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Abstract

In this paper we study how to reformulate knapsack sets and simple mixed integer sets in order
to obtain provably tight, polynomially large formulations.

1 Introduction

In this paper we consider 0/1 knapsack sets and certain simple fixed-charge network flow sets. The
study of such sets is relevant in that a popular approach for solving general mixed-integer programs
consists of selecting a subset of constraints with particular structure (such as a single-node fixed-
charge flow problem) and tightening that part of the formulation through the use, for example,
of classical cutting-plane families (see e.g. [14], [11]). A question of interest is in what sense the
resulting stronger formulation is provably good.

Motivated by questions posed in [17], and extending the study initiated in [3], we show how the
use of appropriate disjunctions [1] leads to provably tight, yet polynomially large, formulations for
several simple sets. Unlike the use of familiar disjunctive cuts ([2], [16] and [9], [10]) the disjunctions
we employ are ‘combinatorial’, or ’structural’, that is to say, they depend on the structure of the
problem at hand. Previous work [6] has shown how structural disjunctions can lead to provably
good approximations of combinatorial polyhedra (also see [12], [4], [5]); we expect that many other
results of this type are possible.

1.0.1 Minimum knapsack

In Section 2 we consider the “minimum” 0/1 knapsack problem,

(KMIN ) : vZ = min
N
∑

j=1

cjxj,

s.t.
N
∑

j=1

wjxj ≥ b, (1)

x ∈ {0 , 1}N , (2)

where cj > 0 and 0 < wj ≤ b for 1 ≤ j ≤ N . We denote by v∗ the value of the LP relaxation of
KMIN .

In [8], Carr, Fleischer, Leung and Phillips consider the so-called knapsack-cover inequalities, which
are different from cover inequalities. Given a set A ⊆ {1, . . . ,N} write b(A) = b−∑j∈A wj . Then
the knapsack-cover inequality corresponding to A is

∑

j /∈A

min{wj , b(A)}xj ≥ b(A).
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In [8] it is shown that the relaxation to KMIN provided by all knapsack-covers yields a lower
bound v̂ to vZ such that vZ ≤ 2v̂. On the other hand, the price to be paid is that the algo-
rithm used to (approximately) solve this relaxation is fairly complex – a separation procedure for
knapsack-covers is not given.

We show how a simple disjunction provides a polynomially large linear programming relaxation to
KMIN whose value v̄ satisfies vZ < 2v̄. In fact, we show

Theorem 1.1 For each 0 < ǫ < 1 there is a linear programming relaxation to KMIN with

O
(

(1/ǫ)O(1/ǫ2) N2
)

variables and constraints, whose value v(ǫ) satisfies vZ < (1 + ǫ)v(ǫ).

Recently, Carnes and Shmoys [7] presented a primal-dual, 2-approximation algorithm for KMIN
that relies on knapsack-cover inequalities. The constructions underlying Theorem 1.1 can be used
to tighten the approximation factor to (1+ ǫ) for arbitrary 0 < ǫ < 1; as far as we know, this is the
first such result for KMIN .

1.0.2 Fixed-charge sets

In Section 3 we consider the fixed-charge network flow problem. We consider the following gener-
alization given by the following mixed-integer program:

(FXN ) : vZ = min
∑

(i,j)∈A
(fijyij + cijxij) ,

∑

(i,j)∈δ+(i)

xij −
∑

(j,i)∈δ−(i)

xji = bi, ∀i ∈ I, (3)

0 ≤ xij ≤ uij yij ∀(i, j) ∈ A, (4)

yij = 0 or 1, ∀(i, j) ∈ A. (5)

Here,

• We are given a directed graph G,

• A is the set of arcs; for each (i, j) ∈ A we have cij , fij nonnegative and uij > 0,

• The vertex set of G is partitioned into two classes: I (the “inner” vertices) and O (the “outer”
vertices),

• For each i ∈ I there is a real bi; δ+(i) (resp., δ−(i)) is the set of arcs of the form (i, j) (resp.,
(j, i)),

• Each vertex v ∈ O is incident with a unique arc; the other endpoint of that arc is an inner
vertex.

In this paper we consider the special case of this problem where the inner vertices induce a
path; see Figure 1. In this case we have a generalization of the single-item lot-sizing problem. The
following result holds:

Theorem 1.2 Assuming I induces a path, then for each 0 < ǫ < 1 there is a linear programming

relaxation to FXN with O
(

(1/ǫ)O(1/ǫ2) (1 + |O|)3 |I|3
)

variables and constraints, whose value v(ǫ)

satisfies vZ < (1 + ǫ)v(ǫ).
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= inner = outer

Figure 1: Fixed-charge set.

Carnes and Shmoys [7] also present a 2-approximation algorithm for the single-item lot-sizing
problem; our constructions can be used to tighten their results to obtain 1 + ǫ-approximation
algorithms.

1.0.3 Maximum knapsack

In Section 4 we consider the “maximum” 0/1 knapsack problem,

(KMAX ) : vZ = max
N
∑

j=1

pjxj ,

s.t.
N
∑

j=1

wjxj ≤ b, (6)

x ∈ {0 , 1}N , (7)

where pj > 0 and 0 < wj ≤ b for 1 ≤ j ≤ N . We denote by v∗ the value of the LP relaxation of
KMAX .

In [17] Van Vyve and Wolsey ask whether, given an instance of KMAX , and 0 < ǫ ≤ 1, there is
a formulation of the form Ax + A′x′ ≤ b′, such that

(a) For each vector x ∈ {0 , 1}n with
∑n

j=1 wjxj ≤ b there exists x′ such that Ax + A′x′ ≤ b′,

(b) The number of variables x′ and rows of A and A′ is polynomial in n and/or ǫ−1, and

(c) For every w ∈ Rn
+,

max
{

wT x : Ax + A′x′ ≤ b′
}

≤ (1 + ǫ)vZ .

In [3] we provided a partial answer to this question: there is a formulation satisfying (a)-(c) which
has polynomially many variables and constraints for each fixed ǫ. This formulation amounts to a
multi-term disjunction, which, although polynomial, is complex from a practical perspective.

The result in [3] motivates several questions, in particular:

1. Is there a formulation achieving (a)-(c) but restricted to the original space of variables?

2. How about achieving (c), but restricting to the original space of variables and allowing expo-
nentially many constraints, so long as these are polynomially separable?
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3. In fact, what can be achieved in polynomial time? Assuming wj ≤ b for all j, it is known
that v∗/vZ < 2, and that this bound is best possible. Is there a “simple” relaxation involving
polynomially separable inequalities, whose value v̂ satisfies v̂/vZ < θ for some θ < 2?

