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Abstract We present a matrix-free line search algorithm for large-scale equality con-

strained optimization that allows for inexact step computations. For strictly con-

vex problems, the method reduces to the inexact sequential quadratic programming

approach proposed by Byrd, Curtis, and Nocedal [2]. For nonconvex problems, the

methodology developed in this paper allows for the presence of negative curvature

without requiring information about the inertia of the primal-dual iteration matrix.

Negative curvature may arise from second-order information of the problem functions,

but in fact exact second derivatives are not required in the approach. The complete

algorithm is characterized by its emphasis on sufficient reductions in a model of an

exact penalty function. We analyze the global behavior of the algorithm and present

numerical results on a collection of test problems.
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1 Introduction

In this paper we discuss an algorithm for optimization problems of the form

min
x∈Rn

f(x) s.t. c(x) = 0, (1.1)
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where f : Rn → R and c : Rn → Rt are smooth and possibly nonconvex functions.

Our interest is in methods for very large problems that ensure global convergence to

first-order optimal points. We focus primarily on equality constrained problems with

t ≤ n, but note that our techniques can also be applied to unconstrained or general

nonlinear programming problems.

Our goal is to develop a matrix-free technique for solving nonconvex instances

of problem (1.1). By matrix-free, we mean that the algorithm employs methods for

computing products with derivatives of the objective and the constraint functions,

but does not require the explicit formation or factorization of any matrix. For strictly

convex problems, a robust and efficient method of this type is the line search inexact

Sequential Quadratic Programming (SQP) method proposed in [2]. In this paper we

build on the algorithmic framework presented in [2], but now allow for the presence of

negative or zero curvature directions during the step computation. Line search methods

for nonconvex optimization often insist on convex quadratic models of the objective

and enforce this requirement by modifying the (approximate) Hessian matrix whenever

the reduced Hessian is known not to be positive definite. This technique is not entirely

practical in our framework, however, as we lack inertia information by not factoring

the constraint Jacobians or the primal-dual iteration matrices. Our approach may

still require perturbations to a given Hessian matrix, but these modifications are now

performed within an iterative solution procedure for the primal-dual equations, where

the resulting system may or may not correspond to a convex model.

Overall, the methodology we propose is novel in that it places primary importance

on attaining a sufficient reduction in a local approximation of a merit function during

each iteration. During an iterative step computation procedure, we monitor these re-

ductions in order to dictate when a given step is acceptable, when a perturbation to

the Hessian matrix should be made, and when a change in the merit function itself

is appropriate in order to guarantee global convergence. The resulting algorithm fully

integrates the procedures of step computation and step selection and automatically

reduces to an inexact SQP method in convex regions of the search space.

The organization of this paper is as follows. In Section 2 we outline our solution

methodology and global convergence strategy. Central to our approach is the notion

of a sufficient model reduction that we develop in Section 3. Here, we motivate our

ideas by combining aspects of the inexact SQP algorithm presented in [2] and further

observations from the environment of unconstrained optimization. These beginnings

lead us, in Section 4, to develop an algorithm for constrained optimization, complete

with termination criteria for controlling inexactness in the computation of steps. Global

convergence of the approach is presented in Section 5 and numerical experiments with

a collection of test problems are illustrated in Section 6. Final remarks are provided in

Section 7.

2 An Outline of the Algorithm

Let us first formalize the basic features of our approach so that we may further remark

on its similarities and differences with standard approaches. We begin by defining

Lagrange multipliers λ ∈ Rt and the Lagrangian

L(x, λ) , f(x) + λT c(x),
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with which we can state the first-order optimality conditions for problem (1.1):

∇L(x, λ) =

[
g(x) + A(x)T λ

c(x)

]
= 0. (2.1)

Here, we have used the fact that f and c are differentiable and define g(x) as the

gradient of the objective and A(x) as the Jacobian of the constraint functions. A

Newton iteration for this system of nonlinear equations defines a primal-dual step

(dk, δk) from a given iterate (xk, λk) as the solution to the linear system

[
Wk A(xk)T

A(xk) 0

] [
dk

δk

]
= −

[
g(xk) + A(xk)T λk

c(xk)

]
(2.2)

where

W , ∇2
xxL(x, λ) = ∇2

xxf(x) +

m∑

i=1

λi∇2
xxci(x)

is the Hessian of the Lagrangian and ci(x) and λi represent the ith constraint function

and its corresponding dual variable, respectively. We call the (n+ t)×(n+ t) matrix on

the left-hand-side of (2.2) the primal-dual matrix and note that we can alternatively

set Wk to a symmetric approximation of the Hessian ∇2
xxL(xk, λk). The primal-dual

system (2.2) forms the basis of our step computation.

One useful interpretation of a solution (dk, δk) to the primal-dual equations (2.2)

is that in the strictly convex case, the primal component dk is the unique solution to

the local optimization subproblem

min
d∈Rn

qk(d) , f(xk) + g(xk)T d + 1
2dT Wkd

s.t. rk(d) , c(xk) + A(xk)d = 0.
(2.3)

Here, we intend the expression strictly convex to mean that Wk is positive definite over

the null space of A(xk) so that there exists no direction of negative or zero curvature

u ∈ Rn; i.e., u such that

A(xk)u = 0

and uT Wku ≤ 0.
(2.4)

If such a zero or negative curvature direction were present, as would be the case in

what we refer to as the nonconvex case, then a solution to problem (2.3) is either not

unique or does not exist, and the relationship between (2.2) and (2.3) may break down.

Despite this difficulty, a number of methods have been proposed that provide global

convergence guarantees even in the presence of negative or zero curvature directions;

see, for example, [5,6,8,9,12,16,22] and the literature surveyed in [3]. These methods,

however, in some way require a factorization of the constraint Jacobian. In the class

of full space methods, the primal-dual matrix must be factored and its inertia must

be determined (and possibly altered via a modification to the system, as in [22]) to

compute a search direction, or a negative curvature direction must be found. In the

classes of step decomposition and reduced space methods, the Jacobian A(xk) is fac-

tored in order to construct a reduced problem that allows for the use of unconstrained

optimization techniques; e.g., see [3].

We would like our approach, however, not to rely on factorizations of the Jaco-

bian A(xk), the (approximate) Hessian Wk, or the primal-dual matrix—and to permit
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inexact step computations. This has the benefit of avoiding a significant amount of

computational cost, particularly when the problem is large and/or factorizations of

A(xk) and Wk are not readily available. Inexact reduced space SQP methods that meet

these requirements and yield good results have been proposed by Heinkenschloss and

Vicente [14], Ulbrich [21], and Heinkenschloss and Ridzal [13]; see Ridzal [19] for a

recent review of this topic.

In this paper we focus on full-space primal-dual SQP methods, which have not

received much attention in the nonconvex inexact case. Without a factorization of the

primal-dual matrix, or at least of the constraint Jacobian, it is difficult to determine

if Wk is positive definite on the null space of A(xk). That is, without the inertia of

the primal-dual matrix, we cannot be sure if a solution to the primal-dual equations

(2.2) can be interpreted as a solution to (2.3). In order to bypass these obstacles, we

choose to shift the focus away from the relationship between the primal-dual system

(2.2) and quadratic programming subproblems similar to (2.3), and instead consider

the relationship between the primal-dual equations and the exact penalty function

φ(x; π) , f(x) + π‖c(x)‖2

with π > 0. In other words, we intend to forgo the interpretation of our step as an

(approximate) solution to a local optimization subproblem and instead jump straight

to its effect on our globalization mechanism. We require that the primal component dk

provide a sufficient reduction in the local approximation

mk(d; π) , lk(d) + π‖rk(d)‖2

of φ(x; π) about xk, where

lk(d) , f(xk) + g(xk)T d

is a model of the objective and rk(d) is the model of the constraints defined in (2.3).

