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Abstract. Recent experiments by Fischetti and Lodi show that the first Chvátal closure of
a pure Integer Linear Program (ILP) often gives a surprisingly tight approximation of the
integer hull. They optimize over the first Chvátal closure by modeling the Chvátal-Gomory
(CG) separation problem as a Mixed Integer Linear Program (MILP) which is then solved
by a general-purpose MILP solver. Unfortunately, this approach does not extend immediately
to the Gomory Mixed Integer (GMI) closure of an MILP, since the GMI separation problem
involves the solution of a nonlinear mixed integer program or a parametric MILP. In this paper
we introduce a projected version of the CG cuts, and study their practical effectiveness for
MILP problems. The idea is to project first the linear programming relaxation of the MILP at
hand onto the space of the integer variables, and then to derive Chvátal-Gomory cuts for the
projected polyhedron. Though theoretically dominated by GMI cuts, projected CG cuts have
the advantage of producing a separation model very similar to the one introduced by Fischetti
and Lodi, whose solution can typically be carried out in a reasonable amount of computing
time.

Key words: mixed integer linear program, Chvátal-Gomory cut, separation
problem, projected polyhedron.

1. Introduction

Consider first the pure Integer Linear Programming (ILP) problem min{cT x :
Ax ≤ b, x ≥ 0, x integral} where A is an m × n rational matrix, b ∈ Qm, and
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c ∈ Qn, along with the two associated polyhedra P := {x ∈ Rn
+ : Ax ≤ b} and

PI := conv{x ∈ Zn
+ : Ax ≤ b} = conv(P ∩ Zn).

A Chvátal-Gomory (CG) cut (also known as Gomory fractional cut) [17,
8] is an inequality of the form buT Acx ≤ buT bc where u ∈ Rm

+ is a vector of
multipliers, and b·c denotes the lower integer part. Chvátal-Gomory cuts are
valid inequalities for PI . The Chvátal closure of P is defined as

P 1 := {x ≥ 0 : Ax ≤ b, buT Acx ≤ buT bc for all u ∈ Rm
+}. (1)

Thus PI ⊆ P 1 ⊆ P . By the well-known equivalence between optimization and
separation [19], optimizing over the first Chvátal closure is equivalent to solving
the CG separation problem where we are given a point x∗ ∈ Rn and asked to find
a hyperplane separating x∗ from P 1 (if any). Without loss of generality we can
assume that x∗ ∈ P , since all other points can be cut by simply enumerating
the members of the original inequality system Ax ≤ b, x ≥ 0. Therefore, the
separation problem we are actually interested in reads:

CG-SEP: Given any point x∗ ∈ P find (if any) a CG cut that is violated
by x∗, i.e., find u ∈ Rm

+ such that buT Acx∗ > buT bc, or prove that no such
u exists.

It was proved by Eisenbrand [15] that CG-SEP is NP-hard, so optimizing over
P 1 also is. Fischetti and Lodi [16] recently addressed the issue of evaluating the
practical strength of P 1 in approximating PI . Their approach is to model the
CG separation problem as an MILP, which is then solved through a general-
purpose MILP solver. To be more specific, given an input point x∗ ∈ P to be
separated, CG-SEP calls for a CG cut αT x ≤ α0 which is (maximally) violated
by x∗, where α = buT Ac and α0 = buT bc for some u ∈ Rm

+ . Hence, if Aj denotes
the jth column of A, CG-SEP can be modeled as:

max αT x∗ − α0 (2)
αj ≤ uT Aj , for j = 1, . . . , n (3)
α0 + 1− ε ≥ uT b, (4)
ui ≥ 0, for i = 1, . . . ,m (5)
αj integer, for j = 0, . . . , n (6)

where ε is a small positive value. In the model above, the integer variables αj

(j = 1, . . . , n) and α0 play the role of coefficients buT Ajc and buT bc in the CG
cut, respectively. Hence the objective function (2) gives the amount of violation
of the CG cut evaluated for x = x∗, that we want to maximize. Because of the
sign of the objective function coefficients, the rounding conditions αj = buT Ajc
can be imposed through upper bound conditions on variables αj (j = 1, . . . , n),
as in (3), and with a lower bound condition on α0, as in (4). Note that this latter
constraint requires the introduction of a small value ε so as to avoid an integer
uT b be rounded to uT b− 1.

Model (2)-(6) can also be explained by observing that αT x ≤ α0 is a CG
cut if and only if (α, α0) is an integral vector, as stated in (6), and αT x ≤
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α0 +1− ε is a valid inequality for P , as stated in (3)-(5) by using the well-known
characterization of valid inequalities for a polyhedron due to Farkas.