Concerning (a), a natural question to ask is the following. Suppose we pick a fixed integer k > 0,
and we strengthen the LP relaxation of KMAX with all valid inequalities of the form

∑

j αjxj ≤ β,
where the αj take values in {0, 1, . . . , k}. Is it true that the value of the resulting linear program is
at most

(1 + f(1/k))vZ ,

where f(ǫ) → 0 as ǫ → 0? The answer to this question is (perhaps, not surprisingly) negative.
We show that for each k > 0, if N is large enough there is an example of KMAX where, after
adding all valid inequalities with left-hand coefficients in {0, 1, . . . , k}, the value of linear program
remains arbitrarily close to 2vZ . This is discussed in Section 4.1. Thus, valid inequalities with
“small” coefficients are not enough to get an LP to IP ratio strictly bounded away from 2. At the
same time, in Section 4.2 we show that using a (polynomially separable) disjunction, one obtains

a relaxation whose value is at most
(

1 +
√

19−2
3

)

vZ . Thus, question 3 above does have a positive
answer.

However, the disjunction used in Section 4.2 depends on the structure of the objective coefficients
pj and is therefore not quite in the “a priori strengthening” spirit of the question of Van Vyve and
Wolsey. Further, the examples in Section 4.1 have “large” constraint coefficients, that is to say we
have wj ≈ b for some j. One might consider such examples “artificial” and wonder what happens
when they are excluded.

These issues are taken up in Section 4.3. Given a subset S ⊆ {1, 2, . . . ,N} with wi + wj > b for
each pair of distinct indices i, j ∈ S, the clique inequality [13]

∑

j∈S

xj ≤ 1

is valid for KMAX . Let vω denote the value of the linear program obtained by augmenting the
continuous relaxation of KMAX with all clique inequalities. In Section 4.3 we prove:

Theorem 1.3 For each constant 0 ≤ λ < 1 there exists ǫ = ǫ(λ) > 0 satisfying the following
property. For N large enough, if wj ≤ λb for 1 ≤ j ≤ N , then vω ≤ (2− ǫ)vZ .

2 Minimum knapsack problem

In this section we consider problem KMIN and prove Theorem 1.1. Our construction is inspired
by that in [18], [5] in the context of the set-covering problem, and it relies on disjunctive inequalities.
Prior to our main proof, we will first show a simpler result in order to motivate our approach. In
what follows we will assume without loss of generality that

c1 ≥ c2 ≥ . . . ≥ cN . (8)

For 1 ≤ h ≤ N , let P h denote the polyhedron defined by:

N
∑

j=1

wjxj ≥ b, (9)

x1 = x2 = · · · = xh−1 = 0, xh = 1, (10)

0 ≤ xj ≤ 1, h < j ≤ N. (11)
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and write

M = conv
(

P 1 ∪ P 2 ∪ · · ·PN
)

, (12)

v̄ = min
{

cT x : x ∈M
}

. (13)

Note that M is the projection to RN of the feasible set for a system of O(N2) linear constraints in
O(N2) variables. We have that x ∈M for any 0/1 vector x that satisfies (9) and therefore v̄ ≤ vZ .

Lemma 2.1 vZ < 2v̄.

Proof. Let x̄ be a solution to the linear program (13). It follows that there reals λh such that

0 ≤ λh, (1 ≤ h ≤ N),
N
∑

h=1

λh = 1,

and, for each 1 ≤ h ≤ N with λh > 0, a vector xh ∈ P h, such that

x̄ =
∑

h : λh>0

λh xh.

For 1 ≤ h ≤ N write

vh = min
{

cT x : x ∈ P h
}

. (14)

Suppose λh > 0. It is straightforward to see that there is an optimal solution to (14) with at
most one fractional variable. By rounding up this variable we obtain a feasible 0/1 solution to the
original knapsack problem. We therefore have by (8) and (10)

vZ − vh < ch ≤ cT xh, (15)

where the second inequality follows since xh
h = 1 again by (32). Consequently, writing

Λ = {1 ≤ h ≤ n : λh > 0} ,

we have

vZ − v̄ =
∑

h∈Λ

λhvZ −
∑

h∈Λ

λh cT xh (16)

≤
∑

h∈Λ

λhvZ −
∑

h∈Λ

λh vh (17)

=
∑

h∈Λ

λh

(

vZ − vh
)

(18)

<
∑

h∈Λ

λh cT xh = v̄. (19)

5



2.1 Proof of Theorem 1.1.

We begin with a technical result.

Lemma 2.2 Let H ≥ 1 be an integer. suppose S ⊆ {1, 2, . . . ,N}, and let 0 ≤ x̄j ≤ 1 (j ∈ S) be
given values. Let cmax = maxj∈S{cj}, cmin = minj∈S{cj}.

(a) Suppose first that
∑

j∈S

x̄j = H.

Then there exist 0/1 values x̂j (j ∈ S) such that

∑

j∈S

aj x̂j ≥
∑

j∈S

aj x̄j, and (20)

∑

j∈S

cj x̂j ≤
(

1− 1

H
+

cmax

Hcmin

)

∑

j∈S

cj x̄j . (21)

(b) Suppose next that

∑

j∈S

x̄j ≥ H. (22)

Then there exist 0/1 values x̂j (j ∈ S) satisfying (20) and

∑

j∈S

cj x̂j ≤
(

1 +
cmax

Hcmin

)

∑

j∈S

cj x̄j. (23)

Proof. (a) Without loss of generality assume that x̄ is an extreme point solution to the linear
program

min
∑

j∈S

cjxj

s.t.
∑

j∈S

ajxj ≥
∑

j∈S

ajx̄j (24)

∑

j∈S

xj = H (25)

0 ≤ xj ≤ 1, ∀ j ∈ S. (26)

Consequently at most two of the values x̄j, j ∈ S, are fractional; but since H is integral either zero
or exactly two x̄j are fractional. Thus, we can assume that there are indices i, k ∈ S with

0 < x̄i < 1, 0 < x̄k < 1, and (27)

x̄i + x̄k = 1. (28)

Suppose (say) ai ≥ ak. Then we can set x̂i = 1, x̂k = 0, and x̂j = x̄j for all other j, thereby
obtaining a 0/1 vector x̂ which satisfies (24) while increasing cost by at most

ci − ci(x̄i)− ck(x̄k) = (ci − ck)(1 − x̄i) ≤ cmax − cmin.
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Hence
∑

j∈S cj x̂j −
∑

j∈S cjx̄j
∑

j∈S cj x̄j
≤ cmax − cmin

∑

j∈S cj x̄j
≤ cmax − cmin

Hcmin
, (29)

as desired.

(b) Proceeding in a way similar to (a) (using, instead of (25),
∑

j∈S xj ≥ H), it can be assumed
that either zero, two or one of the x̄j (j ∈ S) are fractional. If two are fractional the result is
implied by (a). If there is only one fractional x̄j then rounding up x̄ provides a 0/1 vector x̂ that
is feasible while increasing the cost by at most cmax. Hence

∑

j∈S cj x̂j −
∑

j∈S cj x̄j
∑

j∈S cjx̄j
≤ cmax

H cmin
, (30)

as desired.

Let 0 < ǫ < 1. Define K as the smallest integer such that (1+ ǫ)−K ≤ ǫ. Without loss of generality,
ǫ is small enough that K ≈ log(1/ǫ)/ǫ. Write J = ⌈1 + 1/ǫ⌉.

In what follows we still assume the ordering (8).

Definition 2.3 A signature will be a K-vector σ such that 0 ≤ σi ≤ J for i = 1, 2, . . . ,K.