The reduction in mk(d; π) yielded by dk can be computed easily as a combination of

the reduction in the objective model

∆lk(dk) , lk(0)− lk(dk)

= −g(xk)T dk (2.5)

and the reduction in the constraint model

∆‖rk(dk)‖2 , ‖rk(0)‖2 − ‖rk(dk)‖2
= ‖c(xk)‖2 − ‖c(xk) + A(xk)dk‖2; (2.6)

i.e., we have

∆mk(dk; π) , mk(0; π)−mk(dk; π)

= ∆lk(dk) + π∆‖rk(dk)‖2
= −g(xk)T dk + π(‖c(xk)‖2 − ‖c(xk) + A(xk)dk‖2). (2.7)

We show that, as long as certain conditions hold with respect to the accuracy of the step

computations, global convergence can be guaranteed when ∆mk(dk; π) is sufficiently

positive during each iteration.
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Naturally, a significant reduction in the model mk(d; πk) may not always be at-

tainable for the given value πk of the penalty parameter during iteration k. As in other

methods that employ an exact penalty function as a merit function, we have the option

of increasing πk to produce a larger value for ∆mk(d; πk) whenever a reduction in the

constraint model has been attained. However, these increases must be done cautiously

and should not always be used to satisfy our model reduction criteria. In some circum-

stances we illustrate that the step computation should in fact be altered to compute

a more appropriate step. For this purpose, in this paper we consider perturbations

to Wk in the primal-dual equations (2.2). We describe conditions that suggest when

such modifications should be applied during the step computation, and note that the

procedure may or may not result in a strictly convex subproblem.

It is worth noting here that, although the model mk(d; π) we consider is composed

of linear models of the objective and the constraints, our method can achieve a fast

rate of local convergence. This is because our method approximates an SQP approach

near a solution. We also wish to distinguish our technique from those in the class of

penalty methods that attempt to compute a step as some minimizer of φ(x; π) over a

local region of the search space. Although we appraise a given solution according to its

effect on φ(x; π), our steps are in fact computed via (2.2) and so our approach should

not be considered a penalty method per se.

Notation We drop functional notation when values become clear from the context and

use subscripts to delimit iteration numbers; i.e., we denote gk , g(xk) and similarly for

other quantities. All norms (including those written above) are considered Euclidean

(or l2) norms unless otherwise indicated, though much of the analysis applies for any

vector-based norm. The expression M1 Â M2 for square symmetric matrices M1 and

M2 conveys that M1 −M2 is positive definite.

3 Sufficient Model Reductions

The main task in the development of our algorithm is to construct a condition that

quantifies when the reduction obtained in a local approximation of the merit function

is sufficiently large for a given step. We begin by considering the unconstrained case

where steps are computed via an exact solution of the Newton equations, as in this

setting we can begin to motivate certain algorithmic choices made in more complicated

frameworks.

For an unconstrained problem, the Newton equations (2.2) reduce to

Wkdk = −gk, (3.1)

Wk ≈ ∇2
xxfk is now a symmetric approximation of the Hessian of the objective at xk,

φ(x; π) reduces to f(x), and the reduction in mk obtained by dk is simply the reduction

in the objective model ∆lk(dk). If Wk is positive definite with its smallest eigenvalue

bounded away from zero for all k, then dk should be considered an acceptable step for

the algorithm to follow. This can be argued easily in that, in this case, the directional

derivative of f along dk satisfies (see (3.1))

gT
k dk = −dT

k Wkdk ≤ −θ‖dk‖2 (3.2)

for some θ > 0. Thus, dk is a descent direction.
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In terms of reducing the model lk(d), it is obvious from (2.5) and (3.2) that

∆lk(dk) = −gT
k dk ≥ θ‖dk‖2.

In fact, we claim that this level of reduction is acceptable in more than just the

strictly convex case. For instance, even if Wk is not positive definite, we may still

have dT
k Wkdk ≥ θ‖dk‖2 for some constant θ > 0 when dk is given by (3.1), in which

case we again have ∆lk(dk) ≥ θ‖dk‖2 with dk being a direction of descent.

More generally, in the inexact case (i.e., when a potential step is computed as

merely an approximate solution of (3.1)) we can use the above observations to form a

guideline for the types of steps that should be considered acceptable. If dk is computed

with dT
k Wkdk sufficiently positive, then we can emulate the positive definite case above

by saying that dk is acceptable if

∆lk(dk) ≥ 1
2dT

k Wkdk. (3.3)

In any case, however, we can always consider dk acceptable as long as

∆lk(dk) ≥ θ‖dk‖2

for some θ > 0. Overall, we can both emulate the strictly convex case (and thus attempt

for fast local convergence) and provide for sufficient descent in the nonconvex case by

defining dk to be acceptable if and only if

∆lk(dk) ≥ max{ 1
2dT

k Wkdk, θ‖dk‖2}. (3.4)

Here, the right-hand-side expression is positive for all nonzero dk and 2θ can be viewed

as the smallest Rayleigh quotient for (Wk, dk) such that the curvature along dk is

considered sufficiently positive.

Now we turn to a constrained environment, and again begin by considering a situ-

ation where Wk is positive definite for all k. As before, we know that in this case the

step provided by (2.2) may be considered acceptable and so we can use the magnitudes

of the resulting objective and constraint reductions to develop a general guideline for

appropriate reductions in the full model mk. The reduction attained in the linear model

of the constraints (see (2.6)) is in this case

∆‖rk(dk)‖ = ‖ck‖ − ‖ck + Akdk‖ = ‖ck‖. (3.5)

Similarly, the reduction in the linear model of the objective becomes

∆lk(dk) = −gT
k dk

= dT
k Wkdk + dT

k AT
k (λk + δk)

= dT
k Wkdk − cT

k (λk + δk)

≥ dT
k Wkdk − ‖ck‖‖λk + δk‖, (3.6)

which may be positive or negative depending on the relationship between the objective

and constraints in problem (2.3). Thus, after accounting for the fact that there may

be conflicts between our dual goals of minimizing the objective and satisfying the con-

straints, we can conclude from (3.5) and (3.6) that with an appropriate πk a sufficient

model reduction is one satisfying

∆mk(dk; πk) = ∆lk(dk) + πk∆‖rk(dk)‖ ≥ 1
2dT

k Wkdk + σπk‖ck‖ (3.7)
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for some σ ∈ (0, 1). (Notice the parallel between (3.7) and (3.3).)

With only (3.7), however, we can see a difficulty that arises in the face of noncon-

vexity. Let us consider the decomposition

dk = uk + vk, (3.8)

where uk lies in the null space of Ak and vk lies in the range space of AT
k . If Ak has

full row rank and ‖ck‖ = 0, then by (2.2) we have vk = 0 and so (3.7) only requires

∆mk(dk; πk) = ∆mk(uk; πk) ≥ 1
2uT

k Wkuk.

This can be a problem if uk is a direction of negative or zero curvature (see (2.4)), as

in this case (3.7) would allow for an increase in the model mk(d; πk).