Unfortunately, model (2)-(6) does not extend immediately to the mixed inte-
ger case, where one typically concentrates on the stronger Gomory Mixed Integer
(GMI) cuts [18]. Although it is easy to find a GMI cut that separates a basic
solution of the linear programming relaxation that is not integer feasible, sepa-
rating other points by GMI cuts is NP-hard [7], [13]. One can define the Gomory
mixed integer closure in an analogous way to the Chvátal closure: add all the
GMI cuts to the original formulation. Not only is the separation problem for the
Gomory mixed integer closure NP-hard, but there is no MILP model like (2)-(6)
known for it. Indeed, one faces the solution of a nonlinear [14] or parametric [4]
mixed integer problem for the separation of GMI cuts. In this paper we introduce
a projected version of the classical CG cuts, and study their strength on general
instances and on some specific classes of MILP problems. The idea is to project
first the linear programming relaxation of the MILP at hand onto the space of
the integer variables, and then to derive Chvátal-Gomory cuts for the projected
polyhedron. Though theoretically dominated by GMI cuts, projected CG cuts
have the advantage of producing an MILP separation model very similar to (2)-
(6), hence its solution can typically be carried out in a reasonable amount of
computing time. Also, it can be conjectured that projected CG cuts are more
“combinatorial” in nature than GMI cuts, and can be quite effective for a large
class of MILPs—notably, those where the continuous variables are only used to
model some feasibility condition, possibly by using big-M coefficients, and are
not present in the objective function, as, e.g., those addressed in [9].

The present paper is organized as follows. In Section 2 we define more pre-
cisely our projected CG cuts, give a MILP formulation of the associated sepa-
ration problem and describe their relation to GMI cuts. In Section 3, we prove
a theorem showing that projected CG cuts are equivalent to split cuts [11] in
which one term of the disjunction has an empty intersection with the original
formulation. In Section 4 we address the important issue of whether projected
CG cuts are likely to be effective, at least for some classes of problems. Com-
putational results on all the mixed MILP instances taken from the MIPLIB 3.0
library [5] are presented in Section 5, as well as on instances of the asymmetric
traveling salesman with time windows. These results show the effectiveness of
projected CG cuts both on general instances and on instances arising in specific
contexts. Concluding remarks and future directions of research are addressed in
Section 6.

2. Projected Chvátal-Gomory cuts

The computational results reported in [16] show that P 1 often gives a surpris-
ingly tight approximation of P , so a natural question is whether the same result
generalizes to mixed integer linear programming problems.
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In this paper, we consider a Mixed Integer Linear Program (MILP) of the
form

min{cT x + fT y : Ax + Cy ≤ b, x ≥ 0, x integral, y ≥ 0} (7)

where A and C are m × n and m × r rational matrices respectively, b ∈ Qm,
c ∈ Qn, and f ∈ Qr. We also consider the two following polyhedra in the (x, y)-
space:

P (x, y) := {(x, y) ∈ Rn
+ × Rr

+ : Ax + Cy ≤ b} (8)
PI(x, y) := conv({(x, y) ∈ P (x, y) : x integral}). (9)

Our first order of business is to extend the classical definition of Chvátal-Gomory
cuts to the mixed integer case, in such a way that the resulting separation
problem retains as much as possible the simple structure of model (2)-(6). To
this end, we define the projection of P (x, y) onto the space of the x variables as:

P (x) := {x ∈ Rn
+ : there exists y ∈ Rr

+ s.t. Ax + Cy ≤ b} (10)

= {x ∈ Rn
+ : ukA ≤ ukb, k = 1, . . . ,K} (11)

=: {x ∈ Rn
+ : Āx ≤ b̄} (12)

where u1, . . . , uK are the (finitely many) extreme rays of the projection cone
{u ∈ Rm

+ : uT C ≥ 0T }. Note that the rows of the linear system Āx ≤ b̄ are of
Chvátal rank 0 with respect to P (x, y), i.e, no rounding argument is needed to
prove their validity.

We then define a projected Chvátal-Gomory (pro-CG) cut as a CG cut derived
from the system Āx ≤ b̄, x ≥ 0, i.e., an inequality of the form bwT Ācx ≤ bwT b̄c
for some w ≥ 0. Since any row of Āx ≤ b̄ can be obtained as a linear combination
of the rows of Ax ≤ b with multipliers ū ≥ 0 such that ūT C ≥ 0T , it follows that
a pro-CG cut can equivalently (and more directly) be defined as an inequality
of the form

buT Acx ≤ buT bc for any u ≥ 0 such that uT C ≥ 0T . (13)

As such, its associated separation problem can be modeled as a simple extension
of (2)-(6), through the following MILP:

max αT x∗ − α0 (14)
αj ≤ uT Aj , for j = 1, . . . , n (15)
0 ≤ uT Cj , for j = 1, . . . , r (16)
α0 + 1− ε ≥ uT b (17)
ui ≥ 0, for i = 1, . . . ,m (18)
αj integer, for j = 0, . . . , n. (19)
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3. Connection with split cuts

In this section, we relate the projected Chvátal-Gomory cuts to known cuts
for MILP. For this, it will be convenient to define the Chvátal-Gomory closure
of P (x, y) as the intersection of P (x, y) with all the pro-CG cuts (viewed as
inequalities αT x+0T y ≤ α0 in Rn×Rr). We denote the Chvátal-Gomory closure
of P (x, y) by P 1(x, y). Since the intersection of all pro-CG cuts is a polyhedron,
it follows that P 1(x, y) also is.

