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4 Minimizing Polynomials via

Sum of Squares over the Gradient Ideal

James W. Demmel∗, Jiawang Nie† and Bernd Sturmfels‡

Abstract

A method is proposed for finding the global minimum of a multivariate polynomial via
sum of squares (SOS) relaxation over its gradient variety. That variety consists of all points
where the gradient is zero and it need not be finite. A polynomial which is nonnegative on
its gradient variety is shown to be SOS modulo its gradient ideal, provided the gradient ideal
is radical or the polynomial is strictly positive on the gradient variety. This opens up the
possibility of solving previously intractable polynomial optimization problems. The related
problem of constrained minimization is also considered, and numerical examples are discussed.
Experiments show that our method using the gradient variety outperforms prior SOS methods.

Key Words: Polynomials, global optimization, Sum of Squares (SOS), Semidefinite-
Programming (SDP), radical ideal, variety, gradient ideal, algebraic geometry, SOSTOOLS.

1. Introduction

We consider the global optimization problem

f∗ = min
x∈Rn

f(x) (1.1)

where x = (x1, . . . , xn) ∈ Rn is a real vector, and f(x) is a multivariate polynomial of degree
d. As is well-known, the optimization problem (1.1) is NP-hard even when d is fixed to be four
[15]. A lower bound can be computed efficiently using the Sum Of Squares (SOS) relaxation

f∗
sos = maximize γ subject to f(x)− γ �sos 0, (1.2)

where the inequality g �sos 0 means that the polynomial g is SOS, i.e. a sum of squares of
other polynomials. We refer to [13, 16, 17, 18, 19] for introductions to SOS techniques and
their applications. SOS methods solve (1.2) in polynomial time, provided either n or d is fixed,
by reducing the problem to solving a Semidefinite Program (SDP, see [24] for an introduction).
The relationship between (1.1) and (1.2) is as follows: f∗

sos ≤ f∗ and the equality holds if and
only if f(x)− f∗ is SOS.
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Blekherman [3] recently showed that, for fixed even degree d ≥ 4, the ratio between the
volume of all nonnegative polynomials and the volume of all SOS polynomials tends to infinity
when n goes to infinity. In other words, for large n, there are many more nonnegative poly-
nomials than SOS polynomials. This contrasts with the experimental results of Parrilo and
Sturmfels [18] who used (1.2) to exactly solve optimization problems (1.1) which were drawn
at random from a natural distribution. Their test family will be revisited in Section 6.1.

For dealing with the challenging case when f∗
sos is strictly less than f∗, Lasserre [13]

proposed finding a sequence of lower bounds for f(x) in some large ball {x ∈ Rn : ‖x‖2 ≤ R}.
His approach is based on the result [1] that SOS polynomials are dense among polynomials
which are nonnegative on some compact set. This sequence converges to f∗ when the degrees
of the polynomials introduced in the algorithm go to infinity. But it may not converge in
finitely many steps, and the degrees of the required auxiliary polynomials can be very large.

In this paper, we introduce a method which can find the global minimum and terminate in
finitely many steps, under some mild assumptions. Our point of departure is the observation
that all local minima and global minima of (1.1) occur at points in the real gradient variety

V R

grad(f) = {u ∈ Rn : (∇f)(u) = 0}. (1.3)

The gradient ideal of f is the ideal in R[x1, . . . , xn] generated by all partial derivatives of f :

Igrad(f) = 〈∇f(x)〉 = 〈 ∂f
∂x1

,
∂f

∂x2
, · · · , ∂f

∂xn
〉. (1.4)

There are several recent references on minimizing polynomials by way of the gradients. Hanzon
and Jibetean [10] suggest applying perturbations to f to produce a sequence of polynomials
fλ (for small λ) with the property that the gradient variety of fλ is finite and the minima f∗

λ

converge to f∗ as λ goes to 0. Laurent [14] and Parrilo [21] discuss the more general problem
of minimizing a polynomial subject to polynomial equality constraints (not necessarily partial
derivatives). Under the assumption that the variety defined by the equations is finite, the
matrix method proposed in [14] has finite convergence even if the ideal generated by the
constraints is not radical. Building on [10, 14], Jibetean and Laurent [11] propose to compute
f∗ by solving a single SDP, provided the gradient variety is finite (radicalness is not necessary).

The approach of this paper is to find a lower bound f∗
grad for (1.1) by requiring f − f∗

grad

to be SOS on the real gradient variety V R

grad(f) instead of Rn. Under the assumption that
the infimum f∗ is attained, we can find a monotonically increasing sequence {f∗

N,grad} such
that lim

N→∞
f∗
N,grad = f∗, and the equality f∗

N,grad = f∗ holds (i.e., finite convergence) for some

large integer N when the ideal Igrad(f) is radical which is usual in practice.
This paper is organized as follows. Section 2 offers a review of fundamental results from

(real) algebraic geometry. In Section 3 we prove that a positive polynomial is SOS modulo its
gradient ideal. The same holds for non-negative polynomials if the gradient ideal is radical.
The resulting algorithms for unconstrained polynomial minimization will be presented in Sec-
tion 4. Section 5 generalizes our methods to constrained optimization. In Section 6 we discuss
numerical experiments using the software SOSTOOLS. Section 7 draws some conclusions.

2 Tools from Algebraic Geometry

This section will introduce some basic notions from algebraic geometry needed for our discus-
sion. Readers may consult [6, 7, 8] for more details. We write R[x] = R[x1, . . . , xn] for the
ring of all polynomials in n variables x = (x1, . . . , xn) with real coefficients. A subset I of R[x]
is an ideal if p ·h ∈ I for any p ∈ I and h ∈ R[x]. If g1, . . . , gr ∈ R[x] then 〈g1, · · · , gm〉 denotes
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the smallest ideal containing the gi. Equivalently, 〈g1, · · · , gm〉 is the set of all polynomials
that are polynomial linear combinations of the gi. Every ideal arises in this way:

Theorem 2.1 (Hilbert Basis Theorem, Section 5, Ch. 2, [6])
Every ideal I ⊂ R[x] has a finite generating set, i.e., I = 〈g1, · · · , gm〉 for some g1, · · · , gm ∈ I.

The variety of an ideal I is the set of all common complex zeros of the polynomials in I :

V (I) = {x ∈ Cn : p(x) = 0 for all p ∈ I}.

The subset of all real points in V (I) is the real variety of I . It is denoted

V R(I) = {x ∈ Rn : p(x) = 0 for all p ∈ I}.