Let 1 ≤ h ≤ N . For k = 1, 2, . . . ,K, let

Sh,k =
{

j : ch(1 + ǫ)−(k−1) ≥ cj > ch(1 + ǫ)−k and j > h
}

.

[Note: the “and” is redundant when k > 1.] For each 1 ≤ h ≤ N , and each signature σ, define

P
h,σ = { x ∈ [0, 1]N :

N
∑

j=1

wjxj ≥ b, (31)

x1 = x2 = · · · = xh−1 = 0, xh = 1, (32)

∑

j∈Sh,k

xj = σk, ∀k such that σk < J, (33)

∑

j∈Sh,k

xj ≥ J, ∀k such that σk = J (34)

}.

Lemma 2.4 For each h and σ there is a 0/1 vector x̂h,σ feasible for KMIN such that cT x̂h,σ ≤
(1 + ǫ)min

{

cT x : x ∈ P h,σ
}

. As a result, vZ ≤ (1 + ǫ)min
{

cT x : x ∈ P h,σ
}

.

Proof. Let x̄ ∈ P h,σ. We x̂h,σ as follows. First, for each k such that σk > 0, we obtain the values
x̂h,σ

j for each j ∈ Sh,k by applying Lemma 2.2 with S = Sh,k. Here, note that when σk < J , the we
have

1− 1

σk
+

cmax

σkcmin
≤ cmax

cmin
≤ 1 + ǫ,
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by construction of the sets Sh,k. And if σk = J , we also have

(

1 +
cmax

J cmin

)

≤ 1 + ǫ, (35)

by our choice for J . If on the other hand σk = 0 we set x̂h,σ
j = 0 for every j ∈ Sh,k.

Finally, define T h = {j : cj ≤ (1 + ǫ)−K}. The problem

min
∑

j∈T h

cjxj (36)

s.t.
∑

j∈T h

wjxj ≥
∑

j∈T h

wj x̄j (37)

0 ≤ xj ≤ 1, ∀ j ∈ T h, (38)

is a knapsack problem, and hence it has an optimal solution x̃ with at most one fractional variable.
We set x̂h,σ

j = ⌈x̃j⌉ for each j ∈ T h; thereby increasing cost (from x̃) by less than (1+ǫ)−Kch ≤ ǫ ch

by definition of K.

In summary,

cT x̂h,σ − cT x̄ =
∑

k :σk>0





∑

j∈Sh,k

cj x̂
h,σ
j −

∑

j∈Sh,k

cj x̄j



 +
∑

j∈T h

cj(x̂
h,σ
j − x̄j) (39)

≤ ǫ
∑

k :σk>0

∑

j∈Sh,k

cj x̄j + ǫ ch (40)

≤ ǫ cT x̄. (41)

Here, (40) follows from Lemma 2.2, and by definition of the sets Sh,k, and (41) follows from the
fact that x̄h = 1, by definition of P h,σ.

Consider the polyhedron

Q = conv





⋃

h,σ

P h,σ



 . (42)

Note that there are at most (J + 1)K N = O
(

(1/ǫ)O(1/ǫ2) N
)

polyhedra P h,σ, and that each P h,σ

is described by a system with O(K + N) constraints in N variables. Thus, Q is the projection to
RN of the feasible set for a system with at most

O

(

(

1

ǫ

)O(1/ǫ2)

N2

)

constraints in O

(

(

1

ǫ

)1/ǫ
)

N2 variables. (43)

Furthermore, any 0/1 vector x that is feasible for the knapsack problem satisfies x ∈ P hσ for some
h and σ; in other words, Q constitutes a valid relaxation to the knapsack problem.

Lemma 2.5 vZ ≤ (1 + ǫ) min{cT x : x ∈ Q}.
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Proof. Let x̃ ∈ Q. Then there exist reals λh,σ, for each 1 ≤ h ≤ N and σ ⊆ {1, 2, . . . ,K}, such that

0 ≤ λh,σ, ∀ h and σ, and
∑

h

∑

σ

λh,σ = 1,

and, for each h and σ with λh,σ > 0, a vector xh,σ ∈ P h,σ, such that

x̃ =
∑

h,σ : λh,σ>0

λh,σ xh,σ.

Let Λ = {(h, σ) : λh,σ > 0}. Then

vZ − cT x̃ =
∑

(h,σ)∈Λ

λh,σ vZ −
∑

(h,σ)∈Λ

λh,σ cT xh,σ (44)

=
∑

(h,σ)∈Λ

λh,σ

(

vZ − cT xh,σ
)

(45)

≤
∑

(h,σ)∈Λ

λh,σ

(

ǫ cT xh,σ
)

(by Lemma 2.4) (46)

= ǫ cT x̃, (47)

as desired.

Note that the proofs above rely on term-by-term rounding of a solution to a linear program. As
a consequence, we have the following result, whose proof we include for completeness, though it
essentially follows from Lemmas 2.4 and 2.5.

Corollary 2.6 For each 0 < ǫ < 1 there is an algorithm that computes a feasible 0/1 solution to
the minimum-knapsack problem, with value at most (1 + ǫ)vZ . This algorithm requires the solution

of O
(

(1/ǫ)O(1/ǫ2) N
)

linear programs with O(N) variables and constraints.

Proof. By Lemma 2.4, for each h and σ there is a 0/1 vector x̂h,σ which is feasible for the

knapsack problem, and such that cT x̂h,σ ≤ (1 + ǫ)min
{

cT x : x ∈ P h,σ
}

. From among the set

of all vectors x̂h,σ select one of minimum cost; denoting this vector by xZ we have cT xZ ≤
(1 + ǫ)min

{

cT x : x ∈ P h,σ
}

for each h and σ, and as a result cT xZ ≤ (1 + ǫ)min
{

cT x : x ∈ Q
}

.

3 Fixed-charge network flow problems

In this section we consider the mixed-integer programs FXN described in the introduction, in the
case where the inner vertices I induce a path. In order to motivate the discussion we first discuss
some special cases.

3.1 Single inner node

Let I = {1}; we then have A = δ+(1) ∪ δ−(1). To simplify notation we will index the arcs by the
integers 1, 2, . . . , n = |A|. We assume that the arcs have been numbered so that

fk + ckuk ≥ fk+1 + ck+1uk+1, for 1 ≤ k < n.
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Problem FXN can be written as

vZ = min
n
∑

j=1

(fjyj + cjxj) , (48)

∑

j ∈ δ+(1)

xj −
∑

j ∈ δ−(1)

xj = b1, (49)

0 ≤ xj ≤ uj yj ∀j, (50)

yj = 0 or 1, ∀j. (51)

Given a vector (x, y) feasible for FXN an arc j is called slack if yj = 1 and 0 < xj < ujyj.
Otherwise the arc is called tight. The following result is routine.

Lemma 3.1 In any extreme point solution to (48)-(51) there is at most one slack arc.

