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Abstract. Although the general linear complementarity problem (LCP) is NP-complete, there are special
classes that can be solved in polynomial time. One example is the type where the defining matrix is nonde-
generate and for which the n-step property holds. In this paper we consider an extension of the property to the
degenerate case by introducing the concept of an extended n-step vector and matrix. It is shown that the LCP
defined by such a matrix is polynomially solvable as well.

1. Introduction

Given a real square matrix M of order n and a vector q ∈ R
n, the linear complementarity

problem, denoted by LCP(q, M), is that of finding z, w ∈ R
n such that

w = Mz + q, z ≥ 0, w ≥ 0, and zTw = 0.

Although the general problem (with arbitrary data M and q) is NP-complete in the strong
sense [3], there are known classes that can be processed efficiently. (Processing a prob-
lem means finding a solution or concluding definitively the nonexistence of one.) These
include, for example, the cases where the given matrix M is positive semidefinite [9],
has nonpositive off-diagonal entries (see [1], [17], and [11]), or has a certain “n-step”
property [14].

Generally speaking, the computational complexity of an algorithm depends not only
on the matrix properties of M but also on the vector q furnished by the data. In this paper
we study a class of problems for which a solution can always be computed in polynomial
time for any q, and for which q plays no significant role in the computational complexity.
This class is an extension of the one presented by Pang and Chandrasekaran [14]. The
characterization of the problems considered in [14] involves what is known as an n-step
vector, where it has been observed that by using this type of vector, a family of LCPs can
be solved by two well-known algorithms in no more than n iterations, hence the name
“n-step.” For the n-step property to hold, the given matrix M is assumed to be at least
nondegenerate; that is to say, all principal submatrices of M must be nonsingular. The
major part of this work is the extension of these algorithmic results to the degenerate
case by enlarging the definition of the n-step vector to cover this case.

The paper is organized as follows. In the next section we present essential back-
ground material, including two of the main results from [14]. In Section 3 we define the

T. H. Chu: Dept. of Ind. & Oper. Eng., University of Michigan, Ann Arbor, MI 48109, USA.
e-mail: tchu@umich.edu

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: Yes
     Embed Thumbnails: Yes
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 595 842 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: 
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice



462 T.H. Chu

extended n-step (ENS) vector and the corresponding matrix by giving two equivalent
definitions. The two results of [14] are then extended using the more general definitions;
these are proved separately in Sections 4 and 5.

2. Background

2.1. Miscellaneous preliminaries

We begin by briefly explaining the notation. Let us denote the space of real n×n matrices
by R

n×n, the real n-space by the usual R
n symbol, and the nonnegative (positive) orthant

of R
n by R

n+ (Rn++). For an index subset α ⊆ {1, . . . , n}, ᾱ = {1, . . . , n} \ α, and its
cardinality is indicated by the symbol |α|. The i-th row of A ∈ R

n×n is denoted by Ai.
and its j -th column by A.j . For α, β ⊆ {1, . . . , n}, Aαβ is the submatrix of A obtained
by deleting all rows and columns indexed by ᾱ and β̄, respectively. In the case where
α = β, Aαα is called the principal submatrix of A determined by α. The polyhedral
cone pos A is the set {y ∈ R

n : y = Ax for some x ∈ R
n+}, consisting of all nonnegative

linear combinations of the columns of A. Lastly, a line over a matrix class represents the
property of completeness—a matrix belongs to a particular complete class if and only
if all its principal submatrices belong to the same class as well.

We have already identified a nondegenerate matrix as one that has no zero principal
minor; it is degenerate otherwise. Additional classes that are relevant to our subject are
listed below, where a bold capital letter is used to describe a matrix satisfying the defi-
nition listed next to it, as well as to represent the collection of such objects. All matrices
are taken to be real and square. (See Murty [12] and Cottle, Pang, and Stone [7] for
discussions on matrix classes.)

