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Abstract

We present a general model for set systems to be independence fami-
lies with respect to set families which determine classes of proper weight
functions on a ground set. Within this model, matroids arise from a natu-
ral subclass and can be characterized by the optimality of the greedy algo-
rithm. This model includes and extends many of the models for generalized
matroid-type greedy algorithms proposed in the literature and, in particular,
integral polymatroids. We discuss the relationship between these general
matroids and classical matroids and provide a Dilworth embedding that al-
lows us to represent matroids with underlying partial order structures within
classical matroids. Whether a similar representation is possible for matroids
on convex geometries is an open question.
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1 Introduction
A fundamental feature of combinatorial optimization is the fact that the op-
timality of the greedy algorithm with respect to arbitrary linear functions
on finite independence systems is equivalent to the so-called Steinitz aug-
mentation property and hence to the system giving rise to a matroid (cf.
[7, 18, 28]). Yet, many generalized models for the greedy algorithm have
been established and proved useful. Most notably among them are Ed-
monds’ [6] integral polymatroids that apply Hoffman’s [19] linear program-
ming approach to matroids. The polymatroid model in turn was further ex-
tended by allowing certain partial orders on the ground set in question (see,
e.g., [12, 13, 15, 21, 23]).

On the other hand, already Dunstan, Ingleton, and Welsh [4] had in-
troduced so-called supermatroids as a more general model for matroids.
Extending distributive supermatroids, the combinatorial geometries on par-
tially ordered sets of [9] yield a matroid type model for finite semimodular
lattices. They furthermore admit an extension of the model for the greedy
algorithm, which includes the polymatroid greedy algorithm (cf. [8]). Re-
cently, so-called cg-matroids [17] have received attention. They generalize
distributive supermatroids in that they allow a convex geometry as the un-
derlying structure, whose lattice of closed sets is not necessarily distributive.
For so-called strict cg-matroids a greedy algorithm exists and generalizes the
matroid greedy algorithm (cf. [25]).

All those matroid generalizations have in common that they admit re-
strictions on the ground set while focusing on certain subclasses of linear
functions that are found to be feasible for optimization by the accompanying
greedy algorithms. The purpose of the present note is to provide a very gen-
eral model for matroid independence systems that allow greedy optimization
relative to certain classes of linear functions.

The key to the notion of a “matroid” in our approach is the link between
a family H of subsets that includes the level sets of the linear functions to
be optimized and a family F of feasible solutions. We first introduce our in-
dependence model and then exhibit the role the matroids play in this model
with respect to greedy optimization. The striking feature of optimization
under submodular constraints is Monge’s [22] observation that optimal so-
lutions have the structure of chains (see also, e.g., [6, 12, 15]). We formalize
this aspect in the notion of the base chain property of generalized matroids.
The base chain property then yields a convenient framework for matroid
duality, which we sketch in Section 4. We then discuss matroids that are
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defined with respect to closure and co-closure systems H. Important classes
of such matroids, which include matroids on convex geometries, turn out to
admit descriptions in terms of their associated rank functions. We finally
investigate the relationship between H-matroids and classical matroids. We
provide the construction of a Dilworth embedding for matroids on distribu-
tive lattices of closed sets, which allows us to reduce the theory of such H-
matroids to classical matroid theory (which for integral polymatroids was
already pointed out in [11]).

Whether general matroids on convex geometries allow a similar embed-
ding into classical matroids is an open problem.

2 Independence Systems
We assume throughout to be given a finite ground set E.

2.1 Constructible Families and Rank Functions
Let F be a non-empty family of subsets of E. F is called constructible if
for all F ∈ F
(C) either F = ∅ or F \ e ∈ F for some e ∈ F .

Note that (C) implies ∅ ∈ F . For any F ∈ F , we set

Γ(F ) = {e ∈ E \ F | F ∪ e ∈ F}

and call F a basis of F if Γ(F ) = ∅. So the bases of F are exactly the
(inclusion-wise) maximal members of F . Denote by B = B(F) the collec-
tion of bases.

F induces a basis rank function ρ on the collection of subsets of E via

ρ(S) = max
B∈B

|S ∩ B| = max
F∈F

|S ∩ F |.

