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Abstract This paper considers a modification of the branch-and-cut algorithm for
Mixed Integer Linear Programming where branching is performed on general dis-
junctions rather than on variables. We select promising branching disjunctions based
on a heuristic measure of disjunction quality. This measure exploits the relation be-
tween branching disjunctions and intersection cuts. In this work, we focus on dis-
junctions defining the mixed integer Gomory cuts at an optimal basis of the linear
programming relaxation. The procedure is tested on instances from the literature.
Experiments show that, for a majority of the instances, the enumeration tree obtained
by branching on these general disjunctions has a smaller size than the tree obtained by
branching on variables, even when variable branching is performed using full strong
branching.
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Introduction

Branch-and-cut is the most widely used algorithm for solving Mixed Integer Lin-
ear Programs (MILP). Its performance improved by several orders of magnitude in
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the last decade due to advances in hardware but mostly due to modifications in the
algorithm [11,19]. In this paper, we propose a modification in the branching routine.

One of the important decisions made in the branch-and-cut algorithm is the choice
of a branching object. Traditionally, in general purpose MILP solvers, branching ob-
jects are variables—the “best” candidate is chosen among the integer variables that
have a fractional value in the current optimal solution of a linear programming re-
laxation of MILP. If an integer-constrained variable, x j, has a fractional value x̄ j, we
impose the constraint x j ≤ bx̄ jc in one of the children and x j ≥ dx̄ je in the other. This
can be viewed as adding the constraints πT x ≤ π0 and πT x ≥ π0 + 1, respectively,
where π = e j, the j-th unit vector, and π0 = bx̄ jc. We propose to use a general inte-
ger vector π and π0 = bπT x̄c for branching, where πi ∈ Z if xi is an integer variable
and 0 otherwise. We call a disjunction simple when π = e j, for some j, and general
otherwise. General disjunctions are also known as split disjunctions [12].

There is an evident trade-off between the two approaches. General disjunctions
can lead to a smaller tree size. On the other hand, branching on variables produces
LP subproblems that are easier to reoptimize because bounds on the variables do not
increase the size of the basis. Branching on a general disjunction adds one row to the
formulation of the children subproblems. When this is repeated at every node, the
number of constraints can grow notably leading to an increased solution time of each
subproblem. In our experiments, we observe that the decreased tree size usually more
than offsets this increase.

One difficulty with the application of the idea for branching on general disjunc-
tions is the infinite number of general disjunctions that are violated by a given basic
solution. Optimizing over this set would give the best results but is impractical. A
natural objective would be to maximize the improvement in the lower bound as a re-
sult of branching (we assume here that MILP is a minimization problem). But there
is no known way to measure this value before solving the children nodes and, hence,
no way to formulate this problem. The intimate relation between split disjunctions
and intersection cuts, introduced by Balas [6], provides a proxy for the change in the
lower bound. The depth of an intersection cut, or distance cut off, is a reasonable
measure of the cut quality. One may use the depth of the cut as a heuristic measure
of the quality of the corresponding disjunction. But even maximizing the depth over
the set of all intersection cuts is a difficult MILP problem.

In this paper, we consider a specific class of general disjunctions—the ones defin-
ing mixed integer Gomory cuts derived from the tableau [16]. The advantages of this
class are that it is finite and fast to generate. Furthermore, disjunctions corresponding
to Gomory cuts can be viewed as strengthened simple disjunctions [6]. The algo-
rithm we propose performs a heuristic pre-selection of the most promising disjunc-
tions based on the distance cut off by the corresponding cut, followed by an exact
evaluation of the quality of the pre-selected disjunctions. This idea can be applied to
other classes of intersection cuts as well, e.g. lift-and-project[7], reduce-and-split [5],
and mixed integer rounding cuts [24]. Our approach is explained in detail in Section
2.2 and a short introduction to intersection cuts is included in Section 2.1. A review
of related earlier work is present in Section 1.

In Section 3, we describe the experiments we conducted and their results. These
experiments measure the gap closed after branching for a fixed number of levels by
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branch-and-bound, and show that general disjunctions perform better than simple
ones. An interesting observation is that pruning of a child by infeasibility, which is
a desirable effect, happens more often when branching on general disjunctions than
when branching on simple disjunctions. In a final experiment, we study the perfor-
mance of our algorithm in a cut-and-branch framework.

Branching on general disjunctions can reduce the amount of enumeration com-
pared to branching on single variables, since the latter strategy is a special case of
the former. The difficulty is to find the right disjunctions to branch on. In this paper,
we show that such disjunctions can be generated and applied without much compu-
tational overhead.

1 Literature Review

The idea of branching on general disjunctions is not novel. One approach proposed
in the literature is to find “thin” directions in the polyhedron of feasible solutions,
transform the space so that these directions correspond to unit vectors, and solve
the problem in the new space by regular branch-and-bound, branching on the new
variables. Transformed back to the original space, this corresponds to branching on
general disjunctions. For detailed descriptions, refer to the algorithms for solving in-
teger programming problems in fixed dimensions by Lenstra [18], Grötschel, Lovász,
and Schrijver [17], and Lovász and Scarf [22]. Finding thin directions is done by lat-
tice basis reduction based on the work of Lenstra, Lenstra, and Lovász [20]. This
approach proved very efficient for some instances where branch-and-bound fails due
to huge enumeration trees. Aardal et al. [1] applied a related algorithm, developed
by Aardal, Hurkens, and Lenstra [2], to market split instances of the type proposed
by Cornuéjols and Dawande [13]. They managed to solve instances much larger than
those that could be solved by regular branch-and-bound. For a recent paper in this
direction, see Mehrotra and Li [25].

Other examples of branching on general disjunctions are SOS branching and lo-
cal branching. Given the presence of a Special Ordered Set (SOS) [9] constraint in
the formulation (also called Generalized upper bound), branching can be done by
replacing the original SOS constraint by a new SOS constraint, different in both chil-
dren. This results in a significant reduction of the number of nodes that need to be
enumerated. In their paper on local branching [15], Fischetti and Lodi propose a way
to direct the search in the branch-and-bound algorithm. They branch on a special type
of constraint that defines a neighborhood of the incumbent solution.

The methods cited above find a set of promising branching disjunctions before the
start of branching or apply very specific types of general disjunctions. Our approach
is to select general disjunctions at every node of the search tree based on a heuristic
measure of their quality. Similar ideas have not been studied extensively in the litera-
ture. To our knowledge, there is one related study. Owen and Mehrotra [27] propose
branching on general disjunctions generated by a neighborhood search heuristic. The
neighborhood contains all disjunctions with coefficients in {−1,0,1} on the integer
variables with fractional values at the current node. The quality of the disjunctions is
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evaluated by solving the children nodes in the spirit of strong branching (see Achter-
berg, Koch and Martin [3] for a discussion of strong branching).

Owen and Mehrotra tested their approach on 12 instances from MIPLIB 3.0 [10]
and report a significant decrease in the total number of nodes in a majority of them
compared to strong branching as implemented in CPLEX. The proposed procedure
is not computationally efficient because of the large number of subproblems solved
before each branching. Nevertheless, it emphasizes the important observation that
branching on general disjunctions can decrease the size of the branching tree signifi-
cantly.

The main differences between our approach and that of Owen and Mehrotra are:

– we consider a different class of general disjunctions, the ones defining mixed
integer Gomory cuts, while Owen and Mehrotra propose {−1,0,1}-disjunctions.

– instead of an extensive heuristic search, we apply a two-phase disjunction selec-
tion procedure based on the depth of the corresponding intersection cuts in the
first phase and on strong branching in the second. As a result,

– we propose an algorithm that runs in a reasonable amount of time and competes
with branching on single variables in terms of tree size.

2 Branching on General Disjunctions

2.1 Theoretical Foundations of Intersection Cuts

We first present a summary of the theoretical foundations of intersection cuts. For a
detailed discussion, refer to Balas [6] and Andersen, Cornuéjols, and Li [5].