If I = 〈g1, . . . , gm〉 then V (I) = V (g1, . . . , gm) = {x ∈ Cn : g1(x) = · · · = gm(x) = 0}. An
ideal I ⊆ R[x] is zero-dimensional if its variety V (I) is a finite set. This condition is much
stronger than requiring that the real variety V R(I) be a finite set. For instance, I = 〈x2

1 + x2
2〉

is not zero-dimensional: the real variety V R(I) = {(0, 0)} is only one point of the curve V (I).

Theorem 2.2 (Chapter 5,[6]) The following conditions are equivalent for an ideal I ⊂ R[x]:

(i) I is zero-dimensional (the variety V (I) is a finite set);

(ii) the quotient ring R[x]/I is a finite-dimensional R-vector space;

(iii) if G is a Gröbner basis of I, then for each 1 ≤ i ≤ n, there exists an integer mi ≥ 0 such
that xmi

i is the leading term of some g ∈ G.

A variety V ⊆ Cn is irreducible if there do not exist two proper subvarieties V1, V2 $ V
such that V = V1 ∪ V2. Given a variety V ⊆ Cn, the set of all polynomials that vanish on V
is an ideal

I(V ) = {p ∈ R[x] : p(u) = 0 for all u ∈ V }.
Given any ideal I of R[x], its radical is the ideal

√
I =

{

q ∈ R[x] : qm ∈ I for some m ∈ N
}

.

Note that I ⊆
√
I . We say that I is a radical ideal if

√
I = I . Clearly, the ideal I(V ) defined

by a variety V is a radical ideal. The following theorems offer a converse to this observation:

Theorem 2.3 (Hilbert’s Weak Nullstellensatz)
If I is an ideal in R[x] such that V (I) = ∅ then 1 ∈ I.

Theorem 2.4 (Hilbert’s Strong Nullstellensatz)
If I is an ideal in R[x] then I(V (I)) =

√
I.

In real algebraic geometry, we are also interested in subsets of Rn of the form

S =
{

x ∈ Rn : g1(x) = · · · = gm(x) = 0, h1(x) ≥ 0, · · · , hℓ(x) ≥ 0
}

,

where gi, hj ∈ R[x]. We call S a basic semi-algebraic set. With the given description of S, we
associate the following set of polynomials:

M(S) =
{

σ0(x) +
m
∑

i=1

λi(x)gi(x) +
ℓ
∑

j=1

hj(x)σj(x) : σ0, · · · , σℓ are SOS, λi(x) ∈ R[x]
}

.

Theorem 2.5 (Putinar, [22]) Assume that the basic semi-algebraic set S is compact and
there exists one polynomial ρ(x) ∈ M(S) such that the set {x ∈ Rn : ρ(x) ≥ 0} is compact.
Then every polynomial p(x), which is positive on S, belongs to M(S).
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Suppose we are given an ideal I = 〈h1, . . . , hr〉 in R[x] and a polynomial f ∈ R[x]. Then we
can regard f as an element in the quotient R[x]/I . Even if f is not SOS in R[x], it is possible
for f to be SOS in the quotient ring R[x]/I . For f to be SOS in R[x]/I means that there
exists a q ∈ I such that f − q is SOS in R[x], or, more explicitly, that f has a representation

f(x) =
∑

j

q2j (x) +
∑

i

φi(x)hi(x)

for some polynomials qj(x) and φi(x), Clearly, if f is SOS in R[x]/I then the function f(x) is
non-negative on the real variety V R(I). The following partial converse holds if V C(I) is finite.

Theorem 2.6 (Parrilo,[21]) Let I be a zero-dimensional radical ideal in R[x]. Then a poly-
nomial f ∈ R[x] is nonnegative on the real variety V R(I) if and only if f(x) is SOS in R[x]/I.

We close with the following theorem, which is a special case of the real Nullstellensatz.

Theorem 2.7 (Real Nullstellensatz, [2, 4, 5]) Let I be an ideal in R[x] whose real variety
V R(I) is empty. Every polynomial f(x) is SOS in R[x]/I. In particular, −1 is SOS in R[x]/I.

3. Polynomials Over Their Gradient Varieties

Consider a polynomial f ∈ R[x] and its gradient ideal Igrad(f) as in (1.4). A natural idea
in solving (1.1) is to apply Theorem 2.6 to the ideal I = Igrad(f), since the minimum of f
over Rn will be attained at a subset of V R(I) if it is attained at all. However, the hypothesis
of Theorem 2.6 requires that I be zero-dimensional, which means that the complex variety
Vgrad(f) = V (I) of all critical points must be finite. Our results in this section remove this
restrictive hypothesis. We shall prove that every nonnegative f is SOS in R[x]/I as long as
the gradient ideal I = Igrad(f) is radical.

Theorem 3.1 Assume that the gradient ideal Igrad(f) is radical. If the real polynomial f(x)
is nonnegative over V R

grad(f), then there exist real polynomials qi(x) and φj(x) so that

f(x) =
s
∑

i=1

qi(x)
2 +

n
∑

j=1

φj(x)
∂f

∂xj
. (3.1)

The proof of this theorem will be based on the following two lemmas. The first is a
generalization of the Lagrange Interpolation Theorem from sets of points to disjoint varieties.

Lemma 3.2 Let V1, . . . , Vr be pairwise disjoint varieties in Cn. Then there exist polynomials
p1, . . . , pr ∈ R[x] such that pi(Vj) = δij , where δij is the Kronecker delta function.

Proof Our definition of variety requires that each Vj is actually defined by polynomials with
real coefficients. If Ij = I(Vj) is the radical ideal of Vj then we have Vj = V (Ij). Fix an index
j and let Wj denote the union of the varieties V1, . . . , Vi−1, Vi+1, . . . , Vr. Then

I(Wj) = I1 ∩ · · · ∩ Ij−1 ∩ Ij+1 ∩ · · · ∩ Ir.

Our hypothesis implies that Vj ∩Wj = ∅. By Hilbert’s Weak Nullstellensatz (Theorem 2.3),
there exist polynomials pj ∈ I(Wj) and qj ∈ Ij such that pj + qj = 1. This identity shows
that pj(Vj) = 1 and pj(Vk) = 0 for k 6= j. Hence the r polynomials p1, . . . , pr have the desired
properties. �

Now consider the behavior of the polynomial f(x) over its gradient variety Vgrad(f). We
make use of the fact that Vgrad(f) is a finite union of irreducible subvarieties ([2, §2]).
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Lemma 3.3 Let W be an irreducible subvariety of Vgrad(f) and suppose that W contains at
least one real point. Then f(x) is constant on W .