P : (P0): A matrix whose principal minors are all positive (nonnegative).
Q: A matrix M for which the LCP(q, M) has a solution for every q ∈ R

n.
S: A matrix M for which there exists a positive vector x such that Mx > 0.
Z: A matrix whose off-diagonal entries are all nonpositive.
K: (K0): The intersection of the classes P (P0) and Z. The K-matrices are also

called Minkowski matrices.
hidden Z: A matrix M for which there exist Z-matrices X and Y such that MX =

Y and rTX + sTY > 0 for some nonnegative vectors r and s.

The following characterizations will be useful.

Theorem 1 ([5],[16]). The classes Q and S are identical.

Theorem 2 ([13]). Suppose M ∈ R
n×n is a hidden Z-matrix. Then M ∈ P iff M ∈ S.

Schur Complements and Principal Pivot Transforms

Let M ∈ R
n×n be partitioned into M =

[
Mαα Mαᾱ

Mᾱα Mᾱᾱ

]
, where Mαα is a nonsingular

submatrix of M . The Schur complement of M with respect to α, denoted (M/Mαα), is
equal to this square matrix: Mᾱᾱ − Mᾱα(Mαα)−1Mαᾱ.

The next proposition implies that a square matrix is singular if and only if a Schur
complement of it is singular. A proof can be found in [7].
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Proposition 3. Let M ∈ R
n×n be partitioned into

M =
[

Mαα Mαᾱ

Mᾱα Mᾱᾱ

]
,

where α = {1, . . . , r} and r < n. If Mαα is invertible, then

det M/ det Mαα = det(M/Mαα).

If, in addition, (M/Mαα) is invertible, then M−1 =
[

(Mαα)−1 + (Mαα)−1Mαᾱ(M/Mαα)−1Mᾱα(Mαα)−1 −(Mαα)−1Mαᾱ(M/Mαα)−1

−(M/Mαα)−1Mᾱα(Mαα)−1 (M/Mαα)−1

]
.

Let P be a permutation matrix and M a square matrix. Then PMP T is called a
principal rearrangement of M . Let M ∈ R

n×n and α ⊆ {1, . . . , n} with det Mαα �= 0.
Then, up to principal rearrangement, the principal pivot transform (PPT) of M with
respect to α is given by the matrix

[
(Mαα)−1 −(Mαα)−1Mαᾱ

Mᾱα(Mαα)−1 (M/Mαα)

]
.

2.2. The n-step property: nondegenerate case

In this section we present the main algorithmic results for nondegenerate-matrix LCPs
as set forth in [14]. The nondegenerate case provides the framework and motivation for
the work to follow.

Definition 4. Let M ∈ R
n×n be nondegenerate and p a positive vector in R

n. Then p

is called an n-step vector for M if

(Mαα)−1pα > 0 ∀ α ⊆ {1, . . . , n}. (1)

The notion of “n-step” apparently was based on the results in [14], but it was not
named as such in that paper. As a matter of fact, the vector p there was defined in a
slightly different manner, as a positive vector p satisfying the condition

(Mαα)−1pα ≥ 0 ∀ α ⊆ {1, . . . , n} (2)

rather than the strict inequalities in (1). (Condition (2) also appeared in [4].) In Defi-
nition 4, however, we have adopted the terminology subsequently employed in [7]. An
interesting observation is that the set of positive vectors satisfying (2) may be different
from the closure of the set of vectors satisfying (1), even for a P -matrix. (A numerical
example illustrating this fact is given in [2].)

Theorem 5 ([14]). Let M ∈ R
n×n be a P -matrix and q ∈ R

n be arbitrary. Suppose
there exists a positive vector p satisfying inequalities (2). Then the parametric principal
pivoting algorithm [4], using p as the parametric vector, will compute a solution to
LCP(q, M) in at most n pivot steps.



464 T.H. Chu

Theorem 6 ([14]). Let M ∈ R
n×n be nondegenerate and q ∈ R

n be arbitrary. Suppose
there exists a positive vector p satisfying inequalities (2). Then Lemke’s algorithm [10],
using p as the covering vector, will terminate with a solution to LCP(q, M) after at most
n + 1 pivot steps.

