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N-fold integer programming in cubic time

Raymond Hemmecke∗ Shmuel Onn † Lyubov Romanchuk ‡

Abstract

N-fold integer programming is a fundamental problem with a variety of
natural applications in operations research and statistics. Moreover, it is uni-
versal and provides a new, variable-dimension, parametrization of all of integer
programming. The fastest algorithm for n-fold integer programming predat-
ing the present article runs in time O

(

ng(A)L
)

with L the binary length of
the numerical part of the input and g(A) the so-called Graver complexity
of the bimatrix A defining the system. In this article we provide a drastic
improvement and establish an algorithm which runs in time O

(

n3L
)

having
cubic dependency on n regardless of the bimatrix A. Our algorithm can be
extended to separable convex piecewise affine objectives as well, and also to
systems defined by bimatrices with variable entries. Moreover, it can be used
to define a hierarchy of approximations for any integer programming problem.

1 Introduction

N-fold integer programming is the following problem in variable dimension nt,

min
{

wx : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt
}

, (1)

where

A(n) :=















A1 A1 · · · A1

A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2















(2)

is an (r+ns)×nt matrix which is the n-fold product of a fixed (r, s)× t bimatrix A,
that is, of a matrix A consisting of two blocks A1, A2, with A1 its r × t submatrix
consisting of the first r rows and A2 its s× t submatrix consisting of the last s rows.
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This is a fundamental problem with a variety of natural applications in operations
research and statistics which, along with extensions and variations, include multiin-
dex and multicommodity transportation problems, privacy and disclosure control in
statistical databases, and stochastic integer programming. We briefly discuss some
of these applications in Section 5 (Corollaries 5.1 and 5.2). For more information see
e.g. [4, 5, 7, 9, 10, 11, 12, 14, 15, 20], [17, Chapters 4,5], and the references therein.

Moreover, n-fold integer programming is universal [6] and provides a new, variable-
dimension, parametrization of all of integer programming: every program is an n-fold
program for some m over the bimatrix A := A(m) with first block A1 the 3m× 3m
identity matrix and second block A2 the (3 + m) × 3m incidence matrix of the
complete bipartite graph K3,m. We make further discussion of this in Section 7.

The fastest algorithm for n-fold integer programming predating the present arti-
cle is in [10] and runs in time O

(

ng(A)L
)

with L = 〈w,b, l,u〉 the binary length of the
numerical part of the input, and g(A) the so-called Graver complexity of the bimatrix
A. Unfortunately, the Graver complexity is typically very large [2, 18]: for instance,
the bimatrices A(m) mentioned above have Graver complexity g(A(m)) = Ω(2m),
yielding polynomial but very large nΩ(2m) dependency of the running time on n.

In this article we provide a drastic improvement and establish an algorithm which
runs in time O (n3L) having the cubic dependency on n which is alluded to in the
title, regardless of the fixed bimatrix A. So the Graver complexity g(A) now drops
down from the exponent of n to the constant multiplying n3. This is established in
Section 3 (Theorem 3.9). Moreover, our construction can be used to define a natural
hierarchy of approximations for (1) for the bimatrices A(m) with m variable, and
therefore, by the universality theorem of [6], for any integer programming problem.
These approximations are currently under study, implementation and testing, and
will be discussed briefly in Section 7 and in more detail elsewhere.

Our algorithm extends, moreover, for certain nonlinear objective functions: using
results of [16] on certain optimality criteria, we provide in Section 4 an optimality
certification procedure for separable convex objectives whose time complexity is lin-
ear in n (Theorem 4.1) and an algorithm for solving problems with separable convex
piecewise affine objectives whose time complexity is again cubic in n (Theorem 4.2).
Furthermore, the algorithm also leads to the first polynomial time solution of n-fold
integer programming problems over bimatrices with variable entries (Theorem 6.1).

2 Notation and preliminaries

We start with some notation and review of some preliminaries on Graver bases and
n-fold integer programming that we need later on. See the book [17] for more details.

Graver bases were introduced in [8] as optimality certificates for integer program-
ming. Define a partial order ⊑ on R

n by x ⊑ y if xiyi ≥ 0 and |xi| ≤ |yi| for all i.
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So ⊑ extends the coordinate-wise partial order ≤ on the nonnegative orthant Rn
+ to

all of Rn. By a classical lemma of Gordan, every subset Z ⊆ Z
n has finitely-many

⊑-minimal elements, that is, x ∈ Z such that no other y ∈ Z satisfies y ⊑ x.

We have the following fundamental definition from [8].

Definition 2.1 The Graver basis of an integer m×n matrix A is defined to be the
finite set G(A) ⊂ Z

n of ⊑-minimal elements in {x ∈ Z
n : Ax = 0, x 6= 0}.

For instance, the Graver basis of the matrix A := (1 2 1) consists of 8 vectors,

G(A) = ±{ (2 − 1 0) , (0 − 1 2) , (1 0 − 1) , (1 − 1 1) } .

Consider the general integer programming problem in standard form,

min {wx : Ax = b , l ≤ x ≤ u , x ∈ Z
n} . (3)

A feasible step for feasible point x in (3) is any vector v such that x + v is also
feasible, that is, Av = 0 so A(x + v) = b, and l ≤ x + v ≤ u. An augmenting step
for x is a feasible step v such that x+v is better, that is, wv < 0 so w(x+v) < wx.

Graver has shown that a feasible point x in (3) is optimal if and only if there is
no element g ∈ G(A) in the Graver basis of A which is an augmenting step for x.

