2.4) we conclude that

(2.6) P(pPµ,ν
, p0) ⊂ {x+ xn(ν + ωPµ)B

n, x ∈ C} .

With γ = max{(1−ai·en)
−1/2 : 1 ≤ i ≤ m} and by some elementary calculations

we get for y ∈
{
x+ xn

(
µ

µ+γ

)
Bn, x ∈ C

}
that

(2.7) (y1, . . . , yn−1)
⊺ ∈ ynPµ.

Thus we have by (2.5) ii)

(2.8)

{
x+ xn

(
µ

µ+ γ

)
Bn, x ∈ C

}
⊂ P(pPµ,ν

, p0).

Now, for a given ε ∈ (0, 1/2], we may choose µ and ν such that µ/(µ + γ) = ε
and ν + ωPµ ≤ 4γωP ε. With ωC := 4γωP and pC,ε := pPµ,ν

for this special

choice of parameters we get by (2.6) and (2.8) the statement i) of the lemma.
Property ii) is an immediate consequences of (2.5) i) and the last statement
follows from (2.7) and (2.5) iii). �

Remark 2.3.

i) The main geometric message of Lemma 2.2 is that we can construct a
cone of the type P(pC,ε, p0), which is not too far away from C, but at
the same time we also know that P(pC,ε, p0) is not too close to C. This
property of P(pC,ε, p0) plays a key role in our construction.

ii) As constant ωP in the above proof we can take R(P )/r(P ), where R(P )
and r(P ) denote the radii of two concentric balls such that x+r(P )Bn ⊂
P ⊂ x+R(P )Bn.

For a k-face F of C, let CF = {x ∈ R
n : ai · x ≤ 0, i ∈ IF } be the face-cone

of F . CF is an n-dimensional cone containing a k dimensional linear subspace,
namely lin(F ), the linear hull of F . The (n−k)-dimensional orthogonal comple-
ment lin(F )⊥ of lin(F ) is given by lin{ai : i ∈ IF }. If we apply the construction
of Lemma 2.2 to CF ∩ lin(F )⊥ (in the space lin(F )⊥) we get a generalisation of
Lemma 2.2 from the face-cone of the vertex to arbitrary k-faces of C.

Corollary 2.4. Let F be a k-face of C with 0 ≤ k ≤ n−1. For every ε ∈ (0, 1/2]
we can construct a polynomial pCF ,ε(x) such that

i) {x+ ε (uF · x)Bn : x ∈ CF } ⊂ P(pCF ,ε, pF )

⊂ {x+ ωCF
ε (uF · x)Bn : x ∈ CF } ,

ii) {x ∈ R
n : pCF ,ε(x) = 0, pF (x) = 0} = lin(F ),

iii) {x+ ε (uF · x)Bn : x ∈ CF , pF (x) > 0} ⊂ {x ∈ R
n : pCF ,ε(x) > 0} ,

where ωCF
≥ 1 is a constant depending only on C.

We note that, for a facet F of C and ε ∈ (0, 1/2], we just have (cf. proof of
Lemma 2.2)

(2.9) pCF ,ε(x) = pF (x) = −uF · x.
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3. Multiplying polynomial inequalities

Themain objective of our proof strategy is to multiply, for each k ∈ {0, . . . , n−
1}, all the polynomials pCF ,ε, F ∈ FK , and pF , F ∈ Fk, such that for a special
choice of the parameters ε, the arising 2n polynomials give a complete descrip-
tion of the cone C. To this end, we have to study, for two k-faces F and G, the
relations between P(pCF ,ε, pF ), P(pCG,ε, pG), and P(pCF∩G,ε, pF∩G).

Lemma 3.1. Let F,G be k-faces of C and let εk ∈ (0, 1/2]. Then we can find
an εF,G ∈ (0, 1/2] such that

{
x+ εF,G (uF∩G · x)Bn : x ∈ CF∩G

}
⊂

{x+ εk (uF · x)Bn : x ∈ CF , −uF · x > 0}

∪ {x+ εk (uG · x)Bn : x ∈ CG, −uG · x > 0}

∪ (lin(F ) ∩ lin(G)) .

