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Abstract

We analyze a separation procedure for Mixed-Integer Programs re-
lated to the work of Gomory and Johnson on interpolated subadditive
functions. This approach has its roots in the Gomory-Johnson charac-
terization on the master cyclic group polyhedron. To our knowledge,
the practical benefit that can be obtained by embedding interpolated
subadditive cuts in a cutting plane algorithm was not investigated
computationally by previous authors. In this paper we compute, for
the first time, the lower bound value obtained when adding (implic-
itly) all the interpolated subadditive cuts that can be derived from the
individual rows of an optimal LP tableau, thus approximating the opti-
mization over the Gomory’s corner polyhedron. The computed bound
is compared with that obtained when only Gomory mixed-integer cuts
are used, on a very large test-bed of MIP instances.

Key words: Mixed-Integer Programming, Subadditive cuts, Gomory cuts,
Gyclic Group and Corner polyhedra.

1 Introduction

In this paper we study the Integer Linear Program (ILP)

min{cT x : Ax = b, x ≥ 0 integer} (1)

where A is a rational m × n matrix, b is a rational m-dimensional vector,
and c ∈ Rn is a cost vector, and we address the two associated polyhedra:

P := {x ∈ Rn
+ : Ax = b} (2)

PI := conv{x ∈ Zn
+ : Ax = b} = conv(P ∩ Zn) . (3)

The mixed-integer case where some variables are not restricted to be integer,
will be addressed in Section 3.
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We propose an exact separation procedure for the class of so-called in-
terpolated (or template) subadditive cuts, based on the characterization of
Gomory and Johnson [12, 13, 14] of the master cyclic group polyhedron de-
fined as

T (k, r) = conv{t ∈ Zk−1
+ :

k−1
∑

i=1

(i/k) · ti ≡ r/k (mod 1)} (4)

where k ≥ 2 (group order) and r ∈ {1, · · · , k − 1} are given integers. The
space Rk−1 of the t variables is called the T -space in [15]. It is known that
the mapping the original x-variable space into the T -space allows one to
use polyhedral information on T (k, r) to derive valid inequalities for PI . To
our knowledge, however, the practical benefit that can be obtained by em-
bedding the whole family of cyclic-group cuts in a cutting plane algorithm
was not investigated computationally by previous authors. As a matter of
fact, a number of recent papers [15, 16, 6, 7, 8, 3] deals only implicitly
with cyclic-group separation, as they address the so-called Gomory’s shoot-
ing experiment. Roughly speaking, in this experiment the point t∗ ∈ Rk−1

to be separated is generated at random (hence corresponding to a random
“shooting direction” in the T -space), and statistics on the frequency of the
most-violated facets of T (k, r) are collected. A very recent paper present-
ing some computational results is the one by Koppe, Louveaux, Weismantel
and Wolsey [20], where a compact formulation of the cyclic-group separation
problem is embedded into the original ILP model—this however produces
a huge extended formulation with limited practical applications. Also re-
lated to our work are the papers by Cornuejols, Li and Vandenbussche [5],
where a subfamily of cyclic-group cuts (called k-cuts) is investigated both
theoretically and computationally, and by Letchford and Lodi [19], where a
different subfamily is addressed.

This paper is organized as follows. In Section 2 we present the theory
of Gomory and Johnson [12, 13, 14] on interpolated subadditive functions
(called template functions in [7]) and their role in generating valid inequali-
ties for PI . We also introduce an exact separation procedure for interpolated
subadditive cuts based on an LP model taken from the Gomory-Johnson
characterization of the master cyclic group polyhedron. This separation
procedure allows us to exploit effectively the whole family of interpolated
subadditive cuts to improve the LP relaxation quality. In Section 3 we
consider the mixed-integer case, where model (1) becomes a MIP involving
continuous variables, whereas in Section 4 we address some implementation
issues related to the presence of bounded variables. In Section 5, the quality
of the generated cuts is analyzed computationally. In particular we compute,
for the first time, the lower bound value obtained when adding (implicitly)
all the interpolated subadditive cuts that can be derived from the individ-
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ual rows of an optimal LP tableau. This leads to an approximation1 of
the optimization over of the Gomory’s corner polyhedron [14], thus giving
a partial answer to the question posed in [16] (and also addressed in [20])
on the quality of this relaxation. The bound we compute is compared with
that obtained when only Gomory mixed-integer cuts are used, on a very
large test-bed of MIP instances [21] library. The outcome is that Gomory
mixed-integer cuts play a very special role among subadditive cuts, in that
they typically produce, alone, a lower bound increase which is comparable
to that obtained when the whole family of cuts is considered. This result
confirms the theoretical findings of Dash and Gunluk [7], who showed that
interpolated subadditive cuts are dominated by Gomory mixed-integer cuts
in a probabilistic sense, as well as the computational experience of Cornue-
jols, Li and Vandenbussche [5] on the subfamily of k-cuts. Some interesting
directions of work are finally addressed in Section 6.

An earlier version of the present paper was presented at the IPCO XI
meeting held in Berlin, June 2005.

2 Cuts from Subadditive Functions

The fractional part φ(a) of a real value a is defined as

φ(a) := a − bac ,

where bac denotes the largest integer not greater than a. Given a positive
integer k and two real values a, b ∈ R, we write a ≡ b (mod k) if a − b is
an integer multiple of k. In this paper we are interested in deriving valid
inequalities for PI that are not implied by the system Ax = b, x ≥ 0. To
this end, given any equation

αT x = β (5)

valid for PI , where (α, β) ∈ Qn+1 and φ(β) > 0, we consider the group
polyhedron

G(α, β) := conv{x ∈ Zn
+ :

n
∑

j=1

αjxj ≡ β (mod 1)} ⊇ PI . (6)

For example, the equation αT x = β can be obtained by setting (α, β)T :=
uT (A, b) for any u ∈ Qm such that φ(uT b) > 0. This is the case, e.g., when
the equation is read from the tableau associated with a fractional optimal
solution of the LP relaxation of (1).

In particular, we address the following separation problem:

1Besides getting rid of the effects of interpolation, optimizing exactly over the corner
polyhedron would require to take into account all the tableau rows simultaneously.
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Definition (g-SEP) Given any point x∗ ≥ 0 and the equation αT x = β with
rational coefficients and such that φ(β) > 0, find (if any) a valid inequality
for G(α, β) that is violated by x∗.

Notice that, as far as G(α, β) is concerned, one can replace each entry in
(α, β) by its fractional part, hence one can assume without loss of generality
0 ≤ αj < 1 for all j, and 0 < β < 1.

A function g : R → R is called subadditive if g(a + b) ≤ g(a) + g(b)
for any a, b ∈ R. We call a subadditive function g(·) periodic in [0, 1) if
g(a + 1) = g(a) for all a ∈ R. As in this paper we are only interested in
subadditive functions g(·) that are periodic in [0, 1) and such that g(0) = 0,
in the sequel we will name this kind of functions just subadditive.

Given a valid equation αT x = β for PI , it is easy to show that the
inequality

n
∑

j=1

g(αj)xj ≥ g(β) (7)

is valid for G(α, β) (and hence for PI) whenever g(·) is subadditive. For
example, taking g(·) = φ(·) one obtains the well-know Gomory fractional
cut [10]

n
∑

j=1

φ(αj)xj ≥ φ(β) ,

whereas taking the subadditive GMI function γβ(·) defined as

γβ(a) =

{

φ(a) if φ(a) ≤ φ(β)

φ(β) 1−φ(a)
1−φ(β) otherwise

for all a ∈ R (8)

one obtains the stronger Gomory Mixed-Integer (GMI) cut [11]

n
∑

j=1

min{φ(αj), φ(β)
1 − φ(αj)

1 − φ(β)
}xj ≥ φ(β) . (9)

see Figure 1 for an illustration.
A basic result, due to Gomory and Johnson [13, 14], is that all the

nontrivial facets2 of G(α, β) are defined by inequalities of this type.3 As
a consequence, our separation problem (g-SEP) can be rephrased as the
problem of defining a suitable subadditive function g(·) that produces a cut
violated by the given point x∗, i.e., such that

∑n
j=1 g(αj)x

∗
j < g(β).