Split cuts were introduced by Cook, Kannan and Schrijver [11]. They are
obtained as follows. For any π ∈ Zn and π0 ∈ Z, the disjunction πT x ≤ π0 or
πT x ≥ π0 +1 is valid for MILP. In other words, PI(x, y) ⊆ conv(Π0∪Π1) where

Π0 := P (x, y) ∩ {(x, y) : πT x ≤ π0} (20)
Π1 := P (x, y) ∩ {(x, y) : πT x ≥ π0 + 1}. (21)

A valid inequality for conv(Π0 ∪ Π1) is called a split cut. The convex set ob-
tained by intersecting P (x, y) with all the split cuts is called the split closure
of P (x, y). Cook, Kannan and Schrijver proved that the split closure of P (x, y)
is a polyhedron. Nemhauser and Wolsey [24] proved that the split closure and
the Gomory mixed integer closure are identical sets. See [12] for a direct proof
of this result. Projected Chvátal-Gomory cuts are dominated by GMI cuts, and
therefore P 1(x, y) contains the split closure of P (x, y). The following result gives
the precise relation between the two classes of cuts.

Theorem 1. Let S(x, y) denote the intersection of P (x, y) with all the split cuts
where one of the sets Π0, Π1 defined in (20) and (21) is empty. Then

P 1(x, y) = S(x, y).

Proof. First we prove S(x, y) ⊆ P 1(x, y). Consider an inequality that defines a
facet of P 1(x, y). If it is valid for P (x, y), then it is clearly valid for S(x, y). So we
may assume that the facet of P 1(x, y) is defined by a pro CG cut πT x ≤ π0. By
the Chvátal-Gomory procedure πT x ≤ β must be a valid inequality for P (x, y)
for some β < π0 +1. This implies that Π1 := P (x, y)∩{(x, y) : πT x ≥ π0 +1} is
empty. Therefore conv(Π0 ∪Π1) = Π0. This implies that πT x ≤ π0 is valid for
conv(Π0 ∪Π1), proving that it is a split cut. Furthermore this split cut is valid
for S(x, y) since Π1 = ∅.

Conversely, we prove P 1(x, y) ⊆ S(x, y). Consider a valid inequality for
S(x, y). If it is valid for P (x, y), then it is clearly valid for P 1(x, y). So we
only need to consider a valid inequality for S(x, y) that arises from a split cut
where one of the sets Π0, Π1 is empty, for some π ∈ Zn and π0 ∈ Z. Without
loss of generality we may assume that Π1 = ∅. In other words, the inequality
under consideration is valid for Π0. We will show that P 1(x, y) ⊆ Π0. Since
all the inequalities that define Π0 are valid for P (x, y) except possibly for the
inequality πT x ≤ π0, it suffices to show that πT x ≤ π0 is a pro-CG cut. Let

β = max πT x

x ∈ P (x, y).
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Since Π1 = ∅, it follows that β < π0 +1. Therefore πT x ≤ β is a valid inequality
for P (x, y). Since y does not appear in this inequality, it is also valid for P (x).
The Chvátal-Gomory procedure implies that πT x ≤ bβc ≤ π0 is a pro-CG cut.

4. On the strength of projected CG cuts

In this section we address the important practical issue of the expected strength
of the projected CG cuts. For this it is useful to distinguish between two extreme
cases of MILPs: those where the essence of the problem is in the optimization of
the integer variables x, and those where optimizing over the continuous variables
is the key. This can be illustrated by the following simple example in two variables
x and y (with x integer and y continuous): P (x, y) is the polytope defined by
the inequalities x + y ≤ 3/2, y ≤ x and x, y ≥ 0. Observe that the pro-CG cut
x ≤ 1 cuts off the vertex (3/2, 0), but there is no pro-CG cut which cuts off the
non-integral vertex (3/4, 3/4). Thus, if the objective is to maximize x, pro-CG
cuts help, and optimizing over P 1(x) = PI(x) yields the optimal solution. On
the other hand, if the objective is to maximize y, pro-CG cuts do not help. More
generally, suppose that the projection of the optimum of the MILP relaxation
P (x, y) belongs to the first Chvátal closure P 1(x). In this case, no pro-CGcut
can cut off that point, although there might possibly be a huge gap between the
MILP and its relaxation.

On the other hand, pro-CG cuts are well suited to handle those MILPs
where the continuous variables are only used to model some feasibility condition,
possibly by using big-M coefficients, but are not present in the objective function.
Indeed, take any inequality of the form gT x+0T y ≤ g0 that is valid for PI(x, y).
In particular, if f = 0 and z∗ denotes the optimum objective value of MILP, the
inequality cT x+ fT y ≥ z∗ is such a valid inequality for PI(x, y). Then gT x ≤ g0

must also be valid for the projected integer polyhedron PI(x), hence it is of finite
Chvátal rank, say q, with respect to system Āx ≤ b̄, x ≥ 0. This implies that
gT x ≤ g0 is indeed a pro-CG cut (of the same rank q) with respect to the original
system Ax + Cy ≤ b, (x, y) ≥ 0. As a consequence, MILPs where the continuous
variables do not appear in the objective function can always be optimized to
proven optimality by only using (of course in an iterative way) pro-CG cuts.