The above algorithms refer to two known techniques (to the LCP community) that
will be described briefly in Sections 4 and 5. With this background material in place, we
are now in a position to establish the new results.

3. The extended property

In this section we introduce the extended n-step property by presenting two equivalent
definitions.

Definition 7. Let M ∈ R
n×n and p ∈ R

n++ be given. The vector p is called an extended
n-step (abbreviated ENS) vector for M if both conditions below are satisfied:

(i) (Mαα)−1pα ≥ 0 ∀ Mαα nonsingular
(ii) rank (Mαα | pα) < |α| ∀ Mαα singular

where (Mαα | pα) is an augmented matrix. The set of ENS vectors for M will be denoted
by ∆M . The matrix M is said to be an ENS matrix if ∆M is nonempty. Conditions (i)
and (ii) together shall be referred to as the ENS property (of M) if such a vector p exists.

If the given matrix is nondegenerate, then the definition reduces to that of a vector
satisfying Equation (2). Notice also that any ENS matrix must necessarily have positive
diagonal elements because the associated vector is positive.

There is a more succinct, alternative way of characterizing the extended property
that can be expressed in terms of finitely generated cones.

Theorem 8. Let M ∈ R
n×nand p ∈ R

n++ be given. Then p is an extended n-step vector
for M if and only if pα ∈ pos Mαα for all α ⊆ {1, . . . , n}.
Proof. That the latter implies the former is clear. To prove the converse, suppose p is
an extended n-step vector. We must show that pα ∈ pos Mαα for every α. The proof is
by induction on r = |α|. The case where r = 1 is trivially true because M has positive
diagonal elements. Now suppose r > 1. If Mαα is nonsingular, then (Mαα)−1pα ≥ 0 by
condition (i) of Definition 7 and pα ∈ pos Mαα . If Mαα is singular, by (ii) of Definition
7, (Mαα | pα) has a row, say the αk-th row, that is a linear combination of the other
rows. Delete this row from (Mαα | pα) and consider the reduced system




mα1α1 · · · mα1αr

... · · · ...

mαk−1,α1 · · · mαk−1,αr

mαk+1,α1 · · · mαk+1,αr

... · · · ...

mαrα1 · · · mαrαr




xα =




pα1
...

pαk−1

pαk+1
...

pαr




. (3)
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It is equivalent to the undeleted one. Set β = {α1, . . . , αr} \ {αk}. The pair {Mββ ,
pβ} satisfies the ENS property. So by the induction hypothesis there is a solution
(x̄1, . . . , x̄k−1, x̄k+1, . . . , x̄r )

T to Mββxβ = pβ that is nonnegative. Set x̄α = (x̄1, . . . ,

x̄k−1, 0, x̄k+1, . . . , x̄r )
T. Then x̄α ≥ 0 solves (3) and, therefore, the original system

Mααxα = pα as well. ��
Remark 9. A more restrictive set of conditions, pα ∈ int pos Mαα for all α ⊆ {1, . . . , n},
appeared in [8] as a generalization of the properties of being a centrally projected point
or an n-step vector. (CP points for a simplicial cone defined by a nonsingular matrix
were shown in that paper to be in 1-1 correspondence with the n-step vectors for a related
matrix.)

4. Linear termination of Lemke’s method

One of the oldest and perhaps the most widely known methods for solving linear com-
plementarity problems is the complementary pivoting algorithm due to Lemke [10]. The
following version, taken from [7], is presented in a slightly different form.

Algorithm 10.

Step 0. (Initialization.) If q ≥ 0, terminate; z = 0 solves LCP(q, M). Otherwise,
introduce the artificial variable z0 and a covering vector p > 0 associated
with it. Consider the augmented problem:

w − Mz − pz0 = q

w ≥ 0, z ≥ 0, z0 ≥ 0
Let r = arg max {|qi |/pi : qi < 0}. Pivot on the element at position
(wr, z0). Now both wr and zr are nonbasic variables. The initial basic fea-
sible vector to this system is (w1, . . . , wr−1, z0, wr+1, . . . , wn). Choose
the driving variable to be zr .

