
Combining and scaling descent and negative curvature
directions

Catarina P. Avelino · Javier M. Moguerza ·
Alberto Olivares · Francisco J. Prieto

Abstract The aim of this paper is the study of different approaches to combine and
scale, in an efficient manner, descent information for the solution of unconstrained
optimization problems. We consider the situation in which different directions are
available in a given iteration, and we wish to analyze how to combine these direc-
tions in order to provide a method more efficient and robust than the standard Newton
approach. In particular, we will focus on the scaling process that should be carried
out before combining the directions. We derive some theoretical results regarding
the conditions necessary to ensure the convergence of combination procedures fol-
lowing schemes similar to our proposals. Finally, we conduct some computational

Catarina P. Avelino was partially supported by Portuguese FCT postdoctoral grant
SFRH/BPD/20453/2004 and by the Research Unit CM-UTAD of University of Trás-os-Montes e Alto
Douro. Javier M. Moguerza and Alberto Olivares were partially supported by Spanish grant MEC
MTM2006-14961-C05-05.
Francisco J. Prieto was partially supported by grant MTM2007-63140 of the Spanish Ministry of
Education.

C. P. Avelino (B)
Department of Mathematics, UTAD, Vila Real, Portugal
e-mail: cavelino@utad.pt

J. M. Moguerza · A. Olivares
Department of Statistics and Operational Research,
University Rey Juan Carlos, Madrid, Spain
e-mail: javier.moguerza@urjc.es

A. Olivares
e-mail: alberto.olivares@urjc.es

F. J. Prieto
Department of Statistics, University Carlos III de Madrid, Madrid, Spain
e-mail: franciscojavier.prieto@uc3m.es

1

Cita bibliográfica
Published in: Mathematical Programming, 2011, 128, p. 285-319

experiments to compare these proposals with a modified Newton’s method and other
procedures in the literature for the combination of information.

Keywords Line search · Negative curvature · Nonconvex optimization

AMS Subject Classification 49M37 · 65K05 · 90C30

1 Introduction

We are interested in the study of algorithms to compute in an efficient manner solutions
for unconstrained nonconvex problems of the form:

min
x

f (x), (1)

where f : R
n → R is at least twice continuously differentiable. This problem has

been extensively studied in the literature (see for example Gill et al. (8) or Fletcher
(5)), and different classes of algorithms have been proposed to compute local solu-
tions of the problem. Most of these methods are based on the generation of a sequence
of iterates, updated using the information derived from a single search direction. In
most cases, the methods compute an approximation to the Newton direction based on
second-order approximations to the problem, and ensure reasonable global conver-
gence properties by adjusting the size of the direction through either a linesearch or a
trust-region approach.

Nevertheless, it has been noted in the literature that in most practical cases it is pos-
sible to generate in each iteration additional information to update the iterates at a cost
that is not significantly higher than that required by the classical Newton approach,
see for example Moré and Sorensen (15), Fiacco and McCormick (4), or Forsgren
and Murray (6). The previous references show the theoretical advantages of including
directions of negative curvature as a part of an optimization algorithm. However, there
are just a few works treating practical aspects regarding the use of this kind of informa-
tion (see, for instance, Moguerza and Prieto (13,14)). Therefore it seems interesting
to consider the potential improvement that the use of this information (for example
descent and negative curvature directions) may imply for an unconstrained optimiza-
tion algorithm, both in terms of its efficiency and its robustness. Also, for large-scale
problems it may be computationally expensive to obtain an exact Newton direction in
each iteration. The methods most commonly used are based on quasi-Newton approx-
imations to the Hessian matrix, or in approximate solutions to the Newton system of
equations. In these cases, the analysis of potential improvements based on combin-
ing several of these approaches seems particularly relevant, as no practical evidence
suggests that any of the approximate Newton methods are in general superior to the
others, and no clear evidence exists to support a strategy based on the a priori selection
of one of them.

The use of combinations of directions has been analyzed in the literature for exam-
ple in Moré and Sorensen (15), Mukai and Polak (16), Goldfarb (9), Moguerza
and Prieto (13,14) or Olivares et al. (17). Although out of the scope of this paper,
based on the conjugate gradient methodology there are linesearch procedures for
unconstrained optimization which are useful for solving large scale problems. These

1

2

methods have well-known convergence properties (see Hager and Zhang (12) and the
references therein), and have been used in some practical engineering applications
(see, for instance, Sun et al. (20)). There are some other works using directions of neg-
ative curvature within conjugate gradient schemes (see Sanmatías and Vercher (18)
and the references therein). For instance, in Gould et al. (10), in each iteration the best
direction is chosen and a standard linesearch is conducted. Another method based in
the selection of directions is suggested by Sanmatías and Roma (19).

Our aim in this paper is to show that scaling the negative curvature directions and
eventually other directions before performing a line search yields significant improve-
ments in the efficiency of optimization algorithms. In addition, our methodology is
general enough to be applied to an undetermined number of directions (this is important
as most methods in the literature are able to combine a maximum of two directions).
We will consider the particular case when the directions available are the Newton
direction, the gradient and a negative curvature direction. Our approach is closely
related to the standard Newton’s method. Therefore it provides a more direct evalua-
tion of the potential advantages of a combined information approach, when compared
to the Newton algorithm. Also, the adjustments of the parameters to obtain efficient
implementations of the combination algorithms are simpler within this setting. We
implement some proposals in an efficient manner and study the conditions that must
be imposed on these approaches to ensure reasonable global convergence properties
to second-order critical points of problem (1). In addition, we compare their practical
performance and effectiveness through a computational experiment based on a set
of 119 small optimization problems from the CUTEr collection (11). The results and
their analysis provide important insights both for practical applications in an improved
Newton method setting and for possible extensions to large-scale problems.

The rest of the paper is organized as follows: in Sect. 2 we describe the algo-
rithms proposed to compute local solutions for unconstrained optimization problems.
Section 3 presents several global convergence results for the algorithms. Section 4
describes the computational experiment we have carried out. Finally, in Sect. 5 we
present some final comments and conclusions.

2 General description of the algorithms

In this section we present and describe two algorithmic models for the solution of
problem (1). Our description of the algorithms starts with a presentation of a common
framework to both methods, and then introduces the different approaches specific to
each algorithm. Given a set of p directions dik , computed in an iteration k of the opti-
mization algorithm, our common approach for all the alternatives that we consider in
this work is to define a combination of these directions to obtain a search direction dk as

dk =
p∑

i=1

αikdik, (2)

where αik, i = 1, . . . , p, are the coefficients to be determined by the proposed pro-
cedures at iteration k. Within this common framework, all the procedures compute a
sequence of iterates {xk} from an initial approximation x0, as

1

3

Table 1 General description of
the algorithms

Main Algorithm
Step 0 [Initialization] Select x0 ∈ R

n and constants
ω∗ > 0, σ ∈ (0, 1/2). Set k = 0

Step 1 [Test for convergence] If ‖∇ f (xk)‖ ≤
ω∗ and λmin(∇2 f (xk)) ≥ −ω∗, then stop

Step 2 [Computation of the search directions]
Compute dik and d̄ik

Step 3 [Computation of steplengths] Compute
αik , ᾱik and define
dk=

∑
i αikdik + ∑

i ᾱik d̄ik . Perform a
conventional linesearch to compute a
steplength ζk

Step 4 [New iterate] Set xk+1=xk + ζkdk , k=k + 1
and go to Step 1

xk+1 = xk + ζkdk,

where ζk is a steplength computed through a standard linesearch procedure.
As already mentioned, an important and related task is the adequate scaling of the

directions used in the algorithm (see Moguerza and Prieto (13,14)). While the standard
Newton direction is well-scaled, particularly close to the solution, other alternative
search directions may not be, implying a potential inefficiency in the resulting algo-
rithm. Our proposal handles these problems by adjusting the scale of the available
directions through the application of a few iterations of an optimization algorithm on
a simplified local model for the problem. The computation of a set of values for αik

on a smaller subspace as an optimization problem has already been treated by Byrd
et al. (2). In particular, we propose and analyze two different algorithms to compute
the coefficients in the combination: a Newton method that, given the directions dik , is
applied to determine the initial values of αik for a linesearch; and a mixed approach
that computes a set of values for αik by solving a trust-region subproblem, and then
performing a linesearch to obtain the next iterate.

In what follows, and to improve the clarity of the presentation of convergence
results in Sect. 3, we use a slightly modified notation for the directions combined in
(2). We denote as dik those directions that are related to descent properties for problem
(1), while we introduce the notation d̄ik for the directions related to negative curvature
properties of (1), if they are available at iteration k. In this way, dk in (2) is obtained
from the available directions as

dk ≡
∑

i

αikdik +
∑

i

ᾱik d̄ik, (3)

for appropriate values of the scalars αik, ᾱik .
The general framework (the basic algorithm) is summarized in Table 1, where

λmin(H) denotes the smallest eigenvalue of a given matrix H . Note that we use the
Newton direction whenever it satisfies a sufficient descent condition. The motiva-
tion for this choice is to ensure a quadratic local convergence rate for the algorithm.
This choice works well in practice, and is consistent with the good local properties of
the Newton direction close to a local solution. The methods differ only in the way the

4

Table 2 Computation of
steplengths

Step 3 Computation of steplengths
Step 3a [Initialization] Set k̂ = 0. Select initial

steplengths αi0 and ᾱi0,
ξ ∈ (0, 1), σ ∈ (0, 1/2) and a positive integer
k̂max

Step 3b [Test for convergence] Let
dk̂ = ∑

i αi k̂ dik + ∑
i ᾱi k̂ d̄ik . If

‖∇ f (xk + dk̂)‖ ≤ ω∗ or k̂ = k̂max, then go to
Step 3e

Step 3c [Computation of αi k̂ and ᾱi k̂] Apply either
Newton’s method or a trust-region approach to
update αi k̂ and ᾱi k̂

Step 3d [New iterate] Set k̂ = k̂ + 1 and go to Step 3b

Step 3e [Linesearch] Let αik = αi k̂ and ᾱik = ᾱi k̂ . Also

let dk = ∑
i αikdik + ∑

i ᾱik d̄ik . Compute
ζk = ξ l , where l is the smallest nonneg-
ative integer such that f (xk +ξ l dk) ≤ f (xk)+
σ

(
ξ l∇ f (xk)T dk + ξ2l min

(
0, dT

k ∇2 f (xk)dk

))

Step 3f [Return] Return dk and ζk to the Main
Algorithm

values for step lengths αik and ᾱik are computed, in particular, the way in which Step
3 is carried out. This step is described in Table 2. More specifically, our proposals are
obtained by performing Step 3c in two different manners. This step corresponds to the
scaling process that should be carried out before combining the directions. Next, we
describe each one of the two proposed implementations for this step.