A class of problems where (even rank 1) pro-CG cuts are likely to be really
effective has been recently addressed by Codato and Fischetti [9]. These authors
considered a basic 0-1 ILP of the form

min{cT x : Fx ≤ g, x ∈ {0, 1}n } (22)

amended by a set of “conditional” linear constraints involving additional con-
tinuous variables y, of the form

xi = 1 ⇒ wT
i y ≤ wi0, for all i ∈ I (23)

plus a (possibly empty) set of k (say) “unconditional” constraints on the con-
tinuous variables y, namely

Dy ≤ d. (24)
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Note that the continuous variables y do not appear in the objective function—
they are only introduced to force some feasibility properties of the x’s. A familiar
example of a problem of this type is the classical Asymmetric Traveling Salesman
Problem (ATSP) with time windows, called TW-ATSP in the sequel. Here the
binary variables xij are the usual arc variables, and the continuous variables yi

give the arrival time at city i. Each arc (i, j) has duration dij , and each city
i has to be visited within the time window [ei, li]. For this problem, the basic
formulation (22) contains the standard ATSP out- and in-degree equations (plus
any other ATSP constraints such as subtour elimination etc.). Implications (23)
are of the form

xij = 1 ⇒ yj ≥ yi + dij (25)

whereas (24) bounds the arrival time at city i

ei ≤ yi ≤ li for all i ∈ I. (26)

Another example is the map labeling problem [21], where the binary variables
are associated with the relative position of two labels to be placed on a map,
the continuous variables give their placement coordinates, and the conditional
constraints impose non-overlapping conditions of the type “if label i is placed
on the right of label j, then the placement coordinates of i and j must obey a
certain linear inequality giving a suitable separation condition”.

The usual way implications (23) are modeled within the MILP framework
is to use the famous big-M method, where large positive coefficients M are in-
troduced to activate/deactivate the conditional constraints to be added to the
basic model (22), as in:

wT
i y + M(xi − 1) ≤ wi0 for all i ∈ I. (27)

For example, the TW-ATSP implications (25) are usually modeled as:

yi − yj + Mxij ≤ M − dij . (28)

It is known however that, due to the presence of the big-M coefficients, the LP
relaxation of the resulting MILP model is typically very poor. As a matter of
fact, the x solutions of the LP relaxation are only marginally affected by the
addition of the y variables and of the associated constraints. To remedy this
behavior, Codato and Fischetti proposed the use of the so-called Combinatorial
Benders’ (CB) cuts: ∑

i∈Q

xi ≤ |Q| − 1 (29)

where Q ⊆ I induces a minimal (irreducible) infeasible subsystem of (23)-(24),
i.e., an inclusion-minimal set of row-indices of system (23) such that the linear
subsystem

wT
i y ≤ wi0, for all i ∈ Q, (30)

Dy ≤ d (31)
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has no feasible (continuous) solution y. In a sense, CB cuts try to project in
a purely combinatorial way the feasibility requirement in the x space (hence
their name). They can be viewed as an attempt to distill automatically some
combinatorial information from the input MILP model. In this process, the role
of the big-M terms in the MILP model vanishes—only implications (23) are
relevant, no matter how they are modeled. The computational results reported
in [9] show that CB cuts can be really effective for specific classes of MILPs that
are notoriously very hard to solve: even with a simple implementation of the CB
cut separation procedure, the use of CB cuts results in a speed-up by several
orders of magnitude compared to the best commercial MILP solvers on some
important classes of MILPs.

The next proposition shows that CB cuts are a special case of projected CG
cuts.

Theorem 2. Combinatorial Benders cuts are projected CG cuts.

Proof. Consider a combinatorial Benders cut
∑

i∈Q xi ≤ |Q|−1 where Q induces
a minimal infeasible system of (23)-(24). Maximizing

∑
i∈Q xi over the feasible

region P (x, y) of the big-M MILP yields an objective value β < |Q|, since all xi

cannot be 1. Therefore the Chvátal-Gomory procedure implies that
∑

i∈Q xi ≤
|Q|−1 is a CG cut for P (x, y). Since the y variables do not appear in

∑
i∈Q xi ≤

|Q| − 1, it is also a projected CG cut.

Projected CG cuts can however be much stronger than CB cuts, in that
they can exploit all the information contained in the basic model (22). We illus-
trate this through the TW-ATSP example. Suppose you have a simple dipath
P of cardinality k (say) from a certain node a to a certain node b, whose to-
tal duration exceeds the difference lb − ea. To fix the ideas, let the dipath be
P := {(0, 1), (1, 2), (2, 3), (3, 4)}, hence k = 4, and let dij = 10 for all (i, j) ∈ P ,
with e0 = 5 and l4 = 40. The TW-ATSP model includes the following constraints
(we choose M = 100), plus the nonnegativity constraints on the x variables:

out0: x01+x02+x03+x04 <= 1
out1: x10+x12+x13+x14 <= 1
out2: x20+x21+x23+x24 <= 1
out3: x30+x31+x32+x34 <= 1

in1: x01+x21+x31+x41 <= 1
in2: x02+x12+x32+x42 <= 1
in3: x03+x13+x23+x14 <= 1
in4: x04+x14+x24+x34 <= 1

t01: y0 - y1 + 100 x01 <= 90
t12: y1 - y2 + 100 x12 <= 90
t23: y2 - y3 + 100 x23 <= 90
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t34: y3 - y4 + 100 x34 <= 90

early0: -y0 <= -5
late4: y4 <= 40

Clearly, every feasible TW-ATSP solution has to satisfy the infeasible path
constraint x(P ) :=