Step 1. (Determination of the blocking variable, if any.) If the column of the driv-
ing variable has at least one positive entry, perform a (lexico) minimum
ratio test to determine the basic variable that blocks the increase of the driv-
ing variable. If the driving variable is unblocked, then it can be increased
arbitrarily, and secondary ray termination occurs. Terminate; the method
has failed to find a solution.

Step 2. (Pivoting.) The blocking variable is known. If it is z0, then pivot on the
element at position (z0, driving variable) and terminate. A solution is ob-
tained by the current basic feasible solution. Otherwise, pivot on the ele-
ment located in the row of the blocking variable and the column of the
driving variable. Go to Step 1 using the complement of the current blocking
variable as the new driving variable.

Remark 11. The problem of cycling under degeneracy of a pivot step (i.e., one of zero
length) in Lemke’s method is resolved by adopting the lexico minimum rule (in Step 1)
to identify the blocking variable uniquely in every iteration. For the n-step procedures
discussed here, however, linear termination holds even under degeneracy without any
need of a special minimum rule.
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When applied to a P -matrix or any Q-matrix problem, this method will compute a
solution using any positive covering vector [6], but the number of iterations required may
be exponential. (See [12] for numerical examples that exhibit this worst-case behavior.)
Theorem 6, however, ensures against the possibility of an undesirable termination rate if
the matrix M is nondegenerate and possesses an n-step vector that can be used to initiate
the algorithm.

In view of the ENS property defined in the preceding section, Theorem 6 can now
be extended accordingly to accommodate the degenerate case. The gist of the argument
used in both cases is that once a z-variable becomes basic, it cannot be dropped from
the basic vector in subsequent iterations.

Theorem 12. Let M ∈ R
n×nbe an ENS matrix, p ∈ ∆M , and q ∈ R

n be arbitrary.
Using p as the covering vector, Lemke’s algorithm will terminate with a solution to the
LCP(q, M) after at most rank(M) iterations.

Proof. The initial tableau of the algorithm is:

b.v. w z z0

w1 −p1 = q1
... In×n −M

...
...

wn −pn = qn

If q ≥ 0, then z = 0 solves LCP(q, M). So assume q has a negative component. Sup-
pose at the beginning of the first iteration after initialization z0 has become basic and wr

nonbasic, so that zr is the driving variable. The (z0, zr ) entry is mrr/pr where pr > 0.
Since M has positive diagonal elements, mrr > 0. Termination on a secondary ray thus
cannot occur at this point.

Consider an iteration (after the first) where the pair {zt , wt } is nonbasic, with wt

having left the basis in the previous iteration. The driving variable is zt . The current
tableau may be written as:

b.v. zt

zα

z0

(
Mαα pα

Mtα pt

)−1 (
Mαt

Mtt

)

wβ

Here, only the relevant entries (zα, zt ) and (z0, zt ) are displayed. The set α is the index
set corresponding to the basic z variables, t is the index of the nonbasic pair {zt , wt },
and β is the complement of α ∪ {t}.

Now, the matrix A =
[

Mαα pα

Mtα pt

]
is nonsingular because (zα, z0, wβ) is a basic vec-

tor. This means the principal submatrix Mβ̄β̄ =
[

Mαα Mαt

Mtα Mtt

]
is nonsingular because,

otherwise, by condition (ii) of Definition 7, the rows of (Mβ̄β̄ | pβ̄) would be linearly
dependent, and A would be singular. By condition (i) of the same definition then,[

p̃α

p̃t

]
=

[
Mαα Mαt

Mtα Mtt

]−1 [
pα

pt

]
≥ 0. (4)
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The vector
[

(zα, zt ) entry
(z0, zt ) entry

]
=

[
Mαα pα

Mtα pt

]−1 [
Mαt

Mtt

]
. (5)