Note that ρ is normalized (i.e., ρ(∅) = 0), and enjoys the unit-increase
property

(UI) ρ(S) ≤ ρ(T ) ≤ ρ(S) + |T \ S| for all S ⊆ T ⊆ E.

The restriction of F to a subset S ⊆ E is the family

F(S) = {F ∈ F | F ⊆ S}.
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Clearly, every restriction of a constructible family is constructible. Note,
however, that the basis rank function ρS of F(S) may differ from ρ. In
general, one has the dominance relation

ρS(X) ≤ ρ(X) for all X ⊆ E.

2.2 H-Independence
Let H be a family of subsets with ∅, E ∈ H. Then the constructible family F
is said to form an independence system relative to H (or an H-independence
system) if

(I) for all H ∈ H, there exists some F ∈ F(H) such that |F | = ρ(H).

In other words, F is an H-independence system if and only if

ρ(H) = ρH(H) for all H ∈ H.

If H = 2E , we refer to a 2E-independence system F simply as an “in-
dependence system” (or simplicial complex). Independence systems F are
characterized by the fact that F ∈ F implies F ′ ∈ F for all subsets F ′ ⊆ F .

2.2.1 The Intersection Property

We say the F has the intersection property with respect to H (or the H-
intersection property) if

(IP) F ∩ H ∈ F for all F ∈ F , H ∈ H.

It follows immediately from the definition, that (IP) implies (I), i.e., ev-
ery constructible family with the H-intersection property is in particular an
H-independence system. Note that every simplicial complex has the inter-
section property. We illustrate the concept with an independence system
of integral vectors. For a positive integer N we identify N with the set
{1, . . . , N} in the following.

Example 2.1 Let the integer-valued function f be defined on the collection
of subsets of the set N and define

P(f) = {x ∈ NN | x(S) =
∑
i∈S

xi ≤ f(S), S ⊆ N},
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where x = (xi | i = 1, . . . , N). Assuming that f is bounded by m ∈ N,
consider N pairwise disjoint sets Ki = {ei1, . . . , eim} (i = 1, . . . , N) and
set E = K1 ∪ · · · ∪ KN . Every x ∈ P(f) determines a subset

id(x1, . . . , xN ) =
N∪

i=1

{eij ∈ Ki | j ≤ xi} ⊆ E.

The system D = {id(x1, . . . , xN ) | xi ∈ N, xi ≤ m} is closed under
intersections and unions with corresponding vector operations:

id(x) ∪ id(y) ←→ x ∨ y = (. . . , max(xi, yi), . . .)
id(x) ∩ id(y) ←→ x ∧ y = (. . . , min(xi, yi), . . .)
id(x) ⊆ id(y) ←→ x ≤ y.

The family F = {id(x) | x ∈ P(f)} has the intersection property with
respect to D and gives rise to the (vector) rank function

ρ(y) = max{x(N) | x ∈ P(f),x ≤ y} = max
F∈F

|F ∩ id(y)|.

More generally, if D is the system of (order-)ideals of a partially or-
dered set (poset) P = (E,≤), the intersection property yields generalized
independence systems that have been studied in the context of (distributive)
supermatroids (see, e.g., [1, 4, 10, 27]). The integral polymatroids of Ed-
monds [6] can be understood as special distributive supermatroids (cf. [11]
and Example 6.2 below).

Convex geometries (in the sense of [5]) generalize systems of ideals of
posets. The so-called (strict) cg-matroids of [17] yield, in particular, inde-
pendence systems with the intersection property relative to convex geome-
tries.

The combinatorial geometries introduced in [9] include distributive su-
permatroids but do not have the intersection property in general (see Exam-
ple 5.2 below).

2.2.2 H-Matroids

An H-independence system F is called an H-matroid if for all H ∈ H,

(M) all bases B of the restriction F(H) have the same cardinality |B| =
ρ(H).
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In the case of an independence system F (i.e., H = 2E), (M) yields a
(“classical”) matroid.

Remark. In the case H = 2E , property (M) is the so-called Steinitz
exchange (or augmentation) property.

We exhibit a general submodularity property of the rank function of an
H-matroid. For large classes of families H, this property is also sufficient
to prove a normalized unit-increasing rank function to be a matroid rank
function (see Section 5).