Consider the Mixed Integer Linear Program:

(MILP) min{cT x : Ax = b, x≥ 0n, x j integer for j ∈ NI}, (1)

where c,x,0n ∈ Rn, b ∈ Rm, A ∈ Rm×n, and NI ⊆ N := {1,2, . . . ,n}. Without loss of
generality, assume A is of full row rank. The Linear Programming relaxation, denoted
by (LP), is obtained from (MILP) by dropping the integrality constraint on x j for j ∈
NI . Let PI and P denote the sets of feasible solutions to (MILP) and (LP), respectively.
A basis for (LP) is an m-subset B of N such that the column submatrix of A induced
by B is an invertible submatrix of A. Let J := N \B denote the index set of non-basic
variables. A further relaxation of the set P with respect to a basis B is obtained by
removing the non-negativity constraints on the basic variables. We denote it by P(B):

P(B) := {x ∈ Rn : Ax = b and x j ≥ 0 for j ∈ J}. (2)

This set is a translate of a polyhedral cone: P(B) = C + x̄, where C = {x ∈ Rn : Ax =
0 and x j ≥ 0 for j ∈ J} and x̄ solves {x ∈ Rn : Ax = b and x j = 0 for j ∈ J}, i.e. x̄
is the basic solution corresponding to the basis B. Typically B will be the optimal
basis of an LP relaxation of MILP. The cone C can be expressed also in terms of its
extreme rays, r j for j ∈ J: P(B) = Cone({r j} j∈J)+ x̄, where Cone({r j}) denotes the
polyhedral cone generated by vectors {r j}. The extreme rays of P(B) can be found
from the simplex tableau corresponding to the basis B.
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πT x≤ π0 x̄ πT x≥ π0 +1x̄ πT x≥ π0 +1

r1r1 r2 r2

πT x≤ π0

Intersection cut

Fig. 1 Deriving the intersection cut

Define a split disjunction D(π,π0) to be a disjunction of the form πT x ≤ π0 ∨
πT x ≥ π0 + 1, where (π,π0) ∈ Zn+1 and π j = 0 for i /∈ NI . Clearly, any feasible
solution to (MILP) has to satisfy every split disjunction. Any violated split disjunction
can be used to define a cutting plane that cuts off points of P violating the disjunction.
The generation of this intersection cut, as defined by Balas [6], is exemplified in
Figure 1 and explained below.

Given a split disjunction D(π,π0), let FD(π,π0) := {x ∈ Rn : πT x ≤ π0 ∨ πT x ≥
π0 +1} denote the set of points that satisfy the disjunction. Since PI ⊆P(B)∩FD(π,π0),
a valid cut for P(B)∩FD(π,π0) is valid for PI . In particular, the intersection cut is a half-
space bounded by the hyperplane passing through the intersection points of D(π,π0)
with the extreme rays of P(B).

In order to find the intersection points, for all j ∈ J we compute the scalars:

α j(π,π0) :=





− ε(π,π0)
πT r j if πT r j < 0,

1−ε(π,π0)
πT r j if πT r j > 0,

+∞ otherwise,
(3)

where ε(π,π0) := πT x̄− π0 is the amount by which x̄ violates the first term of the
disjunction D(π,π0). The number α j(π,π0) for j ∈ J is the smallest number α such
that x̄ + αr j satisfies the disjunction. In other words, x̄ + α j(π,π0)r j lies on one of
the disjunctive hyperplanes πT x = π0 and πT x = π0 +1.

Now, the intersection cut associated with B and D(π,π0) is given by:

∑
j∈J

x j

α j(π,π0)
≥ 1. (4)

The Euclidean distance between x̄ and this hyperplane is:

d(B,π,π0) :=
√

1

∑ j∈J
1

(α j(π,π0))2

(5)

This quantity, called distance cut off or depth, was used as a measure of cut quality
by Balas, Ceria, and Cornuéjols [8].
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An important result of Balas [6] is that Gomory cuts derived from the simplex
tableau associated with B can be viewed as intersection cuts. Let āi j be the entry of
the simplex tableau in row i and column j. The mixed integer Gomory cut derived
from the row in which xi is basic can be obtained as an intersection cut from the
disjunction D(π̂ i, π̂ i

0):

π̂ i
j :=





bāi jc if j ∈ NI ∩ J and āi j−bāi jc ≤ x̄i−bx̄ic,
dāi je if j ∈ NI ∩ J and āi j−bāi jc> x̄i−bx̄ic,
1 if j = i,
0 otherwise,

π̂ i
0 = b(π̂ i)T x̄c

(6)

This disjunction can also be obtained by strengthening the simple disjunction D(π i =
ei, π i

0 = bx̄ic) on the non-basic integer variables where the affected coefficients are
modified so that the distance cut off is maximized.

2.2 Our Idea

This work is inspired by the relation between branching disjunctions and intersection
cuts at the optimal basic solution of the current LP relaxation. A violated split disjunc-
tion can be used for generating an intersection cut but it can be used for branching
as well. A good intersection cut cuts deeply into the polyhedron of feasible solu-
tions of the LP relaxation and improves the lower, Linear Programming bound. Our
suggestion is that a split disjunction defining a deep cut is good for branching too.
The LP lower bound is often an important determinant of the amount of enumeration
needed to complete the solution. (Because of this, improving the lower bound is the
aim of common rules for selecting branching variables implemented in current MILP
solvers.) The improvement in the lower bound caused by branching on a split dis-
junction is no less than the improvement by the corresponding intersection cut. We
show this below.

A routine for branching on general disjunctions requires a procedure for selecting
the disjunction to branch on, which, in turn, requires a criterion for comparing the
quality of disjunctions, i.e. a criterion for comparing some measure of improvement
in the lower bound.

Measure of Quality of a Disjunction

A common rule for choosing a branching variable (simple disjunction) is to maxi-
mize some function of the two improvements in objective value at the children nodes
that would result from branching on this variable. Specifically, let x̄ be the optimum
solution at the current node and let x̄1 and x̄2 be the optimal solutions for the first
and second child, respectively. Let z(x̄) = cT x̄, z(x̄1) = cT x̄1, and z(x̄2) = cT x̄2 be
the corresponding objective values. Let ∆1 = z(x̄1)− z(x̄) and ∆2 = z(x̄2)− z(x̄) be
the improvements in objective value when branching on these two children. Typi-
cal functions used for variable selection are min(∆1,∆2), 1

2 [∆1 + ∆2] or ∆1∆2. The
last one is currently implemented in state-of-the-art MILP solvers, i.e. a variable that
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x̄

x̄1

πT x≤ π0 πT x≥ π0 +1

r2
r1

x̄2

p1

P

β T x = β0
p2

Fig. 2 The LP bound obtained by branching is different from the one obtained by cutting.

maximizes ∆1∆2 is chosen for branching. Experiments with other options have been
reported in the literature. For example, Linderoth and Savelsbergh [21] show good
results with 2

3 min(∆1,∆2)+ 1
3 max(∆1,∆2), while Achterberg, Koch, and Martin [3]

propose 5
6 min(∆1,∆2)+ 1

6 max(∆1,∆2). This is the function we will use in our ex-
periments in this paper. The only exact way to compute these functions is to solve
the linear programs at the children nodes. A commonly used method, called strong
branching, does this for the candidate branching variables before choosing the “best”
one. This is computationally expensive when applied to all integer variables with frac-
tional values at the current basis. In practice, it is common to estimate these functions.
Strong branching is impossible to apply when branching on general disjunctions be-
cause of the infinite number of such disjunctions. A procedure for pre-selecting a
small finite set of disjunctions is needed before strong branching can be applied.
Such a procedure requires a heuristic measure of disjunction quality.

We consider the integrality gap closed, or equivalently min(z(x̄1),z(x̄2))− z(x̄),
an “exact” measure of the quality of a disjunction. Based on the relation between an
intersection cut and the underlying disjunction, we propose to use the depth (distance
cut off) of the cut as a proxy to this measure, since the distance cut off is correlated
to the amount of integrality gap closed by adding the cut. Next, we show that the gap
closed by branching on a split disjunction is always at least as large as the gap closed
by the corresponding intersection cut.