Proof If we replace our polynomial ring R[x] by C[x] then W either remains irreducible
or it becomes a union of two irreducible components W = W1 ∪ W2 which are exchanged
under complex conjugation. Let us first consider the case when W is irreducible in the Zariski
topology induced from C[x]. Then W is connected in the strong topology on Cn. In fact,
W is path-connected. Let x, y be two arbitrary points in W . There exists a smooth path
ϕ(t) (0 ≤ t ≤ 1) (or piecewise smooth path) lying inside W such that x = ϕ(0) and y = ϕ(1).
By the Mean Value Theorem of Calculus, it holds that for some t∗ ∈ (0, 1)

f(y)− f(x) = ∇f(ϕ(t∗))Tϕ′(t∗) = 0,

since ∇f vanishes on W . We conclude that f(x) = f(y), and hence f is constant on W .
Now consider the case when W = W1 ∪W2 where W1 and W2 are exchanged by complex

conjugation. We had assumed that W contains a real point p. Since p is fixed under complex
conjugation, p ∈ W1 ∩W2. By the same argument as above, f(x) = f(p) for all x ∈ W . �

Proof of Theorem 3.1 Consider the irreducible decomposition of Vgrad(f). We group together
all components which have no real point and all components on which f takes the same real
value. Hence the gradient variety has a decomposition

Vgrad(f) = W0 ∪ W1 ∪ W2 ∪ · · · ∪ Wr, (3.2)

such that W0 has no real point and f is a real constant on each other variety Wi, say,

f(W1) > f(W2) > · · · > f(Wr) ≥ 0.

The varieties Wi are pairwise disjoint, so by Lemma 3.2 there exist polynomials pi ∈ R[x] such
that pi(Wj) = δij . By Theorem 2.7, there exists a sum of squares sos(x) ∈ R[x] such that
f(x) = sos(x) for all x ∈ W0. Using the non-negative real numbers αj :=

√

f(Wj), we define

q(x) = sos(x) · p20(x) +
r
∑

i=1

(αi · pi(x))2. (3.3)

By construction, f(x) − q(x) vanishes on the gradient variety Vgrad(f). The gradient ideal
Igrad(f) was assumed to be radical. Using Hilbert’s Strong Nullstellensatz (Theorem 2.4), we
conclude that f(x)− q(x) lies in Igrad(f). Hence the desired representation (3.1) exists. �

In Theorem 3.1, the assumption that Igrad(f) is radical cannot be removed. This is shown
by the following counterexample which was suggested to us by Claus Scheiderer.

Example 3.4 Let n = 3 and consider the polynomial

f(x, y, z) = x8 + y8 + z8 + M(x, y, z)

where M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 is the Motzkin polynomial, which is is non-
negative but not a sum of squares. The residue ring A = R[x, y, z]/Igrad(f) is a real vector
space of dimension 73 = 243 because the three partial derivatives form a Gröbner basis:

∂f

∂x
= 8x7 + 4x3y2 + 2xy4 − 6xy2z2,

∂f

∂y
= 8 y7 + 2x4y + 4x2y3 − 6 x2yz2,

∂f

∂z
= 8 z7 + 6 z5 − 6x2y2z.
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Reduction modulo this Gröbner basis shows that f(x, y, z) is congruent to 1
4
M(x, y, z) mod-

ulo Igrad(f). Hence it suffices to show that M(x, y, z) is not a sum of squares in A. Suppose
otherwise. Then there exist polynomials si, φ1, φ1, φ3 ∈ R[x, y, z] such that

M(x, y, z) =
∑

i

s2i +
∂f

∂x
φ1(x, y, z) +

∂f

∂y
φ2(x, y, z) +

∂f

∂z
φ3(x, y, z). (3.4)

By inspecting ∂f
∂x

, ∂f
∂y

, ∂f
∂z

and M , we see that every monomial in the expansion of
∑

i s
2
i has

degree at least six, and the monomials x6, y6, x4z2, y4z2, x2z4, y2z4 cannot occur. This implies

si(x, y, z) = A
(i)
1 xy2 + A

(i)
2 x2y + A

(i)
3 z3 + A

(i)
4 xyz + higher order terms

φ1(x, y, z) = Bx+ other linear and high order terms

φ2(x, y, z) = Cy + other linear and high order terms

φ3(x, y, z) = Dz + other linear and high order terms.

Comparing the terms in M(x, y, z) with the expansion of the right hand side in (3.4), we get

x4y2 : 1 =
∑

i

A
(i)2

1 + 4B + 2C

x2y4 : 1 =
∑

i

A
(i)2

2 + 2B + 4C

z6 : 1 =
∑

i

A
(i)2

3 + 6D

x2y2z2 : − 3 =
∑

i

A
(i)2

4 − 6B − 6C − 6D.

Summing the above equations together results in

0 =
∑

i

A
(i)2

1 +
∑

i

A
(i)2

2 +
∑

i

A
(i)2

3 +
∑

i

A
(i)2

4 .

Thus A
(i)
1 = A

(i)2

2 = A
(i)2

3 = A
(i)
4 = 0 and B = C = D = 1

6
. Hence si only contains terms of

degree ≥ 4. Let E(i) be the coefficient of z4 in si(x, y, z). Comparing the coefficient of z8 in

(3.4), we get 0 =
∑

i E
(i)2 + 8

6
, which is a contradiction. We conclude that the nonnegative

polynomial f(x, y, z) = M(x, y, z) + x8 + y8 + z8 is not SOS modulo its gradient ideal.

In cases (like Example 3.4) when the gradient ideal is not radical, the following still holds.

Theorem 3.5 Let f(x) ∈ R[x] be a polynomial which is strictly positive on its real gradient
variety V R

grad(f), Then f(x) is SOS modulo its gradient ideal Igrad(f).

Proof We retain the notation from the proof of Theorem 3.1. The decomposition (3.2)
gives rise to a decomposition of Igrad(f) = J0 ∩ J1 ∩ · · · ∩ Jr, where Wi = V (Ji) and
Ji + Jk = R[x] for i 6= k. By the Chinese Remainder Theorem [8], we have

R[x]/Igrad(f) ≃ R[x]/J0 × R[x]/J1 × · · · × R[x]/Jr . (3.5)

Here V R(J0) = ∅. Hence, by Theorem 2.7, there exists a sum of squares sos(x) ∈ R[x] such
that f(x) − sos(x) ∈ J0. By assumption, α2

i = f(Wi) is strictly positive for all i ≥ 1. The
polynomial f(x)/α2

i − 1 vanishes on Wi. By Hilbert’s Strong Nullstellensatz, there exists an
integer m > 0 such that (f(x)/α2

i − 1)m is in the ideal Ji. We construct a square root of
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f(x)/α2
i in the residue ring R[x]/Ji using the familiar Taylor series expansion for the square

root function:

(

1 + (f(x)/α2
i − 1)

)1/2
=

m−1
∑

k=0

(

1/2

k

)

(f(x)/α2
i − 1)k mod Ji .