This suggests the following simple augmentation scheme: start from any feasible
point in (3) and iteratively augment it to an optimal solution using Graver aug-
menting steps g ∈ G(A) as long as possible. While the number of iterations in this
simple scheme as is may be exponential, it was recently shown in [10] that if in each
iteration the best possible augmenting step of the form γg with γ positive integer
and g ∈ G(A) is taken, then the number of iterations does become polynomial.
In what follows, we call an augmenting step which is at least as good as the best
possible augmenting step γg with g ∈ G(A), a Graver-best augmenting step.

It was shown in [5] that for fixed bimatrix A, the Graver basis G
(

A(n)
)

of the
n-fold product of A can be computed in time polynomial in n. Thus, to find a
Graver-best augmenting step of the form γg for an n-fold integer program (1), it is
possible, as shown in [10], to check each element g ∈ G

(

A(n)
)

, and for each, find the

best possible step size γ. However, as we explain below, the Graver basis G
(

A(n)
)

is
very large. Therefore, in this article, we do it the other way around. For each of O(n)
critical positive integer potential step sizes γ, we determine an augmenting step γh
which is at least as good as the best possible augmenting step γg with g ∈ G

(

A(n)
)

.
We then show that the best among these steps over all such γ is a Graver-best step.

In preparation for this, we need to review some material on Graver bases of n-
fold products. Let A be a fixed integer (r, s)× t bimatrix. For any n we write each
vector x ∈ Z

nt as a tuple x = (x1, . . . ,xn) of n bricks xi ∈ Z
t. It has been shown

in [1], [18], and [13], in increasing generality, that for every bimatrix A, the number
of nonzero bricks appearing in any element in the Graver basis G

(

A(n)
)

for any n is
bounded by a constant independent of n. So we can make the following definition.
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Definition 2.2 The Graver complexity of an integer bimatrix A is defined to be the
largest number g(A) of nonzero bricks gi in any element g ∈ G

(

A(n)
)

for any n.

This was used in [5] to show that the Graver basis G(A(n)) has a polynomial
number O(ng(A)) of elements and is computable in time O(ng(A)) polynomial in n.
Thus, the computation of a Graver-best augmenting step in [10] was done by finding
the best step size γ for each of these O(ng(A)) elements of G(A(n)), resulting in
polynomial but very large O(ng(A)) dependency of the running time on n. In Section
3 we show how to find a Graver-best step without constructing G(A(n)) explicitly in
quadratic time O(n2) regardless of the bimatrix A and its Graver complexity.

We conclude this subsection with some remarks about complexity and finiteness.
The binary length of an integer number z is the number of bits in its binary encoding,
which is O(log |z|), and is denoted by 〈z〉. The binary length 〈z〉 of an integer vector
z is the sum of binary lengths of its entries. We denote by L the binary length of all
numerical part of the input. In particular L = 〈w,b, l,u〉 for problem (1). All num-
bers manipulated by our algorithms remain polynomial in the binary length of the
input and our algorithms are polynomial time in the Turing machine model. But we
are mostly interested in the number of arithmetic operations performed (additions,
multiplications, divisions, comparisons), so time in our complexity statements is the
number of such operations as in the real arithmetic model of computation.

For simplicity of presentation we assume throughout that all entries of the bounds
l,u in program (1) are finite and hence the set of feasible points in (1) is finite. This
is no loss of generality since, as is well known, it is always possible to add suitable
polynomial upper and lower bounds without excluding some optimal solution if any.

3 The algorithm

We now show how to decide if a given feasible point x = (x1, . . . ,xn) in (1) is optimal
in linear time O(n), and if not, determine a Graver-best step γg for x in quadratic
time O(n2). This is then incorporated into an iterative algorithm for solving (1).

We begin with a lemma about elements of Graver bases of n-fold products.

Lemma 3.1 Let A be integer (r, s)× t bimatrix with Graver complexity g(A). Let

Z(A) :=
{

z ∈ Z
t : z is the sum of at most g(A) elements of G(A2)

}

. (4)

Then for any n, any g ∈ G
(

A(n)
)

and any I ⊆ {1, . . . , n}, we have
∑

i∈I g
i ∈ Z(A).

Proof. Consider any Graver basis element g ∈ G
(

A(n)
)

for some n. Then A(n)g = 0
and hence

∑n

i=1A1g
i = 0 and A2g

i = 0 for all i. Therefore (see [17, Chapter 4])
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each gi can be written as the sum gi =
∑ki

j=1 h
i,j of some elements hi,j ∈ G(A2) for

all i, j. Let m := k1 + · · ·+ kn and let h be the vector

h := (h1,1, . . . ,h1,k1 , . . . ,hn,1, . . . ,hn,kn) ∈ Z
mt .

Then
∑

i,j A1h
i,j = 0 and A2h

i,j = 0 for all i, j and hence A(m)h = 0. We claim

that moreover, h ∈ G
(

A(m)
)

. Suppose indirectly this is not the case. Then there is

an h̄ ∈ G
(

A(m)
)

with h̄ ⊏ h. But then the vector ḡ ∈ Z
nt defined by ḡi :=

∑ki
j=1 h̄

i,j

for all i satisfies ḡ ⊏ ḡ contradicting g ∈ G
(

A(n)
)

. This proves the claim. Therefore,

by Definition 2.2 of Graver complexity, the number of nonzero bricks hi,j of h is at
most g(A). So for every I ⊆ {1, . . . , n}, we have that

∑

i∈I g
i =

∑

i∈I

∑ki
j=1 h

i,j is a

sum of at most g(A) nonzero elements hi,j ∈ G(A2) and hence
∑

i∈I g
i ∈ Z(A). �

Example 3.2 Let A := A(3) be the (9, 6)× 9 bimatrix mentioned in the introduc-
tion, which arises in the universality of n-fold integer programming discussed further
in Section 7, having first block A1 = I9 the 9 × 9 identity matrix and second block
the following 6× 9 incidence matrix of the complete bipartite graph K3,3,

A2 =

















1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

















.