∑
(i,j)∈P xij ≤ |P | − 1, i.e., x01 + x12 + x23 + x34 ≤ 3 in

our case. This cut is a CB cut, since clearly P induces an infeasible subset of
system (25)-(26). Because of the discussion above, the cut is also a projected
CG cut. This can easily be verified by maximizing the left-hand-side of the
cut (namely, x01+x12+x23+x34) over the above system of linear constraints,
obtaining an optimal value of 3.95 (to be rounded down to 3). However, the
path infeasibility constraint is rather weak in that it does not take into account
the presence of the out- and in-degree constraints, as in the stronger tournament
inequality x([P ]) ≤ |P | − 1 proposed by Ascheuer, Fischetti and Grötschel [2],
where P is any infeasible path, and [P ] := {(i, j) : node i precedes node j in
P} is its transitive closure. In our example, the tournament inequality reads
x01+x02+x03+x04+x12+x13+x14+x23+x24+x34 <= 3. Optimizing the left-and-
side over the LP system above produces an optimal solution value of 3.9875
(still rounded down to 3) showing that the tournament inequality is a projected
CG cut.

5. Computational results

In this section we report the outcome of our experiments on a test-bed made
up of 43 mixed-integer problems from MIPLIB 3.0 [5]. The approach follows
the scheme used in [16], i.e., we implemented a pure cutting plane algorithm
where, at each iteration, pro-CG cuts are separated by solving the separation
problem (14)-(19) through a standard MILP solver. In order to speedup the
overall computation, the MILP solver is aborted whenever its incumbent solution
does not improve for a certain number of branching nodes. Our implementation
of the cutting-plane method uses the commercial software ILOG-Cplex 9.0 as
the LP solver, whereas the separation problem is solved through ILOG-Cplex 9.0
MILP solver with “mip emphasis 4” parameter; see [20]. All computing times
refer to a 3.2 Ghz Pentium 4 PC with 2 GB of RAM.

In particular, Table 1 reports the results for the cutting plane algorithm using
pro-CG cuts while Tables 2–3 compare those results with other general-purpose
cuts.

Table 1 is partitioned into three parts: at the top we report 10 instances for
which we have been able to optimize over the Chvátal-Gomory closure in the time
limit of 20 CPU minutes (1,200 CPU seconds), then we have 26 instances in which
our cutting plane procedure exceeded such a time limit, and finally, we report
7 instances for which the algorithm did not find any cut and proved that none
exists. For each instance, we report besides its name (instance), the numbers of
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pro-CG
CPU % gap

instance n r rc # iter # cuts time closed
bell3a 71 62 46 70 241 65.3 48.10
bell5 58 46 32 36 126 4.4 91.73
egout 55 86 55 35 168 6.8 81.77
fixnet6 378 500 416 34 83 42.9 67.51
khb05250 24 1,326 1,249 5 13 3.5 4.70
noswot 100 28 0 39 118 68.0 —
rentacar 55 9,502 177 7 15 5.1 0.00
set1ch 240 472 232 29 89 34.2 51.41
vpm1 168 210 0 27 53 14.9 100.00
vpm2 168 210 0 89 275 1,021.9 62.86
10teams 1,800 225 225 455 2,001 1,200.0 ≥ 57.14
arki001 538 850 1 62 215 1,200.0 ≥ 28.04
blend2 264 89 0 363 1,032 1,200.0 ≥ 36.40
dano3mip 552 13,321 1 1 0 1,200.0 ≥ 0.00
danoint 56 465 1 4 3 1,200.0 ≥ 0.01
dcmulti 75 473 473 46 132 1,200.0 ≥ 47.25
dsbmip 192 1,694 1,068 186 433 1,200.0 —
fiber 1,254 44 0 289 1,556 1,200.0 ≥ 4.83
flugpl 11 7 7 3 2 1,200.0 ≥ 19.19
gen 150 720 432 171 427 1,200.0 ≥ 86.60
gesa2 408 816 624 383 1,660 1,200.0 ≥ 94.84
gesa2 o 720 504 312 76 306 1,200.0 ≥ 94.93
gesa3 384 768 528 138 381 1,200.0 ≥ 58.96
gesa3 o 672 480 264 49 193 1,200.0 ≥ 64.53
markshare1 50 12 12 3,345 20,686 1,200.0 ≥ 0.00
markshare2 60 14 14 3,111 18,720 1,200.0 ≥ 0.00
mkc 5,323 2 0 87 267 1,200.0 ≥ 1.27
misc03 159 1 1 303 852 1,200.0 ≥ 34.92
misc07 259 1 1 331 889 1,200.0 ≥ 3.86
pp08a 64 176 112 7 8 1,200.0 ≥ 4.32
pp08aCUTS 64 176 112 4 5 1,200.0 ≥ 0.68
qiu 48 792 264 7 8 1,200.0 ≥ 10.71
qnet1 1,417 124 124 214 715 1,200.0 ≥ 7.32
qnet1 o 1,417 124 124 318 1,340 1,200.0 ≥ 8.61
rout 315 241 1 459 1,715 1,200.0 ≥ 0.03
swath 6,724 81 1 354 1,222 1,200.0 ≥ 7.68
mas74 150 1 1 1 0 0.0 0.00
mas76 150 1 1 1 0 0.0 0.00
misc06 112 1,696 1 1 0 0.0 0.00
mod011 96 10,862 7,489 1 0 0.4 0.00
modglob 98 324 324 1 0 0.0 0.00
pk1 55 31 1 1 0 0.0 0.00
rgn 100 80 80 1 0 0.6 0.00