Lemma 2.1 Let M = (E,F) be an H-matroid with rank function ρ. Let
furthermore H1,H2 ∈ H be such that H1 ⊆ H2. Then for all G1, G2 ∈ H,
one has

(S)
H1 ⊆ G1 ∩ G2

H2 ⊆ G1 ∪ G2

}
=⇒ ρ(H1) + ρ(H2) ≤ ρ(G1) + ρ(G2).

Proof. Consider B1 ∈ F(H1) with |B1| = ρ(H1). Because of H1 ⊆
H2 and the equicardinality property (M), B1 is contained in some B2 ∈
F(H2) with |B2| = ρ(H2). So we conclude

ρ(H1) + ρ(H2) = |G1 ∩ G2) ∩ B1| + |(G1 ∪ G2) ∩ B2|
= |G1 ∩ B1| + |G2 ∩ B2|
≤ ρ(G1) + ρ(G2).

¦
Hence, if H1, H2 ∈ H are such that H1 ∩ H2 ∈ H and H1 ∪ H2 ∈ H,

we obtain from (S) the usual submodularity inequality

ρ(H1 ∩ H2) + ρ(H1 ∪ H2) ≤ ρ(H1) + ρ(H2).

3 Linear Optimization
Let w : E → R be an arbitrary weight function on the ground set E. The
function w extends to arbitrary subsets X ⊆ E via

w(X) =
∑
e∈X

w(e).

Given families F and H of subsets of E such that F is an H-independence
system, we are interested in the optimization problem

max
F∈F

w(F ). (1)
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3.1 The Greedy Algorithm
The greedy algorithm is the following simple-minded procedure to solve (1),
where we use the notation

Γw(F ) = {e ∈ E \ F | w(e) > 0, F ∪ e ∈ F} (F ∈ F).

• INITIALIZE: F ← ∅;

• ITERATE: While Γw(F ) 6= ∅:

Choose e ∈ Γw(F ) of maximal possible weight w(e);
Update F ← (F ∪ e);

• OUTPUT F .

We say that w is H-feasible if H contains all level sets of w, i.e.,

W (α) = {e ∈ E | w(e) ≥ α} ∈ H for all α ∈ R.

Theorem 3.1 M = (E,F) is an H-matroid if and only if the greedy algo-
rithm is guaranteed to produce an optimal solution for (1) whenever w is
H-feasible.

Proof. To see that the equicardinality property (M) necessarily holds
for all bases of any H ∈ H if the greedy algorithm is optimal, consider the
weight function w = χH , where χH : E → {0, 1} is the characteristic
function of H ∈ H with

χH(e) = 1 ⇐⇒ e ∈ H.

Any basis B of F(H) is in accordance with the greedy algorithm. So opti-
mality implies w(B) = |B| = ρ(H).

To prove sufficiency, assume that w1 > w2 > · · · > wk are the distinct
values of w(e) (e ∈ E), and that w(e) > 0 for some e ∈ E. Setting
Wi = W (wi), we have

w =
k∑

i=1

λiχWi

where λk = wk and λi = wi − wi+1 ≥ 0 for i = 1, . . . , k. Let wp > 0 be
the smallest among the strictly positive values of w1, . . . , wk and set

w(p) =
p∑

i=1

λ′
iχWi ,
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where λ′
i = λi for i = 1, . . . , p − 1 and λ′

p = wp. By definition, the
greedy algorithm will select a basis B1 of W1 and then extend B1 to a basis
B2 ⊇ B1 of W2 etc. and eventually output the basis Bp of Wp. Because M
is an H-matroid, we have

w(Bp) = λ′
1ρ(Wi) + λ′

2ρ(W2) + · · · + λ′
pρ(Wp) = w(p)(Bp).

Since no member of F contains more than ρ(Wi) elements of Wi for all
i = 1, . . . , p, it is clear that the greedy solution Bp optimizes w(p) over F .
Because w ≤ w(p) holds in general, Bp must be optimal for w as well.

¦

From the proof of Theorem 3.1 we can easily see the following (cf. [18]).