3.1.1 Achieving a bound of 2

For each pair of indices 1 ≤ h, i ≤ n (including i = h), consider the polyhedron Dh,i defined by

∑

j ∈ δ+(1)

xj −
∑

j ∈ δ−(1)

xj = b1; 0 ≤ yj ≤ 1 ∀ j ∈ A, (52)

yi = yh = 1; if h 6= i then yg = 0 ∀ g 6= i with g < h; (53)

if h = i then yg = 0 ∀ g 6= h, (54)

0 ≤ xi ≤ uiyi; xg = ug yg ∀ g 6= i. (55)

Now as a consequence of Lemma 3.2 we have:

Lemma 3.2 Let (x̂, ŷ) 6= (0, 0) be an extreme point solution to (48)-(51). Then there exist indices
1 ≤ h, i ≤ n such that (x̂, ŷ) ∈ Dh,i.

Proof. We have ŷ 6= 0. If there is a unique index j with ŷj = 1, then set i = h = j and we are done.
Otherwise, (using Lemma 3.1) let h be the minimum index j with ŷj = 1 and x̂j = ujyj. Again
using Lemma 3.1 there is at most one index j with ŷj = 1 and 0 < x̂j < uj ; we set i equal to that
index if it exists, and we set i = h otherwise.

Define:

Q =















conv
(

⋃

h,i D
h,i
)

if b1 6= 0,

conv
(

(0, 0) ∪⋃h,i D
h,i
)

otherwise.

As a consequence of Lemma 3.1 we have that if (x̂, ŷ) is feasible for (48)-(51) then (x̂, ŷ) ∈ Q.

Lemma 3.3 For each pair of indices 1 ≤ h, i ≤ n,

vZ ≤ 2min{cT x + fT y : (x, y) ∈ Dh,i}.
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Proof. Let (x̄, ȳ) be an optimal extreme point solution to min
{

cT x + fT y : (x, y) ∈ Dh,i
}

, and

assume by contradiction that there exist indices p 6= q with 0 < ȳp < 1 and 0 < ȳq < 1. Then
p, q 6= h and p, q 6= i. Consequently, x̄p = upȳp and x̄q = uqȳq, and therefore x̄p > 0 and x̄q > 0.

Assume first that p ∈ δ+(1) and q ∈ δ+(1). Then for real δ small enough in absolute value, we
can reset

yp ← ȳp + δ, xp ← x̄p + upδ, (56)

yq ← ȳq −
up

uq
δ, xq ← x̄q − upδ, (57)

maintaining feasibility for Dh,i, contradicting the assumption that (x̄, ȳ) is an extreme point. The
remaining cases (both p and q in δ−(1), one each in δ+(1) and δ−(1)) are similarly handled.

Thus, there is a unique index i with 0 < ȳg < 1. Setting yg = 1 (and keeping all other variables
unchanged) yields a feasible solution to FXN ; since g > h and all costs are nonnegative this change
at most doubles the cost.

As a corollary we now have vZ ≤ 2min{cT x + fTy : (x, y) ∈ Q}.

3.1.2 Achieving a bound of 1 + ǫ

Let 0 < ǫ < 1. In order to improve the IP/LP ratio from 2 to 1 + ǫ, we apply the technique used
in Section 2.1 to prove the corresponding result for the minimum knapsack problem.

In the context of the single inner-node problem, this works out as follows: rather than construct-
ing a disjunction based on the polyhedra Dh,i as defined above, instead we construct a disjunction
using polyhedra Dh,i,σ, where σ is a signature (see Definition 2.3). The polyhedra Dh,i,σ are ob-
tained by adapting the definition of Dh,i given above, in particular, equation (54), in order to mirror
equations (33), (34). The proof that the resulting disjunction proves the desired 1 + ǫ bound is
much like the proof of Lemmas 2.4, 3.3.

3.2 Two inner nodes

We assume I consists of nodes 1 and 2, and that the arc between 1 and 2 is (1, 2). For i = 1, 2,
write ∆(i) = δ−(i) ∪ δ+(i) \ (1, 2). The following result is straightforward.

Lemma 3.4 In an optimal solution to (x, y) for FXN , without loss of generality either

(a) y12 = 1 and x12 = u12, or y12 = 0 and x12 = 0; and in either case there is at most one slack
arc in ∆(1) and at most one slack arc in ∆(2).

(b) y1 = 1 and 0 < x1 < u1; and there is at most one slack arc in ∆(1) ∪∆(2).

We now show how to generate a polynomial-size relaxation that yields an IP/LP ratio of at most
2. Using Lemma 3.4 it is straightforward to do so with a disjunction with O(n4) terms relying on
the results of the previous section. However, we will show how achieve the same bound with O(n2)
terms using a system of nested disjunctions.

We number the arcs in ∆(1) ∪∆(2) as 1, 2, . . . , n − 1, where the indices reflect non-increasing
values of fj + cjuj (we will still refer to the arc between 1 and 2 as (1, 2), however).
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Let h, i ∈ ∆(1). For φ = 0 or φ = 1, consider the polyhedron Dh,i
1,φ ⊆ R

∆(1)
+ ×R∆(1)

+ ×R+ defined
by:

∑

j ∈ δ+(1)\(1,2)

xj −
∑

j ∈ δ−(1)

xj − (b1 − u12φ)α = 0, 0 ≤ yj ≤ α, ∀ j ∈ ∆(1) (58)

yh = yi = α; if h 6= i then yg = 0 ∀ g ∈ ∆(1) with g 6= i and g < h;

if h = i then yg = 0 ∀ g ∈ ∆(1) \ h, (59)

0 ≤ xi ≤ uiyi; xg = ug yg ∀ g 6= i with g ∈ ∆(1), (60)

0 ≤ α. (61)

Note: The quantity α is a homogenization factor, the user should think of it as taking values
either 1 or 0 (in the latter case all x and y will take value zero). Also, when φ = 1 (resp., 0) (58)
corresponds to the flow conservation constraint at node 1 assuming the arc (1, 2) carries flow u12

(resp., 0), both after homogenization.

Similarly, for each pair h, i ∈ ∆(2), and φ = 0 or φ = 1, consider the polyhedron Dh,i
2,φ ⊆

R∆(2)
+ ×R∆(2)

+ ×R+ defined by:

∑

j ∈ δ+(2)

xj −
∑

j ∈ δ−(2)\(1,2)

xj − (b2 + u12φ)β = 0, 0 ≤ yj ≤ β, ∀ j ∈ ∆(2) (62)

yh = yi = β; if h 6= i then yg = 0 ∀ g ∈ ∆(2) with g 6= i and g < h;

if h = i then yg = 0 ∀ g ∈ ∆(2) \ h, (63)

0 ≤ xi ≤ uiyi; xg = ug yg ∀ g 6= i with g ∈ ∆(2), (64)

0 ≤ β. (65)

Finally, writing ∆ = ∆(1) ∪∆(2), then for each pair of indices h, i ∈ ∆ consider the polyhedron
T h,i defined by:

∑

j ∈ δ+(1)\(1,2)

xj −
∑

j ∈ δ−(1)

xj − b1 γ = 0,
∑

j ∈ δ+(2)

xj −
∑

j ∈ δ−(2)\(1,2)

xj − b2 γ = 0, (66)

0 ≤ yj ≤ γ ∀ j ∈ ∆,

y12 = γ, 0 ≤ x12 ≤ u12 y12, (67)

yh = yi = γ; if h 6= i then yg = 0 ∀ g ∈ ∆ with g 6= i and g < h;

if h = i then yg = 0 ∀ g ∈ ∆ \ h, (68)

0 ≤ xi ≤ uiyi; xg = ug yg ∀ g 6= i. (69)

Roughly speaking the Dh,i
k,δ polyhedra capture case (a) of Lemma 3.4 whereas the T h,i will be shown

to capture case (b).