2.1 Newton-based scaling method (NSM)

Our first proposal is based on the application of Newton steps to obtain reasonable
values for the steplengths. Once a reasonable set of values is obtained, either because
the gradient of the objective function is small enough or because a sufficient number
of Newton steps have been taken, the resulting values are further refined by imposing a
sufficient descent condition and performing a linesearch to obtain a sufficient descent
direction as a combination of the available directions in the current iteration. We will
denote this algorithm as NSM.

Since the Newton direction is well-scaled, in our proposals we adjust only the step-
lengths associated with the gradient and the negative curvature directions, that is, we
keep fixed the steplength associated with the original Newton direction. In this way,
the scaling of these two directions will be adequate related to the Newton direction.

We now consider the different computations associated with Step 3c in Table 2
for algorithm NSM. For this method, the value for the final direction is obtained by
adjusting the steps along the directions by computing Newton updates for the problem

min
(αik ,ᾱik)

f

(
xk +

∑

i

αikdik +
∑

i

ᾱik d̄ik

)
(4)

5

Table 3 Step 3c performance for NSM algorithm

Computation of steplength-algorithm NSM
Step 3c [Computation of αi k̂ and ᾱi k̂] Solve system (5) and

obtain the updated steplengths from (6)

by determining the solution for the system

H̄kk̂

(
�αi k̂
�ᾱi k̂

)
= −ḡkk̂, (5)

or a suitably modified system if the coefficient matrix has undesirable properties,
where �αi k̂ and �ᾱi k̂ denote the changes in the corresponding steplengths, and

H̄kk̂ ≡
(

dT
ik

d̄T
ik

)
∇2 f

(
xk +

∑

i

αi k̂dik +
∑

i

ᾱi k̂ d̄ik

)
(

dik d̄ik
)

ḡkk̂ ≡
(

dT
ik

d̄T
ik

)
∇ f

(
xk +

∑

i

αi k̂dik +
∑

i

ᾱi k̂ d̄ik

)
,

where ∇ f (y) and ∇2 f (y) denote, respectively the gradient vector and Hessian matrix
of f with respect to y. That is, we project the Hessian and the gradient on the subspace
determined by the search directions. Finally, we update

αi(k̂+1)
= αi k̂ + �αi k̂, ᾱi(k̂+1)

= ᾱi k̂ + �ᾱi k̂ . (6)

In summary, we perform for Step 3c in NSM the operations indicated in Table 3.

2.2 Trust-region scaling method (TRSM)

A second, closely related proposal, computes updates for the steplengths using a trust-
region approach, instead of the direct application of the Newton update. Nevertheless,
it still carries out a linesearch once a sufficient number of steps have been taken, as in
the preceding case. We will denote this algorithm as TRSM.

Consider now the implementation of Step 3c in Algorithm TRSM. Now we obtain
the updates for the steplengths by computing a solution for the trust-region problem

min ḡT
kk̂

(
δαi k̂
δᾱi k̂

)
+ 1

2

(
δαi k̂ δᾱi k̂

)
H̄kk̂

(
δαi k̂
δᾱi k̂

)

s.t
∥∥(

δαi k̂ δᾱi k̂

)∥∥ ≤ �k,

(7)

and then updating the corresponding values using (6), as before. Step 3c in TRSM is
implemented as indicated in Table 4.

6

Table 4 Step 3c performance for TRSM algorithm

Computation of steplength-algorithm TRSM
Step 3c [Computation of αi k̂ and ᾱi k̂] Solve problem (7) and

obtain the updated steplengths from (6)

3 Convergence properties

In this section we study the global convergence properties of the algorithms described
previously. The analysis is conducted on quite general versions of the algorithms, as
we wish to provide theoretical insights beyond those obtained for the computational
tests considered in Sect. 4 for more specific implementations of these algorithms.

Our goal is the computation of local solutions for unconstrained optimization prob-
lems of the form given in (1), where we assume for the results presented in this Section
that f : R

n → R is a function with Lipschitz-continuous second derivatives on some
compact set. These algorithms generate a sequence of iterates {xk} from an initial point
x0 and a combination of directions obtained in each iteration. These directions should
capture the descent and negative curvature available in the iteration.

In order to establish convergence results for the sequence {xk} we need to assume
that problem (1) and the initial point x0 satisfy some regularity conditions. In particular,
in what follows we will assume that the following properties hold:

A1 The level set of f at the initial point,

S0 ≡ {x ∈ R
n : f (x) ≤ f (x0)}

is compact.
A2 The function f has Lipschitz-continuous second derivatives with constant K f

on some open set containing S0, that is,

‖∇2 f (y) − ∇2 f (x)‖ ≤ K f ‖y − x‖,

for any y, x ∈ S0.

We use the 2-norm in all the results presented in this section, except where otherwise
stated. Also, to simplify the notation in what follows we will use gk ≡ ∇ f (xk), g∗ ≡
∇ f (x∗), Hk ≡ ∇2 f (xk) and H∗ ≡ ∇2 f (x∗), where x∗ denotes a limit point of the
sequence {xk}.

Before considering any detailed convergence analysis, note that the basic itera-
tion step in either of the algorithms consists of the computation at xk of the individual
search directions dik and d̄ik followed by two adjustments to determine the next iterate
xk+1:

• the computation of a combination of the directions, that is, the computation of
steplengths αik and ᾱik associated to each search direction to define a combined
direction dk using (3), and

1

7

• the performance of a conventional (backtracking) linesearch on the resulting
combined direction dk to select a steplength ζk as the smallest nonnegative integer
l such that ζk = ξ l satisfies the descent condition

f (xk + ζkdk) ≤ f (xk) + σ
(
ζk gT

k dk + ζ 2
k min

(
0, dT

k Hkdk

))
, (8)

where ξ is a positive constant and 0 < σ < 1/2 is also a prespecified constant.
The next iterate is then defined as xk+1 = xk + ζkdk . From the definition of ζk it
holds

ζk ≤ 1, (9)

although from a convergence point of view any positive upper bound would provide
equivalent results.

The traditional approach to establish the convergence of the sequence {xk} is based
on condition (8) and the satisfaction of some sufficient descent property by dk . In the
case of the proposed algorithms, and due to the use of negative curvature directions,
a first version of the sufficient descent condition considered in the proofs is given by

min
(
ζk gT

k dk, ζ
2
k dT

k Hkdk

)
≤ γ̂ min

(
−‖gk‖2, λmin(Hk)

)
, (10)

for some positive constant γ̂ and all k. The following result shows that these conditions,
together with the requirement that the direction dk is a descent direction,

gT
k dk ≤ 0, (11)

are sufficient to ensure convergence to a second-order critical point.

Theorem 1 Under conditions (8), (10), (11) and assumptions A1 and A2, the sub-
space search algorithm converges to second-order critical points of problem (1).

Proof Consider the sequence of iterates {xk} generated by the algorithm; from
Assumption A1 and condition (8), this sequence contains convergent subsequences
and from Assumption A2 the values of f (xk) will be bounded below. Let I denote
the sequence of iteration indexes corresponding to any one of these convergent sub-
sequences, such that xk → x∗ for k ∈ I.

From conditions (8), (10) and (11) it must hold that

f (xk + ζdk) − f (xk) ≤ σ
(
ζk gT

k dk + ζ 2
k min

(
0, dT

k Hkdk

))

≤ σ min
(
ζk gT

k dk, ζ
2
k dT

k Hkdk

)

≤ σ γ̂ min
(
−‖gk‖2, λmin(Hk)

)
.

But taking limits as k → ∞ along I and using Assumptions A1 and A2, the bound-
edness of f (xk) and the fact that the right-hand side in the preceding inequality is
nonpositive, we obtain

1

8

min
(
−‖g∗‖2, λmin(H∗)

)
= 0 ⇒ ‖g∗‖ = 0, λmin(H∗) ≥ 0.

�

From this basic result, the remaining proofs in this section are aimed at establish-

ing that the directions we use and the combinations we compute to form dk lead to
the satisfaction of conditions (8), (10) and (11). Nevertheless, to attain these results
some conditions must be imposed on the information used to form dk , both on the
search directions and the steplengths. Our main contribution in this section should be
to identify a set of reasonably general conditions and to prove that the desired result
follows from them.

The proofs proceed by establishing sufficient conditions on the combined direc-
tion dk to ensure the satisfaction of the required convergence conditions (8), (10) and
(11). The conditions we introduce are a generalization of the well-known conditions
in the literature for the unconstrained case based on linesearches. We then show that
the proposed algorithms NSM and TRSM compute directions dk that satisfy these
conditions. Note though that this proposed generalization of the conditions presents
some complications. For example, in general a linear combination involving negative
curvature directions has curvature properties that are not linear combinations of the
properties for each individual direction.

We introduce the following conditions on dk :

• We require having descent on the combined direction, that is, we continue assuming
condition (11) introduced above holds.

• Furthermore, whenever‖gk‖2 ≥ | min(0, λmin(Hk))|, that is, we have more descent
that negative curvature in an iteration, we must have

‖dk‖ ≤ κg‖gk‖ (12)

gT
k dk ≤ −γg‖gk‖2, (13)

for positive constants κg, γg .
• Otherwise, if ‖gk‖2 < | min(0, λmin(Hk))| then we must have

‖dk‖ ≤ κH |λmin(Hk)|1/2 (14)

gT
k dk + dT

k Hkdk ≤ −γH |λmin(Hk)|, (15)

for positive constants κH , γH .