Multiplying this polynomial by αi, we get a polynomial qi(x) such that f(x) − q2i (x) is in
the ideal Ji. We have shown that f(x) maps to the vector

(

sos(x), q1(x)
2, q2(x)

2, . . . , qr(x)
2
)

under the isomorphism (3.5). That vector is clearly a sum of squares in the ring on the right
hand side of (3.5). We conclude that f(x) is a sum of squares in R[x]/Igrad(f). �

Example 3.6 Let f be the polynomial in Example 3.4 and let ǫ be any positive constant.
Theorem 3.5 says that f + ǫ is SOS modulo Igrad(f). Such a representation can be found by
symbolic computation as follows. Primary decomposition over Q[x, y, z] yields

Igrad(f) = J0 ∩ J1,

where V R(J0) = ∅ and and
√
J1 = 〈x, y, z〉. The ideal J1 has multiplicity 153, and it contains

the square f2 of our given polynomial. The ideal J0 has multiplicity 190. Its variety V (J0)
consists of 158 distinct points in C3. By elimination, we can reduce to the univariate case.
Using the algorithm of [4, 5] for real radicals in Q[z], we find a sum of squares sos(z) ∈ Q[z] such
that f − sos(z) ∈ J0. Running Buchberger’s algorithm for J0 + J1 = 〈1〉, we get polynomials
p0 ∈ J0 and p1 ∈ J1 such that p0 + p1 = 1. The following polynomial is a sum of squares,

p21 · (sos(z) + ǫ) + p20 · ǫ · (1 +
1

2ǫ
f)2, (3.6)

and it is congruent to f(x, y, z) + ǫ modulo Igrad(f) = J0 ∩ J1 = J0 · J1. Note that the
coefficients of the right hand polynomial in the SOS representation (3.6) tend to infinity as ǫ
approaches zero. This is consistent with the conclusion of Example 3.4.

4. Unconstrained Optimization

This section concerns finding the global minimum of a polynomial function f(x) on Rn. Let
R[x]m denote the

(

n+m
m

)

-dimensional vector space of polynomials of degree at most m. Since
local or global minima occur only when the gradient is zero, we consider the SOS problem

Maximize γ subject to f(x)− γ −
n
∑

j=1

φj(x)
∂f

∂xj
�sos 0 and φj(x) ∈ R[x]2N−d+1. (4.1)

Here d is the degree of polynomial f(x), and N is an integer to be chosen by the user. Let
f∗
N,grad denote the optimal value γ of the optimization problem (4.1). This is a lower bound
for the global minimum f∗ of the polynomial f(x). The lower bound gets better as N increases:

· · · ≤ f∗
N−1,grad ≤ f∗

N,grad ≤ f∗
N+1,grad ≤ · · · ≤ f∗. (4.2)

4.1. SOS Optimization using the Software SOSTOOLS

The problem (4.1) is a standard SOS program. It can be translated into an SDP as
described in [17, 18, 19]. The decision variables in (4.1) are the real number γ and the
coefficients the multiplier polynomials φj(x). The resulting SDP is dual to the formulation of
Lasserre [13]. The SOS program (4.1) can be solved using the software package SOSTOOLS. We
refer to [20] for the documentation. For instance, if we take N = 4 and f(x, y, z) the trivariate
polynomial in Example 3.4 then (4.1) translates into an SOSTOOLS program as follows:

7



syms x y z gam;

prog = sosprogram([x;y;z],[gam]);

f = x^8+y^8+z^8+x^4*y^2+x^2*y^4+z^6-3*x^2*y^2*z^2;

vec = monomials([x;y;z],[0 1]);

[prog,phi_1] = sospolyvar(prog,vec);

[prog,phi_2] = sospolyvar(prog,vec);

[prog,phi_3] = sospolyvar(prog,vec);

G = f-gam-(phi_1*diff(f,x)+phi_2*diff(f,y)+phi_3*diff(f,z));

prog = sosineq(prog,G);

prog = sossetobj(prog,-gam);

[prog, info] = sossolve(prog);

gam = sosgetsol(prog,gam);

The system returns the following lower bound γ = f∗
4,grad for the global minimum f∗ = 0:

gam = -.12077e-8

Even if we increase the value of N , the lower bound f∗
N,grad always remains negative, since f

is not SOS modulo its gradient ideal. However, the sequence
{

f∗
N,grad

}

N≥4
converges to zero.

4.2. Convergence of the Lower Bounds

We have the following general result concerning the convergence of the lower bounds.

Theorem 4.1 Let f(x) be a polynomial in n real variables which attains its infimum f∗ over
Rn. Then lim

N→∞
f∗
N,grad = f∗. Furthermore, if the gradient ideal Igrad(f) is radical, then f∗

is attainable, i.e., there exist an integer N such that f∗
N,grad = f∗.

Proof Since f(x) attains its infimum, the global minima of f(x) must occur on the real gra-
dient variety V R

grad(f). It is obvious that any real number γ which satisfies the SOS constraint
in (4.1) is a lower bound of f(x), and we have the sequence of inequalities in (4.2). Consider
an arbitrary small real number ε > 0. The polynomial f(x)− f∗ + ε is strictly positive on its
real gradient variety V R

grad(f). By Theorem 3.5, f(x)− f∗ + ε is SOS modulo Igrad(f). Hence
there exists an integer N(ǫ) such that

f∗
N,grad ≥ f∗ − ε for all N ≥ N(ǫ).

Since the sequence {f∗
N,grad} is monotonically increasing, it follows that lim

N→∞
f∗
N,grad = f∗.

Now suppose Igrad(f) = Igrad(f − f∗) is a radical ideal. The nonnegative polynomial
f(x)− f∗ is SOS modulo Igrad(f) by Theorem 3.1. Hence f∗

N,grad = f∗ for some N ∈ Z>0.
�

Remarks: (i) The condition that f(x) attains its infimum cannot be removed. Otherwise the
infimum f∗

grad of f(x) on V R

grad(f) need not be a lower bound for f(x) on Rn. A counterexam-
ple is f(x) = x3. Obviously f(x) has infimum f∗ = −∞ on R1. However, f∗

grad = f∗
grad,N = 0

for all N ≥ 1 because f(x) = (x
3
)f ′(x) is in the gradient ideal Igrad(f) = 〈f ′(x)〉.