Theorem 3.2 For an H-matroid (E,F) and an H-feasible positive weight
w : E → R, let B̂ be an optimal solution (basis) of (1) given by the greedy
algorithm, and let B be any basis of the H-matroid. Suppose that elements
of B̂ and B are indexed as

B̂ = {ê1, . . . , êk}, B = {e1, . . . , ek}

such that

w(ê1) ≥ · · · ≥ w(êk), w(e1) ≥ · · · ≥ w(ek).

Then we have w(êi) ≥ w(ei) for all i = 1, . . . , k.
¦

We illustrate H-feasible functions.

Example 3.1 Choosing H = D in Example 2.1, the H-feasible weight func-
tions w : E → R induce the so-called separable discrete concave functions
(see, e.g., [26]) on integral vectors via

w(x) =
∑

e∈id(x)

w(e). (2)

Taking H = {KS | S ⊆ N} (with KS =
∪

i∈S Ki), w : E → R is H-
feasible precisely when w is constant on each Ki, i.e., when (2) induces the
linear function w(x) = wTx on NN .
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Example 3.2 If H is the collection of ideals of an arbitrary poset P =
(E,≤P ), then w : E → R is H-feasible if and only if for all x, y ∈ E,

x ≤P y =⇒ w(x) ≥ w(y).

Thus Theorem 3.1 implies the validity of the greedy algorithm in [8]. If P
is the trivial order, every w : E → R is feasible and Theorem 3.1 yields the
characterization of classical matroid independence systems by the greedy
algorithm [7, 18].

3.2 The Base Chain Property
We say that an (arbitrary) family B of subsets B ⊆ E has the base chain
property with respect to H if

(BC) for every chain H1 ⊂ · · · ⊂ Hk of subsets Hi ∈ H, there exists some
B ∈ B such that ρ(Hi) = |Hi ∩ B| holds for all i = 1, . . . , k.

Theorem 3.3 Let F be an arbitrary constructible family with collection B
of bases and assume that the greedy algorithm is guaranteed to produce an
optimal solution for (1) whenever w is H-feasible. Then B has the base
chain property (BC).

Proof. Let {H1 ⊂ . . . ⊂ Hk} be a chain of subsets Hi ∈ H and
consider the H-feasible weight function

w =
k∑

i=1

λiχHi with λ1 > 0, . . . , λk > 0.

Assuming w.l.o.g. Hk = E, note that the (optimal) greedy greedy solution
yields a basis B ∈ B which does not depend on the absolute size of the
weight parameters λi > 0. Hence the choice λj = 1 and λi ≈ 0 for i 6= j
shows

|Hj ∩ B| = ρ(Hj) (j = 1, . . . , k).

¦

Theorem 3.3 says that every H-matroid has the base chain property. The
greedy algorithm may be viewed as just a procedure to generate an appro-
priate basis B ∈ F(Wp) for the chain

W1 ⊂ W2 ⊂ · · · ⊂ Wp.
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Moreover, there is a certain converse to Theorem 3.3:

Any B ∈ F satisfying (BC) with Hi = Wi as in the proof of Theorem 3.1
is an optimal solution for problem (1) if the weight function w is H-feasible
and non-negative.

Let us call the pair G = (E,F) an H-greedoid if F is a constructible
family with the equicardinality property (M). So H = 2E yields exactly
the greedoids of [20]. In the latter case, the base chain property implies
that the system B of bases of G is, in fact, the system of bases of a matroid
M̃ = (E, F̃) where

F̃ = {B ∩ H | B ∈ B,H ∈ H}. (3)

In general, however, a base system B with the base chain property (BC)
does not necessarily induce an H-matroid via (3). Suppose, for example,
that H is graded (or Jordan-Dedekind) in the sense that the length of every
maximal chain in H equals |E| − 1. Then

F̃ = {B ∩ H | B ∈ B, H ∈ H}

is an H-independence system, but not necessarily an H-matroid. If H is
not only Jordan-Dedekind but also closed under taking intersections, (BC)
implies that M̃ = (E, F̃) is an H-matroid (see Example 5.1 in Section 5).
This is a consequence of the following observation:

Corollary 3.1 Let B be a family of subsets of E with the base chain property
(BC) relative to H. Then the associated rank function ρ is submodular (in
the sense of condition (S) of Lemma 2.1).