These conditions will be established below to hold for the combinations computed
by both algorithms. The following Lemmas show that the preceding conditions are
sufficient to ensure convergence, if ζk is chosen as indicated in (8).

Lemma 1 Under conditions (13) and (15) it holds that

min
(

gT
k dk, dT

k Hkdk

)
≤ γ̂ min

(
−‖gk‖2, λmin(Hk)

)
, (16)

for some positive constant γ̂ and all k.

1

9

Proof Consider two possible cases regarding the amount of descent and negative
curvature available in a given iteration k:

• If we have ‖gk‖2 ≥ | min(0, λmin(Hk))|, from (13) it holds that

min
(

gT
k dk, dT

k Hkdk

)
≤ gT

k dk ≤ −γg‖gk‖2

≤ γg min
(
−‖gk‖2, λmin(Hk)

)
. (17)

• Otherwise, assume that ‖gk‖2 < | min(0, λmin(Hk))|. In this case we have
λmin(Hk) < −‖gk‖2 ≤ 0, and from (15) it follows that

min
(

gT
k dk, dT

k Hkdk

)
≤ 1

2

(
gT

k dk + dT
k Hkdk

)
≤ 1

2γH λmin(Hk)

≤ 1
2γH min

(
−‖gk‖2, λmin(Hk)

)
. (18)

The desired result follows from (17) and (18). �

We can now proceed to prove the satisfaction of conditions (8), (10), and thus the

convergence of the algorithm.

Theorem 2 Under assumptions A1 and A2, and conditions (11)–(15), the sequence
{xk} converges to second-order critical points of problem (1).

Proof We start by proving the existence of a lower bound on the steplength ζk for a
search direction dk satisfying (11)–(15). We prove that all sufficiently small values
of ζ are such that ζdk satisfies condition (8). We define a function of a real variable
�k(ζ) as

�k(ζ) ≡ f (xk + ζdk) − f (xk) − σ
(
ζgT

k dk + ζ 2 min
(

0, dT
k Hkdk

))
. (19)

Function � satisfies

�k(0) = 0, � ′
k(0) = (1 − σ)gT

k dk, � ′′
k (0) = dT

k Hkdk − 2σ min
(

0, dT
k Hkdk

)
.

Note that any values of ζ such that �k(ζ) < 0 satisfy descent condition (8).
From (11) we have that � ′

k(0) = (1 − σ)gT
k dk ≤ 0 and from (16) in Lemma 1 we

also have min(� ′
k(0),� ′′

k (0)) < 0 unless we are at a second-order critical point.
Also, note that Assumption A2 implies for any ζ such that xk + ζdk ∈ S0,

|� ′′
k (ζ) − � ′′

k (0)| = |dT
k (∇2 f (xk + ζdk) − Hk)dk | ≤ K f ζ‖dk‖‖dk‖2.

As a consequence, we have that

� ′′
k (ζ) ≤ � ′′

k (0) + K f ζ‖dk‖3. (20)

1

10

• Consider first those iterations where ‖gk‖2 ≥ | min(0, λmin(Hk))|. From the
second-order Taylor series expansion for �,�(0) = 0 and (20) we have,

�k(ζ) ≤ � ′
k(0)ζ + 1

2� ′′
k (0)ζ 2 + 1

2 K f ζ
3‖dk‖3.

Using the bound (12) in this expression we have

�k(ζ) ≤ � ′
k(0)ζ + 1

2� ′′
k (0)ζ 2 + 1

2 K f ζ
3κ3

g‖gk‖3. (21)

From Assumptions A1 and A2, there exist constants K H and Kg such that ‖Hk‖ ≤
K H and ‖gk‖ ≤ Kg for all iterations k. Using these bounds on � ′′

k (0) together
with (12) we have

|� ′′
k (0)| = |dT

k Hkdk − 2σ min
(

0, dT
k Hkdk

)
| ≤ K H ‖dk‖2 ≤ K H κ2

g‖gk‖2. (22)

Replacing this bound in (21) and using ‖gk‖3 ≤ Kg‖gk‖2, � ′
k(0) = (1 − σ)gT

k dk

≤ 0, together with (13) and (9), we obtain

�k(ζ) ≤ (1 − σ)gT
k dkζ + 1

2 K H κ2
g‖gk‖2ζ 2 + 1

2 K f Kgκ
3
g‖gk‖2ζ 3

≤ −(1 − σ)γg‖gk‖2ζ + 1
2 K H κ2

g‖gk‖2ζ 2 + 1
2 K f Kgκ

3
g‖gk‖2ζ 2

≤ ζ‖gk‖2
(
−(1 − σ)γg + 1

2κ2
g

(
K H + K f Kgκg

)
ζ
)
.

As a consequence, letting ζ̃ = (2(1 − σ)γg)/(κ
2
g (K H + K f Kgκg)), the values of

ζ in [0, ζ̃] satisfy (8) and if we use a backtracking search the value of ζ found in
iteration k, ζk , will satisfy ζk ≥ ζ̃ /2.

• Otherwise, for those iterations k satisfying −‖gk‖2 > min(0, λmin(Hk)) =
λmin(Hk), using (14) in (20),

� ′′
k (ζ) ≤ � ′′

k (0) + K f ζκ3
H |λmin(Hk)|3/2.

As in the preceding case, from Assumptions A1 and A2 there exists a constant
K H such that ‖Hk‖ ≤ K H and |λmin(Hk)| ≤ K H for all iterations k. Thus, the
previous bound implies also

� ′′
k (ζ) ≤ � ′′

k (0) + K f K 1/2
H κ3

H |λmin(Hk)|ζ. (23)

For the first and second derivatives of �, letting

ωk =
{

1 − 2σ if dT
k Hkdk ≤ 0

1 otherwise,

and noting that 1 ≥ ωk ≥ 1 − 2σ , we have � ′(0) = (1 − σ)gT
k dk ≤ 0 and

� ′′
k (0) = ωkdT

k Hkdk . Replacing these values in the second-order Taylor series

1

11

expansion for � around zero,

�k(ζ) ≤ (1 − σ)gT
k dkζ + 1

2ωkdT
k Hkdkζ

2 + 1
2 K f κ

3
H |λmin(Hk)|ζ 3. (24)

If we use gT
k dk ≤ 0 from (11), (9) and 1−σ ≥ ωk/2, as σ ≤ 1/2 and ωk ≥ 1−2σ ,

we have

(1 − σ)ζgT
k dk ≤ 1

2ωkζgT
k dk ≤ 1

2ωkζ
2gT

k dk,

and making use of (15),

(1 − σ)gT
k dkζ + 1

2ωkdT
k Hkdkζ

2 ≤ 1
2ωkζ

2
(

gT
k dk + dT

k Hkdk

)

≤ 1
2 (1 − 2σ)ζ 2

(
gT

k dk + dT
k Hkdk

)

≤ − 1
2 (1 − 2σ)ζ 2γH |λmin(Hk)|.

Replacing this bound, gT
k dk ≤ 0 and (23) in (24) we obtain

�k(ζ) ≤ 1
2ζ 2|λmin(Hk)|

(
−(1 − 2σ)γH + K f K 1/2

H κ3
H ζ

)
.

As a consequence, if in this case we let ζ̃ = ((1 − 2σ)γH)/(K f K 1/2
H κ3

H), the
values of ζ in [0, ζ̃] satisfy (8) and if we use a backtracking search the value of ζ

found in iteration k, ζk , will satisfy ζk ≥ ζ̃ /2.

From the preceding results, (8) and (9), letting

ζ̄ = 1
2 min

(
2(1 − σ)γg

κ2
g (K H + K f Kgκg)

,
(1 − 2σ)γH

K f K 1/2
H κ3

H

)
,

for all k the values of ζk satisfy

ζk ≥ ζ̂ ≡ min(1, ζ̄) > 0. (25)

Note that dk satisfies (16) and ζk satisfies (25). As a consequence of these inequal-
ities, min

(
gT

k dk, ζkdT
k Hkdk

) ≤ 0, and

min
(

gT
k (ζkdk), (ζkdk)

T Hk(ζkdk)
)

≤ ζ̂ min
(

gT
k dk, ζkdT

k Hkdk

)
. (26)

Also, from (11) and (25) implying ζ̂ ≤ 1, if dT
k Hkdk ≥ 0,

min
(

gT
k dk, ζkdT

k Hkdk

)
=gT

k dk =min
(

gT
k dk, dT

k Hkdk

)
≤ ζ̂ min

(
gT

k dk, dT
k Hkdk

)
,

(27)

1

12

while if dT
k Hkdk < 0,

min
(

gT
k dk, ζkdT

k Hkdk

)
≤ min

(
gT

k dk, ζ̂dT
k Hkdk

)
≤ min

(
ζ̂ gT

k dk, ζ̂dT
k Hkdk

)

≤ ζ̂ min
(

gT
k dk, dT

k Hkdk

)
. (28)

Putting together (26), (27), (28) and (16) we obtain

min
(

gT
k (ζkdk), (ζkdk)

T Hk(ζkdk)
)

≤ γ̂ ζ̂ 2 min
(
−‖gk‖2, λmin(Hk)

)
.

As a consequence, Theorem 1 applies and the desired convergence result follows. �

The next step in the proofs will be to prove that direction dk , computed by the

proposed algorithms, satisfies conditions (11)–(15). This result depends on both the
properties of the descent and negative curvature directions used in the combination
that defines dk , (3), and on conditions on the choices of the steplengths αik and ᾱik .

The conditions we impose on the directions are independent of the combination
algorithm used, either NSM or TRSM. They are also fairly standard in the literature
for those algorithms that use a single search direction, and are presented below.