(ii) It is also not always the case that f∗
grad = f∗ when f∗ is finite. Consider the bivariate

polynomial f(x, y) = x2+(1−xy)2. We can see that f∗ = 0 is not attained, but f∗
grad = 1 > f∗.

(iii) If f(x) attains its infimum but Igrad(f) is not radical, we have only that lim
N→∞

f∗
N,grad =

f∗. But there is typically no integer N with f∗
N,grad = f∗, as shown in Example 3.4.

4.3. Duality and an Algorithm

In this subsection, we describe a dual formulation of the SOS problem (4.1), and we present
an explicit algorithm for finding the global minimizer of a polynomial f(x). At first, we
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introduce some notation. Given any polynomial p(x) in R[x]m, we write p(x) =
∑

|α|≤m pαx
α

where α ∈ Zn
≥0 and |α| = ∑n

j=1 αj . In what follows, we denote by p ∈ R(
n+m
m ) the vector of

coefficients pα of p(x). For any integer N , we write Zn
N = {τ ∈ Zn

≥0 : |τ | ≤ N} and we denote
by monN (x) the column vector of monomials of degree up to N , i.e.,

monN (x) = (1, x1, · · · , xn, x
2
1, x1x2, · · · , xN

1 , · · · , xN
n )T .

The dimension of monN (x) is the binomial coefficient
(

n+N
N

)

. Given any finite or infinite
vector y = (yα), indexed by integer vectors α ∈ Zn

≥0, define MN (y) to be its moment matrix

MN(y) = (yα+β)α,β∈Zn
N
.

The moment matrix represents the linear map p 7→ p ∗ y, where, for any polynomial p(x) =
∑

β pβx
β, the vector p ∗ y has coordinates (p ∗ y)α =

∑

β pβyα+β.
Let f(x) be the polynomial we wish to minimize. Its vector of coefficients is f . Let fi

denote the vector of coefficients of the i-th partial derivative ∂f
∂xi

. We rewrite (4.1) as follows:

f∗
N,grad = max

γ∈R,σ∈R[x]2N
φj(x)∈R[x]2N−d+1

γ subject to σ(x) �sos 0

and f(x)− γ = σ(x) +
n
∑

j=1

φj(x)
∂f

∂xj
.

We call this formulation of our problem the dual SDP, because it is dual to the formulation
proposed in [13, 14]. The corresponding primal SDP supposes that d is even and it is given by

f∗
N,mom = min

y
fT y

s.t. MN−d/2(fi ∗ y) = 0, i = 1, · · · , n
MN (y) � 0, y0 = 1.

The following theorem relates the primal and dual objective function values f∗
N,mom and

f∗
N,grad, and it shows how to extract a point in Rn at which the minimum of f(x) is attained.

Theorem 4.2 Assume f(x) attains its infimum f∗ over Rn (hence d is even). Then we have:

(i) f∗
N,mom = f∗

N,grad and hence lim
N→∞

f∗
N,mom = f∗. This means that the strong duality holds.

(ii) Suppose f∗
N,grad = f∗ for some N . If x∗ ∈ Rn minimizes f(x), then y∗ = mon2N (x∗) ∈

R(
n+2N
2N ) solves the primal SDP.

(iii) If y is a solution to the primal problem with rank(MN (y)) = 1, then factoring MN(y)
as column vector times row vector yields one global minimizer z∗ of the polynomial f(x).

(iv) Suppose that f∗
N,grad = f∗ and σ(x) =

∑m
j=1(qj(x))

2 solves the dual SDP. Then the set
of all global minima of f(x) equals the set of solutions x ∈ Rn to the following equations:

qj(x) = 0, j = 1, . . . ,m

∂f(x)

∂xi
= 0, i = 1, . . . , n.
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Proof Part (i) and (ii) are basically a direct application of Theorem 4.2 in [13]. The hy-
potheses of that theorem are verified by an “epsilon argument” and applying our Theorem 3.5.
Let us prove part (iii). Since the moment matrix MN (y) has rank one, there exists a vector
z ∈ Rn such that y = monN (z). The strong duality result in (i) implies that

f(z) = fT y = f∗
N,mom = f∗

N,grad.

Since f∗
N,grad is a lower bound for f(x), we conclude that this lower bound is attained at the

point z. Therefore, f∗
N,grad = f∗ and z is a global minimizer. Part (iv) is straightforward. �

Since all arithmetic operations are floating point operations, the numerical dual solution y
may have the property that the moment matrix MN (x) does not have rank one but is very close
to a rank one matrix. In practice, we therefore need to make an approximation. Summarizing
our discussion, we get the following algorithm for global minimization of polynomials.

Algorithm 4.3 Computing a global minimum of a polynomial whose infimum is obtained.

Input: A polynomial f(x) of even degree d in n variables x = (x1, . . . , xn). A threshold ε > 0.

Output: A point z ∈ Rn at which the polynomial f(x) attains its global minimum.

Algorithm: Initialize N = d/2.

Step 1 Solve pair of primal SDP and dual SDP described above.

Step 2 For the returned solution y to PN , find the rank of moment matrix MN (y).

Step 3 If rank(MN (y)) = 1, find z ∈ Rn such that y = monN(z); return z, and stop.

Step 4 Find the eigenvector u of MN (y) corresponding to the largest eigenvalue. Nor-
malize u so that u1 = 1 and set z = (u2, . . . , un+1).

Step 5 If f(z) − f∗
N,grad < |f∗

N,grad|ε, return z and stop; otherwise, N = N + 1, return
to Step 1 and run it to increase the numerical accuracy of the solution y.

4.4. What if the gradient ideal is not radical ?

The lack of radicalness of the gradient ideal Igrad(f) would be an obstacle for our algorithm.
First of all, this does not happen often in practice because Igrad(f) is generally radical. The
following result is proved by standard arguments of algebraic geometry. We omit the proof.

Proposition 4.4 For almost all polynomials f in the finite-dimensional vector space R[x]d,
the gradient ideal Igrad(f) is radical and the gradient variety Vgrad(f) is a finite subset of Cn.

Let us now consider the unlucky case when Igrad(f) is not radical. This happened for
instance, in Example 3.4. In theory, one can replace the gradient ideal Igrad(f) by its radical
√

Igrad(f) in our SOS optimization problem. This is justified by the following result.