2A facet if called nontrivial if it is not defined by a nonnegativity constraint
3In addition, Gomory and Johnson have shown that non-dominated inequalities only

arise when the complementarity condition g(a) + g(b) = g(a + b)(= g(β)) holds whenever
a + b ≡ β (mod 1).
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Figure 1: Two subadditive functions: the fractional part φ(·) (top) and the
GMI function γ2/3(·) (bottom)
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Now let k ≥ 2 be the smallest integer such that k(α, β) is integer, whose
existence follows from the assumption that (α, β) is rational. This value of k
will be called ideal with respect to equation (5). Of course, the subadditivity
(plus periodicity) of g(·) implies that the same property holds over the dis-
crete set {0, 1/k, 2/k, · · · , (k − 1)/k}. In other words, a necessary condition
for subadditivity is that the “sampled” values gi := g(i/k), i = 0, · · · , k − 1
satisfy the following set of linear constraints, called g-system in the sequel:

gh ≤ gi + gj , 1 ≤ i, j, h ≤ k − 1 and i + j ≡ h (mod k) (10)

g0 = 0 (11)

0 ≤ gi ≤ 1 , i = 1, · · · , k − 1 , (12)

where bounds (12) will play a normalization role in the sequel.
Any solution (g0, · · · , gk−1) of the g-system above can be completed so

as to define a subadditive function g : R → R through a simple interpolation
procedure due to Gomory and Johnson [13]. This procedure simply takes a
linear interpolation of the values g0, · · · , gk−1 over [0, 1), and then extends
the resulting piecewise-linear function to R, in the obvious periodic way.
More formally, for any a ∈ R the interpolated value g(a) is defined as
g(a) = (1 − θ)gi + θgi+1, where θ ∈ [0, 1) and i ∈ {0, · · · , k − 1} are such
that φ(a) = (1 − θ) i/k + θ (i + 1)/k, and gk := g0 because of periodicity.

A key observation at this point is that, being k ideal, the actual value
of g(·) outside the sample points i/k is immaterial, since g(·) only needs
to be evaluated on these sample points when computing the coefficients in
(7). Therefore, the interpolation procedure does not actually restrict the
space of the possible subadditive functions—as it would be the case for a
different choice of k. As a consequence, we can exactly rephrase g-SEP as
the following LP:

g − SEPk : min{

k−1
∑

i=1

t∗i gi : (10) − (12) } , (13)

where r := k φ(β), t∗i :=
∑

j{x
∗
j : φ(αj) = i/k} for i ∈ {1, · · · , k − 1} \ {r},

and t∗r :=
∑

j{x
∗
j : φ(αj) = r/k} − 1 so as to take into account the role of

the right hand side g(β) = gr in (7). With these definitions, the objective
function

∑k−1
i=1 t∗i gi is precisely the opposite of the violation of a cut of the

form (7), hence a violated such cut exists if and only if the optimal value of
g − SEPk is strictly negative.

Unfortunately, the ideal k is very often too large to be used in practice, so
one has to choose a smaller value in order to produce a manageable g-system.
In this case, the interpolation procedure does restrict (often considerably)
the range of subadditive functions that can be captured by g−SEPk. More-
over, for a non-ideal k the definition of the weights t∗i becomes slightly more
involved, due to the need of taking interpolation into account. More specif-
ically, for any integer k ≥ 2 (not necessarily ideal) the weights t∗i in (13) are
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Figure 2: The Gomory-Johnson interpolation procedure: the sample values
g(0), g(1/k) · · · , g((k − 1)/k) are connected by straight lines so to get the
subadditive function g(·) over [0, 1), which is then extended periodically over
R.

defined through the algorithm outlined in Figure 3, that works as follows.
At step 1, we define two fictitious values α0 and x∗

0 so as to re-write the
(opposite of the) cut violation

∑n
j=1 g(αj)x

∗
j − g(β) in the more convenient

form
∑n

j=0 g(αj)x
∗
j . At step 2, all weights t∗i are initially set to zero. At step

3, for each j = 0, · · · , n we locate the interval [i/k, (i + 1)/k) that contains
φ(αj), where i+1 is replaced by 0 in case i+1 = k so as to take periodicity
into account. At step 4 we define a “displacement” parameter θ ∈ [0, 1) giv-
ing the exact position of φ(αj) within this interval; by definition, we have
θ = 0 if φ(αj) = i/k, whereas θ approaches its limit 1 as φ(αj) approaches
(i+1)/k. We then split, at step 5, the contribution g(αj) x∗

j between t∗i and
t∗i+1, in a way proportional to θ. Note that the procedure also works in case
of ideal k, where we always have θ = 0 at step 4.

We finally observe that, for the interpolated function g(·), we sometimes
have g(a) > g(β) as, e.g., in the case illustrated in Figure 4. In this figure
we compare a GMI function and the corresponding interpolated version for
k = 3 (top), and scale them so as to get the same right-hand-side value
(bottom) so as to make clear the fact that the interpolated function pro-
duces a dominated inequality. Therefore, an interpolated subadditive cut
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1. define the fictitious values α0 := β and x∗
0 := −1;

2. initialize t∗0 := t∗1 := · · · := t∗k−1 := 0;
2. for j = 0, 1, · · · , n such that x∗

j > 0 and φ(αj) > 0 do

3. let i := bk φ(αj)c and h = i + 1 mod k;
4. let θ := kφ(αj) − i;
5. update t∗i := t∗i + (1 − θ)x∗

j and t∗h := t∗h + θx∗
j

6. enddo

Figure 3: Defining the weights t∗i in g − SEPk for any given k and x∗

∑n
j=1 g(αj)xj ≥ g(β) can easily be improved to its clipped form:

n
∑

j=1

min{g(αj), g(β)}xj ≥ g(β) (14)

whose validity follows trivially from the integrality of x.

3 Dealing with Continuous Variables

We next address the case where some variables xj with j ∈ C (say) are not
restricted to be integer valued. In this case, Gomory and Johnson [13, 14]
showed that, for any subadditive function g(·), it is enough to modify cut
(7) into

n
∑

j∈I

g(αj)xj +
∑

j∈C:αj>0

slope+ αjxj +
∑

j∈C:αj<0

slope− αjxj ≥ g(β) , (15)

where I := {1, · · · , n} \ C is the index set of the integer-valued variables,

slope+ := lim
δ→0+

g(δ)/δ

is the slope of g(·) in 0+, and

slope− := lim
δ→0−

g(δ)/δ = − lim
δ→0+

g(1 − δ)/δ

is the slope of g(·) in 0− (or, equivalently, in 1−). Notice that, by definition,
slope+ > 0 and slope− < 0, hence all coefficients in (15) are nonnegative.

The above result has an intuitive explanation based on the following
simple scaling argument. Let j ∈ C be the index of any continuous variable.
We introduce a scaled copy x̃j = Mxj of xj , where M > 0 is a suitable
scaling factor, and impose that x̃j can only assume integer values. This is of
course correct only if M is chosen so as not to cut any feasible point of the
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original MIP set, which is always possible due the rational data assumption.
Notice that M can be assumed to be arbitrarily large, since multiplying
a valid M by a positive integer yields another valid M . Now, replacing
xj by x̃j/M changes the j-th coefficient in equation αT x = β from αj to
α̃j := αj/M , while increasing the j-th component of x∗ from x∗

j to x̃∗
j :=

Mx∗
j . Being x̃j constrained to be integer, we can compute its coefficient

in (7) as g(α̃j) = g(αj/M). If αj > 0, for M → +∞ we have that αj/M
tends to 0+, hence for sufficiently large M we have g(α̃j) = g(αj/M) =
slope+αj/M . Analogously, if αj < 0 we have αj/M → 0− when M → +∞,
hence for sufficiently large M we have g(α̃j) = g(αj/M) = slope−αj/M .
This shows that the coefficient of the scaled variable x̃j in the subadditive
cut is slope∗ αj/M , where slope∗ = slope− or slope− depending on the sign
of αj . The back substitution xj = x̃j/M then yields the coefficient slope∗ αj

for the original (continuous) variable xj , as in (15).
As a consequence of the above scaling argument, we can deal with con-

tinuous variables without any modification of our separation procedure,
that can used as a black box. To this end, it is enough to implement a
pre-processing scaling phase for the continuous variables, and then a post-
processing phase where the separated cut returned by the black box is ex-
pressed in terms of the original (non-scaled) variables. In case of inter-
polated subadditive functions, a suitable scaling factor for each continu-
ous variable xj is Mj := k|αj |, that maps the original coefficient αj into
α̃j = αj/Mj = ±1/k.

Alternatively, one can modify slightly the separation procedure of Fig-
ure 3 so as to take into account continuous variables in an explicit way.
To this end, we observe that for interpolated subadditive functions with
interpolation values gi := g(i/k) for i = 0, · · · , k − 1 and g0 = 0, one has
slope+ = g1/(1/k) and slope− = −gk−1/(1/k). Hence, in the definition of
the weights t∗i used in the separation problem (13) the value x∗

j of a con-
tinuous variable xj (j ∈ C) contributes to t∗1 or t∗k−1, depending on the
sign of αj . To be more specific, for each j ∈ C, j 6= 0, one has to skip
steps 3-4 in Figure 3, and update t∗1 := t∗1 + k |αj |x

∗
j in case αj > 0, and

t∗k−1 := t∗k−1 + k |αj |x
∗
j otherwise.