We assume that the descent directions computed in iteration k, dik , satisfy the fol-
lowing conditions:

gT
k dik ≤ −β1‖gk‖2, ‖dik‖ ≤ β2‖gk‖, (29)

for some positive constants β1, β2, and whenever ‖gk‖ > 0 there is at least one dik

different from zero.
The negative curvature directions in iteration k, d̄ik , if they exist, are assumed to

satisfy

d̄T
ik Hkd̄ik ≤ β3 min(0, λmin(Hk)), d̄T

ik gk ≤ 0, (30)

‖d̄ik‖ ≤ β4| min(0, λmin(Hk))|1/2, (31)

where λmin(A) denotes the smallest eigenvalue of A, and whenever λmin(Hk) < 0 at
least one d̄ik is different from zero. The values β3 and β4 denote positive constants.
Again, these conditions are quite standard, except perhaps for (31), but some bounded-
ness condition needs to be imposed, as negative curvature directions have no inherent
scale.

If no directions are available in a given iteration satisfying these conditions, we
must be at a second-order critical point. To simplify the arguments in the proofs we
impose the condition that all the directions we consider in a given iteration k, dik and
d̄ik , are linearly independent. Otherwise, we remove some of them until this condition
is attained, while satisfying the preceding conditions. In particular, whenever we have
descent we must include at least one sufficient descent direction, and whenever we
have negative curvature, we must include at least one direction of negative curvature
(although both directions may be the same one, if it satisfies the required conditions).

1

13

This requirement implies the number of directions used in any iteration cannot be
larger than n, the space dimension. Including any additional linear combinations of
the chosen directions need not provide any particular advantage as the directions will
be combined before a linesearch is performed in each iteration. As a particular case, in
dimension two and in the presence of both descent and negative curvature we would
choose at most two linearly independent directions: a descent direction and a negative
curvature direction, and we would discard the rest. If both directions were available,
any direction of interest could be obtained as a combination of those two directions.

A second set of required conditions are related to the steplengths αik and ᾱik . These
conditions are specific to each algorithm and we present them in separate subsections,
together with the proofs that conditions (11)–(15) hold for both proposed algorithms.

3.1 The subspace search approach

We consider first the convergence details of algorithm NSM. In each iteration this
algorithm finds a combination dk of the available directions, defined in (3) in terms of
nonegative scalars αik and ᾱik , using a Newton iteration on the scalars. In this subsec-
tion we introduce conditions on these scalars, taking into account that there are many
possible ways to conduct a modified Newton iteration to obtain the desired values. We
have looked for sufficient conditions that are simple to impose and as unrestrictive
as possible regarding the Newton implementation to use. In particular, note that the
combination does not need to satisfy sufficent descent conditions, as the posterior
linesearch will take care of that. These conditions are described below.

1. The steplengths must be nonnegative and bounded above in the algorithm, that is,
there exists a positive constant κα ≥ 1 such that for all k,

0 ≤ αik ≤ κα, 0 ≤ ᾱik ≤ κα. (32)

The nonnegativity of the steplengths ensures that the resulting step dk will be a
descent direction, as from (29) and (30) each one of the directions dik and d̄ik is a
descent direction. The upper bound is a safeguard against unreasonable implemen-
tation choices, in particular a reasonable and common choice would be to choose
κα = 1. This condition can be enforced by projecting onto the corresponding box.

2. If in a given iteration k we have significant descent compared to the negative curva-
ture available in that iteration, that is, if no negative curvature exists (λmin(Hk) ≥
0) or

‖gk‖2 ≥ | min(0, λmin(Hk))| (33)

holds, then the steplength of at least one of the descent directions must be bounded
below, that is, there must exist a positive constant γ̄ such that for all these iterations,

max
i

αik ≥ γ̄ . (34)

1

14

This condition is similar to the boundedness condition in the classical framework,
at least for the descent directions. Again, if it does not hold it is enough to modify
the largest value of αik to make it equal to γ̄ .

3. We also need conditions on the interaction of the different directions, in particu-
lar the negative curvature directions. If we have negative curvature and ‖gk‖2 <

|λmin(Hk)| holds in iteration k, implying that we have more negative curvature
than descent, then we require

λmax

(
DT

k Hk Dk

)
≤ δ1 max

i
d̄T

ik Hkd̄ik, (35)

where Dk denotes the matrix having as its columns the directions dik and d̄ik

having positive values for their steplengths, and

max
i

ᾱik ≥ γ̄ , (36)

to hold for some positive values δ1 < 1 and γ̄ , independent of the iteration,
A strategy to satisfy (35) could be to fix values of αik and ᾱik to zero until it is
satisfied. Note that if just one value of ᾱik is different from zero the condition is
trivially satisfied. Regarding (36), if it is not satisfied it would be enough to fix
the largest value of ᾱik to γ̄ , for example.

The next Lemma shows that under the preceding conditions (11)–(15) are satisfied.

Lemma 2 Under Assumptions A1, A2 and conditions (34), (36) and (35), for all
iterations k of algorithm NSM conditions (11)–(15) hold.

Proof From the definition of dk , (3), conditions (29), (30) and the nonnegativity of
αik and ᾱik , we have

gT
k dk =

∑

i

αik gT
k dik +

∑

i

ᾱik gT
k d̄ik ≤ 0.

Thus, (11) holds.
Consider the case when ‖gk‖2 ≥ | min(0, λmin(Hk))|. Again from the definition of

d, (3), (29), (31) and (32),

‖dk‖ ≤
∑

i

αik‖dik‖ +
∑

i

ᾱik‖d̄ik‖

≤
∑

i

καβ2‖gk‖ +
∑

i

καβ4 min
(
‖gk‖, | min(0, λmin(Hk))|1/2

)

≤ nκαβ2‖gk‖ + nκαβ4‖gk‖
≤ nκα(β2 + β4)‖gk‖,

implying that (12) holds.

1

15

Also, from (3), (29), (30) and (34),

gT
k dk =

∑

i

αik gT
k dik +

∑

i

ᾱik gT
k d̄ik ≤ −γ̄ ‖gk‖2,

implying now that (13) holds.
Consider the second case, that is, iterations k where ‖gk‖2 < | min(0, λmin(Hk))|.

Note that for these iterations it also holds that ‖gk‖ < |λmin(Hk)|1/2.
For these iterations, from (3), (29), (31) and the condition ‖gk‖ < |λmin(Hk)|1/2

we have

‖dk‖ ≤
∑

i

αik‖dik‖ +
∑

i

ᾱik‖d̄ik‖

≤
∑

i

καβ2‖gk‖ +
∑

i

καβ4| min(0, λmin(Hk))|1/2

≤ nκα(β2 + β4)|λmin(Hk)|1/2,

and (14) holds.
Finally, note that from (11) we have

gT
k dk + dT

k Hkdk ≤ dT
k Hkdk = aT

k DT
k Hk Dkak ≤ λmax

(
DT

k Hk Dk

)
‖ak‖2,

where ak Denotes the vector of steplengths (αik, ᾱik) and Dk denotes the matrix hav-
ing as columns the search directions (dik, d̄ik). From (36) we have ‖ak‖ ≥ γ̄ , and
from (35), (30) and the preceding bounds

gT
k dk + dT

k Hkdk ≤ δ1 max
i

d̄T
ik Hkd̄ik γ̄

2 ≤ δ1γ̄
2β3 min(0, λmin(Hk)),

implying that (15) holds. �

From Lemma 2 and Theorems 2 and 1, under the preceding conditions (32)–(36),

we have shown that algorithm NSM converges to second-order critical points of prob-
lem (1).

3.2 Trust-region and linesearch approach

Consider now the case of Algorithm TRSM, combining a trust-region approach and
a linesearch on the direction obtained from the trust region. In iteration k of this
algorithm, the descent and negative curvature directions are combined by solving a
trust-region problem of the form

mina gT
k Dka + 1

2 aT DT
k Hk Dka

s.t. ‖a‖ ≤ �k,
(37)

1

16

where Dk is a matrix having as columns the descent and negative curvature directions
dik and d̄ik and �k is a positive scalar.

We impose the condition that the value of �k satisfies for all k

�̄ ≤ �k ≤ �̃, (38)

where �̄ and �̃ are two prespecified constants. Note that in this algorithm, due to the
use of a linesearch to compute the final size of dk , it should be possible to select the
value of �k (and those of �̄ and �̃) with greater freedom than in the case of a pure
trust-region algorithm without impacting its convergence properties, as the linesearch
should correct for any deviation in the scale of dk .

This algorithm provides a much more precise definition for dk , compared to Algo-
rithm NSM. As a consequence, we do not need additional conditions such as (34)–(36),
used in the convergence proof of NSM.

Let ak denote the optimal value for a in (37), and define our search direction as
dk = Dkak . Then, as in the preceding case, a standard linesearch in carried out along
this direction to find a scalar ζk satisfying condition (8) for ζkdk .

The following result shows that conditions (11)–(15) also hold for algorithm
TRSM.

Lemma 3 Under condition (38), for all iterations k, conditions (11)–(15) hold for
algorithm TRSM.

Proof Consider the three different cases for the solution of (37):

Case I λmin(Hk) > 0, ‖ak‖ < �k and ak = −(DT
k Hk Dk)

−1 DT
k gk .

Case II ‖ak‖ = �k and ak = −(DT
k Hk Dk + κ I)−1 DT

k gk for an appropriate
positive value κ > − min(0, λmin(DT

k Hk Dk)).
Case III DT

k gk is orthogonal to all eigenvectors associated with λmin(DT
k Hk Dk)

< 0. For this case ‖ak‖ = �k and ak = −(DT
k Hk Dk − λmin(DT

k Hk

Dk)I)+DT
k gk+ηvmin, where η is an appropriate scalar, vmin is an eigen-

vector associated with λmin(DT
k Hk Dk) and A+ denotes the generalized

inverse of A (a matrix with the same eigenvectors as A, and eigenvalues
equal to the inverses of the eigenvalues of A if different from zero, or
zero otherwise).

Let

τk =
⎧
⎨

⎩

0 if Case I holds,
κ if Case II holds,
−λmin

(
DT

k Hk Dk
)

if Case III holds.