Corollary 4.5 If a polynomial f(x) attains its infimum f∗ over Rn then f(x) − f∗ is SOS
modulo the radical

√

Igrad(f) of the gradient ideal.

Proof Consider the decomposition (3.2) and form the SOS polynomial q(x) in (3.3). Since
f(x) − q(x) vanishes on the gradient variety V (Igrad(f)) = V

(
√

Igrad(f)
)

, Hilbert’s Strong

Nullstellensatz implies that f(x)− q(x) ∈
√

Igrad(f). �

Suppose we could compute a set of polynomials {h1, h2, . . . , hr} which generate the radical
√

Igrad(f) of the Jacobian ideal. Then we can replace the partial derivatives ∂f
∂xi

by the

polynomials hj in the SOS program (4.1). The resulting SDP will always have the property
that f∗

grad = f∗ provided this infimum is attainable. While there are known algorithms for
computing radicals (see e.g. [9, 12]), and they are implemented in various computer algebra
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systems, running these algorithms is very time-consuming and may not terminate. We believe
that replacing Igrad(f) by its radical

√

Igrad(f) is not a viable option for efficient optimization

algorithms. However, it is conceivable that some polynomials in
√

Igrad(f)\Igrad(f) are
known to the user (for instance, from the geometry of the problem at hand). Including such
polynomials in the sum of (4.1), will surely enhance the speed of convergence of the sequence
of lower bounds f∗

grad,N , f∗
grad,N+1, . . . −→ f∗.

5. Constrained Optimization

This section discusses how to generalize the method in Section 4 to minimize a polynomial
function subject to polynomial equality constraints. The conditions for optimality are now
expressed using the KKT (Karush-Kuhn-Tucker) equations instead of the gradient ideal. We
need to reformulate the problem accordingly. Similar results hold as in Section 4.

We consider the following constrained optimization problem involving polynomials in R[x]:

f∗ = min f(x) (5.1)

s.t. gi(x) = 0, i = 1, . . . ,m. (5.2)

One lower bound can be found by SOS relaxation

f∗
sos = max

γ∈R

φi(x)∈R[x]

γ subject to f(x)− γ −
∑

i

gi(x)φi(x) �sos 0. (5.3)

There are several recent papers [13, 14, 21] on solving this kind of constrained problem us-
ing SOS or moment matrix techniques. The convergence of their methods is based on the
assumption that the real variety V R(g1, . . . , gm) is compact or even finite, which allows the
application of Putinar’s Theorem 2.5. When V R(g1, . . . , gm) is compact, the methods may not
converge within finitely many steps. Laurent [14] established the finite convergence of moment
matrix techniques when V R(g1, . . . , gm) is finite. However, if V R(g1, . . . , gm) is not compact,
then f∗

sos may be smaller than f∗ ([13, 22]); or even if V R(g1, . . . , gm) is compact, we may just
get a sequence of bounds that converge to f∗ as the degrees of φi go to infinity [13].

As is well-known in optimization, the local or global optimal solutions to problem (5.1)-(5.2)
satisfy (under some mild conditions) the KKT (Karush-Kuhn-Tucker) system of equations

∇f(x) +
∑

i

λi∇gi = 0 (5.4)

gi(x) = 0. (5.5)

Just like the unconstrained case where we used the gradient variety, we propose to find a lower
bound for f(x) on the variety defined by the KKT equations. We define the KKT ideal

Ikkt =

{

p(x, λ) ∈ R[x, λ] : p(x, λ) =
∑

j

(
∂f

∂xj
+
∑

i

λi
∂gi
∂xj

)ηj(x, λ) +
∑

i

gi(x)φi(x, λ)

}

.

Let Iℓ,kkt denote the finite-dimensional R-linear subspace of the ideal Ikkt consisting of all
polynomials which have a representation as above where each summand has degree at most ℓ.

A lower bound for (5.1)-(5.2) can be found by solving the SOS programming problem

f∗
N,kkt = max

γ∈R,σ∈R[x,λ]2N
γ subject to σ(x, λ) �sos 0 (5.6)

and f(x)− γ = σ(x, λ) mod I2N,kkt. (5.7)
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Just like in Section 4, we call (5.6)–(5.7) the dual SDP formulation of our problem.

5.1. Convergence of the lower bounds

By Parrilo’s Theorem 2.6, we have the following result:

Corollary 5.1 If the set of complex solutions to the KKT system (5.4)-(5.5) is finite and the
ideal Ikkt is radical, then f∗

N,kkt = f∗ when N is large enough.

We introduce the KKT variety Vkkt = V (Ikkt) = {(x, λ) ∈ Cn+m : (5.4) − (5.5) holds }
and its subset of real points V R

kkt = V R(Ikkt) = Vkkt ∩Rn+m. Corollary 5.1 is limited by the
restrictive hypothesis that Vkkt is a finite set. It is our objective to remove this hypothesis.

Lemma 5.2 The function f(x) is constant on every irreducible subvariety W of the KKT
variety Vkkt which contains a real point.

Proof The polynomials f(x) and f(x) +
∑m

i=1 λig(x) represent the same function on Vkkt.
Since Vkkt is the gradient variety of the latter polynomial, the assertion follows from Theo-
rem 3.3. �

Similarly, we can derive the following result from Theorem 3.1 and Theorem 3.5.

Theorem 5.3 Suppose that either f(x) is positive on Vkkt, or f(x) is nonnegative on Vkkt

and Ikkt is a radical ideal. Then f(x) is a sum of squares in the residue ring R[x, λ]/Ikkt.

¿From this we get the following convergence result for the optimization problem (5.6)-(5.7).

Corollary 5.4 Assume the optimality conditions (5.4)-(5.5) hold at all the global optima of
constrained optimization (5.1)-(5.2). Then we have lim

N→∞
f∗
N,kkt = f∗. Furthermore, if the

ideal Ikkt is radical, then f∗ is attainable, i.e., there exist SOS polynomial σ(x, λ) such that

f(x)− f∗ = σ(x, λ) mod I2N,kkt

for some large enough integer N .

Corollary 5.4 says that we do not need V R(g1, · · · , gm) to be finite or compact in order
for the conclusion of Corollary 5.1 to be true.

The drawback of formulation (5.6)-(5.7) is that there are new variables (Lagrange mul-
tipliers) λ1, · · · , λm. The computation is expensive if there are many constraints, but it is
satisfactory for a few constraints. The structure must be exploited for efficient computations.