Let P(B) be defined as in (2) and consider a split disjunction D(π,π0). Let β T x≤
β0 be the intersection cut defined by P(B) and D(π,π0). (An example is shown in Fig-
ure 2.) The feasible sets of the children are F1 := P∩{x ∈ Rn : πT x≤ π0} and F2 :=
P∩{x ∈Rn : πT x≥ π0 +1}. Let x̄1 := argmin{cT x : x ∈ F1} and x̄2 := argmin{cT x :
x ∈ F2} be corresponding optimal basic solutions. Let p1 := argmin{cT x : x ∈ P(B)
and πT x≤ π0} and p2 := argmin{cT x : x ∈ P(B) and πT x≥ π0 +1}. Then, z(pi) is a
lower bound for z(x̄i), for i = 1,2, because P(B)⊇ P. Therefore, the optimal solution
of min{cT x : x ∈ P(B) and β T x ≤ β0}, provides a lower bound for any measure of
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At each node:

1. Generate the set M of all MIG disjunctions.
2. Select a subset S ⊆ M of disjunctions with largest distance cut off, such

that |S| ≤ k.
3. Apply strong branching to the disjunctions in S maximizing gap closed and

choose a disjunction D ∈ S. Branch on D.

Fig. 3 Procedure for branching on MIG disjunctions

disjunction quality which is a convex combination of z(x̄1) and z(x̄2). Consequently,
branching on a general disjunction can provide a better lower bound than the corre-
sponding intersection cut. In this respect, we cannot substitute branching by adding
the corresponding intersection cut.

In our procedure, we will use the distance cut off by the corresponding intersec-
tion cut as a heuristic measure of the quality of a disjunction. Other measures can be
used as well. Future research in this direction should be fruitful.

Procedure for Selecting the Branching Disjunction

We need a procedure for selecting promising split disjunctions for branching. As
we discussed in the introduction, optimizing over the set of all split disjunctions is
prohibitively expensive. Some form of heuristic search is needed and, in fact, several
suggestions have been tried recently [14,23]. Here, we simply suggest to concentrate
on a finite class of general disjunctions generated directly from the current optimal
basis—the set of split disjunctions defining mixed integer Gomory cuts, which we call
MIG disjunctions. The reasons for our choice are the following. First, this set is not
only finite but relatively small. Its cardinality at a given node of the branch-and-bound
tree equals the number of integer variables with fractional values in the current basic
solution. Second, these disjunctions are fast to obtain. They can be generated from
the current tableau by a closed form formula (6). Third, as we explained at the end
of Section 2.1, these disjunctions can be viewed as strengthened simple disjunctions
(with respect to the cut depth) which suggests that they could perform better.

The branching procedure we propose is shown in Figure 3. We consider the set M

of all MIG disjunctions for a specific basic solution and select a subset S of it, con-
taining the most promising disjunctions according to the chosen criterion for com-
parison. (Here, the distance cut off by the underlying intersection cut.) We limit the
cardinality of S to k. In our tests, we use a constant k throughout the branching tree
(either k = ∞ or k = 10). The parameter k can be used to manage the computational
effort at different levels, e.g. a larger k can be used close to the root where branching
decisions are more important and a smaller k in the deep levels. Finally, we apply
strong branching to the disjunctions in S.

The computational complexity of this procedure at each node is dominated by
Step 3 and it is comparable to applying strong branching to the k most fractional
variables in branching on simple disjunctions. Note, however, that faster strategies
exist for branching on simple disjunctions as investigated in Achterberg, Koch, and
Martin [3].
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3 Experimental Results

The test set for our experiments is the union of the Mixed Integer Linear Program-
ming libraries MIPLIB 2.0 [28], MIPLIB 3.0 [10], and MIPLIB 2003 [4]. We exclude
very easy instances that can be solved in less than 50 nodes by the algorithms we test.
We also exclude some very difficult instances—those for which only less than 50
nodes can be processed in one hour. These two groups of instances are considered
in the first experiment, where we compare the gap closed at the root, but they are
excluded from the subsequent experiments. We also exclude instances with zero inte-
grality gap. The final number of instances in the test set is 84. This is a heterogeneous
set of benchmark instances of different sizes and with different origins and applica-
tions. It serves as a good testbed of our ideas.

All experiments are conducted on an IBM IntellistationZ Pro computer with an
Intel Xeon 3.2GHz CPU (32-bit) and 2GB RAM. The MILP solver used is COIN-
OR BCP, where some methods are modified for the purpose of our experiment. The
LP solver is ILOG CPLEX 9.0. Mixed integer Gomory cuts, mixed integer rounding
cuts, and knapsack cover cuts are generated using the cut generators in the library
COIN-OR CGL.

In our experiments, we compare branching on single variables to branching on
MIG disjunctions. When an instance is solved to optimality, we compare the solution
time and the size of the branch-and-bound trees. When the solution of an instance is
interrupted (due to time limit or bound on the depth of exploration), we compare the
amount of integrality gap closed. We consider the absolute gap closed: the difference
between the best lower bound at interruption and the lower bound at the root node,
and the relative (percentage) gap closed: the absolute gap closed as a fraction of the
integrality gap at the root.

In the first experiment, we study the gap closed after branching at the root node
(Section 3.1). In the second experiment, we study the gap closed and the number of
active nodes left after branching for eight levels (Section 3.2). In the third experiment,
we impose a limit of 2000 processed nodes and study the amount of gap closed and
the solution time per node of both algorithms (Section 3.3). In the fourth experiment,
we let the cut-and-branch algorithm run till completion, or until a two-hour time
limit is reached. We compare the running time and the tree size, or the amount of gap
closed in case of interruption (Section 3.4).

We apply pure branch-and-bound or cut-and-branch in these experiments in order
to avoid the influence of adding different cutting planes in the compared algorithms.
This ensures a clean comparison between the two branching procedures. Below, we
describe features of the algorithms that we implemented. No preprocessing is applied.

Cutting planes
In cut-and-branch, we generate ten rounds of mixed integer Gomory cuts, mixed

integer rounding cuts, and knapsack cover cuts at the root before proceeding to
branching. Inactive cuts are discarded from the formulation after each round.

Branching
We apply strong branching with no limit on the number of simplex pivots. We

select the branching object that maximizes a function of the LP bounds at the chil-
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dren as suggested by [3]: 5
6 min(∆1,∆2) + 1

6 max(∆1,∆2), where ∆1 and ∆2 are the
improvements in LP value at the children nodes. If a branching object creates an in-
feasible child, this object is preferred to all others. If several branching objects create
an infeasible child, the LP values of their feasible children are compared.

In most of the experiments, we apply strong branching on all candidates—variables
or MIG disjunctions. This provides a fair comparison since the number of MIG cuts
obtained from the tableau rows, hence the number of MIG disjunctions, equals the
number of fractional variables at the current basic solution. In the final experiment,
we select a subset of the candidates for strong branching. Again, we consider an equal
number of branching objects in both cases.

In all experiments, the node selection is performed by the best-bound-first rule:
the next node to explore is the one with minimum LP bound. This enables the com-
parison of the gap closed by both algorithms.

3.1 Gap Closed at the Root

As a first experiment, we compare the power of the two branching objects by measur-
ing the gap closed at the root by ordinary branching on single variables and branching
on MIG disjunctions. The variable to branch on is chosen by full strong branching on
all fractional variables, as described above. For short, we call this setup for branch-
ing on simple disjunctions SIMDI. When branching on general disjunctions, we select
the disjunction by full strong branching on all MIG disjunctions. This guarantees a
fair comparison for simple and general disjunctions since the number of branching
candidates in both cases is the same. We call this setup for branching on general
disjunctions GENDI.

Detailed results of the experiment are provided in Table 5. The comparison of
the absolute gap closed shows that GENDI performs better for 42 out of 94 instances,
while SIMDI is better for 15 instances. For 92 instances the optimal objective value is
known and this allows to compute the percentage gap closed. The average percentage
gap closed at the root by GENDI and SIMDI over this set of instances is 11.5% and
8.6%, respectively. The average difference is 2.9% in favor of GENDI. A statistical
hypothesis test shows that this difference is significantly greater than zero. We per-
formed a one-sided paired t-test of the null hypothesis “the gap closed by GENDI is
no greater than the gap closed by SIMDI.” The null hypothesis was rejected at 95%
confidence (p-value=0.048).