1

17

From dk = Dkak and the fact that for Cases I and II DT
k Hk Dk + τk I is a positive

definite matrix, we have ak = −(DT
k Hk Dk + τk I)−1 DT

k gk for those cases and

dk = −Dk

(
DT

k Hk Dk + τk I
)−1

DT
k gk

gT
k dk = −gT

k Dk

(
DT

k Hk Dk + τk I
)−1

DT
k gk ≤ −

∥∥DT
k gk

∥∥2

λmax
(
DT

k Hk Dk
) + τk

. (39)

Note that

A−1 B A−1 − A−1 = A−1(B − A)A−1.

Letting A = DT
k Hk Dk + τk I and B = DT

k Hk Dk and using the preceding results we
have

gT
k dk + dT

k Hkdk = −gT
k Dk

(
DT

k Hk Dk + τk I
)−1

DT
k gk

+gT
k Dk

(
DT

k Hk Dk + τk I
)−1

DT
k Hk Dk

(
DT

k Hk Dk + τk I
)−1

DT
k gk

= −τk gT
k Dk

(
DT

k Hk Dk + τk I
)−2

DT
k gk

= −τk‖
(

DT
k Hk Dk + τk I

)−1
DT

k gk‖2

= −τk‖ak‖2. (40)

For Case III we have

dk = −Dk

(
DT

k Hk Dk + τk I
)+

DT
k gk + ηDkvmin. (41)

In this case it holds that gT
k Dkvmin = 0, and together with (41) we have

gT
k dk = −gT

k Dk

(
DT

k Hk Dk + τk I
)+

DT
k gk ≤ −

∥∥DT
k gk

∥∥2

λmax
(
DT

k Hk Dk
) + τk

, (42)

as before.
Combining these results, (11) follows from (39) and (42).
For this case we also have

gT
k dk + dT

k Hkdk = −gT
k Dk

(
DT

k Hk Dk + τk I
)+

DT
k gk

+ gT
k Dk

(
DT

k Hk Dk +τk I
)+

DT
k Hk Dk

(
DT

k Hk Dk +τk I
)+

DT
k gk

− 2ηgT
k Dk

(
DT

k Hk Dk + τk I
)+

DT
k Hk Dkvmin

+ η2vT
min DT

k Hk Dkvmin. (43)

1

18

To simplify this expression, let DT
k Hk Dk = V �V T , the spectral decomposition of

the matrix DT
k Hk Dk , where we have omitted the iteration index k. Also, let vi denote

the i-th eigenvector of DT
k Hk Dk (the i-th column of V), λi be the i-th eigenvalue of the

same matrix, and ui = vT
i Dk gk . We have that (DT

k Hk Dk +τk I)+ = V (�+τk I)+V T ,
and

−gT
k Dk

(
DT

k Hk Dk + τk I
)+

DT
k gk

+ gT
k Dk

(
DT

k Hk Dk + τk I
)+

DT
k Hk Dk

(
DT

k Hk Dk + τk I
)+

DT
k gk

= −gT
k Dk V (� + τk I)+V T DT

k gk + gT
k Dk V (� + τk I)+�(� + τk I)+V T DT

k gk

= −
∑

i :(λi +τk)�=0

1

λi + τk
u2

i +
∑

i :(λi +τk)�=0

λi

(λi + τk)2 u2
i =

∑

i :(λi +τk)�=0

−τk

(λi + τk)2 u2
i

= −τk gT
k Dk

((
DT

k Hk Dk + τk I
)+)2

DT
k gk . (44)

Also, from the preceding definitions of vmin and τk ,

DT
k Hk Dkvmin = −τkvmin,

(
DT

k Hk Dk + τk I
)+

vmin = 0, (45)

implying

−2ηgT
k Dk

(
DT

k Hk Dk + τk I
)+

DT
k Hk Dkvmin + η2vT

min DT
k Hk Dkvmin

= −τkη
2vT

minvmin. (46)

As a consequence, replacing (44) and (46) in (43) we have

gT
k dk + dT

k Hkdk = −τk gT
k Dk

((
DT

k Hk Dk + τk I
)+)2

DT
k gk − τkη

2vT
minvmin,

and using again (45),

gT
k dk + dT

k Hkdk = −τk gT
k Dk

((
DT

k Hk Dk + τk I
)+)2

DT
k gk

+ 2τkηgT
k Dk

(
DT

k Hk Dk + τk I
)+

vmin − τkη
2vT

minvmin

= −τk

∥∥∥∥−
(

DT
k Hk Dk + τk I

)+
DT

k gk + ηvmin

∥∥∥∥
2

= −τk‖ak‖2

(47)

From (40) and (47) we have

gT
k dk + dT

k Hkdk = −τk‖ak‖2 ≤ 0, (48)

1

19

where ak denotes the solution of (37) and τk is a value satisfying τk ≥ − min(0, λmin
(DT

k Hk Dk)).
We now consider the satisfaction of bounds (12) and (13) under the assumption that

‖gk‖2 ≥ | min(0, λmin(Hk))| (49)

holds. From (29) and our condition that at least one descent direction must be selected
in this case,

∃i dT
ik gk ≤ −β1‖gk‖2 ⇒ ‖Dk gk‖ ≥ β1‖gk‖2. (50)

Also from (49), (29) and (31),

‖Dk‖2 ≤ ‖Dk‖2
F =

∑

i

‖dki‖2 +
∑

j

‖d̄k j‖2

≤
∑

i

β2
2‖gk‖2 +

∑

j

β2
4 min(‖gk‖2, | min(0, λmin(Hk))|)

≤ nβ2
2‖gk‖2 + nβ2

4‖gk‖2 = n
(
β2

2 + β2
4

)
‖gk‖2, (51)

where n, the space dimension, is a bound on the maximum number of directions used
by the algorithm in a given iteration and ‖ · ‖F denotes the Frobenius norm. From this
bound and ‖ak‖ ≤ �k ≤ �̃k we have

‖dk‖2 = ‖Dkak‖2 ≤ ‖Dk‖2‖ak‖2 ≤ �̃2n
(
β2

2 + β2
4

)
‖gk‖2,

establishing (12).
As in the preceding proofs, let K H denote a positive constant such that ‖Hk‖ ≤ K H

for all k; its existence follows from Assumptions A1 and A2. Using the already estab-
lished bound (11), (50) and (51), we have

gT
k dk ≤ −

∥∥DT
k gk

∥∥2

λmax
(
DT

k Hk Dk
) + τk

≤ − β2
1‖gk‖4

K H ‖Dk‖2 + τk

≤ − β2
1

n
(
β2

2 + β2
4

)
K H + τk/‖gk‖2

‖gk‖2. (52)

To refine this bound further and to obtain (13), for a given iteration k we need to
consider the three cases introduced in the first part of the proof.

• Case I: it holds that τk = 0. Thus from (52)

gT
k dk ≤ − β2

1

n
(
β2

2 + β2
4

)
K H

‖gk‖2. (53)

1

20

• Case II: from ‖ak‖ = �k, ak = −(DT
k Hk Dk + τk I)−1 DT

k gk, ‖Hk‖ ≤ K H and
(51) we have

�k =
∥∥∥∥
(

DT
k Hk Dk + τk I

)−1
DT

k gk

∥∥∥∥ ≤
∥∥DT

k gk
∥∥

λmin
(
DT

k Hk Dk
) + τk

⇒ τk ≤
∥∥DT

k gk
∥∥

�k
− λmin

(
DT

k Hk Dk

)
≤ ‖Dk‖‖gk‖

�̄k
+ K H ‖Dk‖2

≤
√

n
(
β2

2 + β2
4

)

�̄k
‖gk‖2 + K H n

(
β2

2 + β2
4

)
‖gk‖2

⇒ τk

‖gk‖2 ≤
√

n
(
β2

2 + β2
4

)

�̄k
+ nK H

(
β2

2 + β2
4

)
.

Replacing this bound in (52) we obtain

gT
k dk ≤ − β2

1

2n
(
β2

2 + β2
4

)
K H +

√
n

(
β2

2 + β2
4

)
/�̄k

‖gk‖2. (54)

• Case III: we have τk = −λmin(Hk), and using (51) we have that

τk

‖gk‖2 = −λmin
(
DT

k Hk Dk
)

‖gk‖2 ≤ ‖Hk‖‖Dk‖2

‖gk‖2

≤ K H n
(
β2

2 + β2
4

) ‖gk‖2

‖gk‖2 ≤ nK H

(
β2

2 + β2
4

)
,

and replacing this bound in (52),

gT
k dk ≤ − β2

1

2n
(
β2

2 + β2
4

)
K H

‖gk‖2. (55)

The bound in (13) is a consequence of (53), (54) and (55).
For the last part of the proof, consider iterations where we have ‖gk‖2 < − min

(0, λmin(Hk)). Note that in this case λmin(Hk) < 0. From these conditions, (29) and
(31), and ‖ak‖ ≤ �k ≤ �̃ we have

‖dk‖2 = ‖Dkak‖2 ≤ ‖Dk‖2‖ak‖2 ≤ �̃2‖Dk‖2
F = �̃2

(∑
i‖dki‖2 + ∑

j‖d̄k j‖2
)

≤ �̃2
(∑

iβ
2
2‖gk‖2 + ∑

jβ
2
4 |λmin(Hk)|

)

≤ �̃2
(∑

iβ
2
2 |λmin(Hk)| + ∑

jβ
2
4 |λmin(Hk)|

)

≤ �̃2n
(
β2

2 + β2
4

)
|λmin(Hk)|.

1

21

This result implies (14).
To prove (15), note that for those iterations satisfying ‖gk‖2 < − min(0, λmin(Hk))

we must have that either case II or III holds, implying that ‖ak‖ = �k ≥ �̄. Also,
τk ≥ − min(0, λmin(DT

k Hk Dk)). As a consequence,

−τk‖ak‖2 ≤ min
(

0, λmin

(
DT

k Hk Dk

))
�̄2.

Furthermore, as the algorithm requires the use of a direction of negative curvature (at
least) in that iteration, it must hold that some diagonal element of DT

k Hk Dk satisfies
d̄T

ik Hkd̄ik ≤ β3λmin(Hk) from (30), implying λmin(DT
k Hk Dk)) ≤ β3λmin(Hk) < 0.