Since A2 is totally unimodular, its Graver basis G(A2) consists of the 30 vectors in
{0,±1}9 supported on circuits of K3,3 with alternating ±1, see [17]. Also, it is known
that the Graver complexity of this bimatrix is g(A) = 9, see [2, 18]. Therefore, the
set Z(A) in (4) which corresponds to A, consists of all sums of at most 9 such circuit
vectors, and turns out to be comprised of 42931 vectors in Z

9, such as
(

9 −2 −7 −4 5 −1 −5 −3 8
)

.

We now define a dynamic program, that is, a weighted digraph, which will enable
to find a Graver-best step γg for a feasible point x of (1) or detect that none exists.

Definition 3.3 (the dynamic program) Let A be a fixed (r, s)× t bimatrix and
let g(A) be its Graver complexity. Given n, w,b, l,u, feasible point x in (1), and
positive integer γ, define a weighted digraph as follows. Its vertices are partitioned
into n + 1 stages defined in terms of the fixed finite set Z(A) ⊂ Z

t in (4), by

S0 := {0} , S1 := S2 := · · · := Sn−1 := Z(A) , Sn := {z ∈ Z(A) : A1z = 0} .

Denote the vertices of Si by hi ∈ Z
t. Introduce an arc (hi−1,hi) from hi−1 ∈ Si−1 to

hi ∈ Si if g
i := hi − hi−1 ∈ Z(A) and li ≤ xi + γgi ≤ ui, and give it weight wigi.
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To each dipath h = (h0,h1, . . . ,hn) from S0 to Sn in this digraph we associate
a vector g(h) := (h1 −h0, . . . ,hn −hn−1) ∈ Z

nt. Note that 0 ∈ Z(A) and hence the
trivial path h = (0, . . . , 0) with weight 0 and vector g(h) = (0, . . . , 0) always exists.
Note also that wg(h) =

∑n

i=1w
i(hi − hi−1) is precisely the weight of the dipath h.

The following lemma relates this dynamic program to Graver augmentations.

Lemma 3.4 A feasible step γg for x which satisfies w(x + γg) ≤ w(x + γḡ) for
any feasible step γḡ with ḡ ∈ G

(

A(n)
)

can be constructed in linear time O(n).

Proof. Let h be a minimum weight dipath from S0 to Sn and let g := g(h) be
the vector associated with h. We claim that γg is the desired feasible step for x.

We begin with the complexity statement. Since A is fixed, so is g(A), and hence
so is each Si. As the digraph is acyclic, the minimum weight dipath from S0 to
hi ∈ Si decomposes into a minimum weight dipath from S0 to some hi−1 ∈ Si−1

plus the arc from hi−1 to hi. Thus, we have to check at most a constant number
|Si−1| · |Si| of such pairs (hi−1,hi) to find the minimum weight dipaths from S0 to
every hi ∈ Si given the minimum weight dipaths from S0 to every hi−1 ∈ Si−1.
Repeating this for each of the sets S1, . . . , Sn one after the other takes O(n) time.

We next show that γg is a good feasible step. Since gi = hi−hi−1 and (hi−1,hi)
is an arc, we have li ≤ xi + γgi ≤ ui, and gi ∈ Z(A) and hence A2g

i = 0, for all i.
Also,

∑n

i=1 g
i = hn ∈ Sn and hence

∑n

i=1A1g
i = A1h

n = 0. So x + γg is feasible
in (1). Moreover, wg =

∑n

i=1w
igi is the weight of the minimum weight dipath h.

Now consider any feasible step γḡ for x with ḡ ∈ G
(

A(n)
)

. Define h̄
i
:=
∑

j≤i ḡ
j for

all i. Then h̄
i
∈ Z(A) for all i by Lemma 3.1. Moreover, A1h̄

n
= A1

∑n

j=1 ḡ
j = 0.

Therefore h̄
i
∈ Si for all i. Furthermore, h̄

i
−h̄

i−1
= ḡi ∈ Z(A) and li ≤ xi+γḡi ≤ ui

and therefore (h̄
i−1

, h̄
i
) is an arc of weight wiḡi for all i. So h = (h0,h1, . . . ,hn) is a

dipath from S0 to Sn with weight wḡ =
∑n

i=1w
iḡi and associated vector g(h̄) = ḡ.

Since h is a minimum weight dipath, wg ≤ wḡ and so w(x+ γg) ≤ w(x+ γḡ). �

Remark 3.5 (optimality certification in linear time) As noted in Section 2,
a feasible point x in integer program (1) is optimal if and only if there is no Graver
augmenting step g ∈ G

(

A(n)
)

for x. Thus, with γ := 1, Lemma 3.4 implies that the
optimality of a feasible point x in (1) can be determined in linear time O(n).

The next lemma shows that we can quickly find a Graver-best augmentation.