Proof. Let CF∩G = lin(F ∩ G) + cone{v1, . . . , vr} for some points vi ∈ lin(F ∩
G)⊥, where cone denotes the conical hull. Since both, 1

2(uF + uG) and uF∩G,
are outer normal vectors of the face F ∩G we find that

ρ = min

{
1
2(uF + uG) · vi

uF∩G · vi
: 1 ≤ i ≤ r

}
> 0.

Hence, for x ∈ CF∩G, we get

(3.1) max{−uF · x,−uG · x} ≥
1

2
(−uF − uG) · x ≥ ρ(−uF∩G) · x.

If uF∩G · x = 0 then x ∈ lin(F ∩ G) ⊂ lin(F ) ∩ lin(G). Otherwise we have
−uF∩G · x > 0, and with εF,G := min{ρεk, 1/2} and (3.1) we get the required
inclusion.

�

As a corollary we get that we can find εk, 0 ≤ k ≤ n − 1, such that a cone
of the type P(pCF∩G,εdim(F∩G)

, pF∩G), F,G ∈ Fk, is covered by the interior of

P(pCF ,εk , pF ), the interior of P(pCG ,εk , pG), and the linear space lin(F )∩ lin(G).

Corollary 3.2. We can determine positive constants εk ≤ 1/2, 0 ≤ k ≤ n− 1,
such that for any pair of two different k-faces F and G of C, k ∈ {0, . . . , n−1},

P(pCF∩G,εdim(F∩G)
, pF∩G) ⊂

{x ∈ R
n : pCF ,εk(x) > 0, pF (x) > 0}

∪ {x ∈ R
n : pCG,εk(x) > 0, pG(x) > 0}

∪ {x ∈ R
n : pCF ,εk(x) = 0, pF (x) = 0, pCG ,εk(x) = 0, pG(x) = 0} .

(3.2)

Proof. By (2.9) we may set εn−1 := 1/2 and in view of Corollary 2.4 and Lemma
3.1 we just have to say how to calculate the numbers εk, 0 ≤ k ≤ n−2. For two
faces F,G ∈ Fk the proof of Lemma 3.1 (the εF,G constructed there) leads to
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an upper bound on εdim(F∩G) provided we know εk. Hence, for k = n−2, . . . , 0,
we can calculate suitable numbers εk via

εk := min
k+1≤l≤n−1

min
F,G∈Fl

{εF,G : dim(F ∩G) = k} .

�

Since every (n − 2)-face H of C is given by the intersection of two uniquely
determined facets F and G of C we may even set (cf. (2.9))

(3.3) εn−2 := 1/2, pCH ,εn−2(x) := pH(x) = −uH · x

without violating the validity of Corollary 3.2.
Now we come to the definition of the polynomials, which give us a representa-

tion of an n-dimensional pointed polyhedral cone and to the proofs of Theorem
1.1 and Theorem 1.2.

Definition 3.3. Let εk, 0 ≤ k ≤ n − 1, be chosen according to Corollary 3.2
and (3.3). For F ∈ Fk, let pF , pCF ,εk ∈ R[x] be given as in (2.2), Lemma 2.2,
(2.9), and (3.3). Then, for k = 0, . . . , n− 1, let

Pk,1(x) :=
∏

F∈Fk

pF (x) and Pk,2(x) :=
∏

F∈Fk

pCF ,εk(x).

Proof of Theorem 1.1. First we show that

C =
{
x ∈ R

n : Pk,1(x) ≥ 0, Pk,2(x) ≥ 0, k = 0, . . . , n− 1
}
.

The inclusion ⊂ is obvious. So let y /∈ C, but suppose that y satisfies all the
polynomial inequalities. Since y /∈ C one of the facet defining inequalities has
to be violated, i.e., there exists an (n−1)-face F with pF (y) < 0. Hence we may
define p ∈ {0, . . . , n− 1} as the minimum number (index) for which one of the
factors in the polynomials Pp,1(x) or Pp,2(x) is violated. Since both, P0,1(x)
and P0,2(x), consists only of one polynomial we have p ∈ {1, . . . , n− 1}.