¦

4 Duality
The discussion of the base chain property (BC) suggests a duality framework
for H-matroids. We assume to be given a (non-empty) system B of equicar-
dinal subsets B ⊆ E, whose members are bases. As before, we define an
associated rank function

ρ(S) = max
B∈B

|S ∩ B|
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and consider a subset family H with ∅, E ∈ H. Define the dual of an (arbi-
trary) family T of subsets of E as the family

T ∗ = {E \ T | T ∈ T }.

Then the dual B∗ of a base system B is again a base system. Clearly, B ∈ B
maximizes the intersection with a set S if and only if B∗ = E\B maximizes
the intersection with S∗ = E \S. Hence we can represent the rank function
ρ∗ of B∗ in terms of ρ via

ρ∗(S) = |S| − [ρ(E) − ρ(E \ S)] for all S ⊆ E. (4)

Moreover, we note:

Proposition 4.1 The base system B satisfies (BC) relative to H if and only
if its dual B∗ satisfies (BC) relative to H∗.

¦

5 Matroids on Closure Spaces
Let H be as before a subset family with ∅, E ∈ H. Recall that H is a closure
system (and the pair (E,H) a closure space) if H is intersection-closed, i.e.,

H1 ∩ H2 ∈ H for all H1,H2 ∈ H.

Assume henceforth that H is a closure system and associate with H the
closure operator

X 7→ X =
∩

{H ∈ H | X ⊆ H} (X ⊆ E).

X is called closed if X = X . So H is precisely the collection of closed sets.
Moreover, (H,⊆) is a lattice with the infimum and supremum operations

H1 ∧ H2 = H1 ∩ H2

H1 ∨ H2 = H1 ∪ H2.

We say that H2 covers H1 (denoted H1 ≺ H2) if H1 ⊂ H2 holds and for all
H ∈ H,

H1 ⊂ H ⊆ H2 =⇒ H = H2.
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5.1 Matroids from Rank Functions
Let (E,H) be a closure space and consider the function r : H → N such
that for all H1,H2 ∈ H,

(R0) r(H1) = 0 if H1 = ∅ (normalization);

(R1) H1 ≺ H2 =⇒ r(H1) ≤ r(H2) ≤ r(H1) + 1 (unit-increase);

(R2) H1 ≺ (H1∨H2) =⇒ r(H1∧H2)+r(H1∨H2) ≤ r(H1)+r(H2).

Associate with r the family F = F(r) of subsets of E that can be ob-
tained via the following algorithmic procedure:

• INITIALIZE: Choose some H ∈ H and a maximal chain MH from ∅
to H:

MH = {∅ = M0 ≺ M1 ≺ . . . ≺ Mk = H};

• Choose a sequence π = u1 . . . uk of representatives ui ∈ Mi \ Mi−1,

• OUTPUT the set F = {ui | r(Mi) = r(Mi−1) + 1}.

It follows directly from the algorithmic definition that F is constructible.
Moreover, in view of the unit increase property (R1), each basis B of the
restriction F(H) has cardinality |B| = r(H). So F has the equicardinality
property (M) of a matroid.

Theorem 5.1 If (R0)–(R2) hold for r, F is an H-independence system and
M = (E,F) an H-matroid with rank function r.

Proof. It remains to verify that r(H) equals the basis rank ρ(H) of
H ∈ H relative to F . Arguing by induction on |E|, we may assume H = E
without loss of generality.

So let B ∈ B be an arbitrary independent set and assume that B arises
from the chain M = {∅ = M0 ≺ . . . ≺ Mk = E} and the representatives
π = u1, . . . , uk via

B = {ui | r(Mi) = r(Mi−1) + 1}.

Consider the function f : H → R where

f(A) = r(A) − |A ∩ B|.

We claim f(A) ≥ 0. One easily checks
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• f(Mi) = 0 for i = 0, 1, . . . , k;

• H1 ≺ (H1 ∨ H2) =⇒ f(H1 ∧ H2) + f(H1 ∨ H2) ≤ f(H1) +
f(H2).