A closer look at the cases when one method substantially dominates the other
shows that for 12 instances GENDI closes a positive amount of gap while SIMDI
cannot close any gap. In contrast, there are only two instances for which GENDI
is unsuccessful while SIMDI manages to improve the lower bound. If we consider
the instances for which both methods managed to improve the lower bound, the
gap closed by GENDI is an order of magnitude larger than that of SIMDI for 14 in-
stances, while SIMDI is an order of magnitude better for only 3 instances. Some exam-
ples where GENDI is clearly more successful are: 10teams, air05, fiber, harp2,
mas76, nsrand-ipx, nw04, pipex, qnet1, roll3000, sp97ar, swath, timtab1,
and timtab2. Similarly, SIMDI dominates in: bell3b, fixnet6, gesa3, and sample2.
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Table 1 Comparison of SIMDI and GENDI after eight levels of branching. Branch-and-bound.

SIMDI GENDI

Percentage gap closed
Average 32.1% 41.7%
Count better 20 48

Active nodes at level nine
Average 114.6 66.7
Count better 16 53

Gap closed and active nodes together
Count better 6 45

These results are a strong indication that GENDI closes more gap than SIMDI.
Next, we test whether these good results at the root proliferate throughout the tree
by branching for eight levels and by solving the instances until completion. The
experiment with branching for eight levels helps observe another positive effect of
branching on MIG disjunctions: a decrease in the number of active nodes.

3.2 Branching for Eight Levels

In the second experiment, we branch at the top eight levels of the branch-and-bound
tree and compare the resulting gap closed. As before, GENDI performs better. This
is mainly due to the larger gap closed by branching on general disjunctions, which
we recorded at the root as well. But now we observe an interesting secondary effect:
branching on MIG disjunctions tends to produce more infeasible children, which
additionally decreases the amount of enumeration. We record this phenomenon by
counting the number of active nodes at the ninth level.

Detailed results of the experiment are shown in Table 6. Table 1 contains a sum-
mary of the results. In Table 1, comparison criteria are shown in italics. Lines labeled
“Average” contain the average value of the criterion. Lines labeled “Count better”
contain the number of instances for which one method dominates the other according
to the criterion.

In terms of amount of gap closed, SIMDI dominates in 20 cases, GENDI in 48 cases
out of 84. The average gap closed by SIMDI and GENDI is 32.1% and 41.7%, resp. The
difference in the average gap closed is 9.6%. It is statistically significantly larger than
zero with 99% confidence, according to a one-sided paired t-test (p-value=0.0021).
These results support our earlier observation that GENDI closes more gap.

A graphical representation of the gap closed by SIMDI and GENDI is shown in
Figure 4.A. In the figure, dots correspond to test instances. The gap closed by SIMDI
is shown on the abscissa while that closed by GENDI is shown on the ordinate. The
diagonal line represents equality in the gap closed by both methods. We observe
that most points lie in the upper-left triangle, corresponding to “GENDI outperforms
SIMDI.” Furthermore, most of the points that lie in the lower-right triangle are close
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Fig. 4 A. Gap closed (in percentage) after eight levels of branching: GENDI vs. SIMDI. B. Number of
active nodes after eight levels of branching: GENDI vs. SIMDI. Every data point represents a test instance.

to the diagonal line – there are few cases in which SIMDI outperforms GENDI signifi-
cantly.

It is interesting to observe that GENDI typically produces a smaller number of
active nodes at the ninth level. On this criterion, SIMDI performs better in 16 cases
while GENDI does so in 53 cases. Out of the maximum possible 256 nodes at level
nine, SIMDI generates 113 while GENDI generates 65, on average. A statistical t-test
rejects the null hypothesis “GENDI produces at least as many active nodes at level
nine as SIMDI” at 99.9% level of confidence (p-value=1.30e-6). This indicates that
the number of active nodes created by GENDI is significantly smaller.

The difference in the performance is best seen graphically. In Figure 4.B, we
plot the number of active nodes at level nine produced by GENDI vs. that produced
by SIMDI. Not only do most of the points lie below the equality line but many of
them reside in the bottom-right corner, corresponding to a significant difference in
the number of nodes. On the other hand, out of the 16 instances for which SIMDI
outperforms GENDI, only eight lie visibly far from the equality line.

The effect of a smaller number of active nodes is important not by itself but in
combination with improvement in the gap. Combining both criteria, we count the
cases in which an algorithm strictly dominates in one of the criteria and performs at
least as well in the other criterion. SIMDI is better than GENDI in only 6 cases, while
GENDI outperforms SIMDI in 45 cases out of 84.

The reason for the smaller number of active nodes is that GENDI often generates
disjunctions that produce only one feasible child. For some instances, this happens at
most nodes of the branching tree, resulting in only a few nodes at level nine. Although
SIMDI generates many infeasible children, GENDI generates even more. Sometimes,
this is combined with an impressive improvement of the gap closed over SIMDI,
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Fig. 5 Disjunction with only one feasible child

e.g. lseu, nsrand-ipx, pipex, roll3000, swath, and vpm1. See also 10teams,
aflow30a, arki001, fiber, and manna81. (Table 6.)

The combination of a larger improvement in the gap and a smaller number of
active nodes is a very desirable effect and it deserves more attention. Branching on
a disjunction that generates only one feasible child is equivalent to adding a single
cut to the formulation. One may argue that this cut would be added by a branch-
and-cut algorithm anyway. This is true in some cases but in others the disjunction
inequality is stronger than the corresponding MIG cut. Figure 5 is an example. The
cut generation procedure considers the polyhedral cone pointed at x̄, relaxing some
of the constraints defining P, and generates the intersection cut β T x ≤ β0. But it
cannot detect the fact that one of the feasible sets of the children is empty. (Here,
P∩{x ∈ Rn : πT x ≤ π0}.) When branching on D(π,π0), we essentially add the cut
πT x≥ π0 +1, which is stronger than β T x≤ β0.

Consequently, branching on a general disjunction that generates only one child
can be viewed as strengthening the underlying intersection cut. Thus, branching on
a general disjunction cannot be substituted by adding the corresponding intersection
cut even when one of the disjunctive sets is empty. When both disjunctive sets are
non-empty, branching on a general disjunction can still close more gap than the cor-
responding cut, as we showed in Section 2.2.

We do not consider branching on general disjunctions a substitute for cutting
planes. Our procedure comes into play when branch-and-cut decides to start branch-
ing. It is important to note that the observed good effects of branching on general split
disjunctions are not neutralized by adding cuts. We repeat the above experiment in a
cut-and-branch framework where we add ten rounds of mixed integer Gomory cuts,
mixed integer rounding cuts, and knapsack cover cuts. As expected, aggressive cut
generation closes a significant amount of gap (63% on average), leaving less work for
the branching phase. As a result, the amount of gap closed by branching on the top
eight levels is smaller and the difference between the two methods is smaller. Never-
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Table 2 Comparison of SIMDI and GENDI after eight levels of branching. Cut-and-branch.

SIMDI GENDI

Percentage gap closed
Average 5.6% 7.4%
Count better 11 52

Active nodes at level nine
Average 107.6 81.6
Count better 23 44

Gap closed and active nodes together
Count better 6 39

theless, the mutual relation in performance is preserved, as seen in Table 2. Detailed
results of the experiment are shown in Table 7.

3.3 Branching for Two Thousand Nodes

As a next step in comparing the strength of the two branching strategies under con-
sideration, we let the algorithms run for 2000 nodes and observe the amount of inte-
grality gap closed, the running time, as well as the size of the branching trees when
the instances are solved. The limit of 2000 nodes allows the algorithms to explore a
larger part of the branching tree while terminating in reasonable time. It also places
both algorithms under equal terms in the comparisons. We apply full strong branching
within branch-and-bound as before. Summary results of the experiment are shown in
Table 3 and detailed results are presented in Table 8.