Lemma 3.6 A feasible step γg for x satisfying w(x + γg) ≤ w(x + γ̄ḡ) for any
feasible step γ̄ḡ with γ̄ ∈ Z+ and ḡ ∈ G

(

A(n)
)

can be found in quadratic time O(n2).

Proof. If Z(A) = {0} then G
(

A(n)
)

= ∅ by Lemma 3.1, so γg := 0 will do.
Otherwise, construct a set Γ of O(n) positive integers in O(n) time as follows: for
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every i = 1, . . . , n and every z ∈ Z(A) \ {0} determine the largest positive integer
γ such that li ≤ xi + γz ≤ ui and include it in Γ. Now, for each γ ∈ Γ, construct
and solve the corresponding dynamic program, resulting in total of O(n2) time by
Lemma 3.4. Let γg be that feasible step for x which attains minimum value wγg
among the best steps obtained from all these dynamic programs, and let γ̄ḡ be that
feasible step for x which attains minimum value wγ̄ḡ among γ̄ḡ with ḡ ∈ G

(

A(n)
)

if any. Assume that wγ̄ḡ < 0 as otherwise we are done since wγg ≤ wγ0 = 0. Then
γ̄ is the largest positive integer such that l ≤ x + γ̄ḡ ≤ u since otherwise the step
(γ̄ + 1)ḡ will be feasible and better. So for some i = 1, . . . , n, it must be that γ̄
is the largest positive integer such that li ≤ xi + γ̄ḡi ≤ ui. Since ḡ ∈ G

(

A(n)
)

, it
follows from Lemma 3.1 that ḡi ∈ Z(A). Therefore γ̄ ∈ Γ. Now let γ̄ĝ be the best
step attained from the dynamic program of γ̄. Then wγg ≤ wγ̄ĝ by choice of γg
and wγ̄ĝ ≤ wγ̄ḡ by Lemma 3.4. Therefore w(x+ γg) ≤ w(x+ γ̄ḡ) as claimed. �

We next show, following [10], that repeatedly applying Graver-best augmenting
steps, we can augment an initial feasible point for (1) to an optimal one efficiently.

Lemma 3.7 For any fixed bimatrix A there is an algorithm that, given n, w,b, l,u,
and feasible point x for (1), finds an optimal solution x∗ for (1) in time O(n3L).

Proof. Iterate the following: find by the algorithm of Lemma 3.6 a Graver-best step
γg for x; if it is augmenting then set x := x+γg and repeat, else x∗ := x is optimal.

To bound the number of iterations, following [10], note that while x is not op-
timal, and x∗ is some optimal solution, we have that x∗ − x =

∑k

i=1 γigi is a
nonnegative integer combination of Graver basis elements gi ∈ G

(

A(n)
)

all lying in
the same orthant, and hence each x+γigi is feasible in (1). Moreover, by the integer
Carathéodory theorem of [3, 19], we can assume that k ≤ 2(nt− 1). Letting γigi be
a summand attaining minimum wγigi, and letting γg be a Graver-best augmenting
step for x obtained from the algorithm of Lemma 3.6, we find that

w(x+ γg)−wx ≤ w(x + γigi)−wx ≤
1

2(nt− 1)
(wx∗ −wx) .

So the Graver-best step provides an improvement which is a constant fraction of the
best possible improvement, and this can be shown to lead to a bound of O(nL) on
the number of iterations to optimality, see [10] for more details. Since each iteration
takes O(n2) time by Lemma 3.6, the overall running time is O(n3L) as claimed. �

We next show how to find an initial feasible point for (1) with the same com-
plexity. We follow the approach of [5] using a suitable auxiliary n-fold program.

Lemma 3.8 For any fixed bimatrix A there is an algorithm that, given n, b, l,u,
either finds a feasible point x for (1) or asserts that none exists, in time O(n3L).
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Proof. Construct an auxiliary n-fold integer program

min
{

w̄z : Ā(n)z = b , l̄ ≤ z ≤ ū , z ∈ Z
n(t+2r+2s)

}

(5)

as follows. First, construct a new fixed (r, s)× (t+ 2r + 2s) bimatrix Ā with

Ā1 :=
(

A1 Ir −Ir 0r×s 0r×s

)

, Ā2 :=
(

A2 0s×r 0s×r Is −Is
)

.

Now, the n(t+2r+2s) variables z have a natural partition into nt original variables
x and n(2r+2s) new auxiliary variables y. Keep the original lower and upper bounds
on the original variables and introduce lower bound 0 and upper bound ‖b‖∞ on
each auxiliary variable. Let the new objective w̄z be the sum of auxiliary variables.
Note that the binary length of the auxiliary program satisfies L̄ = O(L) and an
initial feasible point z̄ with x̄ = 0 for (5) with the original b is easy to construct.
Now apply the algorithm of Lemma 3.7 and find in time O(n3L̄) = O(n3L) an
optimal solution z for (5). If the optimal objective value is 0 then y = 0 and x is
feasible in the original program (1) whereas if it is positive then (1) is infeasible. �

We can now obtain the main result of this article.

Theorem 3.9 For every fixed integer (r, s) × t bimatrix A, there is an algorithm
that, given n, vectors w, l,u ∈ Z

nt and b ∈ Z
r+ns having binary encoding length

L := 〈w,b, l,u, 〉, solves in time O(n3L) the n-fold integer programming problem

min
{

wx : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt
}

.