Suppose now that the claim is false and A ∈ H a counterexample of minimal
cardinality. Let j be the index such that A ⊆ Mj and A 6⊆ Mj−1 holds.
Then we obtain

0 > f(A) ≥ f(A ∧ Mj−1) + f(Mj) − f(Mj−1) = f(A ∧ Mj−1) ≥ 0,

which is a contradiction. So the claim is true and |H ∩ B| ≤ r(H) follows
for all H ∈ H. Hence we conclude

r(H) ≤ ρ(H) = max
B∈F

|H ∩ B| ≤ r(H) and thus r(H) = ρ(H).

¦

Example 5.1 Let C = (E,H) be a convex geometry, i.e., a closure space
such that for all H1,H2 ∈ H,

H1 ≺ H2 =⇒ |H2| = |H1| + 1.

(Note that convex geometries are Jordan-Dedekind.) Then we have

H1 ≺ (H1 ∨ H2) =⇒ H1 ∨ H2 = H1 ∪ H2.

So Theorem 5.1 implies that the submodularity property (S) of Lemma 2.1 is
necessary and sufficient for a normalized unit-increasing function r : H →
N to be the rank function of an H-matroid.

The H-matroid M = (E,F) is a strict cg-matroid in the sense of [17]
when F ⊆ H holds.

Example 5.2 Let P = (E,≤) be a poset with collection D of ideals. Then
(E,D) is in particular a convex geometry. The D-matroids are essentially
the combinatorial geometries of [9] and the strict D-matroids are the dis-
tributive supermatroids of [4].

Remark. We point out that independence systems of type F(r) do not
have the intersection property in general.
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5.2 Matroids on Co-Closure Spaces
Let C = (E,H) be a closure space. Then the dual structure C∗ = (E,H∗)
is a so-called co-closure space. H∗ is union-closed and (H∗,⊆) is anti-
isomorphic to the lattice (H,⊆) under the supremum and infimum opera-
tions

S1 ∨∗ S2 = S1 ∪ S2,

S1 ∧∗ S2 =
∪

{S ∈ H∗ | S ⊆ S1 ∩ S2}.

Let r : H∗ → N be normalized and unit-increasing and consider the
property

(R∗
2) (S1∧∗S2) ≺ S1 =⇒ r(S1∧∗S2)+r(S1∨∗S2) ≤ r(S1)+r(S2).

As before, we associate with r the family F = F(r) of subsets of E that
can be obtained via the following algorithmic procedure:

• INITIALIZE: Choose some S ∈ H∗ and a maximal chain MS from ∅
to S:

MS = {∅ = M0 ≺ M1 ≺ · · · ≺ Mk = S};

• Choose a sequence π = u1 . . . uk of representatives ui ∈ Mi \ Mi−1,

• OUTPUT the set F = {ui | r(Mi) = r(Mi−1) + 1}.

Again, it is clear that the bases B of F(S) share the same cardinality
|B| = r(S). In order to establish (E,M) as an H∗-matroid, we need an
additional assumption on H∗.

We call the co-closure system H∗ locally modular if for all S1, S2 ∈ H∗,

(LM) S1 ∧∗ S2 ≺ S1 =⇒ S1 ∧∗ S2 = S1 ∩ S2.

Theorem 5.2 Assume that H∗ is locally modular and r : H∗ → N is a nor-
malized unit-increasing function with property (R∗

2). Then M = (E,F(r))
is an H∗-matroid with rank function r.

Proof. The key observation under the assumption of local modularity is
the following. Given an arbitrary B ∈ F ,

f(S) = r(S) − |S ∩ B|
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yields a function on H∗ with the property

(S1 ∧∗ S2) ≺ S1 =⇒ f(S1 ∧∗ S2) + f(S1 ∨∗ S2) ≤ f(S1) + f(S2).

One may now argue in analogy with the proof of Theorem 5.1 and choose,
if possible, an S ∈ H∗ of maximal cardinality such that f(S) < 0. Letting
j be such that S ⊇ Mj−1 but S 6⊇ Mj , one arrives at a contradiction as
before.

¦

5.3 Duality for Convex Geometries and Antimatroids
An antimatroid (cf. [20]) is the co-closure space C∗ = (E,H∗) associated
with a convex geometry C = (E,H). Thus we have for all S1, S2 ∈ H∗

S1 ≺ S2 =⇒ |S2| = |S1| + 1

and therefore conclude local modularity:

S1 ∧∗ S2 ≺ S1 =⇒ S1 ∧∗ S2 = S1 ∩ S2.