Table 1. MILPs of the MIPLIB 3.0. Note that for instances dsbmip and noswot there is no
gap between the initial LP (though fractional) solution and the optimal value, while for the
optimal solution of instance arki001 we used the best known of value 7,579,599.8078

integer (n) and continuous variables (r) and the number of continuous variables
with a nonzero coefficient in the objective function (rc). Then, we report for
the pro-CG cuts, the number of iterations (# iter) and the number of separated
cuts (# cuts), the CPU time and the percentage of gap closed (% gap closed)
computed as 100 opt value(P 1)−opt value(P )

opt value(PI)−opt value(P ) .
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The results in Table 1 show that the projected Chvátal-Gomory closure can
be an effective approximation of the integer hull of MILPs. The average gap
closed over 41 instances1 is around 29 %. On the other hand, as expected, there
are several (at least 7) instances for which no pro-CG cut exists. For 11 instances
out of 41, optimizing over the projected Chvátal-Gomory closure (up to the time
limit of 1200 seconds) produced absolutely no improvement. For the 30 remaining
instances, however, the average gap closed is around 40 %. On certain instances
(bell5, gesa2), the projected Chvátal-Gomory closure closes over 90 % of the
gap. On vpm1 the projected Chvátal-Gomory closure even closes 100 % of the
gap. This is impressive considering that the pro-CG cuts are also attractive from
a numerical point of view: they tend to deteriorate less rapidly than the GMI
cuts read from the LP tableau.

In Tables 2 and 3 we report comparisons with classical families of cutting
planes that are valid for the Gomory mixed integer closure: Gomory Mixed In-
teger cuts from the optimal tableau of the LP relaxation, MIR cuts (Marchand
and Wolsey [22]) and lift-and-project cuts [3]. Specifically, the columns GMI
and MIR in Table 2 refer to one round of Gomory Mixed Integer cuts, and of
Mixed Integer Rounding cuts respectively, as implemented in the COIN-OR cut
generator [10]. The column L&P in Table 3 refers to the gap closed by the lift-
and-project closure plus a strengthening step, as implemented by Bonami and
Minoux [6]. Note that we set a time limit of 20 CPU minutes on each run: 5
instances were interrupted because of the time limit. Tables 2 and 3 show the im-
provement achieved by the projected Chvátal-Gomory closure when it is applied
subsequently to the three other families of cuts, either separately, or all together
(the column GMI+MIR+L&P was obtained by applying first the GMI and MIR
cuts and then, starting from the resulting solution, the L&P separation step).
An additional time limit of 20 CPU minutes was set on generating projected
Chvátal-Gomory cuts, for all the runs. Note that for instances where we only
partially optimize over the projected Chvátal-Gomory closure, it can happen
that the pro-CG gap closed is better than the GMI+pro-CG gap closed (blend2
is such an instance). We can make the following observations. The pro-CG cuts
can sometimes be vastly superior to the other families of cuts (bell5, gesa2,
vpm1). The average gap closed by the projected Chvátal-Gomory closure (29 %)
is comparable to that closed by GMI cuts (24 %), MIR cuts (23 %) and the
lift-and-project closure (35 %). Tables 2 and 3 show that pro-CG cuts are quite
different from the other families of cuts. Adding the pro-CG cuts to the GMI
cuts improves the average closed gap from 24 % to 41 %. Adding them to MIR
cuts improves it from 23 % to 40 %, and adding them to the lift-and-project clo-
sure improves it from 35 % to 49 %. Finally, adding the pro-CG cuts to all the
other cuts combined still improves the average gap from 48 % to 55 %. The case
of egout is interesting: the gap is closed completely by combining the 4 types of
cuts but not without the pro-CG cuts. Other interesting cases are bell3a and

1 Instances dsbmip and noswot are not considered in the average.
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% gap closed
GMI + MIR +