Thus, we can borrow from our experience in the unconstrained case above to form

a condition that can provide for both strictly convex and nonconvex environments. We

propose that a step (dk, δk) obtained via (2.2) be regarded as acceptable if

∆mk(dk; πk) ≥ max{ 1
2dT

k Wkdk, θ‖uk‖2}+ σπk‖ck‖ (3.9)

for some σ ∈ (0, 1), θ > 0, and an appropriate πk > 0. The max in (3.9) can be

motivated by (3.4), where in this case the tangential component uk plays a role similar

to the unconstrained step.

Two alterations must be made to transform (3.9) into a practical condition for

our framework. First, the tangential component uk may not be available explicitly (as

is indeed the case for steps computed via (2.2)), and so we are not able to compute

the norm of this tangential component directly. This measure can be approximated by

‖dk‖2, but in general we desire Υk satisfying

‖uk‖2 ≤ Υk ≤ ‖dk‖2 (3.10)

that is as close to ‖uk‖2 as possible so that (3.9) is not overly restrictive. For the

implementation of our algorithm described in Section 6, we provide in equation (6.7)

a practical method for computing a value for Υk that exploits some properties of the

primal-dual system (2.2).

A second alteration to (3.9) is necessary for the algorithm to allow for inexact

step computations. Here, we are considering situations such as when an iterative linear

system solver is employed to solve the primal-dual equations (2.2), where during each

inner iteration we are provided with a solution to the perturbed equations
[
Wk AT

k

Ak 0

] [
dk

δk

]
= −

[
gk + AT

k λk

ck

]
+

[
ρk

rk

]
(3.11)

where (ρk, rk) is a residual vector. (Note that denoting the constraint residual as rk

is consistent with our definition of rk(dk) in (2.3) above.) In this setting, the quantity

∆mk can vary considerably and careful attention must be paid to ensure that the

model reductions obtained are sufficiently large with respect to appropriate quantities.

The following condition can be seen as the marriage between (3.9) and the notion

of a sufficient model reduction condition for an inexact algorithm provided in [2], and

is the centerpiece of the algorithm described in detail in the following section.

Model Reduction Condition. Let θ > 0 be a given constant. An inexact solution

(dk, δk) to (2.2) is an acceptable step only if

∆mk(dk; πk) ≥ max{ 1
2dT

k Wkdk, θΥk}+ σπk max{‖ck‖, ‖rk‖ − ‖ck‖} (3.12)
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for some 0 < σ < 1 and appropriate πk, where the residual rk is defined in (3.11).

Finally, let us immediately point out an important result that is crucial to our

analysis in Section 5. If we denote Dφ(dk; πk) as the directional derivative of the

penalty function φ(x; πk) at xk along dk, it is known that

Dφ(dk; πk) ≤ gT
k dk − πk(‖ck‖ − ‖rk‖)

= −∆lk(dk)− πk∆‖rk(dk)‖
= −∆mk(dk; πk) (3.13)

(e.g., see [2]). Thus, a step satisfying the Model Reduction Condition is a descent

direction for the penalty function φ(x; πk) at xk.

4 An Inexact Newton Method based on Model Reductions

In this section we develop a complete algorithm for nonconvex optimization based on

sufficient reductions in local approximations of a merit function.

We first briefly outline our methodology in the case where steps are computed

exactly. First, we compute a trial step (dk, δk) satisfying the primal-dual equations

(2.2). If the Model Reduction Condition is satisfied for the most recent value of the

penalty parameter π, call it πk−1, then we accept the step, set πk ← πk−1, and continue

the iteration. Otherwise, since a reduction in the model of the constraints has been

attained (see (3.5)), we have the option of increasing π in order to satisfy the Model

Reduction Condition. This, however, should only be done in two circumstances. On

the one hand, if 1
2dT

k Wkdk ≥ θΥk, then we find it safe to assume that the problem

is sufficiently convex and so (dk, δk) should be considered acceptable and π should be

increased. On the other hand, if 1
2dT

k Wkdk < θΥk, then we only consider increasing π

if vk is a significant component of dk (i.e., if the step is sufficiently normal) as in this

case we can be sure that the objective value does not suffer too much by us placing a

priority on satisfying the constraints. We express this condition as Υk ≤ ψνk for some

ψ > 0 where

0 ≤ νk ≤ ‖vk‖2 (4.1)

is any lower bound for the squared norm of the normal step component. (A practical

expression for νk used in our implementation is provided as equation (6.6).) If none

of the above avenues can be taken to ensure that the Model Reduction Condition is

satisfied for some appropriate πk ≥ πk−1, then we have no choice but to consider a

modification to our step computation via a perturbation to Wk. Once such a modifi-

cation is made, we compute a new trial step via the perturbed primal-dual equations

and repeat the steps above until an acceptable step is obtained.

In the inexact case we emulate these processes, but with added restrictions for

the residuals in (3.11). We define the following as termination tests in reference to

implementations where an iterative solver is being applied to the primal-dual equations

to produce a sequence of values {(dj , δj)} corresponding to some sequence of residuals

{(ρj , rj)} via (3.11). Both tests below can be seen as extensions to the Sufficient Merit

function Approximation Reduction Termination Tests (or SMART Tests for short) that

are central to the algorithm in [2].

The first test relates to those steps providing a sufficient model reduction with the

most recent value of the penalty parameter.
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Termination Test I. Let 0 < σ, κ < 1 be given constants and let θ be given by

the Model Reduction Condition. A step (dk, δk) is acceptable if the Model Reduction

Condition (3.12) holds for πk = πk−1 and

∥∥∥∥
[
ρk

rk

]∥∥∥∥ ≤ κ

∥∥∥∥
[
gk + AT

k λk

ck

]∥∥∥∥ (4.2)

for (ρk, rk) defined by (3.11).

Steps that satisfy Termination Test I are those that satisfy the Model Reduction Con-

dition directly, without requiring a change in the penalty parameter or any (further)

modifications to the step computation. (In Section 7 we describe an alternative version

of Termination Test I.)

The second termination test relates to those steps yielding a sufficiently large re-

duction in the model of the constraints. For steps of this type, the penalty parameter

may be increased, but, as in the exact case, we are mindful of the relationship between

the norms of the tangential and normal components. Consideration of this test during

iteration k naturally requires that ‖ck‖ > 0.

Termination Test II. Let 0 < ε < 1 and β, ψ > 0 be given constants and let θ be

given by the Model Reduction Condition. A step (dk, δk) is acceptable if

‖rk‖ ≤ ε‖ck‖, (4.3a)

‖ρk‖ ≤ β‖ck‖, (4.3b)

and
1
2dT

k Wkdk ≥ θΥk or ψνk ≥ Υk, (4.4)

for Υk, (ρk, rk), and νk defined by (3.10), (3.11), and (4.1), respectively.

Steps satisfying Termination Test II may not satisfy the Model Reduction Condition for

πk = πk−1; thus, for steps of this type we update the penalty parameter by requiring

πk ≥
gT
k dk + max{ 1

2dT
k Wkdk, θΥk}

(1− τ)(‖ck‖ − ‖rk‖)
, πtrial

k (4.5)

for a given 0 < τ < 1. By forcing this inequality, we can see from (2.7) and (4.3a) that

∆mk(dk; πk) ≥ max{ 1
2dT

k Wkdk, θΥk}+ τπk(‖ck‖ − ‖rk‖) (4.6)

≥ max{ 1
2dT

k Wkdk, θΥk}+ τ(1− ε)πk‖ck‖,

and so the step satisfies the Model Reduction Condition (3.12) for σ = τ(1 − ε).