The above considerations show that, in presence of several continuous
variables with nonzero αjx

∗
j , values g1 and gk−1 play a crucial role in the

separation, the lower these values the better. Hence GMI cuts qualify as
the strongest subadditive cuts when continuous variables are present, since
they have the property of being associated with a subadditive function γβ(·)
where slope+ and slope− are as small as possible; see [14].

Finally, we observe that the clipping of coefficient g(αj) to min{g(αj), g(β)}
in (14) is guaranteed to be valid only for integer-constrained variables xj ,
so it cannot be applied for j ∈ C.
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4 Dealing with bounded variables

It is often the case that the original MIP model involves variable bounds of
the form xj ≤ UBj for some variables xj . Commercial LP solvers typically
deal with variable upper bounds in an implicit way, hence the tableau rows
are not exactly the same as in the textbook theory. (E.g., due to the pres-
ence of nonbasic variables at their upper bound, a basic fractional variable
is sometimes associated with a tableau row whose right-hand-side value is
integer.) We next outline a possible way to handle bounded variables.

Given any equation αT x = β we address the possibility of complementing
some bounded variables xj (i.e., replacing xj by UBj − xj) before actually
invoking the separator. Of course, an optimal choice of the variables to be
complemented can improve the chances of finding a violated cut, but this
choice does not appear easy.

To illustrate this point, let us consider a pure 0-1 problem where all
variables are bounded by 1, and let

∑n
j=1 αjxj = β by any “knaspack”

equation valid for PI . Without loss of generality one can assume 0 ≤ αj ≤
β ≤ 1 for all j. A set Q ⊆ {1, · · · , n} with

∑

j∈Q αj > β is called a cover.
Given any minimal (with respect to set inclusion) cover Q, we complement
the corresponding variables by replacing xj by 1 − xj , and obtain

∑

j∈Q

αjxj +
∑

j 6∈Q

(−αj)xj =
∑

j∈Q

αj − β =: θ > 0 (16)

where θ < 1 and αj > 0 for all j ∈ Q because of the minimality of the cover.
Now take the subadditive function g(a) := dφ(a)e − φ(a), and observe that
0 < αj < 1 implies g(αj) = 1−αj and g(−αj) = g(1−αj) = 1−φ(1−αj) =
1 − (1 − αj) = αj . Applying g(·) to (16) we then obtain the cut

∑

j∈Q

(1 − αj)xj +
∑

j 6∈Q

αjxj ≥ g(θ) = 1 − θ, (17)

and adding together (16) and (17) we finally get the so-called cover inequality
[22]

∑

j∈Q

xj =
∑

j∈Q

(1 − xj) ≥ 1 (18)

Note that one can have exponentially many different cover inequalities, each
associated with a different subset Q of complemented variables.

The above example suggests that there is no easy way to determine
the best set of variables to be complemented, just as there is no easy way
to locate the set Q that produces a most-violated cover inequality when
dealing with knapsack constraints. Hence some heuristics have to be applied.
A natural choice (also used by other authors) is to complement only the
variables that assume the LP status “nonbasic at its upper bound” in the
corresponding optimal solution. This guarantees that the equations inserted
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in our pool have the familiar “textbook form” where all nonbasic variables
xj have value x∗

j = 0 with respect to the basic LP solution x∗ of the same
tableau.

5 Computational Results

We next report a computational analysis aimed at comparing the quality of
Gomory mixed-integer cuts with that of the interpolated sudadditive cuts,
when embedded in a pure cutting plane method. We also report a compari-
son with an important class of (non-interpolated) subadditive cuts, namely,
the k-cuts described in [5].

Our test-bed includes all MIPLIB 3.0 and 2003 instances taken form [21],
except those with unknown optimal solution or having some variables with
negative lower bound (we also excluded from our test-bed some very large
instances, namely, all those having an LP file larger than than 1.7 MB).
In addition, we addressed the hard ILP instances available at the Alper
Atamtürk’s home page [2], associated with multiple-knapsack problems in-
volving both binary and general-integer (either bounded or unbounded) vari-
ables. Finally, our test-bed includes a set of random (both bounded and
binary) single-knapsack problems generated as in [5], namely:

min
∑n

i=1 pixi

s.t.
∑n

i=1 wixi ≤ c
0 ≤ xi ≤ bi and integer for all i = 1 . . . n

(19)

with pi and wi uniformly random integers in [1, 1000], bi uniformly random
integers in [5, 10] and c = b0.5

∑n
i=1 wibic. Binary knapsack problems were

generated in the same way, by setting bi = 1 for all i.
For the problems involving “≤” or “≥” constraints we built an equivalent

formulation in standard form, that includes slack variables in an explicit way.
The bounds on the variables, instead, were dealt with in an implicit way, as
outlined in Section 4.

All LP’s were solved through the commercial software ILOG-Cplex 9.0
[17, 18]. Computing times are expressed in CPU seconds and refer to a
notebook with a 512MB RAM and a 1.6Mhz AMD Processor.

Our order of business was to approximate the optimization over the Go-
mory’s corner polyhedron associated with the optimal solution of the LP
relaxation of our MIP model (without any MIP preprocessing). To this end,
after the solution of the first LP relaxation of our model, we stored in an
equation pool all the tableau rows αT x = β with fractional right-hand side
β, along with the list of the variables that are at their upper bound in the
optimal LP solution (these variables were always complemented before in-
voking our separation procedures, no matter their value in the current point
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x∗ to be separated). Neither the pool nor the list of complemented vari-
ables was updated during the run, i.e., we deliberately avoided generating
subadditive cuts of rank greater than 1 (or, to be more precise, we avoid
cuts derived from equations different from those associated with the single
rows of the first LP tableau). The same applies to Gomory mixed-integer
cuts, that were derived from the equations in the pool and added (at once)
to the LP. At each round of separation, at most 200 cuts were generated.
Each run was aborted at the root node, i.e., no branching was allowed.

The outcome of our experiments on the MIPLIB istances is shown in Ta-
bles 1-4 (mixed-integer problems) and 5-6 (pure-integer problems). In these
tables, the first numerical value under the name of the problem gives the op-
timal value, the second the optimal value of the LP relaxation, and the third
the computing time (in CPU seconds) needed to solve the LP relaxation.
Atamtürk’s instances are instead addressed in Tables 7 and 8. Column
“Type of Cuts” gives the type of cuts generated: Gomory mixed-integer
cuts (GMI), k-cuts [5] for all k = 1, 2, · · · , 50 (1:50-cuts), and interpolated
subadditive cuts when fixing k = 10, 20, 30, 60. A star indicates an improved
bound with respect to GMI. All other columns are self-explanatory. As to
knapsack problems (KP), for both the binary and the bounded cases we
generated 7 sets of problems, each set consisting of 30 instances with n vari-
ables (n = 10, 50, 100, 500, 1000, 5000, 10000).4 The corresponding average
results are reported in Table 9.

According to the tables, interpolated subadditive cuts do improve the
quality of the LP relaxation, but for MIPLIB instances they seldom beat
GMI cuts. This negative result confirms the theoretical findings of Dash
and Gunluk [7], who showed that interpolated subadditive cuts are domi-
nated by Gomory mixed-integer cuts in a probabilistic sense, as well as the
computational experience reported by Cornuejols, Li and Vandenbussche [5]
for the subfamily of k-cuts. On the other hand, for the hard Atamtürk’s
multiple-knapsack instances the interpolated cuts allow for a considerable
improvement over the GMI bound. As expected, larger values of k produce
better bounds, but the separation procedure becomes computationally quite
expensive for k > 20.