Replacing these bounds in (48) we obtain

gT
k dk + dT

k Hkdk = −τk‖ak‖2 ≤ �̄2β3λmin(Hk),

that implies (15). �

Lemma 3 and Theorems 2 and 1, under condition (38), imply the convergence of
algorithm TRSM to second-order critical points of problem (1).

In the following section we present a particular implementation of this approach
that selects d1k = −H−1

k gk , the Newton direction, in all iterations where it is defined.
It also chooses (ak)1 = 1 and computes the remaining components of ak solving
the equivalent version of the trust-region problem (37). In this particular case, letting

a = (
1 āT

)T
and Dk = (

d1k D̄k
)
, where D̄k denotes a matrix having as columns all

search directions, except for the Newton direction, and ā denotes the corresponding
coefficients, this subproblem has the form

minā (gk + Hkd1k)
T D̄k ā + 1

2 āT D̄T
k Hk D̄kā

s.t. ‖ā‖ ≤ �̄k,

but as gk + Hkd1k = 0, we obtain the equivalent problem

minā
1
2 āT D̄T

k Hk D̄kā

s.t. ‖ā‖ ≤ �̄k .
(56)

A solution of this problem is

• āk = 0 if λmin(D̄T
k Hk D̄k) > 0, or

• ‖āk‖ = �̄k and

D̄T
k Hk D̄k āk = λmin

(
D̄T

k Hk D̄k

)
āk,

otherwise, that is, an eigenvector associated with the smallest eigenvalue of
λmin(D̄T

k Hk D̄k).

1

22

And as a consequence, the search direction for the linesearch part of the algorithm
is given by dk = d1k + D̄k āk = d1k + d̄k , where d̄k is either equal to zero if the
matrix Hk is positive definite, or a direction of negative curvature satisfying (30) and
(31) otherwise, and with a size that is bounded below. Thus, the preceding conditions
introduced for the combination of directions also hold in this case and the algorithm
also converges to second-order critical points.

4 Implementation and numerical results

4.1 Implementation of the algorithms

The algorithms we have chosen to implement and test in this paper are particular
versions of those described in Sect. 2, algorithms NSM and TRSM. In the preceding
section we have studied the convergence properties of the more general versions of
the algorithms, but these general versions must be specified in greater detail before
they can be implemented. In the following paragraphs we describe the specific imple-
mentations we have used in our numerical experiments.

• Search directions. We compute just two descent directions, a Newton direction d1k

and the negative gradient d2k ,

d1k = −B−1∇ f (xk), d2k = −∇ f (xk),

where B = ∇2 f (xk), if ∇2 f (xk) is positive definite, otherwise, B is a suitable
approximation for ∇2 f (xk) to ensure that condition (29) is satisfied.
We also use a single negative curvature direction, that we denote as d̄3k , whenever
it is available at iteration k and satisfies conditions (30) and (31).

• Nonnegative steplengths. We introduce an additional step in algorithm NSM to
ensure that the steplengths remain positive and bounded in all iterations. For a
given positive constant κα we compute:

Step 3c’ [Projection] Let α̃2(k̂+1)
and α̃3(k̂+1)

be the values obtained from
Step 3c. Set α2(k̂+1)

= min(max(0, α̃2(k̂+1)
), κα)

and ᾱ3(k̂+1)
= min(max(0, α̃3(k̂+1)

), κα).

After this projection step, the resulting combination of directions dk is still a descent
direction, as it is a nonnegative linear combination of descent directions.
From a theoretical point of view, this step ensures the satisfaction of condition (32)
for the gradient and negative curvature direction.

• Unit Newton step. For both algorithms the value for the search direction in iteration
k, dk , has been obtained by fixing α1k̂ = 1, that is, the step taken along the Newton
direction is set to 1 before the linesearch step (Step 3e) is carried out.
If in addition to this, the initial values for the other steplengths, α20 and α30, are
taken to be equal to zero, close to the solution we may take Newton steps, and we
may attain a quadratic rate of convergence.

1

23

Note that this choice of step for the Newton direction does not affect the conver-
gence proofs. For algorithm NSM it ensures the satisfaction of condition (34).
Regarding algorithm TRSM, the convergence for this case has been already dis-
cussed at the end of Sect. 3.

4.2 Computational experiments

We have carried out some computational experiments to compare the two proposals
described in the preceding sections with an implementation of a modified linesearch
Newton’s method (LSNM), that is, an implementation of Newton’s method including
a modification of the Hessian matrix to compute the descent direction in those itera-
tions where significant negative curvature is detected, as well as an implementation
of a more sophisticated Newton’s method using the Moré and Sorensen (15) approach
(MSNM) that incorporates negative curvature through a quadratic curvilinear search.

Regarding the computation of the Newton direction and the negative curvature
direction, an efficient method to compute both directions is the modified Cholesky
factorization proposed by Gill and Murray (7). This procedure allows the computation
of a negative curvature direction using the same factorization used for the determi-
nation of the modified Newton direction; in this manner, the computational cost to
obtain the direction of negative curvature is almost null. An alternative factorization
which may be used is the one proposed by Bunch and Parlett (1). In our computational
experiments we have obtained similar results for both factorizations. In this section,
we show the results obtained using the modified Cholesky factorization.

Numerical results have been obtained for a number of test problems from the CUTEr
collection (11). We have included the 119 nonlinear unconstrained problems of dimen-
sion between 1 and 500, having continuous second derivatives, to ensure that the
directions of interest were available for all of them.

The algorithms and the test problems have been implemented and executed using
MATLAB 6.5 for Linux. In all cases we have considered the default starting points x0
provided by CUTEr.

The algorithms introduced in Sect. 2 use some parameters. For our implementation,
we have chosen the values σ = 10−9 (σ ∈ (0, 1/2)), ξ = 0.5, δ = �0 = k̂max = 1;
the convergence tolerance ω∗ specifies the final accuracy requested by the user, and
it has been set to the value 10−8. The maximum number of iterations allowed was set
to 1,000.

4.2.1 Analysis of the results

Tables 5 and 6 present the numerical results obtained for the different algorithms. In
these tables we have used the following notation:

• n: Number of variables.
• iter: Iteration count.
• fgeval: Number of function and gradient evaluations.
• LSNM: Line search Newton method
• MSNM: Moré-Sorensen Newton method.