Considering the amount of gap closed, GENDI is better than SIMDI in 33 out of
84 instances while SIMDI dominates in 8 cases. On average GENDI closes 4.5% more
gap than SIMDI and, if we consider only the 41 instances for which the performance
of the two algorithms differs, the advantage in favor of GENDI increases to 9.2%.
In addition, GENDI achieves this result with a smaller number of visited nodes, 15%
smaller on average. The larger efficiency of branching on MIG disjunctions is evident
from the ratios of gap closed per node by GENDI and gap closed per node by SIMDI
for all instances. The geometric mean of these ratios is 1.58.

Not only does GENDI close more gap but it is faster. The solution time per node
of GENDI is in fact 10% smaller than that of SIMDI, on average. (These results ex-
clude the solution time of the root relaxation.) This may sound surprising. Adding
branching constraints to the formulation should increase the solution time per LP
subproblem. A more detailed look shows that this is indeed the case. Recall that we
perform strong branching at each node in this experiment. This means that, at each
node, we solve two LP subproblems for each integer infeasibility, i.e., for each in-
teger variable x j that has a fractional value x̄ j in the optimal basic solutions x̄ of
the node LP subproblem. As expected, the solution time per subproblem of GENDI
is significantly larger than that of SIMDI (11.7 vs. 6.0 milliseconds on average; the
difference is statistically significant with 95% confidence, p-vaule=0.024). However,
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Table 3 Comparison of SIMDI and GENDI after 2000 nodes of branch and bound.

SIMDI GENDI

Percentage gap closed
Average 73.1% 77.6%
Count larger 8 33

Processed nodes
Average 107.6 81.6
Count smaller 11 31

Solution time per node [seconds]
Average 0.94 0.84
Count smaller 46 32

Solution time per suproblem [milliseconds]
Average 6.0 11.7
Count smaller 71 7

Number of strong-branching subproblems per node
Average 93.7 65.6
Count smaller 22 55

the average number of subproblems per node that GENDI solves is significantly less
than that of SIMDI (65.6 vs. 93.7 subproblems per node on average; the difference is
statistically significant with 95% confidence, p-value=0.042).

The last observation is important in itself. Fewer strong-branching subproblems
per node means that the optimal basic solutions of the node LP subproblems tend
to have fewer integer infeasibilities, hence fewer MIG disjunctions are available to
choose from. Table 8 shows the average number of infeasibilities per node. The num-
ber of LP subproblems solved at each node is double that number.

In order to perform a more detailed analysis of the results of this experiment,
we partition the test instances into three sets: those solved by both algorithms, those
which cannot be solved by either algorithm in 2000 nodes, and those solved by only
one of the algorithms.

Instances Solved by Both Methods

Thirty-three instances are solved by both algorithms in less than two thousand nodes.
We compare the size of the branching tree and the solution time of both algorithms.
Branching on MIG disjunctions performs much better than branching on variables on
both metrics. GENDI enumerates a smaller number of nodes in 21 cases while SIMDI
dominates in 10 cases. We test the hypothesis that the number of nodes processed
by GENDI is no less than that processed by SIMDI (paired t-test). The hypothesis is
rejected with more than 90% confidence (p-value = 0.07). The ratios of processed
nodes by GENDI and SIMDI vary between 0.045 and 11. Their geometric mean is
0.69.

Not only does branching on general disjunctions require less enumeration but it
is significantly faster. Recall that we are not using a state-of-the-art implementation
of variable branching here but instead an implementation that chooses the branching
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variable based on full strong branching. In this context, faster branching essentially
means that the LP subproblems have optimal basic solutions with fewer integer infea-
sibilities. Thirty of these instances were solved faster by GENDI and only three were
solved faster by SIMDI. GENDI is 40% faster on average. The ratios of solution time
per node by GENDI and SIMDI vary between 0.1 and 1.9, and their geometric mean
is 0.61. A hypothesis test shows that the mean of this ratio is smaller than one, with
99.9% confidence (p-value = 1.2e-4).

Some of the instances for which branching on general disjunctions is much more
efficient than branching on variables are flugpl and nw04, where GENDI needs only
5% of the nodes enumerated by SIMDI, as well as p0040 (9%), gen (22%), p0033
(23%), and pipex (23%). Instances for which SIMDI clearly dominates are qnet1
and qnet1 o, where SIMDI enumerated only 9% and 40% of the number of nodes
visited by GENDI, respectively.

Instances Solved by Only One of the Methods

One instance, stein27, is solved by SIMDI in 1966 nodes but cannot be solved by
GENDI in 2000 nodes. GENDI closes only 80% of the integrality gap.

On the other hand, ten instances are solved by GENDI but cannot be solved by
SIMDI. In many cases, the difference in performance is striking. Instance gt2 is
solved by GENDI in 47 nodes. SIMDI manages to close the integrality gap in 2000
nodes but cannot prove optimality. GENDI solves fiber, vpm1 and mod008 in 179,
273, and 525 nodes resp., while 2000 processed nodes by SIMDI close 76%, 48%,
and 78% of the gap, resp. Most impressively, GENDI solves instance manna81 in 273
nodes and 22 minutes while SIMDI closes only 4.5% of the gap in 2000 nodes and 15
hours.

These results clearly support our previous observation that branching on MIG
disjunctions closes a larger amount of gap per branching.

Instances Not Solved by Any Method

Forty instances cannot be solved in two thousand nodes by either of the algorithms.
Branching on MIG disjunctions performs better on these instances as well. We mea-
sure the performance of both methods by the amount of integrality gap closed after
2000 branchings. Branching on MIG disjunction closes a larger amount of gap in 25
cases while branching on variables is more efficient in 7 cases. The mean ratio of
the gap closed by GENDI and SIMDI is 1.12 (geometric mean). The range of these
ratios is 0.68 to 4.88. SIMDI is faster on most of these instances. The solution time
per node is practically equal for both algorithms, on average. The mean ratio of the
solution time per node of GENDI and SIMDI is 1.01. The extreme cases when one of
the algorithms closes significantly more gap than the other are shown in Table 4.

For this subset of larger and more difficult instances, we again observe that branch-
ing on general disjunctions causes fewer integer infeasibilities in the node subprob-
lems. For each instance, we computed the ratio of the number of strong branching
subproblems solved per node by GENDI and SIMDI. The geometric mean of these



17

Table 4 Extreme cases of outperformance in terms of integrality gap closed.

Instance Gap Closed by SIMDI Gap Closed by GENDI

opt1217 5% 25%
swath 11% 37%
roll3000 46% 71%
nsrand-ipx 37% 54%
harp2 57% 42%
misc07 70% 54%
danoint 24% 17%

ratios over all instances is 0.78 (with a range of 0.26 to 1.47), showing that branch-
ing on general disjunctions is associated with about 22% decrease in the number of
integer infeasibilities per node, compared with branching on variables.

The results of this experiment confirm that branching on MIG disjunctions is
significantly more efficient than branching on variables in a branch-and-bound algo-
rithm, when strong branching is performed at every node. We observe that branching
on MIG disjunctions closes more gap per branching and that it is usually no slower
than branching on variables.

3.4 Cut-and-Branch

Above, we applied strong branching on all candidate variables or disjunctions. This
approach allowed us to make a rigorous and fair comparison of the strength of these
branching objects. Clearly, exhaustive strong branching is not an efficient solution
technique for general MILP problems. Below, we suggest a more practical version
of the algorithm where strong branching is performed only on ten candidates: the
ten most fractional variables or the ten MIG disjunctions with greatest depth. This
strategy for variable branching is not state-of-the art: We use it here because it can be
implemented very similarly for simple and MIG disjunctions and therefore allows us
to make a direct comparison. We test the performance of this approach in a cut-and-
branch framework.

We make two minor modifications to the algorithm for branching on general dis-
junctions in order to make it more practical. The first aims at avoiding an unnecessary
increase in the size of the subproblems and the second aims at avoiding numerical
problems. First, when the π vector of a disjunction is a singleton, we branch on that
variable instead of adding explicit constraints of the type x j ≤ bx̄ jc or x j ≥ bx̄ jc+1.
Second, we do not consider dense disjunctions for branching. We define dense dis-
junctions to be those whose vector π ∈ Zn has support of cardinality greater than
max(10,0.1n). If all generated disjunctions at a node are dense, we branch on vari-
ables instead.