Proof. Use the algorithm of Lemma 3.8 to either detect infeasibility or obtain
a feasible point and augment it by the algorithm of Lemma 3.7 to optimality. �

4 Extensions to nonlinear objectives

Here we extend some of our results to programs with nonlinear objective functions,

min
{

f(x) : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt
}

. (6)

A function f : Rnt → R is separable convex if f(x) =
∑n

i=1 f
i(xi) =

∑n

i=1

∑t

j=1 f
i
j(x

i
j)

with each f i
j univariate convex. In [16] it was shown that Graver bases provide opti-

mality certificates for problem (6) with separable convex functions as well: a feasible
point x is optimal if and only if there is no feasible Graver step g for x which satisfies
f(x + g) < f(x). This was used in [10] to provide polynomial time procedures for
optimality certification and solution of problem (6) with separable convex functions
f . However, this involved again checking each of the O(ng(A)) elements of G

(

A(n)
)

.

Our results from Section 3 can be extended to provide linear time optimality
certification for separable convex functions and a cubic time solution of (6) for
separable convex piecewise affine functions. We discuss these respectively next.
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Optimality certification for separable convex objectives

Here we assume that the objective function f is presented by a comparison oracle
that, queried on two vectors x,y, asserts whether or not f(x) ≤ f(y). The time
complexity now measures the number of arithmetic operations and oracle queries.

Theorem 4.1 For any fixed bimatrix A, there is an algorithm that, given n, b, l,u,
separable convex f presented by comparison oracle, and feasible point x in program
(6), either asserts that x is optimal or finds an augmenting step g for x which
satisfies f(x+g) ≤ f(x+ ḡ) for any feasible step ḡ ∈ G

(

A(n)
)

, in linear time O(n).

Proof. Given the feasible point x, set a dynamic program similar to that in Defini-
tion 3.3, with γ := 1, with the only modification that the weight of arc (hi−1,hi) from
hi−1 ∈ Si−1 to hi ∈ Si is now defined to be f i(xi + gi)− f i(xi) with gi := hi −hi−1.
Then, for every dipath h and its associated vector g := g(h), we now have

f(x+ g)− f(x) =
n
∑

i=1

(

f i(xi + gi)− f i(xi)
)

= weight of dipath h .

We now claim that the desired step is the vector g := g(h) associated with a
minimum weight dipath h in this dynamic program. Indeed, an argument similar to
that in the proof Lemma 3.4 now implies that for any feasible step ḡ ∈ G

(

A(n)
)

we
have f(x+ g)− f(x) ≤ f(x+ ḡ)− f(x) and therefore f(x+ g) ≤ f(x+ ḡ). �

Optimization of separable convex piecewise affine objectives

In [10] it was shown that problem (6) can be solved for any separable convex function
in polynomial time, but with very large dependency of O(ng(A)) of the running
time on n, with the exponent g(A) depending on the bimatrix A. Here we restrict
attention to separable convex objective functions which are piecewise affine, for
which we are able to reduce the time dependency on n to O(n3) independent of A.

So we assume again that f(x) =
∑n

i=1 f
i(xi) =

∑n

i=1

∑t

j=1 f
i
j(x

i
j) with each

f i
j : R → R univariate convex. Moreover, we now also assume that for some fixed

p, each f i
j is p-piecewise affine, that is, the interval between the lower bound lij

and upper bound ui
j is partitioned into at most p intervals with integer end-points,

and the restriction of f i
j to each interval k is an affine function wi

j,kx
i
j + aij,k with

all wi
j,k, a

i
j,k integers. We denote by 〈f〉 the binary length of f which is the sum

of binary lengths of all interval end-points and wi
j,k, a

i
j,k needed to describe it. The

binary length of the input for the nonlinear problem (6) is now L := 〈f,b, l,u〉.

Theorem 4.2 For any fixed p and bimatrix A, there is an algorithm that, given n,
b, l,u, and separable convex p-piecewise affine f , solves in time O(n3L) the program

min
{

f(x) : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt
}

.
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Proof. We need to establish analogs of some of the lemmas of Section 3 for
such objective functions. First, for the analog of Lemma 3.4, proceed as in the proof
of Theorem 4.1 above: given a feasible point x and positive integer γ, set again a
dynamic program similar to that in Definition 3.3, with the weight of arc (hi−1,hi)
from hi−1 ∈ Si−1 to hi ∈ Si defined to be f i(xi + γgi)− f i(xi) with gi := hi −hi−1.
A similar argument to that in the proof of Lemma 3.4 now shows that γg with
g := g(h) the vector associated with the minimum weight dipath h is a feasible step
for x which satisfies f(x+γg) ≤ f(x+γḡ) for any feasible step γḡ with ḡ ∈ G

(

A(n)
)

.

For the analog of Lemma 3.6, we construct again a set Γ of critical step sizes
γ as follows. First, as in the proof of Lemma 3.6, we collect the critical step sizes
due to the lower and upper bound constraints by finding, for every i = 1, . . . , n and
every z ∈ Z(A) \ {0}, the largest positive integer γ such that li ≤ xi + γz ≤ ui,
and include it in Γ. However, in contrast to Lemma 3.6, we are now dealing with
the more general class of piecewise affine objective functions f i

j . So we must add
also the following values γ to Γ: for every i = 1, . . . , n, every z ∈ Z(A) \ {0}, and
every j = 1, . . . , t, if xi

j + γzj and xi
j + (γ + 1)zj belong to different affine pieces

of f i
j , then γ is included in Γ. Since the number p of affine pieces is constant, the

number of such values for each i, z and j is also constant. So the total number of
elements of Γ remains linear and it can be constructed in linear time O(n) again.
Now we continue as in the proof of Lemma 3.6: for each γ in Γ, using the analog
of Lemma 3.4 established in the first paragraph above, we solve the corresponding
dynamic program in O(n) time, resulting in total of O(n2) time again. Let γg be
that feasible step for x which attains minimum value f(x + γg) among the best
steps obtained from all these dynamic programs, and let γ̄ḡ be that feasible step
for x which attains minimum value f(x + γ̄ḡ) among γ̄ḡ with ḡ ∈ G