By Cramer’s rule, p̃t = det A
det Mβ̄β̄

> 0, and the (z0, zt ) entry is the positive number 1/p̃t ,

so that ray termination cannot occur. From Equations (4) and (5) it is easy to see that
the (zα, zt ) entry is equal to −p̃α/p̃t , which is nonpositive. Hence, the blocking vari-
able will not be chosen from the components of zα . Since the above argument shows
that a z-variable that has become basic cannot become nonbasic again, the algorithm
will terminate after at most max{|α| : (Mαα)−1 exists} ≤ rank(M) iterations with a
solution. ��

As in [14] no nondegeneracy assumption of the pivot steps is required in the proof.
Notice also that since each pivot step requires at most O(n2) arithmetic operations, the
result tells us that the LCP in question can be solved in O(n3) time.

Corollary 13. Extended n-step matrices belong to Q, or equivalently, to S.

Proof. Since the ENS property is clearly inheritable by all its principal submatrices, the
conclusion follows from Theorems 12 and 1. ��
Corollary 14. Suppose a matrix M ∈ R

n×n has a nonempty ∆M set. Then the following
statements hold.

(i) If M is Z, then M ∈ P .
(ii) If M is hidden Z, then M ∈ P .

Proof. It suffices to prove statement (ii). Since ∆M is nonempty, M belongs to S (Cor-
ollary 13). It follows from Theorem 2 that M ∈ P . ��
Corollary 15. Let M ∈ R

n×n ∩ (P0 \ P ) be a hidden Z-matrix. Then ∆M = ∅. In
particular, a (K0 \ K)-matrix has no extended n-step vector.

5. Linear termination of parametric LCP algorithm with positive parametric
vector

The goal of this section is to prove a more general version of Theorem 5. We first define
the parametric LCP.

Suppose M ∈ R
n×n and p, q ∈ R

n where p is nonzero. The parametric linear com-
plementarity problem PLCP(q, p, M) is to find, for each λ in some interval [λ∗, ∞), a
z ∈ R

n—which may depend on λ—satisfying:

w = q + λp + Mz ≥ 0, z ≥ 0, and zTw = 0.

In this problem, the vector p is called the parametric vector associated with the real
parameter λ. In what follows we shall assume that the given parametric vector is positive.
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A general parametric principal pivoting algorithm (PPPA) has been developed in [4]
to process specifically those PLCPs for which the pivot element is either positive or
zero at each iteration. (If a negative pivot is encountered, then the algorithm is unable to
proceed, and it terminates.) In the former case, a single principal pivot step is performed;
in the latter a double principal pivot (or block pivot) step is performed. At each iteration
of the PPPA, the updated current tableau contains the transforms of the original data—q,
p, and M . The pivot element is selected from among the diagonal entries of the current
PPT of M in the tableau based on a ratio test, comparing only those rows i for which the
current pi-th element is positive. If the updated p column consists of only nonpositive
entries, then the algorithm terminates with a solution function z(λ) for all λ in the desired
range. This is another way in which the algorithm can terminate. If for some λ in the
search interval [λ∗, ∞) the PLCP has no solution, then we have met a third termination
criterion. These are all the possible outcomes of the general PPPA.

Developed in [15], the algorithm we are about to present is a version of the PPPA
that can be used only if all pivot elements are known to be positive; such is the case
for a P -matrix, for example. In this version, a tie-breaking rule suggested in [12] for
determining the maximizing index r has been incorporated into Step 2.

Algorithm 16. Parametric principal pivoting algorithm using only single principal
pivot steps

Step 0. (Initialization.) Let λold = ∞, α = ∅, and ᾱ = {1, . . . , n}.
Step 1. Compute: (q̃α, p̃α) = −(Mαα)−1(qα, pα) and (q̃ᾱ, p̃ᾱ) = (qᾱ, pᾱ) +

Mᾱα(q̃α, p̃α).