The limit on the solution time is two hours. Our goal is to compare the tree
size and the running time. For the instances not solved to optimality, the amount
of gap closed is compared. We also compute the increase in computing time caused
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by branching on general disjunctions by computing the ratio of the average solution
time per node required by the two different branching schemes. For simplicity, we
continue calling both algorithms SIMDI and GENDI regardless of the modifications
we introduce in this section. Detailed results from this experiment are presented in
Table 9.

Out of the 84 test instances, SIMDI and GENDI solved an equal number: 63. Over-
all, the difference in the performance of both algorithms is smaller than that observed
in the previous experiments. The reason is the addition of aggressive cut generation
at the root that closes about 60% of the integrality gap, on average. This leaves less
work for the branching phase, hence the smaller difference between the two tested al-
gorithms. Nevertheless, branching on general disjunctions significantly outperforms
branching on variables for a number of instances, leading to orders of magnitude im-
provement in the solution time and the number of processed nodes. Most importantly,
GENDI is clearly more efficient on the most difficult instances that cannot be solved
within the time limit of two hours.

The solution time per node is about 9% larger when branching on MIG disjunc-
tions, computed as a geometric mean of the ratios of time per node by GENDI to time
per node by SIMDI over all test instances. This contrasts our observations from the
previous experiments where GENDI was usually no slower than SIMDI. The reason
most likely is the increased size of the subproblems due to adding explicit branching
disjunctions to the formulation in GENDI. Sometimes these rows are dense, which
affects the solution time adversely. In the previous experiments, all or much of the
branching occurred at the top 10-20 levels of the branching trees where the number
of rows added by GENDI is relatively small. As branching proceeds to the deeper
levels, the contribution of the MIG branching disjunctions to the size of the subprob-
lems becomes more significant. This effect can be mitigated by restricting branching
on MIG disjunction to the top n levels, e.g. n = 15, and proceeding with branching on
variables at the deeper levels. This would exploit the greater power of MIG disjunc-
tions in closing integrality gap at the most important nodes close to the root while
minimizing the computational burden of adding many rows to the formulation.

The larger computational time per node is offset by the larger amount of gap
closed per node by branching on MIG disjunctions: 65% larger, computed as a geo-
metric mean of the ratios of gap closed per node. This allows GENDI to outperform
SIMDI on the most difficult instances.

We proceed with detailed analysis of the results of this experiment partitioning
the instances in three sets.

Instances Solved by Both Methods

Sixty-one instances are solved by both methods within the two hours limit. The av-
erage integrality gap closed by cuts for these instances is 68%. The remaining 32%
are closed by branching. All these instances are solved to completion, therefore we
compare the number of nodes processed by the two algorithms.

Fourteen of the instances are solved in less than ten nodes by both SIMDI and
GENDI. Most of them are practically solved by cuts and the others require only a few
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branchings in order to close the small remaining integrality gap. We exclude these
easy instances from further analysis.

Out of the remaining 47 instances, 24 are solved in fewer nodes by SIMDI while
GENDI is more efficient for 23 instances. The extreme cases are bell4, bell5,
flugpl, and p2756 where GENDI needs 0.23%, 0.79%, 2.3%, and 2.4%, resp., of
the nodes that SIMDI requires to solve the problems. At the other extreme are in-
stances fixnet4 and vpm2 which SIMDI solves in 24% and 27%, resp., of the nodes
GENDI requires. A careful look at the ratios of nodes processed by GENDI and SIMDI
on a particular instance shows that GENDI usually outperforms SIMDI with a much
larger margin. The geometric mean of the ratios for the 45 analyzed instances is 0.71.
The range of the ratio is from 0.0023 to 4.20.

These results show that on the set of relatively easier instances, branching on
general disjunctions typically outperforms branching on variables about half the time
but when it does, the difference is often significant, while SIMDI outperforms GENDI
by a smaller margin.

Instances Solved by Only One of the Methods

Two instances are solved by GENDI but not solved by SIMDI within two hours. GENDI
solves instance p0548 in two seconds and 50 nodes while SIMDI cannot solve it in
two hours and 437,000 nodes. Instance rout is solved in 18 minutes and 18,000
nodes by GENDI and cannot be solved in 160,000 nodes and two hours by SIMDI.

Two other instances are solved by SIMDI but not solved by GENDI within two
hours. Instance aflow30a takes 40 minutes and 20,000 nodes with SIMDI but more
than 60,000 nodes with GENDI. Instance cap6000 requires 15 minutes and 7900
nodes with SIMDI. GENDI cannot solve it in two hours and 8200 nodes.

Instances Not Solved by Either Method

Twenty instances are not solved by either method within the time limit. We com-
pare the gap closed by the two algorithms in the two-hour interval of time. Nei-
ther of the algorithms closes any gap by branching for five instances: 10teams, liu,
markshare1, markshare2, and opt1217. For the remaining 15 instances, compar-
ing the gap closed in the branching phase of cut-and-branch shows that GENDI closes
63% more gap than SIMDI, on average. This number is computed as a geometric mean
of the ratios of gap closed by GENDI and SIMDI.

In addition, GENDI achieves this larger improvement in gap closed by processing
significantly fewer nodes than SIMDI. GENDI visits 58% of the nodes that SIMDI
visits in the two-hour solution time. As we discussed, the reason is likely the larger
computational time per subproblem due to the numerous added MIG disjunctions.
Comparing the ratios of gap closed per node shows that a single branching on MIG
disjunctions closes 2.8 times more gap than a branching on variables, on average, for
these 15 instances. This observation emphasizes the large potential of branching on
general disjunctions.

SIMDI was more efficient in five cases while GENDI closed more gap than SIMDI
in ten cases. For example, on instance mkc GENDI closes 11.2 times more gap than
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SIMDI while processing only 18% of the nodes SIMDI processes. On instance arki001,
GENDI closes 8.2 times more gap in 60% of the nodes. Overall, GENDI closes at least
twice as much gap as SIMDI for six instances while SIMDI is never twice as good
as GENDI. The best case relative performance of SIMDI are instances danoint and
harp2, for which it closes 1.85 and 1.3 times more gap than GENDI, respectively. It
is important to note that in the same time it processes 3.6 and 2.6 times more nodes,
resp.

The results of the last experiment show that branching on MIG disjunctions con-
vincingly outperforms branching on variables in a cut-and-branch framework that
combines aggressive cut generation and strong branching on ten branching objects.
In particular, when applied to the most difficult instances in the test set, branching
on general disjunctions closes significantly more gap than branching on variables for
the same time interval. It also closes much more gap per processed node than branch-
ing on variables does. These conclusions confirm the large potential of branching on
MIG disjunctions that we observed in the other experiments.

We designed our experiments in a way that allows a direct comparison between
branching on general disjunctions and branching on variables. The algorithms we
tested do not pretend to compete with the best current algorithms for solving MILP
problems. Using cut-and-branch with aggressive strong branching at every node is not
the most efficient algorithm for general MILP. This is evident from the comparison
with other research and commercial codes shown in Table 10. The source of data for
this table is a comparison of optimization software on a set of benchmark instances
provided by Mittelmann [26] and published on 1/23/2006 – approximately the time
when our version of BCP was downloaded and our experiments conducted. We used
Cplex 9.0 while Table 10 contains Cplex 10.0 solution times. The hardware platform
on which those tests were performed is comparable to ours: 3.2 GHz Intel Pentium 4
CPU, with 4GB RAM, running Linux OS. The tested solvers were run for two hours
with default settings.

4 Conclusion

In this paper, we propose a procedure for branching on general disjunctions as part of
a branch-and-cut algorithm for solving Mixed Integer Linear Programming problems.
The procedure is independent of the instance characteristics and can be applied to any
MILP.