For the random single-knapsack problems, the results show that a few in-
terpolated subadditive cuts are able to improve the GMI bound considerably.
It should be observed however that, for KP instances, the integrality gap is
extremely narrow, so even a very small improvement of the lower bound pro-
duces a significant difference in the percentage of gap closed. Comparison
with 1:50-cuts shows clearly the negative effect of the interpolation—without
interpolation, the family of subadditive cuts would contain all k-cuts, hence

4These problems are very sensitive to the mipgap tolerance parameter used by ILOG
CPLEX: in these experiments we used the value 10−9 for this parameter.
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our procedure would guarantee a bound never worse than the 1:50-cut one.
This is confirmed by the additional results reported in Table 10, where we
addressed KP instances generated as explained above, but with pi and wi

uniformly random integers in [1, 100] instead of [1, 1000] (this guarantees
that the ideal k is not larger than 100, hence it can be handled effectively
by our separation procedure; see row “ideal k” in the table). As expected,
working with the ideal k produces significantly better results–at least, for
our KP instances. A plot of the percentage of closed gap vs. the group-order
k is given in Figure 5 for a sample binary KP instance with 50 variables;
note that, as expected, the bound growth is not monotone (though for other
instances the curve is much more regular, with a saturation starting well
before the ideal k).
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Figure 5: Percentage of closed gap vs. the group-order k for a sample binary
KP instance with 50 variables; the ideal k is 77 in this example

It is unclear at this point whether working with a large k so as to get
rid of the interpolation effect, is likely to produce a significant improvement
over GMI cuts for a wide class of MIPs. We conjecture that, for problems
with a large number of constraints as those in the MIPLIB, the considerable
number of GMI cuts read from the optimal tableau is likely to bring the
fractional point inside all the group polyhedra associated with the single
tableau rows—hence the new fractional point cannot be cut anymore by
any subadditive cut (interpolated or not), meaning that the root-node lower
bound cannot be improved any further by our approach. If this explanation
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is true, then the research on improved bounds based on mod-1 considerations
should concentrate on finding row combinations different from those in the
optimal tableau (a topic investigated in a recent paper by Fischetti and Lodi
[9]), or has to take into account two or more tableau rows at a same time
so as to better approximate the corner polyhedron.

6 Future directions of work

Future work on cyclic-group cuts should investigate the following issues.

Integration within a branch-and-cut method

As already mentioned, an explanation of the good performance of GMI
cuts in that these cuts are often able to bring the fractional point inside all
the group polyhedra associated with the single tableau rows. However, at a
later time, the cutting plane (and branching) process is likely to introduce
other constraints that may bring the fractional point outside these group
polyhedra, thus triggering our separation procedure to produce new violated
subadditive cuts to “move back” the fractional point inside the same group
polyhedra–thus hopefully improving the lower bound.

Moreover, the large number of subadditive cuts generated and the small
improvement obtained in some cases, would suggest a more conservative
policy to better exploit subadditive cuts within a branch-and-cut solution
scheme. To be more specific, we believe that a better compromise between
lower bound quality and computing time could be reached if one uses first
a clever set of non-interpolated subadditive functions to derive quickly an
initial set of violated inequalities (including GMI and k-cuts), and applies
g-SEP separation only afterwards. This goes into the direction suggested by
Andreello, Caprara and Fischetti [1] for an effective use of easy-to-compute
cuts such as GMI and k-cuts.

Using higher-rank subadditive cuts

In our computational experiments we deliberately avoided exploiting the
rows of the optimal tableaux obtained after the addition of new cuts, as we
were only interested in the rank-1 corner polyhedron associated with the first
tableau. In practice, however, one could derive subadditive cuts from the
equations of any tableau, just as one can generate several rounds GMI cuts.
Practical experience shows that the quality of GMI cuts tends to deteriorate
rapidly as new cuts are added, hence one typically avoids their generation
after a while. It would be interesting to investigate whether subadditive
cuts are also affected by a similar tailing-off phenomenon, the hope being
that choosing a cut in the whole family of sudadditive functions (rather than
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choosing only the GMI one) can lead to some improvement.

Replacing a single GMI cut by two subadditive cuts

In an early stage of our study, we conjectured the effectiveness of GMI
cut be due to the fact that it is the deepest5 one in the family of subadditive
cuts, with respect to the fractional LP solution x∗ associated with the ini-
tial optimal tableau (the one whose rows are stored in our equation pool).
Indeed, it is known [4] (and geometrically intuitive) that deep cuts are likely
to be the most effective to be used in cutting plane algorithms.

Being the amount of violation for the LP solution x∗ with respect to any
subadditive cut read from the associated tableau a constant, the cut depth
actually depends only on the coefficient norm ‖g‖2, the smaller the norm
the deeper the cut.

In order to avoid any dependency on the actual value of the coefficients
in the tableau rows, we decided to work on the T -space, and computed
the deepest cut by solving the quadratic problem min{

∑k−1
i=1 g2

i : (10) −
(12)}. Surprisingly, we found that the GMI cut (tough quite deep) is not
the deepest one, the latter arising when setting gi = 0 for i = 0, gi = 1
for i = r, and gi = 0.5 otherwise. This produces the cut

∑k−1
i=1 ti + tr ≥ 2

saying that any integer t ∈ T (k, r) has to satisfy the disjunction (tr ≥
1)

∨

(
∑

i6=r ti ≥ 2). The counterpart of the above cut in the x-space reads

∑

j:φ(αj)>0

xj +
∑

j:|φ(αj)−φ(β)|≤ε

xj ≥ 2 (20)

where ε is a very small positive value.
According to our computational experience, however, cut (20) has a

poor practical performance. As a matter of fact, its associated subadditive
function does not correspond to an extreme point of the g-system, hence
the corresponding cut does not define a facet of T (k, r). This implies that
we can obtain two (and possibly more) facet-defining inequalities for T (k, r)
whose convex combination gives the deepest cut (20), a situation illustrated
in Figure 6. E.g., for T (10, 5) the two extreme solutions (g0, · · · , g9) of the
g-model are given in the rows of the following matrix:

(

0, 1, 0, 1, 0, 1, 0, 1, 0, 1
0, 1/3, 2/3, 1/3, 2/3, 1, 2/3, 1/3, 2/3, 1/3

)

whose combination with weights 1/4 (first row) and 3/4 (second row) pro-
duce precisely the deepest-cut function, namely:

(

0, 1/2, 1/2, 1/2, 1/2, 1, 1/2, 1/2, 1/2, 1/2
)

It is then natural to investigate the possibility of using the above pair of
subadditive cuts instead of (or together with) the usual GMI one, in the

5The depth of a cut gT x ≥ g0 with respect to a point x̄ is computed as |gT x̄− g0|/‖g‖
2
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t1

t2

Deepest Cut

Facet 1

Facet 2

Figure 6: The deepest cut (w.r.t. to the origin) is not a facet of T (k, r),
hence it can expressed as the sum of two (or more) such facets

hope that they can “cut from different angles” the factional vertex, hence
producing an improved performance without the overhead involved in the
solution of the cyclic-group separation problem.
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Table 1: MIPLIB mixed integer problems (part 1).

Problem
Type of

Cuts
Final LB

Closed
Gap
(%)

Separation
Time

(seconds)

Total
Time

(seconds)

Number of
Cuts

10teams
924.00
917.00
0.16

1:50-cuts
GMI
K=10
K=20
K=30
K=60

924.00
924.00
924.00
924.00
924.00
924.00

100.00
100.00
100.00
100.00
100.00
100.00

10.04
0.20
0.33
0.53
1.06

12.07

14.85
2.95
2.73
3.04
3.69

14.66

275
162
162
162
162
162

aflow30a
1158.00
983.17
0.01

1:50-cuts
GMI
K=10
K=20
K=30
K=60

1002.66
1002.66
1001.55
1002.21
1002.35
1002.54

11.15
11.15
10.51
10.89
10.97
11.08

0.96
0.01
0.07
0.22
0.83

12.30

1.48
0.05
0.17
0.38
0.99

12.45

500
31
56
64
72
72

aflow40b
1168.00
1005.66
0.11

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

1014.56
1014.56
1014.27
1014.46
1014.50
1014.51

5.48
5.48
5.30
5.42
5.44
5.45

3.91
0.06
0.19
0.43
1.05

17.81

5.75
0.39
0.78
1.29
1.84

18.60

379
38
57
64
63
66

bell3a
878430.32
862578.64
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

872157.51
872157.51
872015.80
872092.20
872099.44
872140.08

60.43
60.43
59.53
60.02
60.06
60.32

0.32
0.00
0.04
0.22
0.59

11.27

0.42
0.00
0.04
0.23
0.62

11.29

600
50
83
93
96
93

bell5
8966406.49
8608417.95
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60?