(

A(n)
)

if
any. It now follows from the construction of Γ that if γ̄ḡ is augmenting, namely, if
f(x + γ̄ḡ) − f(x) < 0, then γ̄ ∈ Γ, as otherwise the step (γ̄ + 1)ḡ will be feasible
and better. Let γ̄ĝ be the best step attained from the dynamic program of γ̄. Then

f(x+ γg) ≤ f(x+ γ̄ĝ) ≤ f(x+ γ̄ḡ)

where the first inequality follows from the choice of γg and the second inequality
follows from the analog of Lemma 3.4. Therefore f(x+ γg) ≤ f(x+ γ̄ḡ).

For the analog of Lemma 3.7, we use the results of [10] incorporating the optimal-
ity criterion of [16], which assure that the number of iterations needed when using
a Graver-best augmenting step at each iteration, is bounded by O(n 〈f〉) = O(nL),
resulting again in overall time complexity O(n3L) for augmenting an initial feasible
point to an optimal solution of (6). Since an initial feasible point if any can be found
by Lemma 3.8 as before in the same complexity, the theorem now follows. �
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5 Some consequences

Here we briefly discuss two of the many consequences of n-fold integer programming
which, now with our new algorithm, can be solved drastically faster than before.

Nonlinear multicommodity transportation

The multicommodity transportation problem seeks minimum cost routing of l com-
modities from m suppliers to n consumers subject to supply, consumption and ca-
pacity constraints. For l = 1 this is the classical transportation problem which is
efficiently solvable by linear programming. But already for l = 2 it is NP-hard. Here
we consider the problem with fixed (but arbitrary) number l of commodities, fixed
(but arbitrary) number m of suppliers, and variable number n of consumers. This
is natural in typical applications where few facilities serve many customers.

The data is as follows. Each supplier i has a supply vector si ∈ Z
l
+ with sik

its supply in commodity k. Each consumer j has a consumption vector cj ∈ Z
l
+

with cjk its consumption in commodity k. The amount of commodity k to be routed
from supplier i to consumer j is an integer decision variable xj

i,k. The total amount
∑l

k=1 x
j
i,k of commodities routed on the channel from i to j should not exceed the

channel capacity ui,j, and has cost fi,j

(

∑l

k=1 x
j
i,k

)

for suitable univariate functions

fi,j. We can handle standard linear costs as well as more realistic, convex piecewise
affine cost functions fi,j, which account for channel congestion under heavy routing.

As a corollary of Theorem 4.2, for any fixed numbers l of commodities and m of
suppliers, the problem can be solved in time cubic in the number n of consumers.

Corollary 5.1 For every fixed l commodities, m suppliers, and p, there exists an
algorithm that, given n consumers, supplies and demands si, cj ∈ Z

l
+, capacities

ui,j ∈ Z+, and convex p-piecewise affine costs fi,j : Z → Z, solves in time O(n3L),
with L := 〈si, cj, ui,j, fi,j〉, the integer multicommodity transportation problem

min

{

m
∑

i=1

n
∑

j=1

fi,j

(

l
∑

k=1

xj
i,k

)

: xj
i,k ∈ Z+,

∑

j

xj
i,k = sik,

∑

i

xj
i,k = cjk,

l
∑

k=1

xj
i,k ≤ ui,j

}

.

Proof. Introduce new variables yji and equations yji =
∑l

k=1 x
j
i,k for all i, j. Then

the objective function becomes
∑

i,j fi,j(y
j
i ) which is separable convex p-piecewise

affine in the new variables, and the capacity constraints become yji ≤ ui,j which are
upper bounds on the new variables. Use ui,j as an upper bound on xj

i,k and 0 as a

trivial lower bound on yji for all i, j, k. As shown in [11], arranging the original and
new variables in a tuple z = (z1, . . . , zn) of n bricks zj ∈ Z

m(l+1) defined by

zj : = (xj
1,1, . . . , x

j
1,l, y

j
1 , xj

2,1, . . . , x
j
2,l, y

j
2 , . . . . . . , xj

m,1, . . . , x
j
m,l, y

j
m) ,
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this problem can be modeled as an n-fold program, resulting in solution in large time
O
(

ng(A)L
)

, with exponent depending on l, m. Theorem 4.2 now enables solution in
cubic time independent of the numbers l of commodities and m of suppliers. �

Privacy in statistical databases

A common practice in the disclosure of sensitive data contained in a multiway table
is to release some of the table margins rather than the entries of the table. Once the
margins are released, the security of any specific entry of the table is related to the set
of possible values that can occur in that entry in all tables having the same margins
as those of the source table in the database, see [7, 20] and the references therein. In
particular, if this set is small or consists of a unique value, that of the source table,
then this entry can be exposed. Thus, it is desirable to compute the minimum and
maximum integer values that can occur in an entry, which in particular are equal if
and only if the entry value is unique, before margin disclosure is enabled.