Our overall formulation can now be given. For k = 1, 2 we will use the notation (x(k), y(k)) to
denote an (x, y) vector with entries for arcs in ∆(k). For convenience of notation, we will also
assume that b1 6= 0 and b2 6= 0; we will indicate later how to handle the other cases as well. Using
(somewhat abused) vector notation, the formulation is:
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(x(1), y(1), x12, y12, x(2), y(2), 1) =

∑

φ=0,1

∑

i,h∈∆(1)

(x(1)i,h,φ, y(1)i,h,φ, u12 φαi,h,φ, φ αi,h,φ, x(2), y(2), αi,h,φ) +

∑

i,h∈∆

(x̂(1)i,h, ŷ(1)i,h, x̂i,h
12 , ŷi,h

12 , x̂(2)i,h, ŷ(2)i,h, γi,h) (70)

(x(1)i,h,φ, y(1)i,h,φ, αi,h,φ) ∈ Dh,i
1,φ, ∀φ, and ∀ i, h ∈ ∆(1) (71)

(x̂(1)i,h, ŷ(1)i,h, x̂i,h
12 , ŷi,h

12 , x̂(2)i,h, ŷ(2)i,h, γi,h) ∈ T h,i, ∀ i, h ∈ ∆ (72)

(x(2), y(2), αi,h,φ) =
∑

φ′=0,1

∑

i′,h′∈∆(2)

(x(2)i
′,h′,φ′

, y(2)i
′,h′,φ′

, βi′,h′,φ′

)

for all φ = 0, 1, and i, h ∈ ∆(1) (73)

(x(2)i
′,h′,φ′

, y(2)i
′,h′,φ′

, βi′,h′,φ′

) ∈ Dh′,i′

2,φ′ , ∀φ′ = 0, 1, and i′, h′ ∈ ∆(2). (74)

Note that the vector equation (70) includes the condition
∑

φ=0,1

∑

i,h∈∆(1) αi,h,φ+
∑

i,h∈∆ γi,h = 1.
Thus, (70) describes a disjunction. The second term in the right-hand side of (70) corresponds to
case (b) of Lemma 3.4, whereas the first term corresponds to case (a) and we disjunct on the arcs
of ∆(1) and whether y12 = 0 or 1.
Moreover, for a given φ = 0, 1, and i, h ∈ ∆(1), (73) requires that

αi,h,φ =
∑

φ′=0,1

∑

i′,h′∈∆(2)

βi′,h′,φ′

.

Thus (73) is also a disjunction (more precisely: it is a disjunction when αi,h,φ > 0, after scaling the
equation by 1/αi,h,φ).
Based on these observations it follows that (70)-(74) describes a valid relaxation for FXN . We can
now present the rounding result.

Lemma 3.5 vZ ≤ 2 min{cT x + fT y : (x, y) satisfies (70)-(74) }.

Proof. Consider an extreme point optimal solution (x(1), y(1), x12, y12, x(2), y(2)) to the relax-
ation with constraints (70)-(74) chosen in addition so that the sum of αi,h,φ is maximum.

Note first that for each φ′ = 0, 1, and i′, h′ ∈ ∆(2) we can “round” (x(2)i
′,h′,φ′

, y(2)i
′,h′,φ′

, βi′,h′,φ′

)

to a vector feasible for Dh′,i′

2,φ′ such that yu,v = 0 or βi′,h′,φ′

for every (u, v) ∈ ∆(2), while at most
doubling the cost. This is analogous to the proof of Lemma 3.3 in the single inner-node case.

A similar observation applies for each φ = 0, 1, and i, h ∈ ∆(1) – the vector (x(1)i,h,φ, y(1)i,h,φ, αi,h,φ)

can be rounded to a vector feasible for Dh,i
1,φ such that yu,v = 0 or αi,h,φ for every (u, v) ∈ ∆(1),

while at most doubling the cost.
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Thus, by (70), the proof of the Lemma will be complete if we can prove a similar rounding result

for each vector (x̂(1)i,h, ŷ(1)i,h, x̂i,h
12 , ŷi,h

12 , x̂(2)i,h, ŷ(2)i,h, γi,h) where i, h ∈ ∆, and γi,h > 0.

Following the proof of Lemma 3.3, this result would follow if we can show that there is at most
one arc (u, v) ∈ ∆ such that 0 < ŷuv < γi,h. In turn, this is clear if 0 < x̂12 < γi,h u12. So assume
not. Then either 0 = x̂12, or x̂12 = γi,hu12. In the first case by nonnegativity of the costs we can
assume without loss of generality that 0 = ŷ12.

But then in either case term (72) in the disjunction corresponding to (i, h) corresponds to an in-
stance of case (a) (with φ = 0 and φ = 1, respectively). It follows that there is an equivalent
representation of (x(1), y(1), x12, y12, x(2), y(2)) where the sum of αi,h,φ has been increased by
γi,h, a contradiction.

Above we had assumed that b1 6= 0 and that b2 6= 0. If not, in order to make the construction
complete we simply need to add terms to the disjunctions given above corresponding to solutions
where all arcs in ∆(1) or ∆(2) are set at zero (zero flow and zero y variables). It is straightforward
to show that Lemma 3.5 still holds, as the proof given above proceeded on a term-by-term basis.

3.3 General case

We only sketch the construction in the case that I induces a general path, which we denote by P.

In this case one can obtain a result similar to Lemma 3.4. An extreme point solution (x̂, ŷ)
to FXN (where by definition ŷ is a 0/1-vector) can be decomposed into intervals: we have
P = P1 ∪ P2 ∪ . . .Pk, where

1. The Pi are vertex-disjoint supbaths of P.

2. For any arc j ∈ P, 0 < x̂j < uj if and only if both ends of j belong to the same subpath Pi.

The formulation of the relaxation is similar to that given by (70)-(74), with the difference that
there are |I| − 1 nested levels of disjunctions. The building blocks of the disjunctions correspond
to intervals; for each interval we need to specify indices i, h as above, as well as up to two values
φ, φ′, each corresponding to the condition (flow at zero or at upper bound) of each arc connecting
the interval to the rest of P.

As was the case for the minimum-knapsack problem, the constructions can be used to yield ap-
proximation algorithms:

Corollary 3.6 Given an instance of FXN where the inner vertices induce a path, for each 0 <
ǫ < 1 there is an algorithm that computes a feasible 0/1 of cost at most (1 + ǫ)vZ . This algorithm

solves O
(

(1/ǫ)O(1/ǫ2) (1 + |O|)2 |I|2
)

linear programs in O(|O|+ |I|) variables.