We discuss the relation between branching disjunctions and intersection cuts and
show that branching on general disjunctions can close more gap than adding the cor-
responding intersection cut, implying that branching cannot be substituted by cutting
planes. We propose to use the distance cut off by the intersection cut as a measure
of quality of the disjunction. This measure can be used for pre-selection of the most
promising disjunctions before strong branching.

We test these ideas in experiments with 84 test instances from the literature, com-
paring branching on variables with branching on general disjunctions. We observe
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that on average the effect of branching on general disjunctions is: (i) a smaller tree
size for the instances solved to optimality, and (ii) a larger amount of gap closed for
the other instances. The test results indicate that the proposed procedure outperforms
regular branching on variables for most instances.

We also observe that, in addition to the larger amount of gap closed, branching
on general disjunctions results in only one feasible child more often than branching
on variables does (with the same branching rules applied). This is an interesting side
effect that decreases the tree size further. In our implementation, we select ten dis-
junctions for strong branching and sometimes more than one produces an infeasible
child. One could add all these disjunctive inequalities, which are valid for PI , as cuts
instead of adding just one through branching. This will decrease the search space at
the child node. We have not implemented this idea.

Another interesting observation about our implementation of branching on gen-
eral disjunctions is that it tends to produce LP subproblems with fewer integer infea-
sibilities than those produced by branching on variables.

We obtain an efficient algorithm by considering only a specific class of disjunc-
tions—those defining mixed integer Gomory cuts—instead of searching the whole
set of split disjunctions. This approach can be extended to disjunctions defining other
classes of split cuts, such as lift-and-project, reduce-and-split, and mixed integer
rounding cuts. The advantages of branching on variables and on general disjunctions
can be combined in one algorithm. One idea is to branch on general disjunctions close
to the root and branch on variables at the deeper levels. Another approach would be to
generate disjunctions and identify fractional variables simultaneously, and let strong
branching choose the branching object among them. Some research in this direction
has been initiated [14]. More studies would be fruitful on criteria for evaluating dis-
junctions.
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Table 5: Comparison of the gap closed at the root node by branching on a single variable and on a MIG
disjunction.

Absolute gap closed Relative gap closed [%]
Instance Simple disj. MIG disj. Simple disj. MIG disj.

10teams 0 4 0 57.14
a1c1s1 121.2 121.2 1.15 1.15
aflow30a 11.3 11.2 6.49 6.42
aflow40b 5.7 4.5 3.52 2.77
air04 14.9 20.6 2.48 3.43
air05 0.39 12.2 0.08 2.45
arki001 42.2 42.2 3.48 3.48
bell3a 3174 1857 20.03 11.72
bell3b 316638 13855 82.89 3.63
bell4 360675 122948 64.79 22.08
bell5 298008 298008 83.25 83.25

continued on the next page
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Table 5: continued

Absolute gap closed Relative gap closed [%]
Instance Simple disj. MIG disj. Simple disj. MIG disj.

blend2 0.01 0.13 1.47 19.15
bm23 0.91 0.29 6.78 2.16
cap6000 69.8 85.6 43.55 53.38
dano3mip 0 0.01 — —
danoint 0.05 0.05 1.65 1.65
dcmulti 648 648 15.4 15.4
egout 29 29 6.92 6.92
fast0507 0 0.02 0 1.08
fiber 1293 43547 0.52 17.43
fixnet3 60.7 60.7 0.54 0.54
fixnet4 66.5 108 1.42 2.31
fixnet6 124 2.02 4.48 0.07
flugpl 689 1874 2.01 5.46
gen 65.2 65.2 35.64 35.64
gesa2 14015 14015 4.62 4.62
gesa2 o 14015 14015 4.62 4.62
gesa3 4819 21.5 3.06 0.01
gesa3 o 4819 11452 3.06 7.28
gt2 4750 4816 61.65 62.51
harp2 2.03 11627 0 2.56
khb05250 1670000 1670000 15.15 15.15
l152lav 0.82 9.6 1.25 14.63
liu 214 214 — —
lp4l 16.57 10.66 67.63 43.51
lseu 12 98.06 4.21 34.37
manna81 0.5 0.5 0.38 0.38
markshare1 0 0 0 0
markshare2 0 0 0 0
mas74 40.8 75.5 3.10 5.73
mas76 1.76 62.3 0.16 5.60
misc01 0 0 0 0
misc02 0 25 0 3.68
misc03 0 0 0 0
misc04 5.64 5.64 54.87 54.87
misc05 1.2 0 2.24 0
misc06 2.09 2.09 22.79 22.79
misc07 0 10 0 0.72
mkc 0 0 0 0
mod008 0.17 0.02 1.06 0.12
mod010 3.58 0.92 22.49 5.78
mod011 415328 896043 5.49 11.85
mod013 1.36 0.63 5.46 2.53
modglob 3984 4225 1.29 1.36
momentum1 3200 4263 8.8 11.73
net12 10.4 10.4 5.29 5.29
nsrand-ipx 0 36.7 0 1.58
nw04 0.67 343 0.12 62.27
opt1217 0 0.27 0 6.72
p0033 2.47 205 0.43 36.2
p0040 4.84 161 2.1 69.83
p0201 0 191 0 25.78
p0282 32844 32844 40.28 40.28
p0291 101 1031 2.86 29.31
p0548 12.7 12.7 0.15 0.15
p2756 9.8 1.42 2.25 0.33
pipex 0.05 1.62 0.34 11.16
pk1 0 0 0 0
pp08a 233 233 5.05 5.05
pp08aCUTS 61.3 81.4 3.28 4.36
qiu 0 0 0 0
qnet1 3.98 226 0.23 12.85
qnet1 o 245 351 6.22 8.91

continued on the next page
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Table 5: continued

Absolute gap closed Relative gap closed [%]
Instance Simple disj. MIG disj. Simple disj. MIG disj.

rd-rplusc-21 0 0 0 0
rgn 0 2.2 0 6.59
roll3000 0 2.85 0 0.16
rout 2.34 2.34 2.45 2.45
sample2 15 0 11.72 0
sentoy 6.5 10.8 9.66 16.04
set1al 37.9 37.9 0.80 0.80
set1ch 757 757 3.36 3.36
set1cl 37.9 37.9 0.79 0.79
seymour 0.33 0.5 1.72 2.61
sp97ar 2537 234316 0.03 2.88
stein15 0 0 0 0
stein27 0 0 0 0
stein45 0 0 0 0
stein9 0 0 0 0
swath 0.02 6.45 0.02 4.85
timtab1 0 23872 0 3.24
timtab2 0 24000 0 2.37
tr12-30 929 929 0.80 0.80
vpm1 0.25 0.67 5.46 14.63
vpm2 0.11 0.11 2.85 2.85

Table 6: Comparison of the gap closed and number of active nodes after eight levels of branching on
single variables and on MIG disjunctions. (Branch-and-bound)

Absolute gap closed Relative gap closed [%] Nodes at level 9
Instance Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

10teams 0 7 0 100 256 79
a1c1s1 1051 1051 10 10 145 107
aflow30a 32.8 48.7 18.74 27.86 252 30
aflow40b 27.6 39.6 17.03 24.37 242 92
arki001 83.6 209 6.89 17.23 172 107
bell3a 10785 7775 68.04 49.05 37 4
bell3b 336827 338368 88.17 88.57 2 3
bell4 494120 504243 88.76 90.58 32 23
bell5 300135 310221 83.84 86.66 2 1
blend2 0.21 0.38 30.93 55.97 107 193
bm23 5.31 2.86 39.54 21.3 18 8
cap6000 109 122 67.75 75.88 256 15
danoint 0.05 0.05 1.65 1.65 194 178
dcmulti 2250 3659 53.49 86.99 22 88
egout 118 134 28.15 32.03 1 1
fiber 6276 198990 2.51 79.64 256 39
fixnet3 2066 2066 18.36 18.36 188 188
fixnet4 877 725 18.74 15.5 190 220
fixnet6 306 26.5 11 0.95 192 232
flugpl 6624 26393 19.3 76.92 35 8
gen 98.6 126 53.89 69.04 2 2
gesa2 60346 160548 19.89 52.92 109 56
gesa2 o 60346 160548 19.89 52.92 109 53
gesa3 50987 44266 32.39 28.12 115 86
gesa3 o 50987 47248 32.39 30.02 115 67
gt2 6234 6142 80.9 79.7 256 48
harp2 11627 211932 2.56 46.73 1 51
khb05250 6764925 6764925 61.38 61.38 256 256
l152lav 17.9 40.0 27.24 60.86 11 7
lp4l 17.9 24.5 73.22 100 10 0

continued on the next page
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Table 6: continued