Let r : H → N be an arbitrary function and define r∗ : H∗ → N via

r∗(S) = |S| − [r(E) − r(E \ S)]. (5)

It is straightforward to verify that r is normalized and unit-increasing if
and only if r∗ is normalized and unit-increasing. It follows that (5) estab-
lishes a one-to-one correspondence between the H-matroid rank functions r
and the H∗-matroid rank functions r∗ since

r(H) = |H| − [r∗(E) − r∗(E \ H)] (H ∈ H).

Note that this duality framework for matroids on convex geometries and
matroids on antimatroids is compatible with the duality framework for gen-
eral base systems of Section 4.

6 Closures and the Dilworth Completion

6.1 Closures
Let C = (E,H) be a closure space and F an H-independence system with
rank function ρ. For any S ⊆ E, we set

σ(S) = {e ∈ E | ρ(S ∪ e) = ρ(S)}.
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In the case when σ(S) = S, we refer to S as ρ-closed. We want to know
under what conditions S 7→ σ(S) is a closure operator. Since E is clearly
ρ-closed, we thus ask when the collection Σ of ρ-closed sets is intersection-
closed.

Since X 7→ X is a closure operator, we immediately obtain

σ(S) = σ(S) ∈ H and thus Σ ⊆ H.

Hence it suffices to study the action of σ on H. To this end, observe for any
H ∈ H the slightly more convenient representation

σ(H) =
∨

{G ∈ H | ρ(H ∨ G) = ρ(H)}.

Theorem 6.1 S 7→ σ(S) is a closure operator if ρ is submodular on H in
the sense

ρ(H1 ∧ H2) + ρ(H1 ∨ H2) ≤ ρ(H1) + ρ(H2) for all H1,H2 ∈ H.

Conversely, provided H is also union-closed, S 7→ σ(S) is a closure opera-
tor only if ρ is submodular on H.

Proof. Let ρ be submodular and H1,H2 ∈ H ρ-closed . Suppose that
D = H1 ∩ H2 = H1 ∧ H2 is not ρ-closed. So there is some G ∈ H such
that ρ(D ∨ G) = ρ(D). Assume w.l.o.g. G 6⊆ H1. Since H1 = σ(H1), we
have ρ(H1 ∨ G) > ρ(H1) and obtain the contradiction

ρ(H1) < ρ(H1 ∨ G) ≤ ρ(H1) + ρ(D ∨ G) − ρ(H1 ∧ (D ∨ G)) ≤ ρ(H1).

Hence we find that the collection Σ of ρ-closed sets is intersection-closed if
ρ is submodular.

Conversely, assume that H is union closed and H 7→ σ(H) is a closure
operator. We prove the submodularity inequality by induction on the |H1 ∪
H2|. Clearly, the inequality is true if H1 ⊆ H2 or H2 ⊆ H1. Therefore, we
may assume w.l.o.g. that there exists some H ′

2 ≺ H2 with H ′
2 ⊇ H1 ∩ H2.

By induction, we thus have

ρ(H1 ∩ H2) + ρ(H1 ∪ H ′
2) = ρ(H1 ∩ H ′

2) + ρ(H1 ∪ H ′
2)

≤ ρ(H1) + ρ(H ′
2).
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If ρ(H2) = ρ(H ′
2) + 1, the inequality follows trivially in view of the unit-

increase property of ρ. So we may assume ρ(H ′
2) = ρ(H2) for the remainder

of the proof.

If ρ(H1∨H ′
2) = ρ(H1∨H2), there is nothing left to show. On the other

hand, if ρ(H1 ∨H ′
2) < ρ(H1 ∨H2) is true, we have H2 6⊆ σ(H1 ∨H ′

2) and
therefore also H2 6⊆ σ(H ′

2), which means ρ(H2) > ρ(H ′
2).

¦

Example 6.1 Let H be intersection- and union-closed. Then Lemma 2.1
implies that the rank function of every H-matroid is submodular. Hence
Theorem 6.1 characterizes the rank functions that arise from H-matroids.
In particular, the family D of ideals of any poset P = (E,≤) is union- and
intersection-closed. Consequently, we find that every D-matroid is charac-
terized by the fact that S 7→ σ(S) is a closure operator.