5.2. Duality and an Algorithm

This subsection deals with the duality of problem (5.6)-(5.7) and provides an algorithm to
minimize f(x) under the constraints. All polynomials will lie in the polynomial ring R[x, λ].

In (5.6)-(5.7), f(x) can be thought of as a polynomial in the variables (x, λ), and the KKT
system (5.4)-(5.5) is the constraint. Then (see [13, 14]) its primal SDP formulation is

f∗
N,kktmom = min

y
fT y

s.t. MN−ei(gi ∗ y) = 0, i = 1, · · · ,m
MN−dkkt

(f̃j ∗ y) = 0, j = 1, · · · , n
MN (y) � 0, y0 = 1.

where ei = ⌈deg(gi)/2⌉, dkkt = max(⌈(d−1)/2⌉, e1, · · · , em) and f̃j is the vector of coefficients
of ∂f

∂xj
+
∑

i λi
∂gi
∂xj

. We have the following result which is analogous to Theorem 4.2.
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Theorem 5.5 Use the notations in the above. Assume f(x) attains its infimum f∗ on the
KKT system (5.4)-(5.5). Then the following holds:

(i) f∗
N,kktmom = f∗

N,kkt and hence lim
N→∞

f∗
N,kktmom = f∗, i.e., strong duality holds.

(ii) Suppose that f∗
N,kkt = f∗ for some N . If a feasible x∗ = (x∗

1, · · · , x∗
n)

T minimizes f(x) and
λ∗ is the corresponding Lagrangian multiplier, then y∗ = mon2N ((x∗, λ∗)) is a solution
to the primal problem.

(iii) If y is a solution to the primal SDP such that rank(MN (y)) = 1, then one point z ∈ Rn

which minimizes f(x) subject to the equality constraints can be extracted.

(iv) When f∗
N,kkt = f∗, all the optimal points x minimizing f(x) and their Lagrangian mul-

tipliers λ can be obtained by solving the polynomial system

qj(x, λ) = 0, j = 1, · · · , ℓ
∂f(x)

∂xj
+

m
∑

i=1

λi
∂gi(x)

∂xj
= 0, j = 1, · · · , n

gi(x) = 0, i = 1, · · · ,m

where σ(x, λ) =
∑ℓ

j=1(qj(x, λ))
2 solves problem (5.6)-(5.7).

Since we perform floating point operations, the obtained numerical dual solution y may
not make that the moment matrix MN (x) have rank one, although such a solution exists by
Theorem 5.5. We need to make approximations in practice. This leads to the following

Algorithm 5.6 Computing a minimum of a polynomial subject to equality constraints.

Input: Polynomials f(x), g1(x), · · · , gm(x), and an accuracy parameter ε.

Output: A solution z ∈ Rn to the optimization problem (5.1)-(5.2).

Algorithm: Initialize N = 2dkkt + 2.

Step 1 Solve the primal and dual SDP.

Step 2 For the returned solution y to P kkt
N , find the rank of moment matrix MN (y).

Step 3 If rank(MN (y)) = 1, find the vector z such that y = monN (z); return z, and
stop.

Step 4 Find the eigenvector u of MN (y) corresponding to the largest eigenvalue. Nor-
malize u so that u(1) = 1 and set z = u(2 : n+ 1).

Step 5 If f(z)− f∗
N,kkt < |f∗

N,kkt|ε, return z and stop; otherwise, N = N + 1 and then
go to Step 1.

Remark: Suppose that we have additional inequality constraints hj(x) ≥ 0 in the problem
(5.1)–(5.2). Then we can write down the KKT system similarly, and we can try to minimize
the objective f(x) over the solution set of the KKT system. But now this set is no longer
an algebraic variety but it is a semi-algebraic set. The convergence can be obtained by using
Theorem 2.5, under some assumptions like the compactness of the solution set to the KKT
system. However, the convergence analysis in Subsection 5.1 cannot be generalized directly.
But the duality and algorithm in Subsection 5.2 are similar. Like the equality constraint
case, this method is not practical if there are many inequality constraints. Some coordinate
transformations and preprocessing are required for efficient computations.
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6. Numerical Experiments

The examples in this section have been computed using the software SOSTOOLS [20]. In
Subsection 6.1 we compare our formulation (4.1) with the formulation (1.2) by testing the
family of polynomials considered in [18]. ¿From the comparison tables listed below, we see
that our new formulation (4.1) is faster by roughly a quarter when compared to (1.2). In
Subsection 6.2, we test our method on examples where the lower bound f∗

sos is strictly less
than f∗. In all cases our lower bound f∗

N,grad equals f∗ within rounding errors for suitable N .

6.1. Testing on the Parrilo-Sturmfels family of polynomials

In this subsection we consider the following family of polynomials of even degree d,

f(x1, · · · , xn) = xd
1 + · · ·+ xd

n + g(x1, · · · , xn),

where g ∈ R[x] is a random polynomial of degree ≤ d − 1 whose coefficients are uniformly
distributed between −K and K, for a fixed positive integer K. This family of polynomials was
considered in [18] where it was shown experimentally that the SOS formulation (1.2) almost
always yields the global minimum. Without loss of generality, we can set K = 1, because any
f(x) in the above form can be scaled to have coefficients between −1 and 1 by taking

fs(x1, · · · , xn) = α−d · f(αx1, · · · , αxn)

for some properly chosen α. As observed in [18], this scaling will greatly increase the stability
and speed of the numerical computations involved in solving the primal-dual SDP.

We ran a large number of randomly generated examples for various values of d and n. The
comparison results are in listed in Table 1 and Table 4. The computations were performed on
a Dell Laptop with a Pentium IV 2.0 GHz and 512MB of memory. Table 1 is the comparison of
the lower bounds by formulation (1.2) and (4.1). Taking N = d/2 in Algorithm 4.3 appears to
be good enough in practice for minimizing the Parrilo-Sturmfels polynomials. Our experiments
show that increasing N above d/2 will not increase the lower bound significantly.

From Table 1, we can see that the lower bounds f∗
sos and f∗

N,grad are close, agreeing to
their leading 8 to 10 decimal digits, which confirms the observation made in [18] that almost
all the polynomials gotten by subtracting their infima are SOS. Tables 2-4 are comparisons of
running time in CPU seconds for formulations (1.2) and (4.1). The symbol “-” in the tables
means that the computation takes more than one hour and we then terminate it. And “*”
means we use a different scaling as described below.

Our formulation (4.1) uses about three quarters of the running time used by formulation
(1.2). This may be unexpected since the use of gradients introduces many new variables. While
we are not sure of the reason, one possible explanation is that adding gradients improves the
conditioning and makes the interior-point algorithm for solving the SDP converge faster.