Indeed, for consistency between Termination Tests I and II, let us assume that we

choose σ = τ(1− ε).

Finally, we are confronted with the issue of how to modify our step computation

if it appears that a sufficient model reduction will not be obtained by solving a given

primal-dual system (2.2). One technique is to modify Wk to increase some or all of its

eigenvalues so that the resulting matrix is closer to being positive definite. For example,

if the objective function f includes a regularization parameter, this parameter could

be increased. Alternatively, Wk could be replaced by a positive definite quasi-Newton

approximation, or a positive definite matrix could be added to Wk so that the resulting

matrix, call it W̃k, satisfies W̃k −Wk Â µI for some µ > 0.
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For the sake of concreteness, let us simply assume that the chosen method for

modifying Wk is such that after a finite number of modifications we have Wk sufficiently

positive definite. Then, regardless of the specific method chosen, the following rule can

be used in conjunction with Termination Tests I and II to decide when a modification

may be necessary.

Hessian Modification Strategy. Let Wk be the current Hessian approximation,

let θ, σ, and ψ be given by the Model Reduction Condition and Termination Tests I

and II, and let a trial step (dk, δk) be given. If (dk, δk) yields

∆m(dk; πk−1) < max{ 1
2dT

k Wkdk, θΥk}+ σπk−1 max{‖ck‖, ‖rk‖ − ‖ck‖} (4.7a)

1
2dT

k Wkdk < θΥk, (4.7b)

and ψνk < Υk, (4.7c)

then modify Wk; otherwise, maintain the current Wk. (It is assumed that after a finite

number of modifications we have Wk Â 2θI.)

This update rule can be motivated by observing a case where the primal-dual equations

(2.2) are solved exactly, as in this setting the rule states that Wk should be modified if

and only if the computed step does not satisfy Termination Test I or II. This is clear

as in this case we have (ρk, rk) = 0, and so (4.2) and (4.3) are satisfied. Moreover, we

note that under the conditions of this strategy only a finite number of modifications

will be performed during a given iteration k, as Wk Â 2θI would imply that (4.7b)

cannot hold. (In Section 7 we provide an extension to this strategy that may be useful

along with certain types of modifications.)

Finally, upon the computation of an acceptable step, we use a backtracking line

search on the merit function φ(x; πk) to promote convergence, where the steplength

αk must satisfy the Armijo condition

φ(xk + αkdk; πk) ≤ φ(xk; πk) + ηαkDφ(dk; πk) (4.8)

for some η ∈ (0, 1).

The complete algorithm can be summarized as follows.

Algorithm INS: Inexact Newton with SMART Tests

Choose parameters 0 < κ, ε, τ, η < 1 and θ, β, ψ > 0 and set σ ← τ(1− ε)

Initialize x0, λ0, and π−1 > 0

for k = 0, 1, 2, . . . , until a convergence test for (1.1) is satisfied

Compute fk, gk, ck, Ak, and Wk and initialize πk ← πk−1

repeat

Compute an approximate solution (dk, δk) to (2.2) with the current Wk

Compute Υk and νk satisfying (3.10) and (4.1) (see (6.6) and (6.7))

if Termination Test I or II is satisfied, then break

Run the Hessian Modification Strategy to update Wk

endrepeat

if Termination Test II is satisfied and (4.5) does not hold, set πk ← πtrial
k + 10−4

Backtrack from αk ← 1 to obtain αk satisfying (4.8)

Set (xk+1, λk+1) ← (xk, λk) + αk(dk, δk)

endfor
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If an iterative linear system solver is employed in the step computation of Algorithm

INS, then an efficient implementation will run the solver unadulterated as long as Wk

is not modified by the Hessian Modification Strategy. Once a modification is invoked,

however, the solver may need to be reinitialized, where it may be beneficial to use

the most recent trial step as an initial estimate of the solution of the newly perturbed

system. Further practical issues for implementing Algorithm INS are discussed in Sec-

tion 6.

5 Global Analysis

In this section we analyze the global convergence properties of Algorithm INS under

the following assumptions about the problem formulation and the set of computed

iterates.

Assumption 1 The sequence {xk, λk} generated by Algorithm INS is contained in a

convex set Ω and the following properties hold:

(a) The functions f and c and their first and second derivatives are bounded on Ω.

(b) The sequence {λk} is bounded.

(c) The constraint Jacobians Ak have full row rank and their smallest singular values

are bounded below by a positive constant.

(d) The sequence {Wk} is bounded.

(e) For all k, the system (2.2) is consistent for each Wk.

These assumptions are similar to those made in [2], except that we do not assume that

the value for Wk used to compute the step during iteration k is positive definite on the

null space of the constraint Jacobian Ak. Assumption 1(e) is easily satisfiable during

a run of Algorithm INS if, for example, the iterative solver for the primal-dual system

can detect rank deficiency or breaks down when given an inconsistent system. If such

a system is detected, then perturbations to Wk can remedy this and produce a set of

consistent linear equations.

Before starting our analysis, it is important to verify that each iteration of Algo-

rithm INS will be successful in that a step satisfying Termination Test I or II will be

computed. To do this, suppose that the current iterate (xk, λk) does not satisfy the

optimality conditions (2.1). Under Assumption 1 we argue that, since the primal-dual

systems (2.2) are consistent and as long as the iterative step computation converges

to a solution with (ρk, rk) arbitrarily small, a Wk will eventually be chosen such that

a sufficiently accurate solution to (2.2) will satisfy Termination Test I or II. Let us

consider two cases. First, if ck 6= 0, then (4.2) and (4.3) will be satisfied for (ρk, rk)

sufficiently small. Consequently, the Model Reduction Condition will be satisfied for

πk = πk−1 (in which case Termination Test I will be satisfied), (4.4) will hold (in

which case Termination Test II will be satisfied), or the Hessian Modification Strat-

egy will invoke a modification to Wk. Similarly, if ck = 0, then a sufficiently accurate

solution will satisfy (4.2) and either the Model Reduction Condition will be satisfied

for πk = πk−1 (and so Termination Test I will be satisfied), or the lack of a positive

definite reduced Hessian will trigger a modification via (4.7b). In any case, since after a

finite number of modifications we have that Wk Â 2θI, a sufficiently accurate solution

to (2.2) will satisfy Termination Test I or II.
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We are now ready to establish global convergence properties for Algorithm INS.

From now on, we consider Wk to be the last value for the matrix used to compute the

accepted step; i.e., Wk is the Hessian approximation once all of the modifications via

the Hessian Modification Strategy have been made.

We begin by proving a result on the properties of the normal step vk. It is important

to note that vk and the tangential component uk may not be computed explicitly; we

study them only for purposes of this analysis. Although the proof of this first result is

essentially the same as in [2], we include it here for completeness.