Step 2. If p̃ ≤ 0, set (z(λ))ᾱ = 0 and (z(λ))α = −q̃α − λp̃α , for each λ ∈
(−∞, λold]. Terminate. Otherwise, perform the ratio test λnew = maxi

{−q̃i /p̃i : p̃i > 0}, and let r = max{arg maxi{−q̃i/p̃i : p̃i > 0}}. Set
(z(λ))ᾱ = 0 and (z(λ))α = −q̃α − λp̃α ∀ λ ∈ [λnew, λold]. If λnew ≤ λ∗,
terminate. Otherwise, set λold = λnew.

Step 3. Update index sets α and ᾱ:

αnew =
{

αold ∪ r if r /∈ αold
αold \ r if r ∈ αold

Set ᾱnew = {1, . . . , n} \ αnew and go to Step 1.

Theorem 17. Suppose M ∈ R
n×n is an ENS matrix whose PPTs have only nonnega-

tive elements on the main diagonal. Let p, q ∈ R
n with p > 0. If p ∈ ∆M , then the

parametric principal pivoting algorithm will find a solution function z(λ), λ ∈ R, to the
problem PLCP(q, p, M) in at most rank(M) iterations.

Proof. The initial canonical system in tableau form is

b.v. λ z

w1 = q1 p1
...

...
... M

wn = qn pn
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Based on results in the previous section (Corollary 13) we know that ENS matrices
belong to the class Q. Therefore, the parametric LCP under consideration has a solution
for each λ ∈ R. By hypothesis, the diagonal entries of every PPT of M are nonnegative.
We now show that the pivot in every iteration of the (general) PPP algorithm is not only
nonnegative but is in fact positive; hence, Algorithm 16 may be used.

Since all the diagonal entries of M are positive, the first pivot step is simple; that is,
no double principal pivot step is required. Now suppose we are at some iteration after
the first, where the canonical tableau is

b.v. λ wα zᾱ

zα = q̃α p̃α (Mαα)−1 −(Mαα)−1Mαᾱ

wᾱ = q̃ᾱ p̃ᾱ Mᾱα(Mαα)−1 (M/Mαα)

At this stage α and ᾱ are the index sets of the basic z and w-variables, respectively. The
transformed p and q corresponding to the current PPT of M are

(q̃α, p̃α) = −(Mαα)−1(qα, pα)

(q̃ᾱ, p̃ᾱ) = (qᾱ, pᾱ) + Mᾱα(q̃α, p̃α).

The next pivot m′
rr is chosen from the main diagonal of the principal pivot transform

(w.r.t. α) given in the above tableau. Since p̃α = −(Mαα)−1pα ≤ 0 by hypothesis, r

cannot be contained in α. So the pivot must be selected from among the diagonal entries
of the Schur complement (M/Mαα) = Mᾱᾱ − Mᾱα(Mαα)−1Mαᾱ . Suppose (M/Mαα)

has a k-th diagonal element that is zero. This means the matrix[
Mαα Mαᾱk

Mᾱkα Mᾱkᾱk

]

is singular by Proposition 3, where ᾱk stands for the k-th element of the index subset ᾱ.
From this fact, the same proposition, and Definition 7(ii), we observe that the matrix[

Mαα pα

Mᾱkα pᾱk

]

must be singular and the k-th element of the transform p̃ᾱ must be zero. Thus we have

(M/Mαα)kk = 0 �⇒ p̃ᾱk
= 0. (6)

(The argument is reversible so that the opposite direction of the above implication is
also true.)

Condition (6) thus forces every pivot to be positive, and we may apply Algorithm 16.
As mentioned earlier, the maximizing index r cannot be chosen from the set α. So it is
clear in Step 3 that the cardinality of the set of basic z-variables increases by one with
each iteration. It follows then that the algorithm must terminate with a solution function
z(λ) for all λ ∈ R in at most max{|α| : (Mαα)−1exists} ≤ rank(M) iterations. ��

By setting λ∗ = 0 in Algorithm 16, it can be applied to solve the usual LCP(q, M).
If we know that the conditions of the previous theorem are met by M , then a solution can
be computed quickly. However, verifying those conditions may not be easy, and finding
an efficient method to do so remains an open problem.
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