8660422.46
8660422.46
8654669.96
8657274.83
8658662.54
8661152.43

14.53
14.53
12.92
13.65
14.04
14.73

0.21
0.01
0.03
0.13
0.40

12.73

0.27
0.01
0.04
0.14
0.41

12.76

464
40
59
60
59
77

blend2
7.60
6.92
0.01

1:50-cuts
GMI
K=10
K=20
K=30
K=60

6.92
6.92
6.92
6.92
6.92
6.92

0.00
0.00
0.00
0.00
0.00
0.00

0.06
0.00
0.01
0.01
0.02
0.88

0.06
0.00
0.01
0.01
0.02
0.88

0
0
0
0
0
0

danoint
65.67
62.64
0.21

1:50-cuts
GMI
K=10
K=20
K=30
K=60

62.69
62.69
62.65
62.65
62.66
62.67

1.74
1.74
0.39
0.55
0.68
0.96

5.52
0.04
0.25
1.00
3.55

71.12

8.17
0.67
1.16
2.01
4.55

72.26

224
52
74
81
80
82

fiber
405935.18
156082.52
0.01

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

291699.72
279391.25
268704.27
277434.30
282035.42
285955.48

54.28
49.35
45.08
48.57
50.41
51.98

2.34
0.03
0.12
0.39
1.43

33.19

2.79
0.05
0.19
0.49
1.58

33.29

646
46
75

103
133
119

flugpl
1201500.00
1167185.73
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

1171213.72
1171213.72
1171004.98
1171142.46
1171193.55
1171197.64

11.74
11.74
11.13
11.53
11.68
11.69

0.00
0.00
0.01
0.04
0.14
3.85

0.03
0.00
0.01
0.04
0.14
3.86

204
10
19
20
18
19

gen
112313.00
112130.04
0.05

1:50-cuts
GMI
K=10
K=20
K=30
K=60

112239.39
112239.39
112216.67
112222.13
112228.97
112239.37

59.77
59.77
47.35
50.34
54.07
59.75

3.04
0.03
0.17
0.50
2.96

55.87

3.77
0.14
0.33
0.68
3.21

56.20

800
45
71
84
76
94

gesa2
25779856.37
25476489.68
0.09

1:50-cuts
GMI
K=10
K=20
K=30
K=60

25568014.40
25568014.40
25565828.17
25566860.50
25567378.76
25567569.09

30.17
30.17
29.45
29.79
29.96
30.02

21.37
0.18
0.56
1.63
5.32

100.04

24.11
0.35
0.86
2.04
5.83

100.60

1816
91

178
206
206
204

gesa2 o
25779856.37
25476489.68
0.05

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

25568387.00
25567400.54
25565930.89
25567122.07
25567712.56
25568060.92

30.29
29.97
29.48
29.88
30.07
30.19

24.88
0.26
0.74
1.72
5.50

88.02

27.32
0.41
1.04
2.09
5.94

88.53

2041
121
218
251
243
258

20



Table 2: MIPLIB mixed integer problems (part 2).

Problem
Type of

Cuts
Final LB

Closed
Gap
(%)

Separation
Time

(seconds)

Total
Time

(seconds)

Number of
Cuts

gt2
21166.00
13460.23
0.00

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

19092.03
18998.90
15241.29
15241.29
15463.52
17986.99

73.09
71.88
23.11
23.11
26.00
58.74

0.11
0.00
0.01
0.03
0.17
4.80

0.18
0.00
0.01
0.04
0.19
4.81

410
12
16
18
23
23

markshare1
1.00
0.00
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.02
0.04
0.60

0.01
0.00
0.00
0.02
0.04
0.60

200
6
6
7
6
6

markshare2
1.00
0.00
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.01
0.00
0.00
0.01
0.05
0.55

0.02
0.00
0.00
0.01
0.05
0.55

200
7
7
7
7
7

mas74
11801.20
10482.80
0.01

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

10578.59
10570.72
10570.94
10576.54
10581.80
10585.87

7.27
6.67
6.69
7.11
7.51
7.82

0.13
0.00
0.01
0.12
0.83

27.15

0.44
0.01
0.04
0.15
0.90

27.23

230
12
33
44
71
79

mas76
40005.10
38893.90
0.00

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

38971.87
38965.29
38968.36
38972.76
38975.64
38977.76

7.02
6.42
6.70
7.10
7.36
7.55

0.07
0.00
0.02
0.12
0.49

19.21

0.30
0.01
0.04
0.14
0.53

19.26

221
11
25
43
34
52

mkc
−563.85
−611.85
0.09

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

−608.67
−609.41
−609.32
−609.32
−609.08
−608.92

6.62
5.09
5.27
5.27
5.76
6.11

82.83
0.69
4.98
8.56

16.49
408.84

88.59
1.16
6.91

11.19
20.09

416.52

950
142
367
463
600
958

mod008
307.00
290.93
0.00

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

294.29
294.29
293.95
294.17
294.28
294.28

20.92
20.88
18.80
20.18
20.81
20.83

0.05
0.00
0.00
0.02
0.06
2.29

0.15
0.01
0.00
0.03
0.06
2.30

200
5
8
8
8
9

modglob
20740508.00
20430947.62
0.01

1:50-cuts
GMI
K=10
K=20
K=30
K=60

20484452.96
20484452.96
20472029.03
20478791.33
20481755.99
20482796.42

17.28
17.28
13.27
15.46
16.41
16.75

0.92
0.01
0.06
0.23
0.85

24.97

1.23
0.03
0.09
0.29
0.92

25.03

800
30
52
50
54
55

net12
214.00
17.25
14.53

1:50-cuts
GMI
K=10
K=20
K=30
K=60

31.16
31.16
30.31
30.69
31.02
31.10

7.07
7.07
6.64
6.83
7.00
7.04

2041.36
33.49
29.38
39.63
47.41

268.56

2439.95
66.35
75.80
86.34
92.83

312.26

819
296
457
462
433
477

opt1217
−16.00
−20.02
0.01

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

−19.23
−19.23
−19.26
−19.25
−19.23
−19.23

19.74
19.72
18.85
19.11
19.67
19.68

0.70
0.01
0.09
0.16
0.57

12.43

1.34
0.04
0.15
0.23
0.71

12.57

349
28
53
55
68
75

pk1
11.00
0.00
0.01

1:50-cuts
GMI
K=10
K=20
K=30
K=60

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.02
0.00
0.01
0.02
0.07
1.25

0.04
0.01
0.01
0.03
0.07
1.25

200
15
15
15
15
15

pp08a
7350.00
2748.35
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

5151.26
5151.26
5073.19
5115.98
5124.13
5144.84

52.22
52.22
50.52
51.45
51.63
52.08

0.41
0.00
0.06
0.16
0.57

10.61

0.75
0.01
0.08
0.18
0.61

10.63

1846
53
92

102
111
110

21



Table 3: MIPLIB mixed integer problems (part 3).

Problem
Type of

Cuts
Final LB

Closed
Gap
(%)

Separation
Time

(seconds)

Total
Time

(seconds)