Absolute gap closed Relative gap closed [%] Nodes at level 9
Instance Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

lseu 123 187 43.07 65.47 224 7
manna81 4 4 3.01 3.01 256 1
markshare1 0 0 0 0 256 89
markshare2 0 0 0 0 256 162
mas74 135 163 10.22 12.38 256 223
mas76 89.9 198 8.09 17.82 256 255
misc01 30.7 55.2 6.06 10.9 11 1
misc02 214 138 31.47 20.22 1 3
misc03 100 255 6.9 17.59 7 1
misc04 10.3 10.3 100 100 0 0
misc05 21.6 21.6 40.3 40.3 8 6
misc06 9.17 9.17 99.99 99.99 0 0
misc07 16.3 10 1.16 0.72 62 1
mkc 16.1 0 33.48 0 11 1
mod008 2.4 10.5 14.93 65.46 197 45
mod010 13.8 15.9 86.37 100 1 0
mod011 1584442 4100446 20.95 54.21 256 256
mod013 11.5 12.6 45.93 50.38 30 15
modglob 93178 46851 30.1 15.13 256 250
nsrand-ipx 0 190 0 8.19 256 1
nw04 139 551 25.15 100 1 0
opt1217 0 2.02 0 50.25 256 87
p0033 400 454 70.32 79.86 31 2
p0040 90.6 230 39.31 100 3 0
p0201 240 554 32.43 74.83 23 24
p0282 77619 77490 95.19 95.03 148 73
p0291 3286 3510 93.4 99.74 4 6
p0548 167 182 2 2.18 1 1
p2756 10.2 13.9 2.34 3.2 1 1
pipex 3.38 12.5 23.29 86.06 183 3
pk1 0 0 0 0 256 256
pp08a 1378 1404 29.96 30.51 256 250
pp08aCUTS 447 582 23.89 31.14 256 256
qiu 416 379 52.1 47.39 135 117
qnet1 734 806 41.79 45.91 112 239
qnet1 o 1500 2454 38.13 62.38 177 180
rgn 2.2 21.4 6.59 64.07 41 84
roll3000 0.8 13.6 0.04 0.76 6 1
rout 20.7 12.6 21.66 13.15 158 72
sample2 108 83 84.38 64.84 115 144
sentoy 26.2 48.1 38.97 71.48 256 72
set1al 262 262 5.55 5.55 1 1
set1ch 4065 4065 18.04 18.04 8 8
set1cl 262 262 5.44 5.44 1 1
stein15 2 0 100 0 0 1
stein27 1.33 0 26.6 0 219 1
stein45 0 0 0 0 256 1
stein9 1 0 100 0 0 1
swath 0.29 42.2 0.22 31.75 126 1
timtab1 58221 80887 7.91 10.99 3 4
timtab2 63992 49536 6.32 4.89 4 1
tr12-30 3914 3914 3.36 3.36 1 1
vpm1 0.67 2.83 14.63 61.79 243 9
vpm2 1 0.51 25.91 13.21 24 3
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Table 7: Comparison of the gap closed and number of active nodes after eight levels of branching on
single variables and on MIG disjunctions. (Cut-and-branch)

Relative gap Relative gap closed
Instance closed by by branching [%] Nodes at level 9

cuts [%] Simple disj. MIG disj. Simple disj. MIG disj.

10teams 100 0 0 0 0
a1c1s1 54.40 6.64 6.64 66 88
aflow30a 50.50 0.18 5.15 87 256
aflow40b 42.97 0.10 3.24 200 256
arki001 52.59 0 3.70 203 195
bell3a 70.31 0.43 12.07 114 32
bell3b 77.67 14.32 12.42 26 1
bell4 92.65 2.89 2.98 78 15
bell5 90.79 2.96 4.21 52 38
blend2 29.46 7.36 23.56 125 190
bm23 33.36 3.20 27.18 195 13
cap6000 62.98 4.77 3.56 256 18
danoint 0.99 0.66 0.99 201 178
dcmulti 69.49 2.19 27.96 15 97
egout 99.99 0.01 0.01 0 0
fiber 94.65 0.11 1.64 2 48
fixnet3 99.87 0.13 0.13 1 20
fixnet4 89.65 4.84 1.84 192 197
fixnet6 84.57 1.99 3.21 192 202
flugpl 14.69 12.09 52.96 21 6
gen 100 0 0 0 0
gesa2 98.16 1.24 1.19 232 225
gesa2 o 93.14 0.29 2.13 172 169
gesa3 77.5 13.31 10.93 150 180
gesa3 o 74.77 8.69 15.14 109 176
gt2 99.87 0.13 0.13 256 4
harp2 63.54 0.59 3.57 39 227
khb05250 99.11 0.82 0.89 1 0
l152lav 34.19 9.72 17.87 6 3
lp4l 100 0 0 0 0
lseu 78.43 0.46 7.28 256 13
manna81 100 0 0 0 0
markshare1 0 0 0 256 38
markshare2 0 0 0 256 207
mas74 8.89 0.14 2.61 256 255
mas76 13.22 1.51 8.13 256 238
misc01 4.18 0.12 5.39 13 2
misc02 16.56 3.29 13.25 1 1
misc03 17.62 0.04 0.90 14 2
misc04 83.67 16.34 2.24 0 1
misc05 53.06 32.59 41.04 3 4
misc06 74.59 2.84 19.08 256 256
misc07 0.72 0.90 1.79 56 2
mkc 56.56 29.81 1.19 54 2
mod008 86.68 2.49 13.32 104 0
mod010 100 0 0 0 0
mod011 46.93 4 7.44 256 256
mod013 74.25 10.07 21.02 3 6
modglob 70.11 10.61 8.54 256 254
nsrand-ipx 66.20 0 5.22 256 57
nw04 97.81 2.19 2.19 0 0
opt1217 50.50 0 2.24 256 12
p0033 99.54 0.46 0.46 0 0
p0040 100 0 0 0 0
p0201 61.32 0.44 16.59 17 25
p0282 97.53 0.99 1.18 173 60
p0291 99.82 0.16 0.18 13 0
p0548 94.37 2.60 2.89 2 5
p2756 97.83 0.11 0.04 8 2
pipex 58.15 2.20 17.23 12 2

continued on the next page
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Table 7: continued

Relative gap Relative gap closed
Instance closed by by branching [%] Nodes at level 9

cuts [%] Simple disj. MIG disj. Simple disj. MIG disj.

pk1 0 0 0 256 255
pp08a 90.50 1.29 1.47 256 252
pp08aCUTS 80.21 2.77 3.05 256 256
qiu 7.80 42.98 42.98 185 185
qnet1 72.43 2.08 21.83 238 248
qnet1 o 83.33 8.44 9.57 31 221
rgn 75.15 0.21 3.29 30 34
roll3000 75.95 0.06 1.09 9 6
rout 4.11 6.90 15.31 70 21
sample2 41.71 8.16 11.41 14 18
sentoy 27.17 13.27 28.72 256 113
set1al 99.98 0.02 0.02 1 0
set1ch 91.05 0.12 0.19 256 238
set1cl 100 0 0 0 0
stein15 0 100 0 0 3
stein27 0 37.40 0 219 1
stein45 0 0 0 255 1
stein9 100 0 0 0 0
swath 33.68 0.24 1.22 105 10
timtab1 41.76 0.01 0.75 5 3
timtab2 34.11 0.06 2.29 12 3
tr12-30 93.31 1.07 1.07 256 256
vpm1 90.61 1.31 9.39 255 62
vpm2 77.72 0.26 2.07 113 209
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