Consider (d+1)-way tables of format m0×· · ·×md, that is, arrays v = (vi0,...,id)
indexed by 1 ≤ ij ≤ mj for all j, with all entries vi0,...,id nonnegative integers. Our
results hold for arbitrary hierarchical margins, but for simplicity we restrict attention
to disclosure of d-margins, that is, the d + 1 many d-way tables (vi0,...,ij−1,∗,ij+1,...,id)
obtained from v by collapsing one factor 0 ≤ j ≤ d at a time, with entries given by

vi0,...,ij−1,∗,ij+1,...,id :=

mj
∑

ij=1

vi0,...,ij−1,ij ,ij+1,...,id , 1 ≤ ik ≤ mk , 0 ≤ k ≤ d , k 6= j .

The problem is then to compute the minimum and maximum integer values that
can occur in an entry subject to the margins of the source table in the database.

This problem is NP-hard already for 3-way tables of format n×m × 3, see [6].
However, as a corollary of Theorem 3.9, if only one side n of the table is variable,
the problem can be solved in cubic time regardless of the other sides mi as follows.

Corollary 5.2 For every fixed d,m1, . . . , md, there is an algorithm that, given n,
integer d-margins (v∗,i1,...,id), . . . , (vi0,...,id−1,∗), and index (k0, . . . , kd), determines, in
time O(n3L), with L the binary length of the given margins, the minimum and
maximum values of entry xk0,...,kd among all tables with these margins, that is, solves

min /max
{

xk0,...,kd : x ∈ Z
n×m1×···×md

+ , (xi0,...,ij−1,∗,ij+1,...,id) = (vi0,...,ij−1,∗,ij+1,...,id) ∀j
}

.

Proof. Let u be the maximum value of any entry in the given margins and use it
as an upper bound on every variable. As shown in [5], this problem can be modeled
as an n-fold integer programming problem, resulting in solution in large running
time O

(

ng(A)L
)

, with exponent which depends on m1, . . . , md. Theorem 3.9 now
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enables to solve it in cubic time independent of the table dimensions m1, . . . , md. �

We note that long tables, with one side much larger than the others, often arise
in practical applications. For instance, in health statistical tables, the long factor
may be the age of an individual, whereas other factors may be binary (yes-no)
or ternary (subnormal, normal, and supnormal). Moreover, it is always possible
to merge categories of factors, with the resulting coarser tables approximating the
original ones, making the algorithm of Corollary 5.2 applicable.

We also note that, by repeatedly incrementing a lower bound and decrementing
an upper bound on the entry xk0,...,kd, and computing its new minimum and maxi-
mum values subject to these bounds, we can produce the entire set of values that
can occur in that entry in time proportional to the number of such values.

6 Solvability over bimatrices with variable entries

The drop of the Graver complexity from the exponent of n to the constant multiple
also leads to the first polynomial time solution of n-fold integer programming with
variable bimatrices. Of course, by the universality of n-fold integer programming, the
variability of the bimatrices must be limited. In what follows, we fix the dimensions
r, s, t of the input bimatrix A, and let the entries vary. We show that, given as part
of the input an upper bound a on the absolute value of every entry of A, we can
solve the problem in time polynomial in a, that is, polynomial in the unary length
of a. This holds for linear as well as separable convex piecewise affine objectives.

We have the following theorem, with L := 〈f, a,b, l,u〉 the length of the input.

Theorem 6.1 For any fixed r, s, t and p, there is an algorithm that, given n, a,
(r, s) × t bimatrix A with all entries bounded by a in absolute value, b, l,u, and
separable convex p-piecewise affine f , in polynomial time O(a3t(rs+st+r+s)n3L), solves

min
{

f(x) : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt
}

.

Proof. Let G(A2) be the Graver basis of the s × t second block A2 of A, let
p := |G(A2)| be its cardinality, and arrange its elements as the columns of a t × p
matrix G2. Since r, s, t are fixed, it follows from bounds on Graver bases (see e.g.
[17, Section 3.4]) that every g ∈ G(A2) satisfies ‖g‖∞ = O(as) and hence p = O(ast).

Now, it is known (see [13, 18] or [17, Section 4.1]) that the Graver complexity
g(A) of A is equal to the maximum value ‖v‖1 of any element v in the Graver basis
G(A1G2) of the r×p matrix A1G2. Since the entries of A1G2 are bounded in absolute
value by O(as+1), the bounds on Graver bases (see again [17, Section 3.4]) imply
that ‖v‖1 = O(p · (as+1)r) for every v ∈ G(A1G2) and hence g(A) = O(ars+st+r).



14

Now, consider again the following set defined in (4) in Lemma 3.1,

Z(A) :=
{

z ∈ Z
t : z is the sum of at most g(A) elements of G(A2)

}

.

For each z ∈ Z(A) we have that ‖z‖∞ is bounded by g(A) times the maximum value
of ‖g‖∞ over all g ∈ G(A2), and therefore ‖z‖∞ = O(g(A) · as) = O(ars+st+r+s). So
the cardinality of Z(A) satisfies |Z(A)| = O((ars+st+r+s)t) = O(at(rs+st+r+s)).