Lemma 1 For all k, the normal component vk is bounded in norm and for some γ1 > 0

satisfies

‖vk‖2 ≤ γ1 max{‖ck‖, ‖rk‖}. (5.1)

Furthermore, for all k such that Termination Test II is satisfied, there exists γ2 > 0

such that

‖vk‖ ≤ γ2(‖ck‖ − ‖rk‖). (5.2)

Proof From Akvk = −ck + rk and the fact that vk lies in the range space of AT
k , it

follows that

vk = AT
k (AkAT

k )−1(−ck + rk),

and so

‖vk‖ ≤ ‖AT
k (AkAT

k )−1‖(‖ck‖+ ‖rk‖). (5.3)

This, along with (4.2), (4.3), the fact that Assumption 1(a) and (b) imply that ‖ck‖
and ‖gk + AT

k λk‖ are bounded, and the fact that Assumption 1(a) and (c) imply that

‖AT
k (AkAT

k )−1‖ is bounded, implies vk is bounded in norm for all k. The inequality

(5.3) also yields

‖vk‖2 ≤
(
‖AT

k (AkAT
k )−1‖(‖ck‖+ ‖rk‖)

)2

≤
(
2‖AT

k (AkAT
k )−1‖max{‖ck‖, ‖rk‖}

)2

=
[
4‖AT

k (AkAT
k )−1‖2 max{‖ck‖, ‖rk‖}

]
max{‖ck‖, ‖rk‖}, (5.4)

where (4.2), (4.3), and Assumption 1(a), (b), and (c) also imply that the bracketed

expression in (5.4) is bounded. Thus, (5.1) holds. Finally, if Termination Test II is

satisfied, then from (4.3a) and (5.3) we have

‖vk‖ ≤ ‖AT
k (AkAT

k )−1‖(1 + ε)‖ck‖
≤ ‖AT

k (AkAT
k )−1‖

(
1+ε
1−ε

)
(‖ck‖ − ‖rk‖),

and so (5.2) holds. ut

The next result provides some important bounds related to the length of the primal

component dk.

Lemma 2 There exists γ3 > 0 such that, for all k,

‖dk‖2 ≤ γ3 (Υk + max{‖ck‖, ‖rk‖}) , (5.5)

and hence

‖dk‖2 + ‖ck‖ ≤ 2γ3 (Υk + max{‖ck‖, ‖rk‖}) . (5.6)
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Proof Since uk and vk are defined in (3.8) to be orthogonal we have ‖dk‖2 = ‖uk‖2 +

‖vk‖2. Inequality (5.5) then follows from Lemma 1 and the fact that Υk is an upper

bound for ‖uk‖2. The inequality (5.6) follows trivially from (5.5). ut

The directional derivative of the penalty function can be bounded similarly.

Lemma 3 There exists γ4 > 0 such that, for all k,

Dφ(dk; πk) ≤ −γ4 (Υk + max{‖ck‖, ‖rk‖}) .

Proof We find by the Model Reduction Condition (3.12), (4.6), and (3.13) that

Dφ(dk; πk) ≤ −max{ 1
2dT

k Wkdk, θΥk} − σπk max{‖ck‖, ‖rk‖ − ‖ck‖}
≤ −θΥk − σπk

2 max{‖ck‖, ‖rk‖}.

Thus, since πk ≥ π−1 for all k, the result holds for γ4 = min{θ,
σπ−1

2 } > 0. ut

An important feature of Algorithm INS is that the penalty parameter remains

bounded. The next result illustrates the importance of the bounds enforced in (4.3)

and (4.4).

Lemma 4 The sequence of penalty parameters {πk} is bounded above and πk = πk̄
for all k ≥ k̄ for some k̄ ≥ 0.

Proof The penalty parameter is increased during iteration k of Algorithm INS only if

Termination Test II is satisfied. Thus, we can assume that the inequalities (4.3) hold

and that πk satisfies (4.6). This can be rewritten as

∆mk(dk; πk)−max{ 1
2dT

k Wkdk, θΥk} ≥ τπk(‖ck‖ − ‖rk‖), (5.7)

where we can use (2.7) to expand

∆mk(dk; πk)−max{ 1
2dT

k Wkdk, θΥk}

= πk(‖ck‖ − ‖rk‖) +





[
−gT

k dk − 1
2dT

k Wkdk

]
if 1

2dT
k Wkdk ≥ θΥk[

−gT
k dk − θΥk

]
otherwise.

(5.8)

We establish bounds for the terms inside the brackets with respect to the reduction

obtained in the linear model of the constraints.

If 1
2dT

k Wkdk < θΥk, then (3.10), (4.1), and (4.4) yield ‖uk‖2 ≤ Υk ≤ ψνk ≤ ψ‖vk‖2.
This implies ‖dk‖ ≤

√
1 + ψ‖vk‖, and so we have by Lemma 1 that ‖dk‖ is bounded.

Thus, by Assumption 1(a), Lemma 1, and (3.10), there exist γ5, γ′5 > 0 such that

−gT
k dk − θΥk ≥ −‖gk‖‖dk‖ − θ‖dk‖2

≥ −γ5‖dk‖
≥ −γ5(

√
1 + ψ)‖vk‖

≥ −γ′5(‖ck‖ − ‖rk‖).
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Now suppose 1
2dT

k Wkdk ≥ θΥk and note that from Assumption 1(d) there exists

some constant 0 < γ6 < ∞ such that, for all k,

‖Wk‖√
γ6

+
‖Wk‖
2γ6

≤ θ
2 . (5.9)

If ‖uk‖2 < γ6‖vk‖2, then as above, Assumption 1(a) and Lemma 1 imply that ‖dk‖ is

bounded and for some γ7, γ′7 > 0 we have

−gT
k dk − 1

2dT
k Wkdk ≥ −γ7‖dk‖

≥ −γ7

√
(1 + γ6)‖vk‖

≥ −γ′7(‖ck‖ − ‖rk‖).

Otherwise, ‖uk‖2 ≥ γ6‖vk‖2 and so the primal step is composed of a proportionately

large tangential component. By our consideration of 1
2dT

k Wkdk ≥ θΥk, (3.10), and (5.9)

we have

1
2uT

k Wkuk ≥ θΥk − uT
k Wkvk − 1

2vT
k Wkvk

≥
(
θ − ‖Wk‖√

γ6
− ‖Wk‖

2γ6

)
‖uk‖2

≥ θ
2‖uk‖2.

From this inequality, the first block equation of (3.11), and the fact that Akuk = 0 we

have

θ‖uk‖2 ≤ uT
k Wkuk

= −gT
k uk + ρT

k uk − uT
k Wkvk

≤ (‖gk‖+ ‖ρk‖+ ‖Wkvk‖)‖uk‖,

which implies

‖uk‖ ≤ (‖gk‖+ ‖ρk‖+ ‖Wkvk‖)/θ,

and so we have by Lemma 1 that ‖uk‖ is bounded under Assumption 1 and the bounds

in (4.3). Thus, from the above, Assumption 1(a), Lemma 1, (4.3b), and the first block

equation of (3.11), we find that for some γ8, γ′8 > 0 we have

−gT
k dk − 1

2dT
k Wkdk = −gT

k vk − 1
2vT

k Wkvk − uT
k Wkvk − gT

k uk − 1
2uT

k Wkuk

= −gT
k vk − 1

2vT
k Wkvk − ρT

k uk + 1
2uT

k Wkuk

≥ −γ8(‖vk‖+ ‖ρk‖)
≥ −γ′8(‖ck‖ − ‖rk‖).