Let F ∈ Fp such that pF (y) < 0 or pCF ,εp(y) < 0. Since Pp,1(y) ≥ 0
and Pp,2(y) ≥ 0 there must exist a G ∈ Fp with pG(y) ≤ 0 (in the case
that pF (y) < 0) or with pCG,εp(y) ≤ 0 (if pCF ,εp(y) < 0). Thus we know
that y is neither contained in the interior of the cone P(pCF ,εl, pF ) nor in the
interior of P(pCG ,εl, pG) nor in the linear space lin(F ) ∩ lin(G). By the choice
of εdim(F∩G) and Corollary 3.2, however, those points y are cut off by the cone
P(pCF∩G,εdim(F∩G)

, pF∩G). Thus we must have

y /∈ P(pC(F∩G) ,εdim(F∩G)
, pF∩G)

contradicting the minimum property of p. Finally, we observe that by (2.9)
Pn−1,1 = Pn−1,2, by (3.3) Pn−2,1 = Pn−2,2 and hence we only have 2n − 2
polynomials. �

The key to this algebraic proof are the special geometric properties i) to
iii) of the approximative sets introduced in Corollary 2.4. These relations in
combination with the result of Corollary 3.2 ensure that, for each pair of faces
F , G, the set P(pCF∩G,εdim(F∩G)

, pF∩G) is contained in a special way in the union
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of the corresponding sets constructed for F,G respectively, and this inclusion
allows us to multiply those polynomials the latter are based on.

Proof of Theorem 1.2. Let P ⊂ R
n be an n-dimensional polytope and let C ⊂

R
n+1 be the (n + 1)-dimensional pointed polyhedral cone C = {xn+1(x, 1)

⊺ :
x ∈ P}. Theorem 1.1 shows that we construct 2n polynomials describing C,
where, in particular, one polynomial (P0,1(x) in the notation of Definition 3.3)
describes just a supporting hyperplane of C at the origin. Fixing the last
coordinate to xn+1 = 1 in these polynomials gives a representation of P by 2n
polynomials. The polynomial P0,1(x), however, is apparently redundant for the
polytope. �

Remark 3.4. We want to remark that for a polytope P = {x ∈ R
n : ai · x ≤

bi, 1 ≤ i ≤ m} with rational input data ai, bi all the constants involved in
the construction of the polynomials pCF ,ε can be substituted by certain rational
numbers. Moreover, these numbers can be calculated by well known methods
from Linear Programming or Computational Geometry (cf. [Bos03]).

4. Outlook

The usual method to attack hard combinatorial optimisation problems is the
polyhedral approach. The basic idea here is a “change of the representation”
of the problem, namely, to represent combinatorial objects (such as the tours
of a travelling salesman, the independent sets of a matroid, or the stable sets in
a graph) as the vertices of a polytope. If one can find complete or tight partial
representations of polytopes of this type by linear equations and inequalities,
linear programming (LP) techniques can be employed to solve the associated
combinatorial optimisation problem, see [GLS93]. Even in the case where only
partial inequalities of the polyhedra associated with combinatorial problems
are known, LP techniques (such as cutting planes and column generation) have
resulted in very successful exact or approximate solution methods. One prime
example for this methodology is the travelling salesman problem, see [ABCC98]
and the corresponding web page at http://www.math.princeton.edu/tsp/.
Progress of the type may also be possible via a “polynomial-representation ap-
proach”. Of course, since the degree of the polynomials in a such a polynomial
representation is in general very high (see e.g. [GH03, Proposition 2.1]), and
since polynomial inequalities are much harder to treat than linear inequalities,
we can not expect that such an exact polynomial representation yields imme-
diately a new method for combinatorial optimisation problems. However, if
we can answer questions like how well can we construct a small number of
“simple” polynomials p1, . . . , pk such that a given polytope (or a general closed
semi-algebraic set) is well approximated by the corresponding polynomials, or
how well can it be described or approximated by polynomials of total degree
k, then we believe that those results lead to a new approach to combinatorial
optimisation problems via non-linear methods. We do know, of course, that
these indications of possible future results are mere speculation. Visions of this
type, however, were the starting point of the results presented in this paper.

http://www.math.princeton.edu/tsp/
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