Now, suitable analogs of some of the lemmas of Section 3 go through, except that
the complexities now depend on the variable size of the set Z(A), as follows. The
time complexity of the algorithm of Lemma 3.4 becomes O(|Z(A)|2n). The size of
the set Γ of critical values is now O(|Z(A)|n) and therefore the time complexity of
the algorithm of Lemma 3.6 now becomes O(|Z(A)|3n2). The number of iterations
needed to augment an initial feasible point to an optimal solution remains O(nL)
as before and therefore the time complexity of the algorithm of Lemma 3.7 now
become O(|Z(A)|3n3L). To find an initial feasible point, one can use the algorithm
of Lemma 3.8, but then t would have to be replaced by t+2r+ 2s for the auxiliary
bimatrix Ā, resulting in a somewhat larger exponent for a in the running time.
However, it is possible to find an initial feasible point in an alternative, somewhat
more involved way, keeping the original system with the bimatrix A, as follows.
First find an integer solution to the system of equations only (without the lower and
upper bounds) using the Hermite normal forms of the blocks A1 and A2. Second,
relax the bounds so as to make that point feasible. Third, minimize the following
auxiliary objective function which is separable convex 3-piecewise affine, with

f i
j(x

i
j) :=







lij − xi
j , if xi

j ≤ lij,
0, if lij ≤ xi

j ≤ ui
j,

xi
j − ui

j, if xi
j ≥ ui

j.

If the optimal value is zero then the optimal auxiliary solution is feasible in the
original problem, whereas if it is positive then the original problem is infeasible.
Since this minimization can be done using the separable convex piecewise affine
analog of Lemma 3.7 described in the proof of Theorem 4.2 in the same complexity
O(|Z(A)|3n3L), the overall running time is O(a3t(rs+st+r+s)n3L) as claimed. �

7 Parametrization and approximation hierarchy

We conclude with a short discussion of the universality of n-fold integer programming
and the resulting parametrization and simple approximation hierarchy for all of
integer programming. As mentioned in the introduction, every integer program is an
n-fold program for some m over the bimatrix A(m) having first block the identity
matrix I3m and second block the (3 + m) × 3m incidence matrix of K3,m. It is
convenient and illuminating to introduce also the following description.
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Consider the following special form of the n-fold product operator. For an s× t
matrix D, let D[n] := A(n) where A is the (t, s) × t bimatrix A with first block
A1 := It the t × t identity matrix and second block A2 := D. We consider such
m-fold products of the 1 × 3 matrix (1 1 1). Note that (1 1 1)[m] is precisely the
(3 +m)× 3m incidence matrix of the complete bipartite graph K3,m. For instance,

(1 1 1)[2] =













1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 1 0 0 0
0 0 0 1 1 1













.

The following theorem was established in [6].

The Universality Theorem [6] Every (bounded) integer programming problem
min{cy : y ∈ Z

k
+, V y = v} is polynomial time equivalent to some integer program

min
{

wx : x ∈ Z
3mn
+ , (1 1 1)[m][n]x = b

}

∼= min
{

wx : x ∈ Z
3mn
+ , A(m)(n)x = b

}

.

This theorem provides a new, variable dimension, parametrization of integer
programming: for each fixed value of the parameter m, the resulting programs above
with n variable live in variable dimension 3mn and include natural models such as
those described in Section 5, and can be solved in cubic time O(n3L) by Theorem
3.9; and when the parameter m varies, every integer program appears for some m.

Our new algorithm suggests a natural simple approximation hierarchy for integer
programming, parameterized by degree d, as follows. Fix any d. Then given any m,
let A := A(m), so t = 3m, A1 = I3m, and A2 is the incidence matrix of K3,m. Define
the approximation at degree d of the set Z(A) in equation (4) in Lemma 3.1 by

Zd(m) :=
{

z ∈ Z
3m : z is the sum of at most d elements of G(A2)

}

. (7)

Since A2 is totally unimodular, G(A2) consists of the O(m3) vectors in {0,±1}3m

supported on circuits of K3,m with alternating ±1 and hence |Zd(m)| = O(m3d).

Now, given a feasible point x in the universal program above, and positive integer
γ, set a dynamic program similar to that in Definition 3.3, with the only modification
that the sets Si are defined using the approximation Zd(m) of Z(A). Weaker forms
of Lemmas 3.4 and 3.6 now assert that in time O(|Zd(m)|3n2) = O(m9dn2), which
is polynomial in both m and n, we can find a good feasible step γg. We use this
iteratively to augment an initial feasible point to one which is as good as possible and
output it. However, Lemma 3.1 no longer holds and not all brick sums of elements
of the Graver basis G(A(n)) lie in Zd(m). So the bounds on the number of iterations
and total running time are no longer valid and the output point may be non optimal.
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By increasing the degree d we can get better approximations at increasing run-
ning times, and when d = g(A) we get the true optimal solution. These approxima-
tions are currently under study, implementation and testing. They show promising
behavior already at degree d = 3 and will be discussed in more detail elsewhere.

For m = 3, discussed in Example 3.2, for which the universal problem is equiva-
lent to optimization over 3-way n× 3× 3 tables, the approximation Z3(3) at degree
d = 3 contains only 811 vectors out of the 42931 vectors in the true Z(A), such as

(

−3 2 1 2 −3 1 1 1 −2
)

.
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[20] Slavković, A.B., Zhu, X., Petrović, S.: A sample space of k-way tables given
conditionals and their relations to marginals: Implications for cell bounds and
Markov bases. Preprint, 35 pp. (2009)


	1 Introduction
	2 Notation and preliminaries
	3 The algorithm
	4 Extensions to nonlinear objectives
	5 Some consequences
	6 Solvability over bimatrices with variable entries
	7 Parametrization and approximation hierarchy