The numerical performance is subtle in this family of test polynomials. In the cases (n, d) =
(4, 10) or (n, d) = (5, 10), our formulation (4.1) has numerical trouble, while (1.2) does not,
and yet (4.1) is still faster than (1.2). However, for these two cases, if we scale f(x1, . . . , xn)
so that the coefficients of g(x1, . . . , xn) belong to [−0.1, 0.1], both (1.2) and (4.1) do not have
numerical trouble, and formulation (4.1) is still faster than (1.2). In Table 4 we see that the
time ratio between (4.1) and (1.2) under this scaling is smaller than the time ratio for other
values of (n, d). So numerical comparisons in Tables 1-4 for (n, d) = (4, 10) or (n, d) = (5, 10)
are implemented under this new scaling, while for other values of (n, d) we still use the old
scaling where the coefficients of g(x1, . . . , xn) belong to [−1, 1]. A stability analysis for the
scaling and the speed-up caused by adding gradients may be a future research topic.
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“-” means the computation is terminated if it takes more than one hour;

“*” means the coefficients of g(x1, · · · , xn) are scaled to belong to [−0.1, 0.1].

d \ n 3 4 5 6 7 8 9 10
4 5 7 9 10 11 13 14 15
6 10 19 38 41 232 - - -
8 17 78 186 233 - - - -
10 40 39* 102* - - - - -

Table 1: The relative difference
|f∗

N,grad−f∗

sos|

|f∗

sos|
× 1010, with N = d/2.

d \ n 3 4 5 6 7 8 9 10
4 0.16 0.24 0.42 0.86 1.86 7.56 25.85 73.69
6 0.32 1.17 8.40 49.04 309.66 - - -
8 1.10 12.23 173.98 1618.86 - - - -
10 3.15 64.48* 2144.04* - - - - -

Table 2: Running time in CPU seconds via traditional SOS approach (1.2)

d \ n 3 4 5 6 7 8 9 10
4 0.12 0.18 0.32 0.68 1.46 5.65 18.85 54.97
6 0.23 0.91 6.39 35.16 241.71 - - -
8 0.84 9.54 129.53 1240.23 - - - -
10 2.59 45.14* 1539.80* - - - - -

Table 3: Running time in CPU seconds via our approach (4.1), with N = d/2.

d \ n 3 4 5 6 7 8 9 10
4 0.75 0.75 0.76 0.79 0.78 0.74 0.73 0.75
6 0.72 0.77 0.76 0.72 0.78 - - -
8 0.76 0.78 0.74 0.76 - - - -
10 0.82 0.70* 0.71* - - - - -

Table 4: The ratio of CPU seconds between (1.2) and (4.1), with N = d/2.
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6.2. Other Examples

The following examples demonstrate the effectiveness of our Algorithm 4.3 for a sample of
polynomials that have been discussed in the SOS optimization literature.

Homogeneous Polynomials Let f(x) be a homogeneous polynomial. Regardless of whether
f(x) is non-negative, we always have f∗

N,grad = 0 for any N ≥ d/2. This comes from the

identity f(x) = 1
d
·∑i xi

∂f
∂xi

, which implies that f(x) lies in its gradient ideal Igrad(f).

In order to test global non-negativity of a homogeneous polynomial f(x), we can apply
Algorithm 4.3 to a dehomogenization of f(x), as shown in Examples 2 and 3 below.

Example 1: f(x, y) = x2y2(x2 + y2 − 1). This polynomial is taken from [13]. It has global
minimum value f∗ = −1/27 = −0.03703703703703.... However, f∗

sos = −33.157325 is
considerably smaller than f∗. If we minimize f(x) over its gradient ideal with N = 4, then
we get f∗

4,grad = −0.03703703706212. The difference equals f∗ − f∗
4,grad ≈ 2.50 · 10−11.

Example 2: The polynomial f(x, y) = x4y2+x2y4+1−3x2y2 is obtained from the Motzkin
polynomial by substituting z = 1 as in [19]. We have f∗ = 0 > f∗

sos = −∞. However, if
we minimize f(x, y) over its gradient ideal with N = 4, we get f∗

4,grad = −6.1463 · 10−10 .

Example 3: The polynomial f(x, y) = x4 + x2 + z6 − 3x2z2 is obtained from the Motzkin
polynomial by substituting y = 1. Now, f∗ = 0 > f∗

sos = −729/4096. However, if we
minimize f(x, z) over its gradient ideal with N = 4, we get f∗

4,grad = −9.5415 · 10−12.

Example 4: Consider the following constrained optimization problem:

min
x,y,z

x2y2(x2 + y2 + z2 − 1) subject to z = 0.

This one is modified from Example 1. The exact lower bound is still −1/27. However,
we can not find a general polynomial φ(x) and SOS polynomial σ(x, y, z) such that

x2y2(x2 + y2 + z2 − 1) + 1/27 = σ(x, y, z) + φ(x, y, z)z.

To see why, plug z = 0 in the above identity getting x2y2(x2 + y2 − 1) + 1/27, which
can not be SOS as we see in Example 1. Now we solve this problem using formulation
(5.6)-(5.7) with N = 4. The lower bound we get is −.03703704 = −1/27− 3.9690 · 10−9.

7. Conclusions

This paper proposes a method for minimizing a multivariate polynomial f(x) over its
gradient variety. We assume that the infimum f∗ is attained. Every polynomial which is
strictly positive on its real gradient variety is SOS modulo its gradient ideal, even if the
gradient variety is not zero-dimensional or radical. This fact implies that we can find a
sequence of lower bounds {f∗

N,grad} which converges to f∗. Moreover, if the gradient ideal is
radical, we showed that every nonnegative polynomial is also SOS modulo its gradient ideal,
which implies that f∗

N,grad = f∗ for some integer N . This finite convergence property holds for
random polynomials by Proposition 4.4. Our method can also be generalized to constrained
polynomial optimization. Instead of using gradients, we minimizing the objective polynomial
over the variety defined by its KKT system. Similar results hold as in the unconstrained case.

Numerical experiments with SOSTOOLS suggest that our algorithm is effective for uncon-
strained polynomial optimization. Our method (4.1) with gradients is faster than the method
(1.2) without gradients. Our method is also very good for equality constrained optimization,
when the number of equality constraints are small compared with the number of decision
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variables. When there are many equality or inequality constraints, the structure of the KKT
system must be exploited for computation efficiency. This may be a future research topic.
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