There are several ways in which Theorem 1.2 and Corollary 3.6 can be generalized, always
relying on the basic disjunctive technique given above. An open case is that where the inner nodes
induce a graph of fixed tree-width (the fixed path-width case is an easy extension). See [15].

14



4 Maximum knapsack

In this section we will present the results on the maximum knapsack problem. First we will show
that using valid inequalities with “small” coefficients then the LP/IP ratio can remain arbitrarily
close to 2. Then we we will discuss our use of disjunctions, and finally we will provide our analysis
of clique inequalities in the case that the coefficients wj are not “large”.

4.1 Valid inequalities with small coefficients

Consider the knapsack instance with N = n + 1 where

p1 = p2 = . . . = pn = 1, pn+1 = n,

w1 = w2 = . . . = wn = 1, wn+1 = n2 − ⌊√n⌋,
b = n2.

Write s = ⌊√n⌋. Clearly,
vZ = n + s ∼ n.

The lifted cover inequality,
n
∑

j=1

xj + (n− s)xn+1 ≤ n

defines a facet of conv(KMAX ). This suggests that the set of valid inequalities with ’small’
coefficients may not adequately approximate conv(KMAX ), but it is not clear how large the
shortfall is. Consider the valid inequalities with left-hand side coefficients 0 or 1, which are as
follows:

∀A ⊆ {1, 2, . . . , n},
∑

j∈A

xj ≤ |A|, and (75)

∀A ⊆ {1, 2, . . . , n},
∑

j∈A

xj + xn+1 ≤
{

|A|+ 1, if |A| ≤ s,
|A|, otherwise.

(76)

Let x∗ be the point defined by x∗
j = 1 − 1/s, for 1 ≤ j ≤ n + 1. It is not difficult to show that

x∗ satisfies all inequalities (76) as well as (6), for n large enough. At the same time, we have
∑n+1

j=1 pjx
∗
j = n− s + n− n/s ∼ 2n. However, a stronger result can be proved.

Lemma 4.1 Let 0 < ǫ < 1. Consider the knapsack instance with N = n + 1 where

p1 = p2 = . . . = pn = 1, pn+1 = n, (77)

w1 = w2 = . . . = wn = 1, wn+1 = n2 − n/2, (78)

b = n2. (79)

Let

n+1
∑

j=1

αjxj ≤ β (80)

be a valid inequality for the knapsack polytope defined by (77)-(79), where αj ∈ {0, 1, . . . , ⌊n1−ǫ⌋}
for 1 ≤ j ≤ n + 1. Consider the point x̂ with x̂j = 1 − 2n−ǫ for 1 ≤ j ≤ n + 1. Then for n large
enough, x̂ is feasible for the continuous relaxation of KMAXand satisfies (80).
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Proof. The first assertion is clear. To prove the second, let B denote the sum of the n/2 largest αj

chosen among the indices 1 ≤ j ≤ n. Then, without loss of generality,

β = max







n
∑

j=1

αj , B + αn+1







.

Consider first the case where there are at least n/2 positive αj with 1 ≤ j ≤ n. Then

n+1
∑

j=1

αjx̂j < (81)

n
∑

j=1

αj
(

1− 2n−ǫ) + n1−ǫ ≤
n
∑

j=1

αj − 2n−ǫ
(

n

2

)

+ n1−ǫ =
n
∑

j=1

αj, (82)

as desired. Suppose there are fewer than n/2 positive αj with 1 ≤ j ≤ n. Then
∑n+1

j=1 αjx̂j is less
than B + αn+1.

4.2 Using disjunctions

Let r =
√

19−2
3 . In this section we describe a simple disjunction which is guaranteed to result in an

LP value at most (1 + r)vZ ≈ 1.79vZ . Without loss of generality, assume that the optimal solution
to the continuous relaxation of KMAX has value 2. Thus, vZ ≥ 1.

Assume that 2 > (1 + r)vZ . Since wj ≤ b for each j, we have that pj < 2/(1 + r) for each j. Define

Ω = {j : pj ≥ r} , and w̃ = min{wj : j ∈ Ω}.

Let j∗ ∈ Ω be such that wj∗ = w̃ (if Ω = ∅ j∗ will be irrelevant). We have that

KMAX ⊆ conv(L2 ∪ L1 ∪ L0 ), (83)

where Li, 0 ≤ i ≤ 2 are the following convex polyhedra. First, L2 is the set of solutions to the
system:

N
∑

j=1

wjxj ≤ b, (84)

∑

j∈Ω

xj ≥ 2, (85)

0 ≤ xj ≤ 1, ∀ j. (86)

Similarly, L1 is the set of solutions to the system:

N
∑

j=1

wjxj ≤ b, (87)

∑

j∈Ω

xj = 1, (88)

xj = 0, ∀ j 6= j∗ with wj + w̃ > b, (89)

0 ≤ xj ≤ 1, ∀ j. (90)
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Finally, L0 is the set of solutions to the system:

N
∑

j=1

wjxj ≤ b, (91)

xj = 0 ∀ j ∈ Ω, (92)

0 ≤ xj ≤ 1, ∀ j. (93)

It is clear that (83) holds. Further, we can separate from conv(L2 ∪ L1 ∪ L0 ) in polynomial time.
Now, if L2 6= ∅, there exist distinct i(1), i(2) ∈ Ω with wi(1) + wi(2) ≤ b (e.g. the two indices in Ω

with smallest wj). In that case, vZ ≥ 2r, and so the LP to IP ratio is at most

2

2r
≤ 1 + r. (94)

In what follows we will assume L2 = ∅, and show that

max







∑

j

pjxj : x ∈ Lk







≤ (1 + r)vZ for k = 0, 1, (95)

as desired.
Consider first k = 1. Let x̂ be an optimal solution to max

{

∑

j pjxj : x ∈ L1
}

, and suppose

that
∑

j pj x̂j > 1 + r. Since

∑

j∈Ω

pj x̂j ≤ max
j∈Ω

pj (96)

(by (88)), and

∑

j∈Ω

wj x̂j ≥ w̃ (97)

(by (88) and the definition of w̃), we have

∑

j /∈Ω

pj x̂j ≥ 1 + r − 2

1 + r
, and (98)

∑

j /∈Ω

wj x̂j ≤ b− w̃. (99)

Hence there is a set S disjoint from Ω with

∑

j∈S

pj ≥
1

2

(

1 + r − 2

1 + r

)

, and (100)

∑

j∈S

wj ≤ b− w̃. (101)

Therefore, setting xj = 1 if j ∈ S ∪ {j∗}, and xj = 0 otherwise, yields a feasible solution to the
knapsack problem with value at least

1

2

(

1 + r − 2

1 + r

)

+ r ≥ 2

1 + r
(102)
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as a simple calculation shows, as desired.

Next we consider L0. Clearly, max
{

∑

j pjxj : x ∈ L0
}

is simply the continuous relaxation of a

knapsack problem. As is well known, there is an optimal solution x̃ to this problem with the
following structure: for some set S, x̃j = 1 for all j ∈ S; 0 < xk < 1 for at most one additional
index k (note that k /∈ Ω, by (93)), and xj = 0 otherwise. Hence, the value of the relaxation is
strictly less than

vZ + max
j /∈Ω
{pj} < vZ + r ≤ (1 + r)vZ ,

as desired.