Number of
Cuts

qnet1
16029.69
14274.10
0.05

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

14447.39
14445.72
14446.24
14446.24
14446.24
14447.10

9.87
9.78
9.80
9.80
9.80
9.85

3.84
0.09
0.22
0.38
1.01

23.74

6.72
0.26
0.49
0.64
1.32

24.09

374
55
59
63
69
75

qnet1 o
16029.69
12095.57
0.02

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

13748.85
13739.62
13686.09
13714.81
13724.55
13738.61

42.02
41.79
40.43
41.16
41.41
41.76

1.07
0.03
0.09
0.21
0.49

14.90

1.99
0.07
0.18
0.33
0.61

15.03

400
11
22
29
31
30

rentacar
30356761.00
28806137.64
7.19

1:50-cuts
GMI
K=10
K=20
K=30
K=60

29046932.15
29046932.15
28806137.64
28806137.64
28806137.64
28877221.50

15.53
15.53
0.00
0.00
0.00
4.58

46.90
0.78
1.51
3.01
9.91

150.90

64.34
6.82
7.47
7.72

15.91
159.31

550
22
32
31
35
39

set1ch
54537.80
32007.73
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

40830.12
40830.12
38975.16
40274.48
40622.20
40776.80

39.16
39.16
30.93
36.69
38.24
38.92

6.35
0.02
0.12
0.38
1.40

37.04

8.42
0.08
0.22
0.50
1.53

37.17

4266
138
258
263
287
294

timtab1
764772.00
28694.00
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

201721.28
201721.28
199777.70
200979.95
201158.22
201721.28

23.51
23.51
23.24
23.41
23.43
23.51

1.53
0.01
0.13
0.47
1.76

25.59

1.86
0.03
0.19
0.54
1.82

25.64

1188
136
194
218
244
254

tr12-30
130596.00
14210.43
0.01

1:50-cuts
GMI
K=10
K=20
K=30
K=60

84359.79
84359.79
73768.19
80578.11
83103.48
83817.48

60.27
60.27
51.17
57.02
59.19
59.81

76.98
0.13
0.36
0.87
3.45

72.54

90.45
0.36
0.67
1.42
4.02

73.25

13262
348
550
806
733
771

vpm1
20.00
15.42
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

15.86
15.86
15.81
15.86
15.85
15.86

9.70
9.70
8.66
9.70
9.37
9.70

0.27
0.00
0.04
0.09
0.37
3.90

0.30
0.00
0.06
0.09
0.38
3.92

118
7

18
11
15
11

vpm2
13.75
9.89
0.01

1:50-cuts
GMI
K=10
K=20
K=30
K=60

10.36
10.36
10.35
10.35
10.35
10.36

12.15
12.15
11.82
12.05
12.06
12.11

0.47
0.01
0.05
0.23
0.85

19.28

0.60
0.02
0.07
0.25
0.88

19.33

390
20
27
33
36
42

egout
568.10
149.59
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

390.10
390.10
242.52
292.92
304.87
319.41

57.47
57.47
22.20
34.25
37.10
40.58

0.25
0.01
0.03
0.13
0.59

14.32

0.46
0.02
0.04
0.15
0.60

14.33

1588
40
60
69
75
71

fixnet6
3983.00
1200.88
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

1497.17
1497.17
1470.33
1478.40
1483.45
1493.53

10.65
10.65
9.69
9.97

10.16
10.52

2.76
0.01
0.07
0.09
0.28
7.89

3.89
0.07
0.14
0.14
0.32
7.96

2349
60
91
92
76
91

net12
214.00
17.25
14.53

1:50-cuts
GMI
K=10
K=20
K=30
K=60

31.16
31.16
30.31
30.69
31.02
31.10

7.07
7.07
6.64
6.83
7.00
7.04

2041.36
33.49
29.38
39.63
47.41

268.56

2439.95
66.35
75.80
86.34
92.83

312.26

819
296
457
462
433
477

noswot
−41.00
−43.00
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

−43.00
−43.00
−43.00
−43.00
−43.00
−43.00

0.00
0.00
0.00
0.00
0.00
0.00

0.56
0.00
0.08
0.18
1.24

16.27

0.68
0.02
0.12
0.20
1.27

16.28

666
48
63
54
58
56

22



Table 4: MIPLIB mixed integer problems (part 4).

Problem
Type of

Cuts
Final LB

Closed
Gap
(%)

Separation
Time

(seconds)

Total
Time

(seconds)

Number of
Cuts

rgn
82.20
48.80
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

52.26
52.26
51.66
52.00
52.17
52.17

10.37
10.37
8.56
9.59

10.08
10.08

0.06
0.00
0.03
0.05
0.24
4.75

0.10
0.00
0.05
0.06
0.27
4.77

327
16
27
28
32
28

pp08aCUTS
7350.00
5480.61
0.01

1:50-cuts
GMI
K=10
K=20
K=30
K=60

6066.01
6066.01
6043.49
6059.97
6059.67
6063.23

31.32
31.32
30.11
30.99
30.98
31.17

0.66
0.00
0.06
0.28
1.12

28.15

0.98
0.03
0.11
0.31
1.19

28.20

884
46
72
76
91
92

qiu
−132.87
−931.64
0.21

1:50-cuts
GMI
K=10
K=20
K=30
K=60

−924.23
−924.23
−924.97
−924.57
−924.44
−924.44

0.93
0.93
0.84
0.89
0.90
0.90

6.35
0.07
0.24
0.63
2.33

55.77

11.15
0.73
1.16
1.52
3.43

56.95

410
36
59
59
60
71

gesa3
27991042.65
27833632.45
0.10

1:50-cuts
GMI
K=10
K=20
K=30
K=60

27908501.37
27908501.37
27906378.34
27907466.03
27908302.96
27908406.33

47.56
47.56
46.21
46.91
47.44
47.50

14.99
0.19
0.62
1.40
5.61

108.63

16.99
0.41
0.93
1.76
6.07

109.18

1550
100
151
183
203
200

gesa3 o
27991042.65
27833632.45
0.08

1:50-cuts
GMI
K=10
K=20
K=30
K=60

27928910.08
27928910.08
27925661.11
27927682.03
27928467.67
27928634.90

60.53
60.53
58.46
59.75
60.25
60.35

19.59
0.30
0.82
1.86
5.18

95.07

21.30
0.50
1.14
2.28
5.75

95.67

1580
145
216
256
303
282

23



Table 5: MIPLIB pure integer problems (part 1).

Problem
Type of

Cuts
Final LB

Closed
Gap
(%)

Separation
Time

(seconds)

Total
Time

(seconds)

Number of
Cuts

air03
340160.00
338864.25
0.30

1:50-cuts
GMI
K=10
K=20
K=30
K=60

340160.00
340160.00
340160.00
340160.00
340160.00
340160.00

100.00
100.00
100.00
100.00
100.00
100.00

0.90
0.12
0.24
0.26
0.29
1.19

5.03
1.03
1.14
1.23
1.27
2.09

200
36
36
36
36
36

air04
56137.00
55535.44
34.82

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

55590.96
55583.78
55580.69
55583.86
55585.19
55586.21

9.23
8.04
7.52
8.05
8.27
8.44

94.33
2.02
3.16
5.93

10.13
197.07

880.95
335.94
514.19
510.79
581.08
723.21

427
202
283
300
370
389

air05
26374.00
25877.61
3.19

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

25903.63
25899.70
25898.87
25900.87
25900.96
25902.02

5.24
4.45
4.28
4.69
4.70
4.92

82.52
1.39
2.62
3.54
9.10

177.51

172.38
34.44
44.05
58.50
95.19

307.77

423
201
229
260
298
386

cap6000
−2451377.00
−2451537.33
0.33

1:50-cuts
GMI
K=10
K=20
K=30
K=60

−2451470.55
−2451470.55
−2451474.58
−2451474.58
−2451472.58
−2451472.49

41.65
41.65
39.14
39.14
40.38
40.44

2.65
0.05
0.08
0.12
0.17
1.59

40.17
0.59
0.73
0.78
0.82
2.26

398
9

11
11
11
11

l152lav
4722.00
4656.36
0.09

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

4665.16
4664.41
4664.03
4664.60
4665.26
4665.87

13.40
12.25
11.67
12.54
13.55
14.48

1.62
0.05
0.22
0.52
2.23

83.55

3.13
0.40
0.79
1.17
3.59

86.58

200
51
88
88

237
349

lseu
1120.00
834.68
0.00

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

996.97
991.87
996.29
997.34
998.64

1000.29

56.88
55.09
56.64
57.01
57.47
58.04

0.07
0.00
0.02
0.07
0.41
8.17

0.09
0.01
0.03
0.08
0.42
8.19

300
13
22
25
42
31

manna81
−13164.00
−13297.00
0.13

1:50-cuts
GMI
K=10
K=20
K=30
K=60

−13164.00
−13164.00
−13164.00
−13164.00
−13164.00
−13164.00

100.00
100.00
100.00
100.00
100.00
100.00

4798.42
13.58
21.28
21.95
23.74
33.91

4884.79
16.55
24.32
25.06
27.13
38.17

10275
812
812
812
812
812

mitre
115155.00
114740.52
0.34

1:50-cuts
GMI
K=10
K=20
K=30
K=60

115081.21
115081.21
115067.88
115081.21
115081.21
115081.21

82.20
82.20
78.98
82.20
82.20
82.20

4057.42
12.71
21.18
60.69
72.65

573.16

4244.84
15.95
25.85
67.74
80.40

583.40

14200
552
662
725
701
738

mod010
6548.00
6532.08
0.09

1:50-cuts
GMI
K=10
K=20
K=30?

K=60?

6535.50
6535.50
6535.46
6535.46
6535.75
6536.00

21.47
21.47
21.24
21.24
23.04
24.61

1.54
0.05
0.14
0.17
0.26
2.88

3.49
0.42
0.67
0.66
0.70
3.40

200
34
38
36
36
40

p0033
3089.00
2520.57
0.00

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

2843.74
2830.95
2629.39
2690.91
2749.28
2842.25

56.85
54.60
19.14
29.97
40.23
56.59

0.00
0.00
0.02
0.07
0.33
4.73

0.02
0.00
0.03
0.07
0.34
4.73

219
8

15
18
22
19

p0201
7615.00
6875.00
0.01

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

7007.91
7000.56
7002.42
7002.43
7004.88
7004.96

17.96
16.97
17.22
17.22
17.55
17.56

0.14
0.00
0.03
0.05
0.24
2.54

0.22
0.02
0.08
0.13
0.30
2.61

200
22
61
71
76
86

p0282
258411.00
176867.50
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

179882.58
179882.58
179711.49
179830.00
179784.53
179830.00

3.70
3.70
3.49
3.63
3.58
3.63

0.45
0.00
0.04
0.10
0.41
5.90

0.53
0.02
0.05
0.12
0.44
5.93

400
32
38
43
45
43

24



Table 6: MIPLIB pure integer problems (part 2).