All together, starting from (5.8) we have shown

∆mk(dk; πk)−max{ 1
2dT

k Wkdk, θΥk} ≥ (πk −max{γ′5, γ′7, γ′8})(‖ck‖ − ‖rk‖),

and so (5.7) is always satisfied for

πk ≥ max{γ′5, γ′7, γ′8}/(1− τ). (5.10)

Thus, if πk̄ satisfies (5.10) for some k̄ ≥ 0, then πk = πk̄ for all k ≥ k̄. This, along with

the fact that when Algorithm INS increases π it does so by at least a positive finite

amount, proves the result. ut
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We have shown that at the conclusion of the step computation, a bounded penalty

parameter has been computed and that the directional derivative of the resulting

penalty function is negative. We can now show that the line search will be success-

ful and result in a sufficient reduction in the merit function.

Lemma 5 The sequence {αk} is bounded below and away from zero.

Proof Recall that the line search requires (4.8). Suppose that the line search fails for

some ᾱ > 0, so

φ(xk + ᾱdk; πk)− φ(xk; πk) > ηᾱDφ(dk; πk).

A Taylor expansion of φ(x; πk) about xk yields for some γ9 > 0

φ(xk + ᾱdk; πk)− φ(xk; πk) ≤ ᾱDφ(dk; πk) + ᾱ2γ9πk‖dk‖2,

so

(η − 1)Dφ(dk; πk) < ᾱγ9π̂‖dk‖2.

Here, π̂ is a finite upper bound for the sequence {πk} whose existence follows from

Lemma 4. Lemmas 2 and 3 then yield

(1− η)γ4 (Υk + max{‖ck‖, ‖rk‖}) < ᾱγ3γ9π̂ (Υk + max{‖ck‖, ‖rk‖}) ,

so

ᾱ > (1− η)γ4/(γ3γ9π̂).

Thus, αk need never be set below (1− η)γ4/(γ3γ9π̂) for (4.8) to be satisfied. ut

The next result illustrates the convergence of the iterates of Algorithm INS toward

the feasible region and that the sequence of primal step components vanishes.

Lemma 6 Algorithm INS yields

lim
k→∞

‖ck‖ = 0 and lim
k→∞

‖dk‖ = 0. (5.11)

Proof By Lemma 4 the algorithm eventually computes, during some iteration k̄ ≥ 0,

a finite value πk̄ beyond which the penalty parameter will never be increased. Thus,

(4.8), Lemma 3, Lemma 5, and (5.6) imply that there exists γ10 > 0 such that for

k ≥ k̄ we have

φ(xk̄; πk̄)− φ(xk; πk̄) =

k−1∑

j=k̄

(
φ(xj ; πk̄)− φ(xj+1; πk̄)

)

≥ −γ10

k−1∑

j=k̄

Dφ(dj ; πk̄)

≥ γ4γ10

k−1∑

j=k̄

(Υk + max{‖ck‖, ‖rk‖})

≥ γ4γ10
2γ3

k−1∑

j=k̄

(
‖dk‖2 + ‖ck‖

)
.

The result follows from this inequality and the fact that Assumption 1(a) implies

φ(x; πk̄) is bounded below. ut
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We note that the limits (5.11) are precisely those established in Lemma 4.9 of [2].

Therefore, under Assumption 1 we can apply the same analysis as in Theorem 4.10 in

[2] to obtain the following result.

Theorem 5.1 Algorithm INS yields

lim
k→∞

∥∥∥∥
[
gk + AT

k λk

ck

]∥∥∥∥ = 0.

Thus, we have shown under Assumption 1 that the optimality conditions (2.1) are

satisfied in the limit, without requiring any convexity assumptions related to the arising

primal-dual systems.

6 An Implementation

A Matlab implementation of Algorithm INS was developed to illustrate the robust-

ness of the approach and examine its practical nature. We begin by discussing a few

implementational issues in chronological order of the steps of the algorithm and then

describe its performance on a varied set of test problems.

A general guideline for the selection of the parameters σ, ε, τ , β, and κ is provided

in [2]. In particular, the inexactness parameters ε, β, and κ can have a significant

impact on the speed with which the algorithm converges and should preferably be

tuned for each application; e.g., see the numerical study [4]. As for the remaining

inputs to Algorithm INS, we make the following choices. First, we initialize Wk to

the exact Hessian of the Lagrangian for all k. Then, as an appropriate value for θ we

suggest setting

θ ← 10−8 max{‖Wk‖1, 1}
during each iteration, as our step acceptance conditions are then independent of scalings

of f and c. For ψ, an appropriate value may be any value between zero and one,

as this would imply that we consider a step to be sufficiently normal if ‖uk‖2 is at

most equal to ‖vk‖2. However, as we only use approximate values for these quantities,

we have implemented ψ ← 10. Finally, we set η to a standard value of 10−8 and

initialize the penalty parameter to 10−1. A complete listing of the parameters used in

our implementation is given in Table 6.1.

Parameter Value Parameter Value

κ 10−2 θ 10−8 max{‖Wk‖1, 1}
σ τ(1− ε) β 10

ε 10−2 ψ 10

τ 2× 10−1 π−1 10−1

η 10−8

Table 6.1 Parameter values used for Algorithm INS

For the stopping condition of the outer loop of Algorithm INS, we require

‖gk + AT
k λk‖∞ ≤ 10−6 max{‖g0‖∞, 1} (6.1)

and ‖ck‖∞ ≤ 10−6 max{‖c0‖∞, 1} (6.2)
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for the final solution to be considered first-order optimal, but terminate the algorithm

if these inequalities are not satisfied after 1000 iterations.

Our implementation of the step computation of Algorithm INS is summarized in

Algorithm INS-step below. The iterative solution of system (2.2) was performed with

an adapted version of Kelley’s implementation [15] of the generalized minimum residual

(GMRES) method [20]. (We also performed all of the experiments below with adapted

versions of Paige and Saunders’ implementation [18] of their minimum residual (MIN-

RES) method [17] and with an implementation of the symmetric quasi-minimum resid-

ual (SQMR) method [10] provided by Eldad Haber. All of the results were very similar,

and so we only discuss the results for GMRES below.) GMRES does not exploit the

symmetry of the primal-dual system, but the numerical stability of the approach was

ideal for our tests. Since we are only interested in demonstrating the robustness of our

approach, we did not implement a preconditioner.

A few comments are necessary here related to the arising primal-dual equations

(2.2). First, we begin the process with Wk set as the exact Hessian of the Lagrangian

and the GMRES solution initialized to the zero vector. If a modification to Wk is

made, we restart the solver with the solution initialized to the last solution computed

for the previous Wk. Overall, for any given Wk, we perform at most n + t GMRES

iterations and simply attempt to follow the final step computed if this iteration limit is

ever reached. We run the Hessian Modification Strategy for each trial step computed,

but note that one could perform some inner iterations (a fixed number or until a

sufficiently accurate solution is obtained) before considering a modification to Wk.

Finally, in our implementation we set Wk ← Wk + µI with µ ← 10−4 for the first

modification and perform a similar perturbation after increasing µ ← 10µ for each

additional modification.

Finally, we present a simple technique for computing upper and lower bounds for

the lengths of the tangential component u and the normal component v for a given

primal step d during iteration k. Recall that as the two components are orthogonal, we

have

‖d‖2 = ‖u‖2 + ‖v‖2. (6.3)

In addition, since Aku = 0 we have the inequality

‖v‖ ≥ ‖Akv‖/‖Ak‖ = ‖Akd‖/‖Ak‖ (6.4)

that, along with (6.3), implies

‖u‖2 ≤ ‖d‖2 − ‖Akd‖2/‖Ak‖2. (6.5)

Thus, with (6.4) and (6.5) we can use

ν ← ‖Akd‖2/‖Ak‖2 (6.6)

and

Υ ← ‖d‖2 − ‖Akd‖2/‖Ak‖2 (6.7)

as an appropriate lower bound for ‖v‖2 and upper bound for ‖u‖2, respectively. We

have implemented more practical forms of these quantities by replacing ‖Ak‖2 by the

upper bound min{n‖Ak‖21, t‖Ak‖2∞}. The accuracy of these estimates will vary; if they

are poor, the algorithm will tend to modify the Hessian Wk in a conservative manner.