1

24

Table 5 Overall comparison of iteration and function evaluation counts

Problem n Iterations Function evaluations

LSNM MSNM NSM TRSM LSNM MSNM NSM TRSM

AKIVA 2 6 6 6 6 7 7 7 7

ALLINITU 4 6 9 7 6 9 12 21 10

ARGLINA 200 1 1 1 1 2 2 2 2

ARWHEAD 500 6 6 6 6 7 7 7 7

BARD 3 9 12 9 9 10 19 10 10

BDQRTIC 500 9 9 9 9 10 10 10 10

BEALE 2 6 6 6 6 39 23 41 41

BIGGS6 6 39 71 27 24 67 113 73 79

BOX3 3 8 8 8 8 9 9 9 9

BRKMCC 2 3 3 3 3 4 4 4 4

BROWNAL 200 15 32 26 13 148 522 398 111

BROWNBS 2 6 8 6 6 73 43 77 77

BROWNDEN 4 8 8 8 8 9 9 9 9

BROYDN7D 500 82 84 84 82 5,208 5,216 5,386 5,329

BRYBND 500 10 11 10 10 15 16 19 19

CHNROSNB 50 41 62 41 41 60 120 77 77

CLIFF 2 27 27 27 27 28 28 28 28

CRAGGLVY 500 14 14 14 14 15 15 15 15

CUBE 2 26 27 17 20 37 35 104 58

DECONVU 61 >1,000 179 >1,000 >1,000 − 1,757 − −
DENSCHNA 2 6 6 6 6 7 7 7 7

DENSCHNB 2 6 6 6 6 35 21 37 37

DENSCHNC 2 10 10 10 10 11 11 11 11

DENSCHND 3 45 48 45 45 76 69 75 73

DENSCHNE 3 11 9 11 11 18 10 20 20

DENSCHNF 2 6 6 6 6 7 7 7 7

DIXMAANA 300 5 309 6 6 22 3,768 19 19

DIXMAANB 300 114 256 78 23 2,045 3,299 2,052 224

DIXMAANC 300 151 288 51 11 2,526 4,230 1,188 120

DIXMAAND 300 167 380 89 25 3,501 4,999 2,548 355

DIXMAANE 300 33 264 6 18 235 2,088 34 197

DIXMAANF 300 201 381 168 22 4,569 5,471 4,642 237

DIXMAANG 300 205 488 135 45 4,234 7,752 3,687 598

DIXMAANH 300 236 566 44 27 4,777 7,427 646 336

DIXMAANI 300 34 277 17 15 231 2,447 151 133

DIXMAANJ 300 245 404 154 273 4,347 6,740 3,566 9,332

DIXMAANK 300 253 598 203 179 4,263 8,270 5,697 4,304

DIXMAANL 300 285 603 107 70 5,519 9,716 1,672 1,383

DIXON3DQ 100 1 1 1 1 2 2 2 2

1

25

Table 5 continued

Problem n Iterations Function evaluations

LSNM MSNM NSM TRSM LSNM MSNM NSM TRSM

DJTL 2 >1,000 >1,000 >1,000 >1,000 − − − −
DQDRTIC 500 1 1 1 1 2 2 2 2

DQRTIC 500 27 27 27 27 28 28 28 28

EDENSCH 36 12 12 12 12 13 13 13 13

ENGVAL2 3 15 14 15 15 21 17 20 20

ERRINROS 50 32 35 32 28 85 113 127 112

EXPFIT 2 5 9 5 5 8 14 10 10

FLETCHCR 100 157 298 148 150 184 585 259 271

FMINSURF 121 30 15 35 30 266 59 413 314

FREUROTH 500 37 42 8 8 4,646 5,426 595 595

GENROSE 500 624 >1,000 >1,000 >1,000 41,661 − − −
GROWTHLS 3 19 26 28 15 36 44 79 44

GULF 3 22 20 23 24 49 61 69 95

HAIRY 2 28 25 41 16 277 255 198 143

HATFLDD 3 17 23 17 20 21 31 23 30

HATFLDE 3 17 25 17 22 23 44 27 72

HEART6LS 6 499 399 703 434 1,693 1,480 3,646 2,369

HEART8LS 8 304 211 171 203 1,034 818 992 1,108

HELIX 3 15 12 15 15 23 25 31 31

HIELOW 3 5 6 4 4 7 10 8 8

HILBERTA 2 1 1 1 1 2 2 2 2

HILBERTB 10 1 1 1 1 2 2 2 2

HIMMELBB 2 11 9 12 13 13 11 16 17

HIMMELBF 4 >1,000 >1,000 >1,000 >1,000 − − − −
HIMMELBG 2 5 6 5 5 8 9 14 14

HIMMELBH 2 4 4 4 4 33 19 35 35

HUMPS 2 75 160 82 144 419 1,307 484 813

JENSMP 2 9 9 9 9 10 10 10 10

KOWOSB 4 9 10 6 12 14 15 17 40

LIARWHD 500 11 11 11 11 12 12 12 12

LOGHAIRY 2 37 103 76 61 201 514 375 311

MANCINO 100 5 7 5 5 6 8 6 6

MARATOSB 2 671 734 362 220 993 1,074 2,495 1,746

MEXHAT 2 27 27 21 23 31 32 28 28

MEYER3 3 131 166 108 112 190 239 260 248

MOREBV 500 1 1 1 1 2 2 2 2

MSQRTALS 100 >1,000 >1,000 385 642 − − 5,437 10,023

MSQRTBLS 100 >1,000 >1,000 >1,000 443 − − − 6,444

NONDIA 500 6 6 6 6 7 7 7 7

NONDQUAR 500 21 21 21 21 22 22 22 22

1

26

Table 5 continued

Problem n Iterations Function evaluations

LSNM MSNM NSM TRSM LSNM MSNM NSM TRSM

OSBORNEA 5 17 6 19 19 24 12 41 41

OSBORNEB 11 21 >1,000 16 16 69 − 58 58

PALMER1C 8 1 1 1 1 2 2 2 2

PALMER1D 7 1 1 1 1 2 2 2 2

PALMER2C 8 1 1 1 1 2 2 2 2

PALMER3C 8 1 1 1 1 2 2 2 2

PALMER4C 8 1 1 1 1 2 2 2 2

PALMER5C 6 1 1 1 1 2 2 2 2

PALMER6C 8 1 1 1 1 2 2 2 2

PALMER7C 8 1 1 1 1 2 2 2 2

PALMER8C 8 1 1 1 1 2 2 2 2

PENALTY1 500 40 40 35 35 44 43 40 40

PENALTY2 100 18 18 18 18 19 19 19 19

PENALTY3 100 287 13 184 205 427 18 736 1,141

POWELLSG 500 18 18 18 18 19 19 19 19

POWER 500 34 34 34 34 35 35 35 35

QUARTC 500 27 27 27 27 28 28 28 28

ROSENBR 2 21 22 18 18 29 29 30 30

S308 2 9 9 8 8 11 11 12 12

SCHMVETT 500 3 3 3 3 4 4 4 4

SINEVAL 2 41 44 27 29 65 63 104 86

SINQUAD 500 17 9 17 17 38 20 42 42

SISSER 2 18 18 18 18 19 19 19 19

SNAIL 2 62 105 42 48 112 219 116 215

SPMSRTLS 499 >1,000 >1,000 141 >1,000 − − 3,525 −
SROSENBR 500 8 8 6 6 10 10 9 9

STRATEC 10 16 15 18 15 24 28 50 38

TOINTGOR 50 6 6 6 6 7 7 7 7

TOINTGSS 500 1 1 1 1 2 2 2 2

TOINTPSP 50 17 14 17 17 40 26 62 62

TOINTQOR 50 1 1 1 1 2 2 2 2

TQUARTIC 500 1 1 1 1 2 2 2 2

TRIDIA 500 1 1 1 1 2 2 2 2

VARDIM 200 28 28 28 28 29 29 29 29

VAREIGVL 50 29 26 29 29 34 47 38 38

VIBRBEAM 8 13 22 20 25 35 56 81 129

WATSON 12 23 >1,000 27 26 79 − 148 121

WOODS 100 39 76 32 33 62 190 66 60

YFITU 3 35 33 28 31 49 47 53 63

ZANGWIL2 2 1 1 1 1 2 2 2 2

1

27

Table 6 Overall comparison of
the number of iterations in which
negative curvature is detected

Problem MSNM NSM TRSM

AKIVA 0 0 0

ALLINITU 2 2 2

ARGLINA 0 0 0

ARWHEAD 0 0 0

BARD 3 3 3

BDQRTIC 0 0 0

BEALE 0 0 0

BIGGS6 14 12 11

BOX3 1 1 1

BRKMCC 0 0 0

BROWNAL 25 21 7

BROWNBS 0 0 0

BROWNDEN 0 0 0

BROYDN7D 74 75 72

BRYBND 4 5 5

CHNROSNB 1 1 1

CLIFF 0 0 0

CRAGGLVY 0 0 0

CUBE 0 0 1

DECONVU 179 − −
DENSCHNA 0 0 0

DENSCHNB 0 0 0

DENSCHNC 0 0 0

DENSCHND 5 4 6

DENSCHNE 3 8 8

DENSCHNF 0 0 0

DIXMAANA 301 3 3

DIXMAANB 250 74 20

DIXMAANC 279 46 7

DIXMAAND 374 85 21

DIXMAANE 256 3 10

DIXMAANF 376 163 18

DIXMAANG 478 130 40

DIXMAANH 562 40 23

DIXMAANI 267 12 11

DIXMAANJ 400 150 272

DIXMAANK 591 199 175

DIXMAANL 600 103 68

DIXON3DQ 0 0 0

DJTL − − −
DQDRTIC 0 0 0

DQRTIC 0 0 0

1

28

Table 6 continued
Problem MSNM NSM TRSM

EDENSCH 0 0 0

ENGVAL2 1 1 1

ERRINROS 13 11 12

EXPFIT 1 1 1

FLETCHCR 0 0 0

FMINSURF 1 11 8

FREUROTH 34 2 2

GENROSE − − −
GROWTHLS 5 7 5

GULF 12 6 9

HAIRY 14 27 8

HATFLDD 1 2 2

HATFLDE 5 1 6

HEART6LS 386 696 425

HEART8LS 201 163 197

HELIX 5 4 4

HIELOW 1 1 1

HILBERTA 0 0 0

HILBERTB 0 0 0

HIMMELBB 8 10 11

HIMMELBF − − −
HIMMELBG 1 1 1

HIMMELBH 0 0 0

HUMPS 113 65 121

JENSMP 0 0 0

KOWOSB 3 1 5

LIARWHD 0 0 0

LOGHAIRY 80 61 51

MANCINO 2 1 1

MARATOSB 1 59 23

MEXHAT 0 0 0

MEYER3 4 5 8

MOREBV 0 0 0

MSQRTALS − 374 632

MSQRTBLS − − 430

NONDIA 0 0 0

NONDQUAR 0 0 0

OSBORNEA 4 3 3

OSBORNEB − 3 3

PALMER1C 0 0 0

PALMER1D 0 0 0

PALMER2C 0 0 0

29

Table 6 continued
Problem MSNM NSM TRSM

PALMER3C 0 0 0

PALMER4C 0 0 0

PALMER5C 0 0 0

PALMER6C 0 0 0

PALMER7C 0 0 0

PALMER8C 0 0 0

PENALTY1 0 0 0

PENALTY2 0 0 0

PENALTY3 4 19 46

POWELLSG 0 0 0

POWER 0 0 0

QUARTC 0 0 0

ROSENBR 0 0 0

S308 0 0 0

SCHMVETT 0 0 0

SINEVAL 0 0 0

SINQUAD 2 10 10

SISSER 0 0 0

SNAIL 3 3 1

SPMSRTLS − 129 −
SROSENBR 0 0 0

STRATEC 5 5 4

TOINTGOR 0 0 0

TOINTGSS 0 0 0

TOINTPSP 0 0 0

TOINTQOR 0 0 0

TQUARTIC 0 0 0

TRIDIA 0 0 0

VARDIM 0 0 0

VAREIGVL 16 23 23

VIBRBEAM 10 10 19

WATSON − 27 26

WOODS 25 4 3

YFITU 3 3 5

ZANGWIL2 0 0 0

• NSM: Newton-based Scaling method.
• TRSM: Trust-Region Scaling method.

If the maximum number of iterations is reached (iter >1,000), we do not consider the
associated number of function and gradient evaluations in Table 5.

Table 7 provides a summary of the results. It is clear that the best results are obtained
by the two proposals presented in this work. Both the average iteration counts and the

1

30

Table 7 Average numbers of iterations and function evaluations over the test problems, excluding those
problems where an algorithm may have failed

LSNM MSNM NSM TRSM

Iter 49.27 76.25 37.79 31.61

Feval 488.68 780.55 403.21 309.74

average number of function evaluations are significantly lower for our proposals, com-
pared to the two alternatives we have considered. In particular, the average reductions
in the number of iterations obtained using the NSM and the TRSM methods with
respect to the LSNM method are, respectively 23.30% and 35.84%. Regarding the
reductions for the number of function evaluations the results are 17.49% and 36.62%,
respectively.

With respect to the LSNM method, the reductions in iterations and function eval-
uations are far more marked than the increases. For the NSM method, the largest
deterioration in the number of iterations amounted to 51.32% (problem LOGHAIRY),
while the largest improvement was 81.82% (problem DIXMAANE). Regarding the
TRSM algorithm, the largest deterioration in the number of iterations amounted to
48% (problem VIBRBEAM), while the largest improvement was 92.72% (problem
DIXMAANC). Similar results are obtained when comparing the number of function
evaluations.