Problem
Type of

Cuts
Final LB

Closed
Gap
(%)

Separation
Time

(seconds)

Total
Time

(seconds)

Number of
Cuts

p0548
8691.00
315.25
0.01

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

3668.81
3667.64
738.79

3258.85
3139.64
3493.37

40.04
40.02
5.06

35.14
33.72
37.94

3.80
0.02
0.09
0.29
1.09

23.29

4.49
0.06
0.14
0.35
1.16

23.40

2113
55
88
99

102
113

p2756
3124.00
2688.75
0.02

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

2691.42
2691.09
2689.80
2690.00
2690.00
2690.00

0.61
0.54
0.24
0.29
0.29
0.29

8.24
0.08
0.24
0.34
0.56
8.65

10.35
0.16
0.44
0.54
0.76
8.81

1300
35
57
61
62
65

seymour
423.00
403.85
24.01

1:50-cuts
GMI
K=10
K=20
K=30
K=60

405.14
405.14
405.13
405.13
405.14
405.14

6.75
6.75
6.69
6.72
6.75
6.75

978.83
16.09
26.64
27.83
51.41

290.60

1019.77
30.95
45.43
45.03
69.78

305.18

676
276
410
427
401
348

disctom
−5000.00
−5000.00
1.25

1:50-cuts
GMI
K=10
K=20
K=30
K=60

−5000.00
−5000.00
−5000.00
−5000.00
−5000.00
−5000.00

(−)
(−)
(−)
(−)
(−)
(−)

43.27
1.45
2.16
2.48
3.11

13.84

72.82
27.86
28.47
28.97
29.69
40.28

200
200
200
200
200
200

enigma
0.00
0.00
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

0.00
0.00
0.00
0.00
0.00
0.00

(−)
(−)
(−)
(−)
(−)
(−)

0.02
0.00
0.00
0.01
0.04
0.62

0.05
0.00
0.00
0.01
0.04
0.63

200
8
8
8
8
8

harp2
−73899798.00
−74353341.50
0.04

1:50-cuts?
GMI
K=10?

K=20?

K=30?

K=60?

−74219846.41
−74251958.32
−74247224.08
−74236993.08
−74236058.30
−74225928.01

29.43
22.35
23.40
25.65
25.86
28.09

5.45
0.04
0.23
0.35
0.93

26.86

27.53
0.19
0.69
0.97
1.71

27.79

653
30
58
62
71
75

stein27
18.00
13.00
0.00

1:50-cuts
GMI
K=10
K=20
K=30
K=60

13.00
13.00
13.00
13.00
13.00
13.00

0.00
0.00
0.00
0.00
0.00
0.00

0.38
0.01
0.03
0.07
0.17
2.31

0.40
0.01
0.04
0.07
0.18
2.34

209
84
84
84
84
84

stein45
30.00
22.00
0.01

1:50-cuts
GMI
K=10
K=20
K=30
K=60

22.00
22.00
22.00
22.00
22.00
22.00

0.00
0.00
0.00
0.00
0.00
0.00

1.26
0.04
0.10
0.21
0.50
5.03

1.29
0.09
0.14
0.26
0.52
5.06

200
200
200
200
200
200

25



Table 7: Atamtürk’s bounded problems (averages over 5 instances).

Set
Type of

Cuts

Closed
Gap
(%)

Separation
Time

(seconds)

Total
Time

(seconds)

Average
Number
of Cuts

mik.250-10-100

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

74.69
67.41
66.60
66.78
67.52
70.10
72.02

3.501
0.012
0.052
0.098
0.405
2.311

64.913

8.294
0.034
0.182
0.266
0.623
2.622

65.314

2948.40
100.00
174.60
204.60
227.40
257.00
289.20

mik.250-10-50

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

76.34
50.87
50.37
50.37
51.14
55.62
66.04

1.975
0.012
0.026
0.066
0.216
0.993

35.559

23.976
0.022
0.118
0.180
0.363
1.206

35.898

2100.60
50.00
86.00

103.40
114.00
132.00
163.40

mik.250-10-75

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

72.54
56.19
55.18
55.33
56.20
60.78
66.22

3.179
0.016
0.048
0.070
0.318
1.741

56.732

14.369
0.034
0.198
0.268
0.593
2.155

57.366

2795.80
75.00

130.20
153.00
174.40
200.20
232.60

mik.250-20-100

1:50-cuts?
GMI
k=5
k=10
k=20
k=30?

k=60?

75.27
70.46
69.83
69.99
70.42
72.25
73.68

3.145
0.022
0.048
0.096
0.423
2.087

71.585

7.713
0.044
0.182
0.248
0.643
2.379

72.052

2689.80
100.00
174.60
204.00
229.20
257.00
286.40

mik.250-20-50

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

74.77
51.60
51.09
51.08
51.87
56.41
66.12

1.929
0.012
0.034
0.062
0.234
1.066

37.179

19.041
0.028
0.118
0.184
0.389
1.320

37.594

2049.60
50.00
86.00

103.20
115.40
132.20
166.60

mik.250-20-75

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

74.37
61.29
60.21
60.38
61.35
66.33
70.14

2.936
0.018
0.046
0.078
0.334
1.658

54.352

12.135
0.040
0.206
0.286
0.637
2.063

55.023

2586.60
75.00

130.20
152.40
176.80
201.80
241.20

mik.250-5-100

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

71.17
61.29
60.43
60.58
61.43
64.61
67.35

3.990
0.020
0.054
0.098
0.413
2.351

75.697

9.996
0.038
0.154
0.258
0.633
2.688

76.123

3196.00
100.00
174.60
204.80
229.00
265.40
297.00

26



Table 8: Atamtürk’s unbounded problems (averages over 5 instances).

Set
Type of

Cuts

Closed
Gap
(%)

Separation
Time

(seconds)

Total
Time

(seconds)

Average
Number
of Cuts

mik.250-1-100

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

74.55
63.26
62.63
62.78
63.28
66.27
70.83

3.898
0.014
0.058
0.100
0.411
1.891

64.801

9.474
0.032
0.182
0.232
0.619
2.129

65.294

3187.20
100.00
174.60
203.80
225.80
262.20
303.20

mik.250-1-50

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

78.52
50.07
49.58
49.58
50.34
54.74
65.52

2.117
0.008
0.036
0.062
0.232
0.993

35.902

23.440
0.024
0.118
0.184
0.379
1.234

36.212

2185.40
50.00
86.00

103.40
114.00
132.60
157.20

mik.250-1-75

1:50-cuts?
GMI
k=5
k=10
k=20
k=30?

k=60?

76.14
54.83
53.82
53.97
54.82
59.53
67.45

3.419
0.018
0.046
0.086
0.312
1.642

56.796

19.087
0.034
0.176
0.282
0.589
2.043

57.483

3014.40
75.00

130.20
153.00
174.40
199.00
236.00

mik.500-1-100

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

75.13
63.48
62.42
62.53
63.57
68.01
71.92

10.467
0.046
0.124
0.204
0.571
2.221

76.314

83.001
0.130
2.175
2.636
3.112
5.772

84.912

3293.20
100.00
174.60
206.40
224.80
267.40
321.40

mik.500-1-50

1:50-cuts?
GMI
k=5
k=10
k=20?

k=30?

k=60?

76.67
50.68
50.19
50.19
50.88
55.41
66.10

4.418
0.024
0.062
0.102
0.284
1.096

37.354

75.238
0.080
0.401
0.479
0.793
1.961

38.610

2117.20
50.00
86.00

102.80
113.60
133.60
157.80

mik.500-1-75

1:50-cuts?
GMI
k=5
k=10
k=20
k=30?

k=60?

74.92
55.13
54.12
54.28
55.08
59.91
67.48

8.360
0.034
0.098
0.160
0.431
1.600

50.757

91.904
0.102
1.248
1.364
2.135
4.094

54.979

2932.40
75.00

130.20
151.40
174.80
197.20
240.40
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Table 9: Random knapsack problems with coefficients in {1, . . . , 1000}.

n

Type
of

Cuts

Binary Bounded

Closed
Gap
(%)

Sep.
Time
(sec)

Tot.
Time
(sec)

Avg.
Num.

of
Cuts

Closed
Gap
(%)

Sep.
Time
(sec)

Tot.
Time
(sec)

Avg.
Num.

of
Cuts

10

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60

90.46?

76.15
65.92
81.27?

89.30?

91.51?

92.90?

0.000
0.000
0.001
0.001
0.003
0.014
0.229

0.002
0.000
0.001
0.002
0.006
0.016
0.232

49.93
1.00
1.97
2.83
3.33
3.57
3.50

94.75?

74.47
71.49
82.10?

91.25?

94.08?

97.36?

0.000
0.000
0.000
0.001
0.004
0.012
0.249

0.000
0.001
0.001
0.003
0.007
0.016
0.252

50.00
1.00
2.00
2.63
3.23
3.80
4.13

50

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60

79.94?

50.71
52.00?

62.63?

69.44?

70.34?

77.78?