We summarize the above process with the following algorithm, which can be viewed

as a particular implementation of the repeat loop in Algorithm INS.
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Algorithm INS-step: Step Computation for Algorithm INS

Set j ← 0, (d0, δ0) ← 0, Wk ← ∇2
xxLk, and µ ← 10−4

while j < n + t

Increment j ← j + 1

Perform a GMRES iteration on (2.2) to compute (dj , δj)

Compute Υ j and νj via (6.6) and (6.7)

if Termination Test I or II is satisfied, then break

if (dj , δj) satisfies (4.7a)–(4.7c)

Set j ← 0, (d0, δ0) ← (dj , δj), Wk ← Wk + µI, and µ ← 10µ

endif

endwhile

return (dk, δk) ← (dj , δj) and (Υk, νk) ← (Υ j , νj)

Algorithm INS is designed for solving very large problems and its effectiveness is

best studied in the context of practical applications. However, such a study is outside

the scope of this paper and so we choose to illustrate the performance of the algorithm

on problems from the CUTEr [1,11] collection. Problems from this set, for which AMPL

models were available, were chosen based on memory limitations (problems with n+t >

1000 were removed) and Assumption 1 (e.g., a problem was removed if the algorithm

ever encountered a Jacobian Ak with a singular value, computed via Matlab’s svds

function, below 10−4). The complete set is composed of 44 problems. Detailed results

can be found in Table 6.3, where the headers are described in Table 6.2.

Symbol Meaning

Name Name of problem
n Number of variables
t Number of constraints
iter. Total number of outer iterations
inner iter.: tot. Total number of inner iterations
inner iter.: avg. Avg. number of inner iterations per outer iteration
pos. eig.: avg. Avg. number of positive eigenvalues of modified primal-dual matrix
%TT-I Percentage of times Termination Test I satisfied
%TT-II Percentage of times Termination Test II satisfied
--- Algorithm failure

Table 6.2 Key for Tables 6.3 and 6.4

The data in Table 6.3 illustrate the practical behavior of our approach. First, we

note that the run for each problem terminated successfully. It is particularly comfort-

ing to view the results for the strictly convex problems in the set (i.e., those labeled

with a (*)), as one can see how Algorithm INS approximates a fast SQP approach in

such a setting. Another interesting observation relates to the average numbers of pos-

itive eigenvalues of the iteration matrices (obtained via Matlab’s eigs function) used

to compute the step during each iteration. For some of the nonconvex problems, this

value is (slightly) less than the number of variables n, which means that the Hessian

Modification Strategy does not fully convexify the subproblem during every iteration.

We can expect this difference to be more pronounced for larger values of the inex-

actness parameters (ε, β, κ). Finally, we find that for most of the problems the Model

Reduction Condition is satisfied for the most recent value of the penalty parameter

(i.e., Termination Test I is satisfied), which is comforting in view of the fact that the

bound (4.2) can often be less demanding than those in (4.3).
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Name n t iter. inner iter. pos. eig. %TT-I %TT-II
tot. avg. avg.

bt2(*) 3 1 18 53 2.94 3.00 66.67% 33.33%
bt3(*) 5 3 1 8 8.00 5.00 100.00% 0.00%
bt4 3 2 15 113 7.53 2.93 80.00% 20.00%
bt5 3 2 7 33 4.71 2.86 71.43% 28.57%
bt6(*) 5 2 12 58 4.83 5.00 66.67% 33.33%
bt7 5 3 45 322 7.16 4.96 33.33% 66.67%
bt9 4 2 17 74 4.35 4.00 41.18% 58.82%
bt10(*) 2 2 13 43 3.31 2.00 38.46% 61.54%
bt11(*) 5 3 9 69 7.67 5.00 44.44% 55.56%
bt12(*) 5 3 9 54 6.00 5.00 44.44% 55.56%
catena 32 11 48 1186 24.71 31.94 10.42% 89.58%
dtoc1nd 735 490 49 4217 86.06 734.73 83.67% 16.33%
eigena2 110 55 148 19030 128.58 96.37 69.59% 30.41%
eigenaco 110 55 28 417 14.89 109.96 89.29% 10.71%
eigenb2 110 55 21 542 25.81 107.14 90.48% 9.52%
eigenbco 110 55 218 14730 67.57 109.63 99.08% 0.92%
eigenc2 462 231 130 57714 443.95 441.80 93.08% 6.92%
eigencco 30 15 172 3361 19.54 29.58 98.26% 1.74%
fccu(*) 19 8 12 150 12.50 19.00 33.33% 66.67%
genhs28(*) 10 8 4 32 8.00 10.00 75.00% 25.00%
gilbert 1000 1 22 55 2.50 833.91 18.18% 81.82%
hs006 2 1 17 60 3.53 1.76 64.71% 35.29%
hs007 2 1 8 28 3.50 1.75 12.50% 87.50%
hs008(*) 2 2 5 16 3.20 2.00 100.00% 0.00%
hs026 3 1 203 697 3.43 3.00 99.51% 0.49%
hs027(*) 3 1 14 45 3.21 3.00 21.43% 78.57%
hs028(*) 3 1 1 4 4.00 3.00 100.00% 0.00%
hs039 4 2 17 74 4.35 4.00 41.18% 58.82%
hs040(*) 4 3 6 73 12.17 4.00 66.67% 33.33%
hs046(*) 5 2 110 452 4.11 5.00 100.00% 0.00%
hs047 5 3 24 156 6.50 5.00 100.00% 0.00%
hs048(*) 5 2 1 7 7.00 5.00 100.00% 0.00%
hs049(*) 5 2 41 159 3.88 5.00 100.00% 0.00%
hs050(*) 5 3 8 58 7.25 5.00 100.00% 0.00%
hs051(*) 5 3 2 8 4.00 5.00 100.00% 0.00%
hs052(*) 5 3 1 8 8.00 5.00 100.00% 0.00%
hs077(*) 5 2 11 58 5.27 5.00 63.64% 36.36%
hs078(*) 5 3 5 63 12.60 5.00 40.00% 60.00%
hs079(*) 5 3 12 50 4.17 5.00 91.67% 8.33%
hs100lnp 7 2 9 60 6.67 6.89 22.22% 77.78%
hs111lnp 10 3 25 296 11.84 9.96 76.00% 24.00%
maratos(*) 2 1 4 11 2.75 2.00 25.00% 75.00%
mwright(*) 5 3 7 52 7.43 5.00 71.43% 28.57%
orthregb 27 6 21 89 4.24 24.10 95.24% 4.76%

Table 6.3 Results for Algorithm INS; a (*) indicates that the problem was strictly convex
over the set of computed iterates

We next compare the performance of Algorithm INS in relation to other approaches.