4.3 Knapsacks with small coefficients

In this section we prove Theorem 1.3. Let 0 ≤ λ < 1 be given. Consider the linear programming
relaxation of KMAX ,

v∗ = max
N
∑

j=1

pjxj ,

s.t.
N
∑

j=1

wjxj ≤ b, (103)

x ∈ [0 , 1]N . (104)

We can obtain an optimal solution x∗ to this linear program as follows. Assume without loss of
generality that that p1/w1 ≥ p2/w2 ≥ . . . pN/wN . Then, for some integer n ≥ 1, we have

x∗
j = 1, for 1 ≤ j ≤ n,

x∗
n+1 =

b−∑n
j=1 wj

wn+1
,

x∗
j = 0, for n + 1 < j ≤ N.

If x∗
n+1 = 0 or 1 then vZ = v∗ and there is nothing left to prove. In what follows we assume

0 < x∗
n+1 < 1.

Without loss of generality we assume λ > 1/2. Write κ = 2λ − 1. Note that 0 < κ < 1. We will
choose

ǫ = min

{

1− κ

4(1 + κ)
,

1

138

}

.

Note that ǫ < 1− κ.

Our proof of Theorem 1.3 will proceed in a number of steps. We will assume by contradiction that
vω > (2 − ǫ)vZ . Without loss of generality, we will assume that the pj have been scaled so that
v∗ = 2 (and thus vZ > 1). Likewise, we will assume the wj have been scaled so that b = 2. We next
prove some structural results (Lemma 4.2 through Lemma 4.5) that follow from these assumptions.

Lemma 4.2 (a) max{ ∑n
j=1 pj , maxk{pk} } < 1 + ǫ. (b) min{ ∑n

j=1 pj , pn+1 } > 1 − ǫ. (c)
x∗

n+1 > 1− 2ǫ.
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Proof. (a) Assume that pk ≥ 1 + ǫ for some k. The solution with xk = 1 and xj = 0 for all other j
is feasible, and thus

v∗

vZ
≤ 2

1 + ǫ
≤ 2− ǫ, (105)

(since 0 ≤ ǫ ≤ 1) a contradiction. Similarly,
∑n

j=1 pj < 1 + ǫ. To prove (b), note that

2 =
n
∑

j=1

pj + x∗
n+1 pn+1 <

n
∑

j=1

pj + 1 + ǫ, (106)

yielding the bound on
∑n

j=1 pj . The bound on pn+1 is similarly obtained from the first equation in
(106). This equation also yields

x∗
n+1 =

2−∑n
j=1 pj

pn+1
>

1− ǫ

1 + ǫ
> 1− 2ǫ, (107)

thereby proving (c).

Write ∆ = wn+1 − x∗
n+1wn+1. By definition of κ, λb = 2λ = 1 + κ, so by Lemma 4.2(c), ∆ <

2ǫ wn+1 ≤ 2ǫλb = 2ǫ(1 + κ). Also, note that 2 =
∑n

j=1 wj + x∗
n+1wn+1, so

n
∑

j=1

wj − ∆ = b− x∗
n+1wn+1 − ∆ = b− wn+1 ≥ 0. (108)

Define

j∗ = min







i :
i
∑

j=1

wj ≥
n
∑

j=1

wj − ∆







.

Lemma 4.3 (a)
∑j∗−1

j=1 pj < 2ǫ. (b)
∑n

j=j∗+1 pj < 2ǫ.

Proof. (a) The vector x with x1 = . . . = xj∗−1 = 1, xn+1 = 1, and xj = 0 for all other j, is feasible,

by definition of j∗, which implies
∑j∗−1

j=1 pj + pn+1 < 1 + ǫ. Together with Lemma 4.2 this yields
the desired result. (b) The vector x with xj∗+1 = . . . = xn = 1, xn+1 = 1, and xj = 0 for all other
j, is feasible, because

n
∑

j=j∗+1

wj + wn+1 ≤ ∆ + wn+1 ≤ 2ǫ(1 + κ) + 1 + κ = (1 + κ)(1 + 2ǫ) ≤ 2, (109)

by definition of ǫ. Hence, we must have
∑n

j=j∗+1 pj + pn+1 < 1 + ǫ and we conclude as in (a).

Corollary 4.4 p∗j ≥ 1− 5ǫ and wj∗ + wn+1 > 2.

Proof. Lemma 4.2 (b) and Lemma 4.3 yield the bound on pj∗. If wj∗ + wn+1 ≤ 2 then

v∗

vZ
≤ 2

2− 6ǫ
< 2− ǫ,

a contradiction.

Lemma 4.5 (a) wn+1 > 1− ǫ. (b) wj∗ < 1 + 3ǫ.
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Proof. (a) By our indexing of variables in non-increasing order of values pj/wj ,

p1 + . . . + pn

w1 + . . . wn
≥ pn+1

wn+1
, (110)

and thus, since b = 2,

wn+1 ≥
1− ǫ

1 + ǫ
(w1 + . . . + wn) >

1− ǫ

1 + ǫ
(2− wn+1), (111)

from which the result follows.
(b) This follows from

wj∗ ≤ w1 + . . . + wn = 2− x∗
n+1wn+1 < 2− (1− 2ǫ)(1− ǫ) < 1 + 3ǫ.

Define
P = {1 ≤ j ≤ N : j > n + 1 and wj + wj∗ ≤ 2} .

In what follows we consider an arbitrary vector x̂ that satisfies
∑

j wjx̂j ≤ b, all clique inequalities,

and 0 ≤ x̂j ≤ 1, ∀j. We will assume that
∑

j pj x̂j > (2 − ǫ)vZ , and show that this leads to a
contradiction, thereby proving Theorem 1.3.

Lemma 4.6
∑

j∈P x̂jpj ≤ 60 ǫ.

Proof. Assume by contradiction that
∑

j∈P x̂jpj > 60ǫ. The proof will construct a subset A ⊆ P
such that

wj∗ +
∑

j∈A

wj ≤ 2, and (112)

∑

j∈A

pj > 6ǫ. (113)

This will provide a contradiction since in that case vZ > 1 + ǫ and

vω

vZ
≤ 2

1 + ǫ
< 2− ǫ.

Since
∑

j∈P wj x̂j ≤ 2− wj∗ x̂j∗, it follows that there exists T ⊆ P with
∑

j∈T

wj ≤ 2− wj∗x̂j∗ , and (114)

∑

j∈T

pj > 30ǫ. (115)

Let α, β be defined as follows. If wj∗ ≤ 1, then α = β, whereas if wj∗ > 1 then α = 1 − (wj∗ − 1)
and β = wj∗ . Note that in either case α ≤ β, β − α < 6ǫ (by Lemma 4.5(b)), β − α < α ≤ 2− β,
and wj∗ + 2− β = 2. Let

T = {i(1), i(2), · · · , i(|T |)} .