instance GMI pro-CG MIR pro-CG
bell3a 45.10 78.71 19.06 60.94
bell5 14.53 92.64 0.40 91.88
egout 40.26 84.18 57.14 92.74
fixnet6 10.27 75.96 69.92 82.48
khb05250 74.91 74.91 77.92 77.92
noswot — — — —
rentacar 0.00 0.00 0.00 0.00
set1ch 38.11 70.41 38.27 69.41
vpm1 10.00 100.00 33.08 100.00
vpm2 13.00 64.70 31.52 68.55
10teams 100.00 100.00 0.00 ≥ 57.14
arki001 34.72 ≥ 36.01 7.03 ≥ 33.19
blend2 16.29 ≥ 31.39 14.39 ≥ 32.06
dano3mip 0.01 ≥ 0.01 0.01 ≥ 0.01
danoint 0.22 ≥ 0.22 0.49 ≥ 0.49
dcmulti 47.25 ≥ 67.88 7.49 ≥ 54.23
dsbmip — — — —
fiber 72.18 ≥ 75.53 25.27 ≥ 30.12
flugpl 11.74 ≥ 11.74 0.00 ≥ 19.19
gen 55.11 ≥ 91.52 57.17 ≥ 93.13
gesa2 30.89 ≥ 98.04 60.69 ≥ 96.49
gesa2 o 31.02 ≥ 98.09 24.62 ≥ 96.54
gesa3 45.76 ≥ 62.99 65.28 ≥ 72.24
gesa3 o 49.16 ≥ 69.98 60.06 ≥ 71.03
markshare1 0.00 ≥ 0.00 0.00 ≥ 0.00
markshare2 0.00 ≥ 0.00 0.00 ≥ 0.00
mkc 13.82 ≥ 14.11 0.00 ≥ 0.01
misc03 8.62 ≥ 30.32 0.00 ≥ 35.11
misc07 0.72 ≥ 4.12 0.00 ≥ 4.12
pp08a 52.10 ≥ 52.31 60.16 ≥ 60.44
pp08aCUTS 29.73 ≥ 30.48 79.55 ≥ 79.59
qiu 0.27 ≥ 7.85 0.00 ≥ 10.71
qnet1 10.57 ≥ 14.41 21.06 ≥ 25.50
qnet1 o 44.49 ≥ 47.12 48.33 ≥ 51.17
rout 0.32 ≥ 0.32 0.00 ≥ 0.12
swath 3.06 ≥ 10.53 0.00 ≥ 7.92
mas74 6.67 6.67 4.14 4.14
mas76 6.42 6.42 5.15 5.15
misc06 30.39 30.39 0.00 0.00
mod011 1.67 1.67 0.10 0.10
modglob 16.85 16.85 13.22 13.22
pk1 0.00 0.00 0.00 0.00
rgn 1.61 1.61 34.21 34.21

Table 2. Comparison with GMI cuts and MIR cuts

flugpl, where the pro-CG cuts improve greatly over all the other cuts combined.
This indicates that the pro-CG cuts are genuinely different from those that are
currently used in MILP solvers and that it is worth exploring heuristics that
generate them more efficiently.

A second set of experiments has been performed to test the effectiveness of
pro-CG cuts in the context of the simple model for the TW-ATSP discussed
in Section 4, where the basic ILP model (22) only includes in- and out-degree
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% gap closed
GMI GMI

+MIR +MIR
L&P L&P +L&P +L&P

instance +pro-CG +pro-CG
bell3a 43.76 81.47 64.02 91.68
bell5 83.25 92.82 85.40 93.18
egout 93.83 98.84 93.85 100.00
fixnet6 85.38 91.96 86.01 92.33
khb05250 99.39 99.39 98.43 98.43
noswot — — — —
rentacar ≥ 0.00 0.00 ≥ 0.00 0.00
set1ch 39.96 68.88 40.17 69.27
vpm1 31.40 100.00 53.90 100.00
vpm2 54.28 79.05 35.48 69.22
10teams 0.00 ≥ 57.14 100.00 100.00
arki001 34.13 ≥ 34.13 66.67 ≥ 79.19
blend2 21.56 ≥ 35.86 21.71 ≥ 33.44
dano3mip ≥ 0.00 ≥ 0.00 ≥ 0.01 ≥ 0.01
danoint ≥ 1.57 ≥ 1.57 ≥ 1.61 ≥ 1.61
dcmulti 97.22 ≥ 97.30 97.65 ≥ 97.95
dsbmip — — — —
fiber 81.68 ≥ 83.30 89.68 ≥ 91.39
flugpl 0.00 ≥ 19.19 11.74 ≥ 41.75
gen 78.65 ≥ 92.29 81.54 ≥ 97.05
gesa2 37.83 ≥ 96.69 81.55 ≥ 99.21
gesa2 o 37.83 ≥ 98.60 49.27 ≥ 99.27
gesa3 11.21 ≥ 58.30 68.04 ≥ 71.05
gesa3 o 11.21 ≥ 63.19 68.12 ≥ 74.79
markshare1 0.00 ≥ 0.00 0.00 ≥ 0.00
markshare2 0.00 ≥ 0.00 0.00 ≥ 0.00
mkc ≥ 26.82 ≥ 29.07 ≥ 36.65 ≥ 39.35
misc03 39.67 ≥ 44.91 40.21 ≥ 42.70
misc07 12.03 ≥ 12.03 12.25 ≥ 12.25
pp08a 80.46 ≥ 80.46 81.35 ≥ 81.35
pp08aCUTS 69.36 ≥ 69.36 88.87 ≥ 88.87
qiu 0.00 ≥ 10.85 28.79 ≥ 28.95
qnet1 6.61 ≥ 11.99 28.26 ≥ 31.54
qnet1 o 0.00 ≥ 8.61 48.39 ≥ 50.77
rout 30.09 ≥ 31.17 30.51 ≥ 31.57
swath ≥ 0.32 ≥ 8.41 ≥ 17.79 ≥ 21.50
mas74 0.00 0.00 6.84 6.84
mas76 0.00 0.00 7.03 7.03
misc06 79.52 79.52 46.51 46.51
mod011 5.08 5.08 16.23 16.23
modglob 57.08 57.08 60.76 60.76
pk1 0.00 0.00 0.00 0.00
rgn 79.49 79.49 96.14 96.14