0.002
0.000
0.001
0.001
0.005
0.016
0.294

0.007
0.001
0.002
0.005
0.008
0.020
0.300

49.90
1.00
2.07
3.20
3.90
4.97
5.63

88.83?

42.44
36.46
46.62?

68.21?

73.74?

83.88?

0.001
0.000
0.001
0.002
0.005
0.020
0.360

0.003
0.001
0.002
0.003
0.009
0.023
0.365

49.93
1.00
1.73
2.67
3.77
4.63
5.67

100

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60

78.41?

39.80
34.88
49.98?

58.65?

66.57?

74.88?

0.002
0.000
0.001
0.001
0.007
0.019
0.347

0.009
0.000
0.003
0.003
0.011
0.024
0.351

49.97
1.00
1.77
2.80
4.27
5.50
6.73

82.84?

39.31
34.12
44.71?

59.39?

67.65?

75.64?

0.002
0.000
0.002
0.001
0.007
0.016
0.357

0.008
0.001
0.004
0.002
0.008
0.022
0.363

49.43
1.00
1.77
2.60
4.20
4.80
6.23

500

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60

74.09?

26.20
26.69?

34.13?

43.08?

48.74?

60.09?

0.014
0.000
0.003
0.005
0.010
0.024
0.366

0.062
0.003
0.007
0.009
0.017
0.032
0.384

49.60
1.00
1.93
3.27
4.87
5.57
7.33

75.99?

22.44
19.90
25.08?

37.03?

41.72?

54.93?

0.012
0.000
0.001
0.002
0.008
0.019
0.329

0.060
0.004
0.006
0.008
0.015
0.027
0.341

49.93
1.00
1.80
2.77
3.90
4.50
6.20

1000

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60

56.97?

24.68
22.09
29.17?

36.07?

40.03?

47.21?

0.027
0.000
0.003
0.004
0.011
0.027
0.375

0.153
0.008
0.012
0.018
0.026
0.048
0.395

50.00
1.00
2.17
3.23
4.70
5.67
7.47

70.16?

23.97
22.51
27.08?

35.10?

39.40?

44.74?

0.030
0.001
0.003
0.004
0.007
0.031
0.324

0.152
0.008
0.012
0.015
0.020
0.045
0.344

49.13
1.00
2.10
2.90
4.23
5.30
5.90

5000

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60

47.07?

17.03
15.69
19.50?

25.86?

29.64?

36.53?

0.156
0.004
0.008
0.013
0.021
0.036
0.433

0.910
0.063
0.082
0.102
0.140
0.179
0.656

49.90
1.00
2.03
3.07
4.63
5.53
8.43

53.96?

12.78
10.74
19.49?

25.01?

28.31?

36.29?

0.156
0.002
0.008
0.012
0.022
0.034
0.381

0.904
0.060
0.081
0.099
0.127
0.159
0.543

49.97
1.00
2.00
3.10
4.20
4.93
6.43

10000

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60

38.59?

10.82
10.43
15.40?

20.40?

23.55?

28.14?

0.313
0.006
0.016
0.023
0.031
0.055
0.425

2.249
0.246
0.286
0.331
0.380
0.483
0.927

49.97
1.00
1.93
2.97
4.03
5.60
6.77

48.81?

18.34
16.05
20.37?

28.24?

30.90?

37.03?

0.306
0.004
0.012
0.019
0.031
0.050
0.359

2.214
0.235
0.261
0.304
0.345
0.418
0.852

49.93
1.00
1.77
2.83
3.97
4.87
6.70
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Table 10: Random knapsack problems with coefficients in {1, . . . , 100}.

n

Type
of

Cuts

Binary Bounded

Closed
Gap
(%)

Sep.
Time
(sec)

Tot.
Time
(sec)

Avg.
Num.

of
Cuts

Closed
Gap
(%)

Sep.
Time
(sec)

Tot.
Time
(sec)

Avg.
Num.

of
Cuts

10

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60
Ideal k

91.96?

77.61
71.12
84.14?

92.12?

93.30?

95.91?

96.92?

0.001
0.000
0.001
0.001
0.003
0.011
0.216
1.304

0.002
0.002
0.002
0.005
0.006
0.014
0.221
1.310

47.03
1.00
1.93
2.73
3.23
3.33
3.70
2.97

96.54?

74.98
74.15
85.52?

92.18?

94.11?

96.37?

98.12?

0.000
0.000
0.001
0.002
0.005
0.014
0.255
1.251

0.002
0.000
0.003
0.004
0.008
0.017
0.260
1.256

48.37
1.00
1.90
2.70
3.37
3.83
3.87
3.20

50

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60
Ideal k

85.56?

53.89
55.43?

65.72?

73.96?

78.80?

85.47?

90.29?

0.002
0.000
0.000
0.002
0.007
0.014
0.330
1.235

0.005
0.001
0.001
0.005
0.009
0.022
0.337
1.239

49.60
1.00
2.10
2.80
3.80
4.70
5.33
4.07

91.38?

43.37
37.62
49.61?

67.45?

73.92?

84.98?

97.80?

0.001
0.000
0.000
0.003
0.006
0.017
0.327
1.399

0.006
0.001
0.001
0.004
0.011
0.022
0.331
1.406

49.13
1.00
1.73
2.30
4.00
4.50
5.17
4.13

100

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60
Ideal k

82.53?

39.52
36.32
50.66?

64.36?

71.79?

80.30?

92.37?

0.003
0.000
0.002
0.002
0.005
0.020
0.387
2.042

0.008
0.002
0.004
0.005
0.011
0.027
0.398
2.050

48.48
1.00
1.86
2.90
4.83
5.83
6.55
5.17

89.38?

43.97
41.22
50.27?

67.06?

77.06?

85.03?

93.85?

0.003
0.000
0.000
0.002
0.007
0.020
0.353
1.615

0.009
0.002
0.002
0.005
0.011
0.027
0.357
1.624

48.72
1.00
1.83
2.76
3.79
4.59
5.76
4.93

500

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60
Ideal k

67.69?

21.93
20.79
28.33?

40.85?

46.50?

56.12?

73.68?

0.016
0.002
0.003
0.002
0.009
0.024
0.357
1.756

0.057
0.006
0.008
0.010
0.020
0.034
0.372
1.768

48.97
1.00
1.90
3.03
4.45
5.03
6.45
6.34

87.92?

25.72
26.68?

36.09?

49.99?

53.87?

69.85?

96.80?

0.012
0.000
0.001
0.002
0.009
0.023
0.415
2.636

0.055
0.004
0.006
0.009
0.019
0.036
0.430
2.652

49.30
1.00
1.80
3.00
4.57
5.17
6.83
7.13

1000

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60
Ideal k

79.88?

24.16
22.99
38.57?

48.07?

55.72?

65.81?

89.54?

0.030
0.000
0.002
0.006
0.010
0.030
0.363
2.036

0.130
0.008
0.012
0.021
0.032
0.055
0.390
2.067

48.73
1.00
1.80
3.47
5.03
6.83
8.03
6.63

93.05?

26.48
25.23
31.93?

41.26?

54.78?

73.97?

100.00?

0.023
0.001
0.005
0.003
0.009
0.021
0.377
1.727

0.124
0.008
0.015
0.017
0.022
0.036
0.402
1.749

48.23
1.00
1.67
2.33
3.43
4.17
5.97
5.40

5000

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60
Ideal k

100.00?

19.67
20.91?

28.81?

39.70?

42.99?

55.66?

100.00?

0.149
0.004
0.010
0.018
0.026
0.042
0.340
1.909

0.823
0.068
0.088
0.105
0.126
0.163
0.485
2.036

47.93
1.00
1.77
2.60
3.47
4.50
5.40
4.33

100.00?

10.38
11.10?

19.98?

25.30?

33.11?

47.19?

100.00?

0.125
0.004
0.009
0.015
0.025
0.039
0.429
1.834

0.814
0.067
0.083
0.101
0.130
0.165
0.637
1.968

47.70
1.00
1.47
2.40
3.57
4.53
7.27
4.93

10000

1:50-cuts
GMI
k=5
k=10
k=20
k=30
k=60
Ideal k

100.00?

21.61
19.61
26.16?

30.73?

37.32?

48.89?

100.00?

0.322
0.009
0.022
0.032
0.041
0.060
0.403
2.134

2.052
0.262
0.299
0.336
0.368
0.416
0.876
2.505

49.13
1.00
1.73
2.70
3.27
4.00
6.10
4.73

100.00?

19.65
20.79?

32.15?

41.04?

45.52?

52.99?

100.00?

0.269
0.012
0.019
0.025
0.048
0.062
0.381
2.816

2.073
0.263
0.284
0.302
0.373
0.431
0.804
3.192

49.63
1.00
1.57
2.27
3.63
4.27
5.10
4.67
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