Consider a family of closed intervals Ik = [ak, bk], k = 1, · · · , |T |, where

a1 = 0, (116)

bk =
k
∑

j=1

wi(j), k = 1, · · · , |T |, (117)

ak+1 = bk, k = 1, · · · , |T | − 1. (118)

Then we can partition the intervals Ik into at most 5 disjoint classes (some of which may be empty),
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(1) Intervals Ik with bk ≤ α,

(2) Intervals Ik with ak ≥ β,

(3) Intervals Ik with ak > α and bk < β, and

(4) At most two other intervals (each constituting a class).

Let A be the class with largest sum of pj – thus A satisfies (113). By definition of P and T , by
Lemma (4.5)(b) and by construction of the Ik, A satisfies (112).

Lemma 4.3 and Lemma 4.6 imply that

n
∑

j=1, j 6=j∗

x̂jpj +
∑

j∈P

x̂jpj ≤ 64 ǫ, (119)

In the rest of this Section we will show that the remaining terms in
∑

j x̂jpj amount to less than

(3/2 + 4ǫ)vZ . Thus, overall
∑

j

x̂jpj ≤ 64ǫ + (3/2 + 4ǫ)vZ ≤ (3/2 + 68ǫ)vZ ≤ (2− ǫ)vZ ,

(by our choice of ǫ) which is the desired contradiction. Note that the remaining terms consist of

• index j∗, and

• indices j 6= j∗ with wj + wj∗ > 2. Let I be the set of such indices j.

Our approach will be to upper-bound the sum of remaining terms by the value of a linear pro-
gram, whose constraints will primarily amount to clique inequalities, restricted to variables xj with
j ∈ I ∪ {j∗}.

We partition I into

S = {j ∈ I : wj ≤ 1} and L = {j ∈ I : wj > 1} .

Lemma 4.7 Suppose S = ∅. Then x̂j∗ pj∗ +
∑

j∈I x̂jpj ≤ 1 + ǫ.

Proof. By definition of I we have that
∑

j∈I∪{j∗}
xj ≤ 1,

is a clique inequality, and the result follows by Lemma 4.2(a).

The remainder of the proof handles the case S 6= ∅, and consequently, by definition of I, wj∗ > 1.
Note that for each j ∈ I we have j > n and wj > 1 − 3ǫ (this by Lemma 4.5(b)). Thus, since
∑N

j=1 wj x̂j ≤ 2, we also have

∑

j ∈I∪{j∗}
x̂j ≤ 2 + 4ǫ. (120)

Also note that if j ∈ S,

pj ≤ pj/wj ≤ pj∗/wj∗ < pj∗. (121)

Definition:
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• s(1) = argmax{pj : j ∈ S},

• L1 = {j ∈ L : wj + ws(1) > 2}, and

• L2 = L −L1.

Lemma 4.8 Suppose |S| = 1. Then x̂j∗ pj∗ +
∑

j∈I x̂jpj ≤ 1 + ǫ.

Proof. Let S = {i}. Then L1 = {j ∈ L : wi + wj > 2}. The following are clique inequalities:

xj∗ +
∑

j∈L1

xj +
∑

j∈L2

xj ≤ 1, (122)

xj∗ +
∑

j∈L1

xj + xi ≤ 1, (123)

and thus, x̂j∗pj∗ + x̂ipi +
∑

j∈L x̂jpj is upper-bounded by the value of the linear program

max







pj∗xj∗ + pixi +
∑

j∈L
pjxj : s.t. (122)-(123), each variable in [0, 1]







. (124)

We conclude that

x̂j∗ pj∗ + x̂ipi +
∑

j∈L
x̂jpj ≤ max

{

max
k∈L1∪{j∗}

wk , wi + max
k∈L2
{wk}

}

≤ vZ , (125)

where the last inequality follows because by definition of L2, there is an integer feasible solution to
KMAX of value precisely wi + maxk∈L2{wk}, and there is one of maxk∈L1∪{j∗} wk.

In the remainder of the proof we will assume |S| ≥ 2. Consider the linear program

θ = max
∑

j∈L1∪{j∗}
pjxj +

∑

j∈L2

pjxj +
∑

j∈S
pjxj (126)

Subject to:

(α) :
∑

j∈L1∪{j∗}
xj +

∑

j∈L2

xj ≤ 1, (127)

(β) :
∑

j∈L1∪{j∗}
xj + xs(1) ≤ 1, (128)

(γ) :
∑

j∈L1∪{j∗}
xj +

∑

j∈L2

xj +
∑

j∈S
xj ≤ 2 + 4ǫ, (129)

x ≥ 0. (130)

Here, (127) and (128) are clique inequalities, and (129) is the same as (120). Thus,

∑

j∈L∪j∗

x̂jpj +
∑

j∈S
x̂jpj ≤ θ.

In the above formulation, we have indicated the names of the dual variables. Next, define:
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• h = argmax{pj : j ∈ L1 ∪ {j∗}}.

• s(2) = argmax{pj : j ∈ S − s(1)}.

Lemma 4.9 Suppose
{

j ∈ L : pj > ps(2)

}

⊆ L1. Then θ ≤ (3/2 + 2ǫ) vZ .

Proof. By construction (and (121)), ph > ps(1) ≥ ps(2) ≥ pj for each j ∈ L2. Thus, the following
vector is a dual feasible solution to the LP (126)-(130):

α = 0, β = ph −
ps(1) + ps(2)

2
, γ =

ps(1) + ps(2)

2
. (131)

The value of this dual feasible solution is

ph + (1 + 4ǫ)
ps(1) + ps(2)

2
≤
(

3

2
+ 2ǫ

)

max{ ph , ps(1) + ps(2) }. (132)

This concludes the proof, since we have an integer feasible solution to KMAX by setting xh = 1
(and all other xj = 0), and another by setting xs(1) = xs(2) = 1 and all other xj = 0.

Lemma 4.10 Suppose there exists k ∈ L2 with pk > ps(2). Then θ ≤ (3/2 + 2ǫ) vZ .

Proof. Without loss of generality we can assume k = argmax{pj : j ∈ L2}. As previously,
ph > ps(1). Also, since k ∈ L, wk > 1. Since

∑n
j=1 wj ≤ 2, and wj∗ > 1, we therefore have k > n

and so

pk/wk ≤ pj∗/wj∗ . (133)

Further, s(1) ∈ I implies wj∗ + ws(1) > 2. But since k ∈ L2, wk + ws(1) ≤ 2. Consequently,
wj∗ > wk, and using (133) we have

pk < pj∗ ≤ ph.

As a result, if pk ≤ ps(1), the following is a dual feasible solution to the LP (126)-(130):

α = 0, β = ph −
ps(1) + pk

2
, γ =

ps(1) + pk

2
; (134)

and if pk > ps(1), the following vector is dual feasible:

α = ph −
ps(1) + pk

2
, β = 0, γ =

ps(1) + pk

2
. (135)

In either case, the value of the solution is

ph + (1 + 4ǫ)
ps(1) + pk

2
≤
(

3

2
+ 4ǫ

)

max{ ph , ps(1) + pk }. (136)

This concludes the proof, since we have an integer feasible solution to KMAX by setting xh = 1
(and all other xj = 0), and another by setting xs(1) = xk = 1 and all other xj = 0.
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