As we are unaware of another globally convergent line search algorithm that does

not require inertia information of primal-dual iteration matrices, we investigate the

performance of Algorithm INS as compared to two inexact SQP approaches derived

from the algorithm proposed in [2]. The first algorithm, which we call ISQP-naive, is

a straightforward implementation of the inexact SQP algorithm in [2] (with parameter

choices equal to those in Table 6.1) that simply ignores the presence of negative or

zero curvature. This algorithm has similar SMART Tests for the step computation

and is proved to converge for strictly convex problems, but its performance when

confronted with a nonconvex problem is unpredictable. The second algorithm, which

we call ISQP-ideal, is also based on the algorithm in [2] with SMART Tests, but

computes the inertia of primal-dual matrices. With this information, modifications are
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made prior to the step computation (also by adding multiples of the identity matrix

to Wk) in order to create a strictly convex subproblem during each iteration. Note

that this algorithm does in fact require explicit representations and factorizations of

primal-dual matrices, and thus should not be considered a practical competitor of our

approach on problems for which Algorithm INS was designed; we simply implemented

this method to gauge how Algorithm INS compares to an idealized approach.

We state that an algorithm fails in one of three ways. First, the outer iteration

limit of 1000 can be reached before an iterate satisfies (6.1) and (6.2). Second, the final

step computed by GMRES can be an ascent direction for the penalty function for all

allowable values of the penalty parameter; i.e., Dφ(dk; π) > 0 for all π ≥ πk−1. Finally,

the line search can return a steplength αk that is practically zero. We say that this is

the case if αk ≤ 10−6.

Results for the three algorithms based on two performance measures, the number

of iterations and the total number of inner iterations required to find a solution, are

presented in Table 6.4. We also summarize the results in Figures 6.1 and 6.2 in terms

of the logarithmic performance profiles of Dolan and Moré [7]. Function values on the

leftmost side of each figure represent the percentage of times that solver achieved the

lowest value of a given performance measure and the rightmost values illustrate the

robustness of the approach.
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Fig. 6.1 Performance profile for iteration
counts
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Fig. 6.2 Performance profile for inner it-
eration counts

At first glance it appears that ISQP-naive is surprisingly robust despite the fact

that nonconvexity was ignored throughout the solution process. However, the main rea-

son for this is that many of the problems were strictly convex over the set of computed

iterates. Overall this approach failed on a large portion of the nonconvex problems.

7 Final Remarks

We have presented a matrix-free inexact Newton algorithm for solving equality con-

strained optimization problems. The method is based on an extension of the Sufficient

Merit function Approximation Reduction Termination (SMART) Tests presented in [2]

to cases where negative or zero curvature is present. In addition, we have proposed a

mechanism for determining when a modification to the Hessian matrix should be made

within an iterative step computation, and have proved (under common assumptions)

that the algorithm is globally convergent to first-order optimal points. The robustness
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Algorithm INS ISQP-naive ISQP-ideal

Name iter. inner iter. iter. inner iter. iter. inner iter.
tot. avg. tot. avg. tot. avg.

bt2 18 53 2.94 18 53 2.94 18 53 2.94
bt3 1 8 8.00 1 8 8.00 1 8 8.00
bt4 15 113 7.53 --- --- --- 7 31 4.43
bt5 7 33 4.71 8 35 4.38 7 31 4.43
bt6 12 58 4.83 12 58 4.83 12 58 4.83
bt7 45 322 7.16 27 200 7.41 37 285 7.70
bt9 17 74 4.35 16 68 4.25 12 51 4.25
bt10 13 43 3.31 13 43 3.31 13 43 3.31
bt11 9 69 7.67 9 69 7.67 9 69 7.67
bt12 9 54 6.00 9 54 6.00 9 54 6.00
catena 48 1186 24.71 --- --- --- 48 1159 24.15
dtoc1nd 49 4217 86.06 --- --- --- 71 3801 53.54
eigena2 148 19030 128.58 222 26110 117.61 44 2924 66.45
eigenaco 28 417 14.89 29 400 13.79 34 499 14.68
eigenb2 21 542 25.81 21 542 25.81 16 213 13.31
eigenbco 218 14730 67.57 --- --- --- 268 16607 61.97
eigenc2 130 57714 443.95 47 8687 184.83 39 3625 92.95
eigencco 172 3361 19.54 99 1737 17.55 38 532 14.00
fccu 12 150 12.50 12 150 12.50 12 150 12.50
genhs28 4 32 8.00 4 32 8.00 4 32 8.00
gilbert 22 55 2.50 22 55 2.50 22 55 2.50
hs006 17 60 3.53 --- --- --- 16 34 2.12
hs007 8 28 3.50 --- --- --- 8 20 2.50
hs008 5 16 3.20 5 16 3.20 5 16 3.20
hs026 203 697 3.43 203 697 3.43 205 692 3.38
hs027 14 45 3.21 14 45 3.21 14 45 3.21
hs028 1 4 4.00 1 4 4.00 1 4 4.00
hs039 17 74 4.35 16 68 4.25 12 51 4.25
hs040 6 73 12.17 5 32 6.40 5 32 6.40
hs046 110 452 4.11 110 452 4.11 110 452 4.11
hs047 24 156 6.50 --- --- --- 31 168 5.42
hs048 1 7 7.00 1 7 7.00 1 7 7.00
hs049 41 159 3.88 41 159 3.88 41 159 3.88
hs050 8 58 7.25 8 58 7.25 8 58 7.25
hs051 2 8 4.00 2 8 4.00 2 8 4.00
hs052 1 8 8.00 1 8 8.00 1 8 8.00
hs077 11 58 5.27 11 58 5.27 11 58 5.27
hs078 5 63 12.60 4 28 7.00 4 28 7.00
hs079 12 50 4.17 12 50 4.17 12 50 4.17
hs100lnp 9 60 6.67 9 60 6.67 9 60 6.67
hs111lnp 25 296 11.84 --- --- --- 20 199 9.95
maratos 4 11 2.75 4 11 2.75 4 11 2.75
mwright 7 52 7.43 7 52 7.43 7 52 7.43
orthregb 21 89 4.24 21 89 4.24 11 63 5.73

Table 6.4 Iteration and inner iteration statistics for Algorithm INS and two inexact SQP
algorithms derived from the algorithm in [2]: ISQP-naive and ISQP-ideal

of the method has been illustrated on a set of standard test problems. Our approach can

be used to solve unconstrained problems and may be extended to generally constrained

problems if, for example, our methodology is applied to the equality constrained barrier

subproblems arising in an interior point method.

We close by remarking on two practical extensions to Algorithm INS as it is pre-

sented in Section 4. First, as in [2], we mention that all of our analysis holds if one

chooses κ ≥ 1 in Termination Test I, provided the additional condition

‖ρk‖ ≤ max{κ1‖gk + AT
k λk‖, κ2‖ck‖}

with 0 < κ1 < 1 and 0 < κ2 is also enforced. This type of flexibility may be useful

if one uses a left preconditioner for (2.2), as this may yield steps corresponding to

residuals larger in norm than the right-hand-side vector (gk + AT
k λk, ck), or if one
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applies Termination Test I in an implementation that does not compute steps directly

via (2.2). Similarly, a more flexible version of the Hessian Modification Strategy can be

implemented along with certain types of modification techniques. If it is known that

after a certain modification we have yT Wky ≥ µ‖y‖2 for some µ > 0 for all y ∈ Rn

such that Aky = 0, then no more perturbations are necessary if the algorithm reverts

to the version of SMART Tests presented in [2]. All of the results in this paper hold if

a subsequence of iterations are performed in this manner.
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