Table 3. Comparison with lift-and-project cuts and a combination of cuts. Note that for vpm2
and misc06, the gap closed by L&P is larger than for GMI+MIR+L&P. This happens because
the L&P cuts are strengthened and therefore there is no domination property
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equations (no subtour elimination constraints are exploited). Note that no con-
tinuous variables are present in the objective function of this model. Table 4
reports results on TW-ATSP real-world instances introduced by Ascheuer [1],
derived “from an industry project with the aim to minimize the unloaded travel
time of a stacker crane within an automated storage system”.

pro-CG [2]
opt % gap % time % final % final

instance |I| value # iter.s # cuts closed to get the bound gap gap
rbg010a 12 149 227 526 ≥ 99.07 7.50 0.67 0.67
rbg017 17 148 255 793 ≥ 78.07 27.89 14.86 0
rbg017.2 17 107 199 504 ≥ 96.90 27.80 1.87 0
rbg016a 18 179 422 1,505 ≥ 97.08 100.00 1.68 1.11
rbg016b 18 142 245 632 ≥ 86.54 31.77 10.56 6.33
rbg017a 19 146 219 636 ≥ 95.07 39.42 2.74 0
rbg019a 21 217 552 1,962 ≥ 97.40 100.00 1.38 0
rbg019b 21 182 675 1,697 ≥ 89.47 100.00 6.59 1.09
rbg019c 21 190 258 792 ≥ 70.21 23.12 20.53 4.21
rbg019d 21 344 608 1,776 ≥ 90.57 100.00 4.94 0.29
rbg021 21 190 257 633 ≥ 72.05 20.27 20.53 4.21
rbg021.2 21 182 300 692 ≥ 77.00 25.32 17.03 0
rbg021.3 21 182 487 1348 ≥ 74.40 100.00 19.23 2.19
rbg021.4 21 179 416 1,134 ≥ 76.66 77.66 17.88 1.11
rbg021.5 21 169 306 908 ≥ 77.67 81.93 17.16 1.18
rbg021.6 21 134 294 743 ≥ 96.60 58.94 2.24 0.74
rbg021.7 21 133 263 658 ≥ 95.64 53.51 3.01 3.75
rbg021.8 21 132 346 744 ≥ 96.12 36.53 3.03 2.27
rbg021.9 21 132 369 761 ≥ 95.18 56.28 3.79 3.03
rbg020a 22 210 399 1,150 ≥ 77.95 100.00 14.29 0
rbg027a 29 268 667 1,655 ≥ 76.11 100.00 16.04 0.74

Table 4. Stacker crane TW-ATSP instances

In particular, we report results on a set of 21 problems of small/medium size,
with up to 30 vertices. The information provided in Table 4 for each instance is
the number of cities (|I|) and the optimal solution value (opt value). For pro-CG
separation, Table 4 gives the same information as in Table 1. As a comparison, we
provide the final gap obtained by the pro-CG closure and the gap at the root node
in [2] (note that we report the gap instead of the gap closed because a different
initial formulation is used in [2]). Computing time is also not reported since
the 1,200-second time limit is reached for all our TW-ATSP instances. Instead,
we report the percentage of time (with respect to the time limit) spent to find
the final bound. For example, for problem rbg016a the algorithm improves the
bound from 42 to 148 in 90.1 CPU seconds (7.50% of the total time) and spends
the remaining computing time without finding any new cut. In such a case, we
may guess that we are close to the Chvátal-Gomory closure, but proving that
no violated pro-CG cut exists can require a great deal of enumeration.

The results for TW-ATSP instances are also very encouraging. Although our
initial model is known to be very weak, pro-CG cuts are able to close a very
significant amount (always more than 70%) of the initial gap. This suggests that
pro-CG cuts could be used successfully together with special purpose (polyhe-
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dral) separation routines in an attempt to improve the overall behavior of a
cutting plane algorithm.

6. Conclusions

In this paper we have introduced a projected version of the classical CG cuts,
and have studied their practical effectiveness for MIPLIB instances and for some
special classes of MILP problems. Our approach is to project first the linear
programming relaxation of the MILP at hand onto the space of the integer
variables, and then to derive Chvátal-Gomory cuts for the projected polyhedron.

Although there are cases where they are ineffective, projected CG cuts pro-
vide excellent bounds for a number of MIPLIB instances. Furthermore, they can
be applied successfully on a wide range of combinatorial problems where the
continuous variables do not appear in the objective function. Our experiments
on TW-ATSP confirm this claim–even starting from a very weak formulation
involving big-M coefficients, the use of projected CG cuts is able to close a large
portion of the integrality gap (70% or more, in our test cases). In our view,
these results give a concrete hope that a similar performance can be obtained
on other classes of problems (including scheduling and cutting/packing prob-
lems) when they are modeled through weak formulations involving continuous
variables linked to the integer ones by constraints involving big-M coefficients.
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