Notice the large number of iterations and function evaluations for the MSNM algo-
rithm when solving all the DIXMAAN problems, and problems BIGGS6, HUMPS or
SNAIL. For instance, in Table 6, for the DIXMAAN problems, the number of itera-
tions in which negative curvature is used is clearly larger when the MSNM method is
used. In these cases the scaling of the descent directions seems to be specially relevant.
For these problems our two proposals reduce drastically the number of iterations and
moderately the number of function evaluations. It is important to remark that, exclud-
ing these problems, the MSNM algorithm provides similar results to those obtained
using the LSNM algorithm. These problems are an example of the importance of an
adequate scaling of the directions.

Regarding the impact of the use of negative curvature on the whole set of 119 prob-
lems, for those problems where negative curvature were detected, Table 6 shows the
number of iterations where it was used. Negative curvature was detected for approx-
imately 50% percent of the problems. For the NSM method, the average number of
iterations per problem where a direction of negative curvature was used is 24.25, that
is, 61.07% of the average number of iterations per problem. For the TRSM method
this percentage is similar, 62.81%. For the MSNM method this percentage increases
up to 70.14%, again because of the DIXMAAN problems. If we restrict the results
only to those problems where negative curvature was detected, the average reductions
in the number of iterations obtained using the NSM and the TRSM methods with
respect to the LSNM method are, respectively 26.01% and 40.52%. Regarding the
reductions for the number of function evaluations the results are 18.14% and 37.60%,
respectively. Therefore, it is apparent the effect of the use of negative curvature in the
successful performance of the methods.

1

31

Table 8 Approximate values
for the probabilities

ρ
j
s (τ), j = 1, 2, when

τ = 1, τ = 2 and τ = 3

LSNM MSNM NSM TRSM

ρ1
s (1) 0.55 0.52 0.66 0.69

ρ1
s (2) 0.84 0.76 0.87 0.93

ρ1
s (3) 0.86 0.82 0.91 0.94

ρ2
s (1) 0.64 0.55 0.48 0.55

ρ2
s (2) 0.86 0.80 0.81 0.87

ρ2
s (3) 0.86 0.81 0.88 0.91

4.2.2 Evaluation of the performance

In (3), Dolan and Moré have defined the performance profile of a solver as a (cumula-
tive) distribution function for a given performance metric. We have evaluated and com-
pared the performance of the solvers LSNM (Line search Newton method), MSNM
(Moré-Sorensen Newton method), NSM (Newton-based Scaling method) and TRSM
(Trust-Region Scaling method) on the set P of 119 test problems from the CUTEr
collection.

We have considered two performance metrics, the number of iterations needed to
attain the desired accuracy (since each iteration implies a considerable amount of
work) and the corresponding number of function evaluations, both giving information
on solvers robustness and efficiency.

Let p denote a particular problem of P and s a particular solver. The idea is to
compare the performance of solver s on problem p with the best performance by any
solver on this particular problem. As in (3), we define ρ

j
s (τ), j = 1, 2, as the probabil-

ity that a performance ratio r j
p,s is within a factor of τ of the best possible ratio, where

j = 1 refers to the number of iterations and j = 2 refers to the number of function
evaluations. For τ = 1, the probability ρ

j
s (1) of a particular solver s is the probability

that the value of the metric for the solver will be the best one among all solvers. The
approximate values for the probabilities ρ

j
s (τ), j = 1, 2, when τ = 1, 2, 3, are given

in Table 8.
Regarding the number of iterations, from this table we see that TRSM has the

highest probability of being the optimal solver. On the other hand, considering the
number of function evaluations, we observe that LSNM has the highest probability of
being the optimal solver.

In Figs. 1 and 2 we represent the performance profiles on a log2 scale , i.e., we
plot τ (see (3) for the details). For large values of τ , the probability function ρ

j
s (τ)

provides information about the total proportion of problems that a given code is able
to solve. Thus, if we are interested in the probability that a solver will be successful,
we should consider ρ

j
s (τ) for all solvers as τ becomes large (r j

M). Figures 1 and 2 are
plotted using a log2 scale to provide a more compact representation of the available
data (if a linear scale were used, it would be necessary to include the whole interval
[0, 1,024] to be able to include the largest values r j

p,s < r j
M , j = 1, 2).

Regarding the robustness of the methods, given that the problems are nonconvex
in general, it could be the case that different methods converge to different local

32

Fig. 1 Performance profile in a log2 scale-number of iterations

Fig. 2 Performance profile in a log2 scale-number of function evaluations

minimizers. In the set problem at hand, this happens for problems PENALTY3 and
VIBRBEAM. For problem PENALTY3, methods LSNM, NSM and TRSM provide
the same minimizer, while method MSNM improves the result obtained by the other
three methods, not only with a lower objective function, but also with a decreased num-
ber of iterations and function evaluations. It is interesting to remark that the improve-

1

33

ment obtained by method MSNM in the number of iterations and function evaluations
is very large (more than 90% with respect to the best other method). For problem
VIBRBEAM, each method provides a different result, been the best performance the
one corresponding to LSNM, again with the lower objective function, iterations and
function evaluations. In this case, the difference in the iteration count is small. For
both problems, the best minimum is obtained by the method with less number of iter-
ations and function evaluations, therefore not penalizing the overall performance of
the method.

In Figs. 1 and 2, we see that both NSM and TRSM solve the highest number of
problems (about 96%). In Fig. 1 we conclude that TRSM dominates all other solvers,
since the performance profile for TRSM lies above all others for all performance ratios
τ . Note that these results do not imply that TRSM solves every problem with a smaller
number of iterations. For τ ≥ 4, solver NSM has the same performance as TRSM.
In Fig. 2 we see that, for 1 ≤ τ ≤ 4.3, TRSM solves the largest number of problems
requiring a number of function evaluations that is less than τ times that of any other
solver. For τ ≥ 6, NSM is the only solver that attains the same best performance as
TRSM. It is interesting to notice the good results of algorithm LSNM for the func-
tions evaluation count. This is probably due to the fact that a standard backtracking
search was implemented (which is specially efficient when a single direction is used).
This shows that special care should be taken in the procedure to compute the final
step length in the search to reduce the number of function evaluations when negative
curvature and the gradient are used.

Considering all the previous facts, we conclude that the best results are obtained
by the two proposals presented in this work.

5 Conclusions

In this paper we have studied different approaches to combine information in an effi-
cient manner within an algorithm to solve unconstrained optimization problems. We
show that negative curvature can be used successfully if some safeguards are taken
into account. These safeguards refer mainly to the scaling problem that arises when
dealing with descent directions of a different nature. In particular, we have proposed
two procedures for the combination of the gradient, a modified Newton direction and
a negative curvature direction. The procedures calculate, by performing a small num-
ber of iterations of a Newton’s method or a trust-region method in a low dimensional
subspace, the weights associated to the linear combination of the directions. In this
way, this step can be viewed as a previous scaling of the directions. Then a linesearch
procedure on the weights is carried out.

Our recommendation is that any algorithm using directions that arise from a differ-
ent nature should include an scaling process before proceeding to the combination of
the directions. This is the key point in the success of the algorithms proposed in this
paper.

These results still require further work. In particular, the current environment of
implementation does not allow the testing of the algorithms for large-scale problems.
Nevertheless, given the success of the results for the problems in the test set, it seems
to provide a promising starting point.

1

34

References

1. Bunch, J.R., Parlett, B N.: Direct methods for solving symmetric indefinite systems of linear equa-
tions. SIAM J. Numer. Anal. 8, 639–655 (1971)

2. Byrd, R.H., Schnabel, R B., Shultz, G.A.: Approximate solution of the trust region problem by
minimization over two-dimensional subspaces. Math. Program. 40, 247–263 (1988)

3. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.
91(2), 201–213 (2002)

4. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. Society for Industrial and Applied Mathematics, Philadelphia (1990)

5. Fletcher, R.: Practical Methods of Optimization, Volume 1, Unconstrained Optimization. Wiley,
New York and Toronto (1980)

6. Forsgren, A., Murray, W.: Newton methods for large-scale linear equality-constrained minimization.
SIAM J. Matrix Anal. Appl. 14, 560–587 (1993)

7. Gill, P.E., Murray, W.: Newton type methods for unconstrained and linearly constrained optimization.
Math. Program. 7, 311–350 (1974)

8. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London and New York
(1981)

9. Goldfarb, D.: Curvilinear path steplength algorithms for minimization which use directions of negative
curvature. Math. Program. 18, 31–40 (1980)

10. Gould, N.I M., Lucidi, S., Roma, M., Toint, Ph.L.: Exploiting negative curvature directions in line-
search methods for unconstrained optimization. Optim. Methods Softw. 14, 75–98 (2000)

11. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr (and SifDec), a constrained and unconstrained testing
environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)

12. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient
line search. SIAM J. Optim. 16, 170–192 (2005)

13. Moguerza, J M., Prieto, F.J.: An augmented Lagrangian interior-point method using directions of
negative curvature. Math. Program. 95, 573–616 (2003)

14. Moguerza, J.M., Prieto, F.J.: Combining search directions using gradient flows. Math. Program.
96, 529–559 (2003)

15. Moré, J.J., Sorensen, D.C.: On the use of directions of negative curvature in a modified Newton
method. Math. Program. 16, 1–20 (1979)

16. Mukai, H., Polak, E.: A second-order method for the general nonlinear programming problem.
J. Optim. Theory Appl. 26, 515–532 (1978)

17. Olivares, A., Moguerza, J M., Prieto, F.J.: Nonconvex optimization using an adapted linesearch, Eur.
J. Oper. Res. pages to be assigned, (2007)

18. Sanmatías, S., Vercher, E.: A generalized conjugate gradient algorithm. J. Optim. Theory Appl. 98,
489–502 (1998)

19. Sanmatías, S., Roma, M.: Un método de búsqueda Lineal con Direcciones Combinadas Para La
Optimización Irrestringida. Actas del XXVI Congreso Nacional de Estadística e Investigación
Operativa, Úbeda, Spain (2001)

20. Sun, J., Yang, X., Chen, X.: Quadratic cost flow and the conjugate gradient method. Eur. J. Oper.
Res. 164, 104–114 (2005)

1

35