Remark. The converse part in Theorem 6.1 may be false on general
convex geometries. Assume, for example, that C = (E,H) is a convex ge-
ometry that admits sets H1, H2 ∈ H with H1 ∪ H2 /∈ H. Then r(H) =
|H| is normalized and unit-increasing, but not submodular on H (because
|H1∨H2| > |H1∪H2|). Yet, the associated operator S 7→ σ(S) is a closure
operator with collection Σ = H of closed sets.

6.2 The Dilworth Completion
Let C = (E,H) be a closure space and M = (E,F) an H-matroid with
rank function ρ. If ρ is submodular on H, the system Σ of ρ-closed sets
yields a lattice (Σ,⊆) with infimum and supremum operations

S u T = S ∩ T,

S t T = σ(S ∪ T ).

Dilworth has shown that any finite lattice can be embedded into the lattice
of closed sets of some classical matroid M̃ on E (relative to the family of
all subsets of E) (see [2]). We study Dilworth’s construction from the point
of view of independence.

We define the Dilworth completion ρ̃ of ρ : H → N for all subsets
X ⊆ E via

ρ̃(X) = min
H∈H

{ρ(H) + |X \ H|}. (6)
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It is easy to see that ρ̃ is normalized and unit-increasing on the collection of
all subsets of E. Moreover, ρ̃ extends ρ in the sense

ρ̃(H) = ρ(H) for all H ∈ H. (7)

Letting
F̃ = {X ⊆ E | ρ̃(X) = |X|},

we observe

Lemma 6.1 F̃ = {X ⊆ E | |X ∩ H| ≤ ρ(H) for all H ∈ H}.

Proof. Note that ρ̃(X) ≤ |X| is always true.

If ρ̃(X) = |X|, then |X ∩ H| ≤ ρ(H) follows from the definition of ρ̃.
Conversely, if ρ̃(X) ≤ |X| − 1 holds, there is some H ∈ H with

|X| − 1 ≥ ρ̃(X) = ρ(H) + |X \ H|

and hence |X ∩ H| ≥ ρ(H) + 1.
¦

Lemma 6.1 shows that F̃ is an independence system (with respect to 2E)
and contains the H-independence system F .

Lemma 6.2 Assume that ρ is submodular on H. Then one has for all
X,Y ⊆ E,

ρ̃(X ∩ Y ) + ρ̃(X ∪ Y ) ≤ ρ̃(X) + ρ̃(Y ).

Proof. Let S, T ∈ H be such that

ρ̃(X) = ρ(S) + |X \ S| and ρ̃(Y ) = ρ(T ) + |Y \ T |.

Then we find

ρ̃(X) + ρ̃(X) = ρ(S) + ρ(T ) + |X \ S| + |Y \ T |
≥ ρ(S ∧ T ) + |(X ∩ Y ) \ (S ∧ T )|

+ ρ(S ∨ T ) + |(X ∪ Y ) \ (S ∨ T )|
≥ ρ̃(X ∩ Y ) + ρ̃(Y ∪ Y ).

¦
Under the conditions of Lemma 6.2, ρ̃ is the rank function of a (classical)

matroid M̃, which we call the Dilworth completion of M = (E,F). In
view of the equality (7), the greedy algorithm relative to the H-matroid M
may be interpreted as a special case of the greedy algorithm relative to its
Dilworth completion M̃.
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Example 6.2 With the notation of Example 2.1 and KS =
∪

i∈S Ki, assume
that the function f is submodular on the subsets of N . Then

f̃(X) = min
S⊆N

{f(S) + |X \ KS |} (X ⊆ E)

is the rank function of a matroid M̃f on E. M̃f is the Dilworth completion
of F = {id(x) | x ∈ P(f)} with respect to the family H = {KS | S ⊆ N}.
The rank function ρf induced by F coincides with the rank function ρ̃f on
the sets id(x) ∈ D. So the greedy algorithm relative to F is a special case of
the greedy algorithm relative to M̃f . Moreover, if f is monotone increasing,
one has

ρf (KS) = ρ̃f (KS) = f(S) for all S ⊆ N ,

which yields the polymatroid greedy algorithm of Edmonds [6].
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